1 /* 2 * Copyright (c) 2011,2016 Samsung Electronics Co., Ltd. 3 * http://www.samsung.com 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 */ 9 10 #ifdef CONFIG_EXYNOS_IOMMU_DEBUG 11 #define DEBUG 12 #endif 13 14 #include <linux/clk.h> 15 #include <linux/dma-mapping.h> 16 #include <linux/err.h> 17 #include <linux/io.h> 18 #include <linux/iommu.h> 19 #include <linux/interrupt.h> 20 #include <linux/list.h> 21 #include <linux/of.h> 22 #include <linux/of_iommu.h> 23 #include <linux/of_platform.h> 24 #include <linux/platform_device.h> 25 #include <linux/pm_runtime.h> 26 #include <linux/slab.h> 27 #include <linux/dma-iommu.h> 28 29 typedef u32 sysmmu_iova_t; 30 typedef u32 sysmmu_pte_t; 31 32 /* We do not consider super section mapping (16MB) */ 33 #define SECT_ORDER 20 34 #define LPAGE_ORDER 16 35 #define SPAGE_ORDER 12 36 37 #define SECT_SIZE (1 << SECT_ORDER) 38 #define LPAGE_SIZE (1 << LPAGE_ORDER) 39 #define SPAGE_SIZE (1 << SPAGE_ORDER) 40 41 #define SECT_MASK (~(SECT_SIZE - 1)) 42 #define LPAGE_MASK (~(LPAGE_SIZE - 1)) 43 #define SPAGE_MASK (~(SPAGE_SIZE - 1)) 44 45 #define lv1ent_fault(sent) ((*(sent) == ZERO_LV2LINK) || \ 46 ((*(sent) & 3) == 0) || ((*(sent) & 3) == 3)) 47 #define lv1ent_zero(sent) (*(sent) == ZERO_LV2LINK) 48 #define lv1ent_page_zero(sent) ((*(sent) & 3) == 1) 49 #define lv1ent_page(sent) ((*(sent) != ZERO_LV2LINK) && \ 50 ((*(sent) & 3) == 1)) 51 #define lv1ent_section(sent) ((*(sent) & 3) == 2) 52 53 #define lv2ent_fault(pent) ((*(pent) & 3) == 0) 54 #define lv2ent_small(pent) ((*(pent) & 2) == 2) 55 #define lv2ent_large(pent) ((*(pent) & 3) == 1) 56 57 #ifdef CONFIG_BIG_ENDIAN 58 #warning "revisit driver if we can enable big-endian ptes" 59 #endif 60 61 /* 62 * v1.x - v3.x SYSMMU supports 32bit physical and 32bit virtual address spaces 63 * v5.0 introduced support for 36bit physical address space by shifting 64 * all page entry values by 4 bits. 65 * All SYSMMU controllers in the system support the address spaces of the same 66 * size, so PG_ENT_SHIFT can be initialized on first SYSMMU probe to proper 67 * value (0 or 4). 68 */ 69 static short PG_ENT_SHIFT = -1; 70 #define SYSMMU_PG_ENT_SHIFT 0 71 #define SYSMMU_V5_PG_ENT_SHIFT 4 72 73 #define sect_to_phys(ent) (((phys_addr_t) ent) << PG_ENT_SHIFT) 74 #define section_phys(sent) (sect_to_phys(*(sent)) & SECT_MASK) 75 #define section_offs(iova) (iova & (SECT_SIZE - 1)) 76 #define lpage_phys(pent) (sect_to_phys(*(pent)) & LPAGE_MASK) 77 #define lpage_offs(iova) (iova & (LPAGE_SIZE - 1)) 78 #define spage_phys(pent) (sect_to_phys(*(pent)) & SPAGE_MASK) 79 #define spage_offs(iova) (iova & (SPAGE_SIZE - 1)) 80 81 #define NUM_LV1ENTRIES 4096 82 #define NUM_LV2ENTRIES (SECT_SIZE / SPAGE_SIZE) 83 84 static u32 lv1ent_offset(sysmmu_iova_t iova) 85 { 86 return iova >> SECT_ORDER; 87 } 88 89 static u32 lv2ent_offset(sysmmu_iova_t iova) 90 { 91 return (iova >> SPAGE_ORDER) & (NUM_LV2ENTRIES - 1); 92 } 93 94 #define LV1TABLE_SIZE (NUM_LV1ENTRIES * sizeof(sysmmu_pte_t)) 95 #define LV2TABLE_SIZE (NUM_LV2ENTRIES * sizeof(sysmmu_pte_t)) 96 97 #define SPAGES_PER_LPAGE (LPAGE_SIZE / SPAGE_SIZE) 98 #define lv2table_base(sent) (sect_to_phys(*(sent) & 0xFFFFFFC0)) 99 100 #define mk_lv1ent_sect(pa) ((pa >> PG_ENT_SHIFT) | 2) 101 #define mk_lv1ent_page(pa) ((pa >> PG_ENT_SHIFT) | 1) 102 #define mk_lv2ent_lpage(pa) ((pa >> PG_ENT_SHIFT) | 1) 103 #define mk_lv2ent_spage(pa) ((pa >> PG_ENT_SHIFT) | 2) 104 105 #define CTRL_ENABLE 0x5 106 #define CTRL_BLOCK 0x7 107 #define CTRL_DISABLE 0x0 108 109 #define CFG_LRU 0x1 110 #define CFG_QOS(n) ((n & 0xF) << 7) 111 #define CFG_ACGEN (1 << 24) /* System MMU 3.3 only */ 112 #define CFG_SYSSEL (1 << 22) /* System MMU 3.2 only */ 113 #define CFG_FLPDCACHE (1 << 20) /* System MMU 3.2+ only */ 114 115 /* common registers */ 116 #define REG_MMU_CTRL 0x000 117 #define REG_MMU_CFG 0x004 118 #define REG_MMU_STATUS 0x008 119 #define REG_MMU_VERSION 0x034 120 121 #define MMU_MAJ_VER(val) ((val) >> 7) 122 #define MMU_MIN_VER(val) ((val) & 0x7F) 123 #define MMU_RAW_VER(reg) (((reg) >> 21) & ((1 << 11) - 1)) /* 11 bits */ 124 125 #define MAKE_MMU_VER(maj, min) ((((maj) & 0xF) << 7) | ((min) & 0x7F)) 126 127 /* v1.x - v3.x registers */ 128 #define REG_MMU_FLUSH 0x00C 129 #define REG_MMU_FLUSH_ENTRY 0x010 130 #define REG_PT_BASE_ADDR 0x014 131 #define REG_INT_STATUS 0x018 132 #define REG_INT_CLEAR 0x01C 133 134 #define REG_PAGE_FAULT_ADDR 0x024 135 #define REG_AW_FAULT_ADDR 0x028 136 #define REG_AR_FAULT_ADDR 0x02C 137 #define REG_DEFAULT_SLAVE_ADDR 0x030 138 139 /* v5.x registers */ 140 #define REG_V5_PT_BASE_PFN 0x00C 141 #define REG_V5_MMU_FLUSH_ALL 0x010 142 #define REG_V5_MMU_FLUSH_ENTRY 0x014 143 #define REG_V5_INT_STATUS 0x060 144 #define REG_V5_INT_CLEAR 0x064 145 #define REG_V5_FAULT_AR_VA 0x070 146 #define REG_V5_FAULT_AW_VA 0x080 147 148 #define has_sysmmu(dev) (dev->archdata.iommu != NULL) 149 150 static struct device *dma_dev; 151 static struct kmem_cache *lv2table_kmem_cache; 152 static sysmmu_pte_t *zero_lv2_table; 153 #define ZERO_LV2LINK mk_lv1ent_page(virt_to_phys(zero_lv2_table)) 154 155 static sysmmu_pte_t *section_entry(sysmmu_pte_t *pgtable, sysmmu_iova_t iova) 156 { 157 return pgtable + lv1ent_offset(iova); 158 } 159 160 static sysmmu_pte_t *page_entry(sysmmu_pte_t *sent, sysmmu_iova_t iova) 161 { 162 return (sysmmu_pte_t *)phys_to_virt( 163 lv2table_base(sent)) + lv2ent_offset(iova); 164 } 165 166 /* 167 * IOMMU fault information register 168 */ 169 struct sysmmu_fault_info { 170 unsigned int bit; /* bit number in STATUS register */ 171 unsigned short addr_reg; /* register to read VA fault address */ 172 const char *name; /* human readable fault name */ 173 unsigned int type; /* fault type for report_iommu_fault */ 174 }; 175 176 static const struct sysmmu_fault_info sysmmu_faults[] = { 177 { 0, REG_PAGE_FAULT_ADDR, "PAGE", IOMMU_FAULT_READ }, 178 { 1, REG_AR_FAULT_ADDR, "AR MULTI-HIT", IOMMU_FAULT_READ }, 179 { 2, REG_AW_FAULT_ADDR, "AW MULTI-HIT", IOMMU_FAULT_WRITE }, 180 { 3, REG_DEFAULT_SLAVE_ADDR, "BUS ERROR", IOMMU_FAULT_READ }, 181 { 4, REG_AR_FAULT_ADDR, "AR SECURITY PROTECTION", IOMMU_FAULT_READ }, 182 { 5, REG_AR_FAULT_ADDR, "AR ACCESS PROTECTION", IOMMU_FAULT_READ }, 183 { 6, REG_AW_FAULT_ADDR, "AW SECURITY PROTECTION", IOMMU_FAULT_WRITE }, 184 { 7, REG_AW_FAULT_ADDR, "AW ACCESS PROTECTION", IOMMU_FAULT_WRITE }, 185 }; 186 187 static const struct sysmmu_fault_info sysmmu_v5_faults[] = { 188 { 0, REG_V5_FAULT_AR_VA, "AR PTW", IOMMU_FAULT_READ }, 189 { 1, REG_V5_FAULT_AR_VA, "AR PAGE", IOMMU_FAULT_READ }, 190 { 2, REG_V5_FAULT_AR_VA, "AR MULTI-HIT", IOMMU_FAULT_READ }, 191 { 3, REG_V5_FAULT_AR_VA, "AR ACCESS PROTECTION", IOMMU_FAULT_READ }, 192 { 4, REG_V5_FAULT_AR_VA, "AR SECURITY PROTECTION", IOMMU_FAULT_READ }, 193 { 16, REG_V5_FAULT_AW_VA, "AW PTW", IOMMU_FAULT_WRITE }, 194 { 17, REG_V5_FAULT_AW_VA, "AW PAGE", IOMMU_FAULT_WRITE }, 195 { 18, REG_V5_FAULT_AW_VA, "AW MULTI-HIT", IOMMU_FAULT_WRITE }, 196 { 19, REG_V5_FAULT_AW_VA, "AW ACCESS PROTECTION", IOMMU_FAULT_WRITE }, 197 { 20, REG_V5_FAULT_AW_VA, "AW SECURITY PROTECTION", IOMMU_FAULT_WRITE }, 198 }; 199 200 /* 201 * This structure is attached to dev.archdata.iommu of the master device 202 * on device add, contains a list of SYSMMU controllers defined by device tree, 203 * which are bound to given master device. It is usually referenced by 'owner' 204 * pointer. 205 */ 206 struct exynos_iommu_owner { 207 struct list_head controllers; /* list of sysmmu_drvdata.owner_node */ 208 struct iommu_domain *domain; /* domain this device is attached */ 209 }; 210 211 /* 212 * This structure exynos specific generalization of struct iommu_domain. 213 * It contains list of SYSMMU controllers from all master devices, which has 214 * been attached to this domain and page tables of IO address space defined by 215 * it. It is usually referenced by 'domain' pointer. 216 */ 217 struct exynos_iommu_domain { 218 struct list_head clients; /* list of sysmmu_drvdata.domain_node */ 219 sysmmu_pte_t *pgtable; /* lv1 page table, 16KB */ 220 short *lv2entcnt; /* free lv2 entry counter for each section */ 221 spinlock_t lock; /* lock for modyfying list of clients */ 222 spinlock_t pgtablelock; /* lock for modifying page table @ pgtable */ 223 struct iommu_domain domain; /* generic domain data structure */ 224 }; 225 226 /* 227 * This structure hold all data of a single SYSMMU controller, this includes 228 * hw resources like registers and clocks, pointers and list nodes to connect 229 * it to all other structures, internal state and parameters read from device 230 * tree. It is usually referenced by 'data' pointer. 231 */ 232 struct sysmmu_drvdata { 233 struct device *sysmmu; /* SYSMMU controller device */ 234 struct device *master; /* master device (owner) */ 235 void __iomem *sfrbase; /* our registers */ 236 struct clk *clk; /* SYSMMU's clock */ 237 struct clk *aclk; /* SYSMMU's aclk clock */ 238 struct clk *pclk; /* SYSMMU's pclk clock */ 239 struct clk *clk_master; /* master's device clock */ 240 int activations; /* number of calls to sysmmu_enable */ 241 spinlock_t lock; /* lock for modyfying state */ 242 struct exynos_iommu_domain *domain; /* domain we belong to */ 243 struct list_head domain_node; /* node for domain clients list */ 244 struct list_head owner_node; /* node for owner controllers list */ 245 phys_addr_t pgtable; /* assigned page table structure */ 246 unsigned int version; /* our version */ 247 }; 248 249 static struct exynos_iommu_domain *to_exynos_domain(struct iommu_domain *dom) 250 { 251 return container_of(dom, struct exynos_iommu_domain, domain); 252 } 253 254 static bool set_sysmmu_active(struct sysmmu_drvdata *data) 255 { 256 /* return true if the System MMU was not active previously 257 and it needs to be initialized */ 258 return ++data->activations == 1; 259 } 260 261 static bool set_sysmmu_inactive(struct sysmmu_drvdata *data) 262 { 263 /* return true if the System MMU is needed to be disabled */ 264 BUG_ON(data->activations < 1); 265 return --data->activations == 0; 266 } 267 268 static bool is_sysmmu_active(struct sysmmu_drvdata *data) 269 { 270 return data->activations > 0; 271 } 272 273 static void sysmmu_unblock(struct sysmmu_drvdata *data) 274 { 275 writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL); 276 } 277 278 static bool sysmmu_block(struct sysmmu_drvdata *data) 279 { 280 int i = 120; 281 282 writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL); 283 while ((i > 0) && !(readl(data->sfrbase + REG_MMU_STATUS) & 1)) 284 --i; 285 286 if (!(readl(data->sfrbase + REG_MMU_STATUS) & 1)) { 287 sysmmu_unblock(data); 288 return false; 289 } 290 291 return true; 292 } 293 294 static void __sysmmu_tlb_invalidate(struct sysmmu_drvdata *data) 295 { 296 if (MMU_MAJ_VER(data->version) < 5) 297 writel(0x1, data->sfrbase + REG_MMU_FLUSH); 298 else 299 writel(0x1, data->sfrbase + REG_V5_MMU_FLUSH_ALL); 300 } 301 302 static void __sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data, 303 sysmmu_iova_t iova, unsigned int num_inv) 304 { 305 unsigned int i; 306 307 for (i = 0; i < num_inv; i++) { 308 if (MMU_MAJ_VER(data->version) < 5) 309 writel((iova & SPAGE_MASK) | 1, 310 data->sfrbase + REG_MMU_FLUSH_ENTRY); 311 else 312 writel((iova & SPAGE_MASK) | 1, 313 data->sfrbase + REG_V5_MMU_FLUSH_ENTRY); 314 iova += SPAGE_SIZE; 315 } 316 } 317 318 static void __sysmmu_set_ptbase(struct sysmmu_drvdata *data, phys_addr_t pgd) 319 { 320 if (MMU_MAJ_VER(data->version) < 5) 321 writel(pgd, data->sfrbase + REG_PT_BASE_ADDR); 322 else 323 writel(pgd >> PAGE_SHIFT, 324 data->sfrbase + REG_V5_PT_BASE_PFN); 325 326 __sysmmu_tlb_invalidate(data); 327 } 328 329 static void __sysmmu_enable_clocks(struct sysmmu_drvdata *data) 330 { 331 BUG_ON(clk_prepare_enable(data->clk_master)); 332 BUG_ON(clk_prepare_enable(data->clk)); 333 BUG_ON(clk_prepare_enable(data->pclk)); 334 BUG_ON(clk_prepare_enable(data->aclk)); 335 } 336 337 static void __sysmmu_disable_clocks(struct sysmmu_drvdata *data) 338 { 339 clk_disable_unprepare(data->aclk); 340 clk_disable_unprepare(data->pclk); 341 clk_disable_unprepare(data->clk); 342 clk_disable_unprepare(data->clk_master); 343 } 344 345 static void __sysmmu_get_version(struct sysmmu_drvdata *data) 346 { 347 u32 ver; 348 349 __sysmmu_enable_clocks(data); 350 351 ver = readl(data->sfrbase + REG_MMU_VERSION); 352 353 /* controllers on some SoCs don't report proper version */ 354 if (ver == 0x80000001u) 355 data->version = MAKE_MMU_VER(1, 0); 356 else 357 data->version = MMU_RAW_VER(ver); 358 359 dev_dbg(data->sysmmu, "hardware version: %d.%d\n", 360 MMU_MAJ_VER(data->version), MMU_MIN_VER(data->version)); 361 362 __sysmmu_disable_clocks(data); 363 } 364 365 static void show_fault_information(struct sysmmu_drvdata *data, 366 const struct sysmmu_fault_info *finfo, 367 sysmmu_iova_t fault_addr) 368 { 369 sysmmu_pte_t *ent; 370 371 dev_err(data->sysmmu, "%s FAULT occurred at %#x (page table base: %pa)\n", 372 finfo->name, fault_addr, &data->pgtable); 373 ent = section_entry(phys_to_virt(data->pgtable), fault_addr); 374 dev_err(data->sysmmu, "\tLv1 entry: %#x\n", *ent); 375 if (lv1ent_page(ent)) { 376 ent = page_entry(ent, fault_addr); 377 dev_err(data->sysmmu, "\t Lv2 entry: %#x\n", *ent); 378 } 379 } 380 381 static irqreturn_t exynos_sysmmu_irq(int irq, void *dev_id) 382 { 383 /* SYSMMU is in blocked state when interrupt occurred. */ 384 struct sysmmu_drvdata *data = dev_id; 385 const struct sysmmu_fault_info *finfo; 386 unsigned int i, n, itype; 387 sysmmu_iova_t fault_addr = -1; 388 unsigned short reg_status, reg_clear; 389 int ret = -ENOSYS; 390 391 WARN_ON(!is_sysmmu_active(data)); 392 393 if (MMU_MAJ_VER(data->version) < 5) { 394 reg_status = REG_INT_STATUS; 395 reg_clear = REG_INT_CLEAR; 396 finfo = sysmmu_faults; 397 n = ARRAY_SIZE(sysmmu_faults); 398 } else { 399 reg_status = REG_V5_INT_STATUS; 400 reg_clear = REG_V5_INT_CLEAR; 401 finfo = sysmmu_v5_faults; 402 n = ARRAY_SIZE(sysmmu_v5_faults); 403 } 404 405 spin_lock(&data->lock); 406 407 clk_enable(data->clk_master); 408 409 itype = __ffs(readl(data->sfrbase + reg_status)); 410 for (i = 0; i < n; i++, finfo++) 411 if (finfo->bit == itype) 412 break; 413 /* unknown/unsupported fault */ 414 BUG_ON(i == n); 415 416 /* print debug message */ 417 fault_addr = readl(data->sfrbase + finfo->addr_reg); 418 show_fault_information(data, finfo, fault_addr); 419 420 if (data->domain) 421 ret = report_iommu_fault(&data->domain->domain, 422 data->master, fault_addr, finfo->type); 423 /* fault is not recovered by fault handler */ 424 BUG_ON(ret != 0); 425 426 writel(1 << itype, data->sfrbase + reg_clear); 427 428 sysmmu_unblock(data); 429 430 clk_disable(data->clk_master); 431 432 spin_unlock(&data->lock); 433 434 return IRQ_HANDLED; 435 } 436 437 static void __sysmmu_disable_nocount(struct sysmmu_drvdata *data) 438 { 439 clk_enable(data->clk_master); 440 441 writel(CTRL_DISABLE, data->sfrbase + REG_MMU_CTRL); 442 writel(0, data->sfrbase + REG_MMU_CFG); 443 444 __sysmmu_disable_clocks(data); 445 } 446 447 static bool __sysmmu_disable(struct sysmmu_drvdata *data) 448 { 449 bool disabled; 450 unsigned long flags; 451 452 spin_lock_irqsave(&data->lock, flags); 453 454 disabled = set_sysmmu_inactive(data); 455 456 if (disabled) { 457 data->pgtable = 0; 458 data->domain = NULL; 459 460 __sysmmu_disable_nocount(data); 461 462 dev_dbg(data->sysmmu, "Disabled\n"); 463 } else { 464 dev_dbg(data->sysmmu, "%d times left to disable\n", 465 data->activations); 466 } 467 468 spin_unlock_irqrestore(&data->lock, flags); 469 470 return disabled; 471 } 472 473 static void __sysmmu_init_config(struct sysmmu_drvdata *data) 474 { 475 unsigned int cfg; 476 477 if (data->version <= MAKE_MMU_VER(3, 1)) 478 cfg = CFG_LRU | CFG_QOS(15); 479 else if (data->version <= MAKE_MMU_VER(3, 2)) 480 cfg = CFG_LRU | CFG_QOS(15) | CFG_FLPDCACHE | CFG_SYSSEL; 481 else 482 cfg = CFG_QOS(15) | CFG_FLPDCACHE | CFG_ACGEN; 483 484 writel(cfg, data->sfrbase + REG_MMU_CFG); 485 } 486 487 static void __sysmmu_enable_nocount(struct sysmmu_drvdata *data) 488 { 489 __sysmmu_enable_clocks(data); 490 491 writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL); 492 493 __sysmmu_init_config(data); 494 495 __sysmmu_set_ptbase(data, data->pgtable); 496 497 writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL); 498 499 /* 500 * SYSMMU driver keeps master's clock enabled only for the short 501 * time, while accessing the registers. For performing address 502 * translation during DMA transaction it relies on the client 503 * driver to enable it. 504 */ 505 clk_disable(data->clk_master); 506 } 507 508 static int __sysmmu_enable(struct sysmmu_drvdata *data, phys_addr_t pgtable, 509 struct exynos_iommu_domain *domain) 510 { 511 int ret = 0; 512 unsigned long flags; 513 514 spin_lock_irqsave(&data->lock, flags); 515 if (set_sysmmu_active(data)) { 516 data->pgtable = pgtable; 517 data->domain = domain; 518 519 __sysmmu_enable_nocount(data); 520 521 dev_dbg(data->sysmmu, "Enabled\n"); 522 } else { 523 ret = (pgtable == data->pgtable) ? 1 : -EBUSY; 524 525 dev_dbg(data->sysmmu, "already enabled\n"); 526 } 527 528 if (WARN_ON(ret < 0)) 529 set_sysmmu_inactive(data); /* decrement count */ 530 531 spin_unlock_irqrestore(&data->lock, flags); 532 533 return ret; 534 } 535 536 static void sysmmu_tlb_invalidate_flpdcache(struct sysmmu_drvdata *data, 537 sysmmu_iova_t iova) 538 { 539 unsigned long flags; 540 541 542 spin_lock_irqsave(&data->lock, flags); 543 if (is_sysmmu_active(data) && data->version >= MAKE_MMU_VER(3, 3)) { 544 clk_enable(data->clk_master); 545 __sysmmu_tlb_invalidate_entry(data, iova, 1); 546 clk_disable(data->clk_master); 547 } 548 spin_unlock_irqrestore(&data->lock, flags); 549 550 } 551 552 static void sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data, 553 sysmmu_iova_t iova, size_t size) 554 { 555 unsigned long flags; 556 557 spin_lock_irqsave(&data->lock, flags); 558 if (is_sysmmu_active(data)) { 559 unsigned int num_inv = 1; 560 561 clk_enable(data->clk_master); 562 563 /* 564 * L2TLB invalidation required 565 * 4KB page: 1 invalidation 566 * 64KB page: 16 invalidations 567 * 1MB page: 64 invalidations 568 * because it is set-associative TLB 569 * with 8-way and 64 sets. 570 * 1MB page can be cached in one of all sets. 571 * 64KB page can be one of 16 consecutive sets. 572 */ 573 if (MMU_MAJ_VER(data->version) == 2) 574 num_inv = min_t(unsigned int, size / PAGE_SIZE, 64); 575 576 if (sysmmu_block(data)) { 577 __sysmmu_tlb_invalidate_entry(data, iova, num_inv); 578 sysmmu_unblock(data); 579 } 580 clk_disable(data->clk_master); 581 } else { 582 dev_dbg(data->master, 583 "disabled. Skipping TLB invalidation @ %#x\n", iova); 584 } 585 spin_unlock_irqrestore(&data->lock, flags); 586 } 587 588 static struct iommu_ops exynos_iommu_ops; 589 590 static int __init exynos_sysmmu_probe(struct platform_device *pdev) 591 { 592 int irq, ret; 593 struct device *dev = &pdev->dev; 594 struct sysmmu_drvdata *data; 595 struct resource *res; 596 597 data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL); 598 if (!data) 599 return -ENOMEM; 600 601 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 602 data->sfrbase = devm_ioremap_resource(dev, res); 603 if (IS_ERR(data->sfrbase)) 604 return PTR_ERR(data->sfrbase); 605 606 irq = platform_get_irq(pdev, 0); 607 if (irq <= 0) { 608 dev_err(dev, "Unable to find IRQ resource\n"); 609 return irq; 610 } 611 612 ret = devm_request_irq(dev, irq, exynos_sysmmu_irq, 0, 613 dev_name(dev), data); 614 if (ret) { 615 dev_err(dev, "Unabled to register handler of irq %d\n", irq); 616 return ret; 617 } 618 619 data->clk = devm_clk_get(dev, "sysmmu"); 620 if (PTR_ERR(data->clk) == -ENOENT) 621 data->clk = NULL; 622 else if (IS_ERR(data->clk)) 623 return PTR_ERR(data->clk); 624 625 data->aclk = devm_clk_get(dev, "aclk"); 626 if (PTR_ERR(data->aclk) == -ENOENT) 627 data->aclk = NULL; 628 else if (IS_ERR(data->aclk)) 629 return PTR_ERR(data->aclk); 630 631 data->pclk = devm_clk_get(dev, "pclk"); 632 if (PTR_ERR(data->pclk) == -ENOENT) 633 data->pclk = NULL; 634 else if (IS_ERR(data->pclk)) 635 return PTR_ERR(data->pclk); 636 637 if (!data->clk && (!data->aclk || !data->pclk)) { 638 dev_err(dev, "Failed to get device clock(s)!\n"); 639 return -ENOSYS; 640 } 641 642 data->clk_master = devm_clk_get(dev, "master"); 643 if (PTR_ERR(data->clk_master) == -ENOENT) 644 data->clk_master = NULL; 645 else if (IS_ERR(data->clk_master)) 646 return PTR_ERR(data->clk_master); 647 648 data->sysmmu = dev; 649 spin_lock_init(&data->lock); 650 651 platform_set_drvdata(pdev, data); 652 653 __sysmmu_get_version(data); 654 if (PG_ENT_SHIFT < 0) { 655 if (MMU_MAJ_VER(data->version) < 5) 656 PG_ENT_SHIFT = SYSMMU_PG_ENT_SHIFT; 657 else 658 PG_ENT_SHIFT = SYSMMU_V5_PG_ENT_SHIFT; 659 } 660 661 pm_runtime_enable(dev); 662 663 of_iommu_set_ops(dev->of_node, &exynos_iommu_ops); 664 665 return 0; 666 } 667 668 #ifdef CONFIG_PM_SLEEP 669 static int exynos_sysmmu_suspend(struct device *dev) 670 { 671 struct sysmmu_drvdata *data = dev_get_drvdata(dev); 672 673 dev_dbg(dev, "suspend\n"); 674 if (is_sysmmu_active(data)) { 675 __sysmmu_disable_nocount(data); 676 pm_runtime_put(dev); 677 } 678 return 0; 679 } 680 681 static int exynos_sysmmu_resume(struct device *dev) 682 { 683 struct sysmmu_drvdata *data = dev_get_drvdata(dev); 684 685 dev_dbg(dev, "resume\n"); 686 if (is_sysmmu_active(data)) { 687 pm_runtime_get_sync(dev); 688 __sysmmu_enable_nocount(data); 689 } 690 return 0; 691 } 692 #endif 693 694 static const struct dev_pm_ops sysmmu_pm_ops = { 695 SET_LATE_SYSTEM_SLEEP_PM_OPS(exynos_sysmmu_suspend, exynos_sysmmu_resume) 696 }; 697 698 static const struct of_device_id sysmmu_of_match[] __initconst = { 699 { .compatible = "samsung,exynos-sysmmu", }, 700 { }, 701 }; 702 703 static struct platform_driver exynos_sysmmu_driver __refdata = { 704 .probe = exynos_sysmmu_probe, 705 .driver = { 706 .name = "exynos-sysmmu", 707 .of_match_table = sysmmu_of_match, 708 .pm = &sysmmu_pm_ops, 709 .suppress_bind_attrs = true, 710 } 711 }; 712 713 static inline void update_pte(sysmmu_pte_t *ent, sysmmu_pte_t val) 714 { 715 dma_sync_single_for_cpu(dma_dev, virt_to_phys(ent), sizeof(*ent), 716 DMA_TO_DEVICE); 717 *ent = cpu_to_le32(val); 718 dma_sync_single_for_device(dma_dev, virt_to_phys(ent), sizeof(*ent), 719 DMA_TO_DEVICE); 720 } 721 722 static struct iommu_domain *exynos_iommu_domain_alloc(unsigned type) 723 { 724 struct exynos_iommu_domain *domain; 725 dma_addr_t handle; 726 int i; 727 728 /* Check if correct PTE offsets are initialized */ 729 BUG_ON(PG_ENT_SHIFT < 0 || !dma_dev); 730 731 domain = kzalloc(sizeof(*domain), GFP_KERNEL); 732 if (!domain) 733 return NULL; 734 735 if (type == IOMMU_DOMAIN_DMA) { 736 if (iommu_get_dma_cookie(&domain->domain) != 0) 737 goto err_pgtable; 738 } else if (type != IOMMU_DOMAIN_UNMANAGED) { 739 goto err_pgtable; 740 } 741 742 domain->pgtable = (sysmmu_pte_t *)__get_free_pages(GFP_KERNEL, 2); 743 if (!domain->pgtable) 744 goto err_dma_cookie; 745 746 domain->lv2entcnt = (short *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1); 747 if (!domain->lv2entcnt) 748 goto err_counter; 749 750 /* Workaround for System MMU v3.3 to prevent caching 1MiB mapping */ 751 for (i = 0; i < NUM_LV1ENTRIES; i += 8) { 752 domain->pgtable[i + 0] = ZERO_LV2LINK; 753 domain->pgtable[i + 1] = ZERO_LV2LINK; 754 domain->pgtable[i + 2] = ZERO_LV2LINK; 755 domain->pgtable[i + 3] = ZERO_LV2LINK; 756 domain->pgtable[i + 4] = ZERO_LV2LINK; 757 domain->pgtable[i + 5] = ZERO_LV2LINK; 758 domain->pgtable[i + 6] = ZERO_LV2LINK; 759 domain->pgtable[i + 7] = ZERO_LV2LINK; 760 } 761 762 handle = dma_map_single(dma_dev, domain->pgtable, LV1TABLE_SIZE, 763 DMA_TO_DEVICE); 764 /* For mapping page table entries we rely on dma == phys */ 765 BUG_ON(handle != virt_to_phys(domain->pgtable)); 766 767 spin_lock_init(&domain->lock); 768 spin_lock_init(&domain->pgtablelock); 769 INIT_LIST_HEAD(&domain->clients); 770 771 domain->domain.geometry.aperture_start = 0; 772 domain->domain.geometry.aperture_end = ~0UL; 773 domain->domain.geometry.force_aperture = true; 774 775 return &domain->domain; 776 777 err_counter: 778 free_pages((unsigned long)domain->pgtable, 2); 779 err_dma_cookie: 780 if (type == IOMMU_DOMAIN_DMA) 781 iommu_put_dma_cookie(&domain->domain); 782 err_pgtable: 783 kfree(domain); 784 return NULL; 785 } 786 787 static void exynos_iommu_domain_free(struct iommu_domain *iommu_domain) 788 { 789 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain); 790 struct sysmmu_drvdata *data, *next; 791 unsigned long flags; 792 int i; 793 794 WARN_ON(!list_empty(&domain->clients)); 795 796 spin_lock_irqsave(&domain->lock, flags); 797 798 list_for_each_entry_safe(data, next, &domain->clients, domain_node) { 799 if (__sysmmu_disable(data)) 800 data->master = NULL; 801 list_del_init(&data->domain_node); 802 } 803 804 spin_unlock_irqrestore(&domain->lock, flags); 805 806 if (iommu_domain->type == IOMMU_DOMAIN_DMA) 807 iommu_put_dma_cookie(iommu_domain); 808 809 dma_unmap_single(dma_dev, virt_to_phys(domain->pgtable), LV1TABLE_SIZE, 810 DMA_TO_DEVICE); 811 812 for (i = 0; i < NUM_LV1ENTRIES; i++) 813 if (lv1ent_page(domain->pgtable + i)) { 814 phys_addr_t base = lv2table_base(domain->pgtable + i); 815 816 dma_unmap_single(dma_dev, base, LV2TABLE_SIZE, 817 DMA_TO_DEVICE); 818 kmem_cache_free(lv2table_kmem_cache, 819 phys_to_virt(base)); 820 } 821 822 free_pages((unsigned long)domain->pgtable, 2); 823 free_pages((unsigned long)domain->lv2entcnt, 1); 824 kfree(domain); 825 } 826 827 static void exynos_iommu_detach_device(struct iommu_domain *iommu_domain, 828 struct device *dev) 829 { 830 struct exynos_iommu_owner *owner = dev->archdata.iommu; 831 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain); 832 phys_addr_t pagetable = virt_to_phys(domain->pgtable); 833 struct sysmmu_drvdata *data, *next; 834 unsigned long flags; 835 bool found = false; 836 837 if (!has_sysmmu(dev) || owner->domain != iommu_domain) 838 return; 839 840 spin_lock_irqsave(&domain->lock, flags); 841 list_for_each_entry_safe(data, next, &domain->clients, domain_node) { 842 if (data->master == dev) { 843 if (__sysmmu_disable(data)) { 844 data->master = NULL; 845 list_del_init(&data->domain_node); 846 } 847 pm_runtime_put(data->sysmmu); 848 found = true; 849 } 850 } 851 spin_unlock_irqrestore(&domain->lock, flags); 852 853 owner->domain = NULL; 854 855 if (found) 856 dev_dbg(dev, "%s: Detached IOMMU with pgtable %pa\n", 857 __func__, &pagetable); 858 else 859 dev_err(dev, "%s: No IOMMU is attached\n", __func__); 860 } 861 862 static int exynos_iommu_attach_device(struct iommu_domain *iommu_domain, 863 struct device *dev) 864 { 865 struct exynos_iommu_owner *owner = dev->archdata.iommu; 866 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain); 867 struct sysmmu_drvdata *data; 868 phys_addr_t pagetable = virt_to_phys(domain->pgtable); 869 unsigned long flags; 870 int ret = -ENODEV; 871 872 if (!has_sysmmu(dev)) 873 return -ENODEV; 874 875 if (owner->domain) 876 exynos_iommu_detach_device(owner->domain, dev); 877 878 list_for_each_entry(data, &owner->controllers, owner_node) { 879 pm_runtime_get_sync(data->sysmmu); 880 ret = __sysmmu_enable(data, pagetable, domain); 881 if (ret >= 0) { 882 data->master = dev; 883 884 spin_lock_irqsave(&domain->lock, flags); 885 list_add_tail(&data->domain_node, &domain->clients); 886 spin_unlock_irqrestore(&domain->lock, flags); 887 } 888 } 889 890 if (ret < 0) { 891 dev_err(dev, "%s: Failed to attach IOMMU with pgtable %pa\n", 892 __func__, &pagetable); 893 return ret; 894 } 895 896 owner->domain = iommu_domain; 897 dev_dbg(dev, "%s: Attached IOMMU with pgtable %pa %s\n", 898 __func__, &pagetable, (ret == 0) ? "" : ", again"); 899 900 return ret; 901 } 902 903 static sysmmu_pte_t *alloc_lv2entry(struct exynos_iommu_domain *domain, 904 sysmmu_pte_t *sent, sysmmu_iova_t iova, short *pgcounter) 905 { 906 if (lv1ent_section(sent)) { 907 WARN(1, "Trying mapping on %#08x mapped with 1MiB page", iova); 908 return ERR_PTR(-EADDRINUSE); 909 } 910 911 if (lv1ent_fault(sent)) { 912 sysmmu_pte_t *pent; 913 bool need_flush_flpd_cache = lv1ent_zero(sent); 914 915 pent = kmem_cache_zalloc(lv2table_kmem_cache, GFP_ATOMIC); 916 BUG_ON((uintptr_t)pent & (LV2TABLE_SIZE - 1)); 917 if (!pent) 918 return ERR_PTR(-ENOMEM); 919 920 update_pte(sent, mk_lv1ent_page(virt_to_phys(pent))); 921 kmemleak_ignore(pent); 922 *pgcounter = NUM_LV2ENTRIES; 923 dma_map_single(dma_dev, pent, LV2TABLE_SIZE, DMA_TO_DEVICE); 924 925 /* 926 * If pre-fetched SLPD is a faulty SLPD in zero_l2_table, 927 * FLPD cache may cache the address of zero_l2_table. This 928 * function replaces the zero_l2_table with new L2 page table 929 * to write valid mappings. 930 * Accessing the valid area may cause page fault since FLPD 931 * cache may still cache zero_l2_table for the valid area 932 * instead of new L2 page table that has the mapping 933 * information of the valid area. 934 * Thus any replacement of zero_l2_table with other valid L2 935 * page table must involve FLPD cache invalidation for System 936 * MMU v3.3. 937 * FLPD cache invalidation is performed with TLB invalidation 938 * by VPN without blocking. It is safe to invalidate TLB without 939 * blocking because the target address of TLB invalidation is 940 * not currently mapped. 941 */ 942 if (need_flush_flpd_cache) { 943 struct sysmmu_drvdata *data; 944 945 spin_lock(&domain->lock); 946 list_for_each_entry(data, &domain->clients, domain_node) 947 sysmmu_tlb_invalidate_flpdcache(data, iova); 948 spin_unlock(&domain->lock); 949 } 950 } 951 952 return page_entry(sent, iova); 953 } 954 955 static int lv1set_section(struct exynos_iommu_domain *domain, 956 sysmmu_pte_t *sent, sysmmu_iova_t iova, 957 phys_addr_t paddr, short *pgcnt) 958 { 959 if (lv1ent_section(sent)) { 960 WARN(1, "Trying mapping on 1MiB@%#08x that is mapped", 961 iova); 962 return -EADDRINUSE; 963 } 964 965 if (lv1ent_page(sent)) { 966 if (*pgcnt != NUM_LV2ENTRIES) { 967 WARN(1, "Trying mapping on 1MiB@%#08x that is mapped", 968 iova); 969 return -EADDRINUSE; 970 } 971 972 kmem_cache_free(lv2table_kmem_cache, page_entry(sent, 0)); 973 *pgcnt = 0; 974 } 975 976 update_pte(sent, mk_lv1ent_sect(paddr)); 977 978 spin_lock(&domain->lock); 979 if (lv1ent_page_zero(sent)) { 980 struct sysmmu_drvdata *data; 981 /* 982 * Flushing FLPD cache in System MMU v3.3 that may cache a FLPD 983 * entry by speculative prefetch of SLPD which has no mapping. 984 */ 985 list_for_each_entry(data, &domain->clients, domain_node) 986 sysmmu_tlb_invalidate_flpdcache(data, iova); 987 } 988 spin_unlock(&domain->lock); 989 990 return 0; 991 } 992 993 static int lv2set_page(sysmmu_pte_t *pent, phys_addr_t paddr, size_t size, 994 short *pgcnt) 995 { 996 if (size == SPAGE_SIZE) { 997 if (WARN_ON(!lv2ent_fault(pent))) 998 return -EADDRINUSE; 999 1000 update_pte(pent, mk_lv2ent_spage(paddr)); 1001 *pgcnt -= 1; 1002 } else { /* size == LPAGE_SIZE */ 1003 int i; 1004 dma_addr_t pent_base = virt_to_phys(pent); 1005 1006 dma_sync_single_for_cpu(dma_dev, pent_base, 1007 sizeof(*pent) * SPAGES_PER_LPAGE, 1008 DMA_TO_DEVICE); 1009 for (i = 0; i < SPAGES_PER_LPAGE; i++, pent++) { 1010 if (WARN_ON(!lv2ent_fault(pent))) { 1011 if (i > 0) 1012 memset(pent - i, 0, sizeof(*pent) * i); 1013 return -EADDRINUSE; 1014 } 1015 1016 *pent = mk_lv2ent_lpage(paddr); 1017 } 1018 dma_sync_single_for_device(dma_dev, pent_base, 1019 sizeof(*pent) * SPAGES_PER_LPAGE, 1020 DMA_TO_DEVICE); 1021 *pgcnt -= SPAGES_PER_LPAGE; 1022 } 1023 1024 return 0; 1025 } 1026 1027 /* 1028 * *CAUTION* to the I/O virtual memory managers that support exynos-iommu: 1029 * 1030 * System MMU v3.x has advanced logic to improve address translation 1031 * performance with caching more page table entries by a page table walk. 1032 * However, the logic has a bug that while caching faulty page table entries, 1033 * System MMU reports page fault if the cached fault entry is hit even though 1034 * the fault entry is updated to a valid entry after the entry is cached. 1035 * To prevent caching faulty page table entries which may be updated to valid 1036 * entries later, the virtual memory manager should care about the workaround 1037 * for the problem. The following describes the workaround. 1038 * 1039 * Any two consecutive I/O virtual address regions must have a hole of 128KiB 1040 * at maximum to prevent misbehavior of System MMU 3.x (workaround for h/w bug). 1041 * 1042 * Precisely, any start address of I/O virtual region must be aligned with 1043 * the following sizes for System MMU v3.1 and v3.2. 1044 * System MMU v3.1: 128KiB 1045 * System MMU v3.2: 256KiB 1046 * 1047 * Because System MMU v3.3 caches page table entries more aggressively, it needs 1048 * more workarounds. 1049 * - Any two consecutive I/O virtual regions must have a hole of size larger 1050 * than or equal to 128KiB. 1051 * - Start address of an I/O virtual region must be aligned by 128KiB. 1052 */ 1053 static int exynos_iommu_map(struct iommu_domain *iommu_domain, 1054 unsigned long l_iova, phys_addr_t paddr, size_t size, 1055 int prot) 1056 { 1057 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain); 1058 sysmmu_pte_t *entry; 1059 sysmmu_iova_t iova = (sysmmu_iova_t)l_iova; 1060 unsigned long flags; 1061 int ret = -ENOMEM; 1062 1063 BUG_ON(domain->pgtable == NULL); 1064 1065 spin_lock_irqsave(&domain->pgtablelock, flags); 1066 1067 entry = section_entry(domain->pgtable, iova); 1068 1069 if (size == SECT_SIZE) { 1070 ret = lv1set_section(domain, entry, iova, paddr, 1071 &domain->lv2entcnt[lv1ent_offset(iova)]); 1072 } else { 1073 sysmmu_pte_t *pent; 1074 1075 pent = alloc_lv2entry(domain, entry, iova, 1076 &domain->lv2entcnt[lv1ent_offset(iova)]); 1077 1078 if (IS_ERR(pent)) 1079 ret = PTR_ERR(pent); 1080 else 1081 ret = lv2set_page(pent, paddr, size, 1082 &domain->lv2entcnt[lv1ent_offset(iova)]); 1083 } 1084 1085 if (ret) 1086 pr_err("%s: Failed(%d) to map %#zx bytes @ %#x\n", 1087 __func__, ret, size, iova); 1088 1089 spin_unlock_irqrestore(&domain->pgtablelock, flags); 1090 1091 return ret; 1092 } 1093 1094 static void exynos_iommu_tlb_invalidate_entry(struct exynos_iommu_domain *domain, 1095 sysmmu_iova_t iova, size_t size) 1096 { 1097 struct sysmmu_drvdata *data; 1098 unsigned long flags; 1099 1100 spin_lock_irqsave(&domain->lock, flags); 1101 1102 list_for_each_entry(data, &domain->clients, domain_node) 1103 sysmmu_tlb_invalidate_entry(data, iova, size); 1104 1105 spin_unlock_irqrestore(&domain->lock, flags); 1106 } 1107 1108 static size_t exynos_iommu_unmap(struct iommu_domain *iommu_domain, 1109 unsigned long l_iova, size_t size) 1110 { 1111 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain); 1112 sysmmu_iova_t iova = (sysmmu_iova_t)l_iova; 1113 sysmmu_pte_t *ent; 1114 size_t err_pgsize; 1115 unsigned long flags; 1116 1117 BUG_ON(domain->pgtable == NULL); 1118 1119 spin_lock_irqsave(&domain->pgtablelock, flags); 1120 1121 ent = section_entry(domain->pgtable, iova); 1122 1123 if (lv1ent_section(ent)) { 1124 if (WARN_ON(size < SECT_SIZE)) { 1125 err_pgsize = SECT_SIZE; 1126 goto err; 1127 } 1128 1129 /* workaround for h/w bug in System MMU v3.3 */ 1130 update_pte(ent, ZERO_LV2LINK); 1131 size = SECT_SIZE; 1132 goto done; 1133 } 1134 1135 if (unlikely(lv1ent_fault(ent))) { 1136 if (size > SECT_SIZE) 1137 size = SECT_SIZE; 1138 goto done; 1139 } 1140 1141 /* lv1ent_page(sent) == true here */ 1142 1143 ent = page_entry(ent, iova); 1144 1145 if (unlikely(lv2ent_fault(ent))) { 1146 size = SPAGE_SIZE; 1147 goto done; 1148 } 1149 1150 if (lv2ent_small(ent)) { 1151 update_pte(ent, 0); 1152 size = SPAGE_SIZE; 1153 domain->lv2entcnt[lv1ent_offset(iova)] += 1; 1154 goto done; 1155 } 1156 1157 /* lv1ent_large(ent) == true here */ 1158 if (WARN_ON(size < LPAGE_SIZE)) { 1159 err_pgsize = LPAGE_SIZE; 1160 goto err; 1161 } 1162 1163 dma_sync_single_for_cpu(dma_dev, virt_to_phys(ent), 1164 sizeof(*ent) * SPAGES_PER_LPAGE, 1165 DMA_TO_DEVICE); 1166 memset(ent, 0, sizeof(*ent) * SPAGES_PER_LPAGE); 1167 dma_sync_single_for_device(dma_dev, virt_to_phys(ent), 1168 sizeof(*ent) * SPAGES_PER_LPAGE, 1169 DMA_TO_DEVICE); 1170 size = LPAGE_SIZE; 1171 domain->lv2entcnt[lv1ent_offset(iova)] += SPAGES_PER_LPAGE; 1172 done: 1173 spin_unlock_irqrestore(&domain->pgtablelock, flags); 1174 1175 exynos_iommu_tlb_invalidate_entry(domain, iova, size); 1176 1177 return size; 1178 err: 1179 spin_unlock_irqrestore(&domain->pgtablelock, flags); 1180 1181 pr_err("%s: Failed: size(%#zx) @ %#x is smaller than page size %#zx\n", 1182 __func__, size, iova, err_pgsize); 1183 1184 return 0; 1185 } 1186 1187 static phys_addr_t exynos_iommu_iova_to_phys(struct iommu_domain *iommu_domain, 1188 dma_addr_t iova) 1189 { 1190 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain); 1191 sysmmu_pte_t *entry; 1192 unsigned long flags; 1193 phys_addr_t phys = 0; 1194 1195 spin_lock_irqsave(&domain->pgtablelock, flags); 1196 1197 entry = section_entry(domain->pgtable, iova); 1198 1199 if (lv1ent_section(entry)) { 1200 phys = section_phys(entry) + section_offs(iova); 1201 } else if (lv1ent_page(entry)) { 1202 entry = page_entry(entry, iova); 1203 1204 if (lv2ent_large(entry)) 1205 phys = lpage_phys(entry) + lpage_offs(iova); 1206 else if (lv2ent_small(entry)) 1207 phys = spage_phys(entry) + spage_offs(iova); 1208 } 1209 1210 spin_unlock_irqrestore(&domain->pgtablelock, flags); 1211 1212 return phys; 1213 } 1214 1215 static struct iommu_group *get_device_iommu_group(struct device *dev) 1216 { 1217 struct iommu_group *group; 1218 1219 group = iommu_group_get(dev); 1220 if (!group) 1221 group = iommu_group_alloc(); 1222 1223 return group; 1224 } 1225 1226 static int exynos_iommu_add_device(struct device *dev) 1227 { 1228 struct iommu_group *group; 1229 1230 if (!has_sysmmu(dev)) 1231 return -ENODEV; 1232 1233 group = iommu_group_get_for_dev(dev); 1234 1235 if (IS_ERR(group)) 1236 return PTR_ERR(group); 1237 1238 iommu_group_put(group); 1239 1240 return 0; 1241 } 1242 1243 static void exynos_iommu_remove_device(struct device *dev) 1244 { 1245 if (!has_sysmmu(dev)) 1246 return; 1247 1248 iommu_group_remove_device(dev); 1249 } 1250 1251 static int exynos_iommu_of_xlate(struct device *dev, 1252 struct of_phandle_args *spec) 1253 { 1254 struct exynos_iommu_owner *owner = dev->archdata.iommu; 1255 struct platform_device *sysmmu = of_find_device_by_node(spec->np); 1256 struct sysmmu_drvdata *data; 1257 1258 if (!sysmmu) 1259 return -ENODEV; 1260 1261 data = platform_get_drvdata(sysmmu); 1262 if (!data) 1263 return -ENODEV; 1264 1265 if (!owner) { 1266 owner = kzalloc(sizeof(*owner), GFP_KERNEL); 1267 if (!owner) 1268 return -ENOMEM; 1269 1270 INIT_LIST_HEAD(&owner->controllers); 1271 dev->archdata.iommu = owner; 1272 } 1273 1274 list_add_tail(&data->owner_node, &owner->controllers); 1275 return 0; 1276 } 1277 1278 static struct iommu_ops exynos_iommu_ops = { 1279 .domain_alloc = exynos_iommu_domain_alloc, 1280 .domain_free = exynos_iommu_domain_free, 1281 .attach_dev = exynos_iommu_attach_device, 1282 .detach_dev = exynos_iommu_detach_device, 1283 .map = exynos_iommu_map, 1284 .unmap = exynos_iommu_unmap, 1285 .map_sg = default_iommu_map_sg, 1286 .iova_to_phys = exynos_iommu_iova_to_phys, 1287 .device_group = get_device_iommu_group, 1288 .add_device = exynos_iommu_add_device, 1289 .remove_device = exynos_iommu_remove_device, 1290 .pgsize_bitmap = SECT_SIZE | LPAGE_SIZE | SPAGE_SIZE, 1291 .of_xlate = exynos_iommu_of_xlate, 1292 }; 1293 1294 static bool init_done; 1295 1296 static int __init exynos_iommu_init(void) 1297 { 1298 int ret; 1299 1300 lv2table_kmem_cache = kmem_cache_create("exynos-iommu-lv2table", 1301 LV2TABLE_SIZE, LV2TABLE_SIZE, 0, NULL); 1302 if (!lv2table_kmem_cache) { 1303 pr_err("%s: Failed to create kmem cache\n", __func__); 1304 return -ENOMEM; 1305 } 1306 1307 ret = platform_driver_register(&exynos_sysmmu_driver); 1308 if (ret) { 1309 pr_err("%s: Failed to register driver\n", __func__); 1310 goto err_reg_driver; 1311 } 1312 1313 zero_lv2_table = kmem_cache_zalloc(lv2table_kmem_cache, GFP_KERNEL); 1314 if (zero_lv2_table == NULL) { 1315 pr_err("%s: Failed to allocate zero level2 page table\n", 1316 __func__); 1317 ret = -ENOMEM; 1318 goto err_zero_lv2; 1319 } 1320 1321 ret = bus_set_iommu(&platform_bus_type, &exynos_iommu_ops); 1322 if (ret) { 1323 pr_err("%s: Failed to register exynos-iommu driver.\n", 1324 __func__); 1325 goto err_set_iommu; 1326 } 1327 1328 init_done = true; 1329 1330 return 0; 1331 err_set_iommu: 1332 kmem_cache_free(lv2table_kmem_cache, zero_lv2_table); 1333 err_zero_lv2: 1334 platform_driver_unregister(&exynos_sysmmu_driver); 1335 err_reg_driver: 1336 kmem_cache_destroy(lv2table_kmem_cache); 1337 return ret; 1338 } 1339 1340 static int __init exynos_iommu_of_setup(struct device_node *np) 1341 { 1342 struct platform_device *pdev; 1343 1344 if (!init_done) 1345 exynos_iommu_init(); 1346 1347 pdev = of_platform_device_create(np, NULL, platform_bus_type.dev_root); 1348 if (!pdev) 1349 return -ENODEV; 1350 1351 /* 1352 * use the first registered sysmmu device for performing 1353 * dma mapping operations on iommu page tables (cpu cache flush) 1354 */ 1355 if (!dma_dev) 1356 dma_dev = &pdev->dev; 1357 1358 return 0; 1359 } 1360 1361 IOMMU_OF_DECLARE(exynos_iommu_of, "samsung,exynos-sysmmu", 1362 exynos_iommu_of_setup); 1363