xref: /openbmc/linux/drivers/iommu/exynos-iommu.c (revision e983940270f10fe8551baf0098be76ea478294a3)
1 /*
2  * Copyright (c) 2011,2016 Samsung Electronics Co., Ltd.
3  *		http://www.samsung.com
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  */
9 
10 #ifdef CONFIG_EXYNOS_IOMMU_DEBUG
11 #define DEBUG
12 #endif
13 
14 #include <linux/clk.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/err.h>
17 #include <linux/io.h>
18 #include <linux/iommu.h>
19 #include <linux/interrupt.h>
20 #include <linux/list.h>
21 #include <linux/of.h>
22 #include <linux/of_iommu.h>
23 #include <linux/of_platform.h>
24 #include <linux/platform_device.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/slab.h>
27 #include <linux/dma-iommu.h>
28 
29 typedef u32 sysmmu_iova_t;
30 typedef u32 sysmmu_pte_t;
31 
32 /* We do not consider super section mapping (16MB) */
33 #define SECT_ORDER 20
34 #define LPAGE_ORDER 16
35 #define SPAGE_ORDER 12
36 
37 #define SECT_SIZE (1 << SECT_ORDER)
38 #define LPAGE_SIZE (1 << LPAGE_ORDER)
39 #define SPAGE_SIZE (1 << SPAGE_ORDER)
40 
41 #define SECT_MASK (~(SECT_SIZE - 1))
42 #define LPAGE_MASK (~(LPAGE_SIZE - 1))
43 #define SPAGE_MASK (~(SPAGE_SIZE - 1))
44 
45 #define lv1ent_fault(sent) ((*(sent) == ZERO_LV2LINK) || \
46 			   ((*(sent) & 3) == 0) || ((*(sent) & 3) == 3))
47 #define lv1ent_zero(sent) (*(sent) == ZERO_LV2LINK)
48 #define lv1ent_page_zero(sent) ((*(sent) & 3) == 1)
49 #define lv1ent_page(sent) ((*(sent) != ZERO_LV2LINK) && \
50 			  ((*(sent) & 3) == 1))
51 #define lv1ent_section(sent) ((*(sent) & 3) == 2)
52 
53 #define lv2ent_fault(pent) ((*(pent) & 3) == 0)
54 #define lv2ent_small(pent) ((*(pent) & 2) == 2)
55 #define lv2ent_large(pent) ((*(pent) & 3) == 1)
56 
57 #ifdef CONFIG_BIG_ENDIAN
58 #warning "revisit driver if we can enable big-endian ptes"
59 #endif
60 
61 /*
62  * v1.x - v3.x SYSMMU supports 32bit physical and 32bit virtual address spaces
63  * v5.0 introduced support for 36bit physical address space by shifting
64  * all page entry values by 4 bits.
65  * All SYSMMU controllers in the system support the address spaces of the same
66  * size, so PG_ENT_SHIFT can be initialized on first SYSMMU probe to proper
67  * value (0 or 4).
68  */
69 static short PG_ENT_SHIFT = -1;
70 #define SYSMMU_PG_ENT_SHIFT 0
71 #define SYSMMU_V5_PG_ENT_SHIFT 4
72 
73 #define sect_to_phys(ent) (((phys_addr_t) ent) << PG_ENT_SHIFT)
74 #define section_phys(sent) (sect_to_phys(*(sent)) & SECT_MASK)
75 #define section_offs(iova) (iova & (SECT_SIZE - 1))
76 #define lpage_phys(pent) (sect_to_phys(*(pent)) & LPAGE_MASK)
77 #define lpage_offs(iova) (iova & (LPAGE_SIZE - 1))
78 #define spage_phys(pent) (sect_to_phys(*(pent)) & SPAGE_MASK)
79 #define spage_offs(iova) (iova & (SPAGE_SIZE - 1))
80 
81 #define NUM_LV1ENTRIES 4096
82 #define NUM_LV2ENTRIES (SECT_SIZE / SPAGE_SIZE)
83 
84 static u32 lv1ent_offset(sysmmu_iova_t iova)
85 {
86 	return iova >> SECT_ORDER;
87 }
88 
89 static u32 lv2ent_offset(sysmmu_iova_t iova)
90 {
91 	return (iova >> SPAGE_ORDER) & (NUM_LV2ENTRIES - 1);
92 }
93 
94 #define LV1TABLE_SIZE (NUM_LV1ENTRIES * sizeof(sysmmu_pte_t))
95 #define LV2TABLE_SIZE (NUM_LV2ENTRIES * sizeof(sysmmu_pte_t))
96 
97 #define SPAGES_PER_LPAGE (LPAGE_SIZE / SPAGE_SIZE)
98 #define lv2table_base(sent) (sect_to_phys(*(sent) & 0xFFFFFFC0))
99 
100 #define mk_lv1ent_sect(pa) ((pa >> PG_ENT_SHIFT) | 2)
101 #define mk_lv1ent_page(pa) ((pa >> PG_ENT_SHIFT) | 1)
102 #define mk_lv2ent_lpage(pa) ((pa >> PG_ENT_SHIFT) | 1)
103 #define mk_lv2ent_spage(pa) ((pa >> PG_ENT_SHIFT) | 2)
104 
105 #define CTRL_ENABLE	0x5
106 #define CTRL_BLOCK	0x7
107 #define CTRL_DISABLE	0x0
108 
109 #define CFG_LRU		0x1
110 #define CFG_QOS(n)	((n & 0xF) << 7)
111 #define CFG_ACGEN	(1 << 24) /* System MMU 3.3 only */
112 #define CFG_SYSSEL	(1 << 22) /* System MMU 3.2 only */
113 #define CFG_FLPDCACHE	(1 << 20) /* System MMU 3.2+ only */
114 
115 /* common registers */
116 #define REG_MMU_CTRL		0x000
117 #define REG_MMU_CFG		0x004
118 #define REG_MMU_STATUS		0x008
119 #define REG_MMU_VERSION		0x034
120 
121 #define MMU_MAJ_VER(val)	((val) >> 7)
122 #define MMU_MIN_VER(val)	((val) & 0x7F)
123 #define MMU_RAW_VER(reg)	(((reg) >> 21) & ((1 << 11) - 1)) /* 11 bits */
124 
125 #define MAKE_MMU_VER(maj, min)	((((maj) & 0xF) << 7) | ((min) & 0x7F))
126 
127 /* v1.x - v3.x registers */
128 #define REG_MMU_FLUSH		0x00C
129 #define REG_MMU_FLUSH_ENTRY	0x010
130 #define REG_PT_BASE_ADDR	0x014
131 #define REG_INT_STATUS		0x018
132 #define REG_INT_CLEAR		0x01C
133 
134 #define REG_PAGE_FAULT_ADDR	0x024
135 #define REG_AW_FAULT_ADDR	0x028
136 #define REG_AR_FAULT_ADDR	0x02C
137 #define REG_DEFAULT_SLAVE_ADDR	0x030
138 
139 /* v5.x registers */
140 #define REG_V5_PT_BASE_PFN	0x00C
141 #define REG_V5_MMU_FLUSH_ALL	0x010
142 #define REG_V5_MMU_FLUSH_ENTRY	0x014
143 #define REG_V5_INT_STATUS	0x060
144 #define REG_V5_INT_CLEAR	0x064
145 #define REG_V5_FAULT_AR_VA	0x070
146 #define REG_V5_FAULT_AW_VA	0x080
147 
148 #define has_sysmmu(dev)		(dev->archdata.iommu != NULL)
149 
150 static struct device *dma_dev;
151 static struct kmem_cache *lv2table_kmem_cache;
152 static sysmmu_pte_t *zero_lv2_table;
153 #define ZERO_LV2LINK mk_lv1ent_page(virt_to_phys(zero_lv2_table))
154 
155 static sysmmu_pte_t *section_entry(sysmmu_pte_t *pgtable, sysmmu_iova_t iova)
156 {
157 	return pgtable + lv1ent_offset(iova);
158 }
159 
160 static sysmmu_pte_t *page_entry(sysmmu_pte_t *sent, sysmmu_iova_t iova)
161 {
162 	return (sysmmu_pte_t *)phys_to_virt(
163 				lv2table_base(sent)) + lv2ent_offset(iova);
164 }
165 
166 /*
167  * IOMMU fault information register
168  */
169 struct sysmmu_fault_info {
170 	unsigned int bit;	/* bit number in STATUS register */
171 	unsigned short addr_reg; /* register to read VA fault address */
172 	const char *name;	/* human readable fault name */
173 	unsigned int type;	/* fault type for report_iommu_fault */
174 };
175 
176 static const struct sysmmu_fault_info sysmmu_faults[] = {
177 	{ 0, REG_PAGE_FAULT_ADDR, "PAGE", IOMMU_FAULT_READ },
178 	{ 1, REG_AR_FAULT_ADDR, "AR MULTI-HIT", IOMMU_FAULT_READ },
179 	{ 2, REG_AW_FAULT_ADDR, "AW MULTI-HIT", IOMMU_FAULT_WRITE },
180 	{ 3, REG_DEFAULT_SLAVE_ADDR, "BUS ERROR", IOMMU_FAULT_READ },
181 	{ 4, REG_AR_FAULT_ADDR, "AR SECURITY PROTECTION", IOMMU_FAULT_READ },
182 	{ 5, REG_AR_FAULT_ADDR, "AR ACCESS PROTECTION", IOMMU_FAULT_READ },
183 	{ 6, REG_AW_FAULT_ADDR, "AW SECURITY PROTECTION", IOMMU_FAULT_WRITE },
184 	{ 7, REG_AW_FAULT_ADDR, "AW ACCESS PROTECTION", IOMMU_FAULT_WRITE },
185 };
186 
187 static const struct sysmmu_fault_info sysmmu_v5_faults[] = {
188 	{ 0, REG_V5_FAULT_AR_VA, "AR PTW", IOMMU_FAULT_READ },
189 	{ 1, REG_V5_FAULT_AR_VA, "AR PAGE", IOMMU_FAULT_READ },
190 	{ 2, REG_V5_FAULT_AR_VA, "AR MULTI-HIT", IOMMU_FAULT_READ },
191 	{ 3, REG_V5_FAULT_AR_VA, "AR ACCESS PROTECTION", IOMMU_FAULT_READ },
192 	{ 4, REG_V5_FAULT_AR_VA, "AR SECURITY PROTECTION", IOMMU_FAULT_READ },
193 	{ 16, REG_V5_FAULT_AW_VA, "AW PTW", IOMMU_FAULT_WRITE },
194 	{ 17, REG_V5_FAULT_AW_VA, "AW PAGE", IOMMU_FAULT_WRITE },
195 	{ 18, REG_V5_FAULT_AW_VA, "AW MULTI-HIT", IOMMU_FAULT_WRITE },
196 	{ 19, REG_V5_FAULT_AW_VA, "AW ACCESS PROTECTION", IOMMU_FAULT_WRITE },
197 	{ 20, REG_V5_FAULT_AW_VA, "AW SECURITY PROTECTION", IOMMU_FAULT_WRITE },
198 };
199 
200 /*
201  * This structure is attached to dev.archdata.iommu of the master device
202  * on device add, contains a list of SYSMMU controllers defined by device tree,
203  * which are bound to given master device. It is usually referenced by 'owner'
204  * pointer.
205 */
206 struct exynos_iommu_owner {
207 	struct list_head controllers;	/* list of sysmmu_drvdata.owner_node */
208 	struct iommu_domain *domain;	/* domain this device is attached */
209 };
210 
211 /*
212  * This structure exynos specific generalization of struct iommu_domain.
213  * It contains list of SYSMMU controllers from all master devices, which has
214  * been attached to this domain and page tables of IO address space defined by
215  * it. It is usually referenced by 'domain' pointer.
216  */
217 struct exynos_iommu_domain {
218 	struct list_head clients; /* list of sysmmu_drvdata.domain_node */
219 	sysmmu_pte_t *pgtable;	/* lv1 page table, 16KB */
220 	short *lv2entcnt;	/* free lv2 entry counter for each section */
221 	spinlock_t lock;	/* lock for modyfying list of clients */
222 	spinlock_t pgtablelock;	/* lock for modifying page table @ pgtable */
223 	struct iommu_domain domain; /* generic domain data structure */
224 };
225 
226 /*
227  * This structure hold all data of a single SYSMMU controller, this includes
228  * hw resources like registers and clocks, pointers and list nodes to connect
229  * it to all other structures, internal state and parameters read from device
230  * tree. It is usually referenced by 'data' pointer.
231  */
232 struct sysmmu_drvdata {
233 	struct device *sysmmu;		/* SYSMMU controller device */
234 	struct device *master;		/* master device (owner) */
235 	void __iomem *sfrbase;		/* our registers */
236 	struct clk *clk;		/* SYSMMU's clock */
237 	struct clk *aclk;		/* SYSMMU's aclk clock */
238 	struct clk *pclk;		/* SYSMMU's pclk clock */
239 	struct clk *clk_master;		/* master's device clock */
240 	int activations;		/* number of calls to sysmmu_enable */
241 	spinlock_t lock;		/* lock for modyfying state */
242 	struct exynos_iommu_domain *domain; /* domain we belong to */
243 	struct list_head domain_node;	/* node for domain clients list */
244 	struct list_head owner_node;	/* node for owner controllers list */
245 	phys_addr_t pgtable;		/* assigned page table structure */
246 	unsigned int version;		/* our version */
247 };
248 
249 static struct exynos_iommu_domain *to_exynos_domain(struct iommu_domain *dom)
250 {
251 	return container_of(dom, struct exynos_iommu_domain, domain);
252 }
253 
254 static bool set_sysmmu_active(struct sysmmu_drvdata *data)
255 {
256 	/* return true if the System MMU was not active previously
257 	   and it needs to be initialized */
258 	return ++data->activations == 1;
259 }
260 
261 static bool set_sysmmu_inactive(struct sysmmu_drvdata *data)
262 {
263 	/* return true if the System MMU is needed to be disabled */
264 	BUG_ON(data->activations < 1);
265 	return --data->activations == 0;
266 }
267 
268 static bool is_sysmmu_active(struct sysmmu_drvdata *data)
269 {
270 	return data->activations > 0;
271 }
272 
273 static void sysmmu_unblock(struct sysmmu_drvdata *data)
274 {
275 	writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL);
276 }
277 
278 static bool sysmmu_block(struct sysmmu_drvdata *data)
279 {
280 	int i = 120;
281 
282 	writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL);
283 	while ((i > 0) && !(readl(data->sfrbase + REG_MMU_STATUS) & 1))
284 		--i;
285 
286 	if (!(readl(data->sfrbase + REG_MMU_STATUS) & 1)) {
287 		sysmmu_unblock(data);
288 		return false;
289 	}
290 
291 	return true;
292 }
293 
294 static void __sysmmu_tlb_invalidate(struct sysmmu_drvdata *data)
295 {
296 	if (MMU_MAJ_VER(data->version) < 5)
297 		writel(0x1, data->sfrbase + REG_MMU_FLUSH);
298 	else
299 		writel(0x1, data->sfrbase + REG_V5_MMU_FLUSH_ALL);
300 }
301 
302 static void __sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data,
303 				sysmmu_iova_t iova, unsigned int num_inv)
304 {
305 	unsigned int i;
306 
307 	for (i = 0; i < num_inv; i++) {
308 		if (MMU_MAJ_VER(data->version) < 5)
309 			writel((iova & SPAGE_MASK) | 1,
310 				     data->sfrbase + REG_MMU_FLUSH_ENTRY);
311 		else
312 			writel((iova & SPAGE_MASK) | 1,
313 				     data->sfrbase + REG_V5_MMU_FLUSH_ENTRY);
314 		iova += SPAGE_SIZE;
315 	}
316 }
317 
318 static void __sysmmu_set_ptbase(struct sysmmu_drvdata *data, phys_addr_t pgd)
319 {
320 	if (MMU_MAJ_VER(data->version) < 5)
321 		writel(pgd, data->sfrbase + REG_PT_BASE_ADDR);
322 	else
323 		writel(pgd >> PAGE_SHIFT,
324 			     data->sfrbase + REG_V5_PT_BASE_PFN);
325 
326 	__sysmmu_tlb_invalidate(data);
327 }
328 
329 static void __sysmmu_enable_clocks(struct sysmmu_drvdata *data)
330 {
331 	BUG_ON(clk_prepare_enable(data->clk_master));
332 	BUG_ON(clk_prepare_enable(data->clk));
333 	BUG_ON(clk_prepare_enable(data->pclk));
334 	BUG_ON(clk_prepare_enable(data->aclk));
335 }
336 
337 static void __sysmmu_disable_clocks(struct sysmmu_drvdata *data)
338 {
339 	clk_disable_unprepare(data->aclk);
340 	clk_disable_unprepare(data->pclk);
341 	clk_disable_unprepare(data->clk);
342 	clk_disable_unprepare(data->clk_master);
343 }
344 
345 static void __sysmmu_get_version(struct sysmmu_drvdata *data)
346 {
347 	u32 ver;
348 
349 	__sysmmu_enable_clocks(data);
350 
351 	ver = readl(data->sfrbase + REG_MMU_VERSION);
352 
353 	/* controllers on some SoCs don't report proper version */
354 	if (ver == 0x80000001u)
355 		data->version = MAKE_MMU_VER(1, 0);
356 	else
357 		data->version = MMU_RAW_VER(ver);
358 
359 	dev_dbg(data->sysmmu, "hardware version: %d.%d\n",
360 		MMU_MAJ_VER(data->version), MMU_MIN_VER(data->version));
361 
362 	__sysmmu_disable_clocks(data);
363 }
364 
365 static void show_fault_information(struct sysmmu_drvdata *data,
366 				   const struct sysmmu_fault_info *finfo,
367 				   sysmmu_iova_t fault_addr)
368 {
369 	sysmmu_pte_t *ent;
370 
371 	dev_err(data->sysmmu, "%s FAULT occurred at %#x (page table base: %pa)\n",
372 		finfo->name, fault_addr, &data->pgtable);
373 	ent = section_entry(phys_to_virt(data->pgtable), fault_addr);
374 	dev_err(data->sysmmu, "\tLv1 entry: %#x\n", *ent);
375 	if (lv1ent_page(ent)) {
376 		ent = page_entry(ent, fault_addr);
377 		dev_err(data->sysmmu, "\t Lv2 entry: %#x\n", *ent);
378 	}
379 }
380 
381 static irqreturn_t exynos_sysmmu_irq(int irq, void *dev_id)
382 {
383 	/* SYSMMU is in blocked state when interrupt occurred. */
384 	struct sysmmu_drvdata *data = dev_id;
385 	const struct sysmmu_fault_info *finfo;
386 	unsigned int i, n, itype;
387 	sysmmu_iova_t fault_addr = -1;
388 	unsigned short reg_status, reg_clear;
389 	int ret = -ENOSYS;
390 
391 	WARN_ON(!is_sysmmu_active(data));
392 
393 	if (MMU_MAJ_VER(data->version) < 5) {
394 		reg_status = REG_INT_STATUS;
395 		reg_clear = REG_INT_CLEAR;
396 		finfo = sysmmu_faults;
397 		n = ARRAY_SIZE(sysmmu_faults);
398 	} else {
399 		reg_status = REG_V5_INT_STATUS;
400 		reg_clear = REG_V5_INT_CLEAR;
401 		finfo = sysmmu_v5_faults;
402 		n = ARRAY_SIZE(sysmmu_v5_faults);
403 	}
404 
405 	spin_lock(&data->lock);
406 
407 	clk_enable(data->clk_master);
408 
409 	itype = __ffs(readl(data->sfrbase + reg_status));
410 	for (i = 0; i < n; i++, finfo++)
411 		if (finfo->bit == itype)
412 			break;
413 	/* unknown/unsupported fault */
414 	BUG_ON(i == n);
415 
416 	/* print debug message */
417 	fault_addr = readl(data->sfrbase + finfo->addr_reg);
418 	show_fault_information(data, finfo, fault_addr);
419 
420 	if (data->domain)
421 		ret = report_iommu_fault(&data->domain->domain,
422 					data->master, fault_addr, finfo->type);
423 	/* fault is not recovered by fault handler */
424 	BUG_ON(ret != 0);
425 
426 	writel(1 << itype, data->sfrbase + reg_clear);
427 
428 	sysmmu_unblock(data);
429 
430 	clk_disable(data->clk_master);
431 
432 	spin_unlock(&data->lock);
433 
434 	return IRQ_HANDLED;
435 }
436 
437 static void __sysmmu_disable_nocount(struct sysmmu_drvdata *data)
438 {
439 	clk_enable(data->clk_master);
440 
441 	writel(CTRL_DISABLE, data->sfrbase + REG_MMU_CTRL);
442 	writel(0, data->sfrbase + REG_MMU_CFG);
443 
444 	__sysmmu_disable_clocks(data);
445 }
446 
447 static bool __sysmmu_disable(struct sysmmu_drvdata *data)
448 {
449 	bool disabled;
450 	unsigned long flags;
451 
452 	spin_lock_irqsave(&data->lock, flags);
453 
454 	disabled = set_sysmmu_inactive(data);
455 
456 	if (disabled) {
457 		data->pgtable = 0;
458 		data->domain = NULL;
459 
460 		__sysmmu_disable_nocount(data);
461 
462 		dev_dbg(data->sysmmu, "Disabled\n");
463 	} else  {
464 		dev_dbg(data->sysmmu, "%d times left to disable\n",
465 					data->activations);
466 	}
467 
468 	spin_unlock_irqrestore(&data->lock, flags);
469 
470 	return disabled;
471 }
472 
473 static void __sysmmu_init_config(struct sysmmu_drvdata *data)
474 {
475 	unsigned int cfg;
476 
477 	if (data->version <= MAKE_MMU_VER(3, 1))
478 		cfg = CFG_LRU | CFG_QOS(15);
479 	else if (data->version <= MAKE_MMU_VER(3, 2))
480 		cfg = CFG_LRU | CFG_QOS(15) | CFG_FLPDCACHE | CFG_SYSSEL;
481 	else
482 		cfg = CFG_QOS(15) | CFG_FLPDCACHE | CFG_ACGEN;
483 
484 	writel(cfg, data->sfrbase + REG_MMU_CFG);
485 }
486 
487 static void __sysmmu_enable_nocount(struct sysmmu_drvdata *data)
488 {
489 	__sysmmu_enable_clocks(data);
490 
491 	writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL);
492 
493 	__sysmmu_init_config(data);
494 
495 	__sysmmu_set_ptbase(data, data->pgtable);
496 
497 	writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL);
498 
499 	/*
500 	 * SYSMMU driver keeps master's clock enabled only for the short
501 	 * time, while accessing the registers. For performing address
502 	 * translation during DMA transaction it relies on the client
503 	 * driver to enable it.
504 	 */
505 	clk_disable(data->clk_master);
506 }
507 
508 static int __sysmmu_enable(struct sysmmu_drvdata *data, phys_addr_t pgtable,
509 			   struct exynos_iommu_domain *domain)
510 {
511 	int ret = 0;
512 	unsigned long flags;
513 
514 	spin_lock_irqsave(&data->lock, flags);
515 	if (set_sysmmu_active(data)) {
516 		data->pgtable = pgtable;
517 		data->domain = domain;
518 
519 		__sysmmu_enable_nocount(data);
520 
521 		dev_dbg(data->sysmmu, "Enabled\n");
522 	} else {
523 		ret = (pgtable == data->pgtable) ? 1 : -EBUSY;
524 
525 		dev_dbg(data->sysmmu, "already enabled\n");
526 	}
527 
528 	if (WARN_ON(ret < 0))
529 		set_sysmmu_inactive(data); /* decrement count */
530 
531 	spin_unlock_irqrestore(&data->lock, flags);
532 
533 	return ret;
534 }
535 
536 static void sysmmu_tlb_invalidate_flpdcache(struct sysmmu_drvdata *data,
537 					    sysmmu_iova_t iova)
538 {
539 	unsigned long flags;
540 
541 
542 	spin_lock_irqsave(&data->lock, flags);
543 	if (is_sysmmu_active(data) && data->version >= MAKE_MMU_VER(3, 3)) {
544 		clk_enable(data->clk_master);
545 		__sysmmu_tlb_invalidate_entry(data, iova, 1);
546 		clk_disable(data->clk_master);
547 	}
548 	spin_unlock_irqrestore(&data->lock, flags);
549 
550 }
551 
552 static void sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data,
553 					sysmmu_iova_t iova, size_t size)
554 {
555 	unsigned long flags;
556 
557 	spin_lock_irqsave(&data->lock, flags);
558 	if (is_sysmmu_active(data)) {
559 		unsigned int num_inv = 1;
560 
561 		clk_enable(data->clk_master);
562 
563 		/*
564 		 * L2TLB invalidation required
565 		 * 4KB page: 1 invalidation
566 		 * 64KB page: 16 invalidations
567 		 * 1MB page: 64 invalidations
568 		 * because it is set-associative TLB
569 		 * with 8-way and 64 sets.
570 		 * 1MB page can be cached in one of all sets.
571 		 * 64KB page can be one of 16 consecutive sets.
572 		 */
573 		if (MMU_MAJ_VER(data->version) == 2)
574 			num_inv = min_t(unsigned int, size / PAGE_SIZE, 64);
575 
576 		if (sysmmu_block(data)) {
577 			__sysmmu_tlb_invalidate_entry(data, iova, num_inv);
578 			sysmmu_unblock(data);
579 		}
580 		clk_disable(data->clk_master);
581 	} else {
582 		dev_dbg(data->master,
583 			"disabled. Skipping TLB invalidation @ %#x\n", iova);
584 	}
585 	spin_unlock_irqrestore(&data->lock, flags);
586 }
587 
588 static struct iommu_ops exynos_iommu_ops;
589 
590 static int __init exynos_sysmmu_probe(struct platform_device *pdev)
591 {
592 	int irq, ret;
593 	struct device *dev = &pdev->dev;
594 	struct sysmmu_drvdata *data;
595 	struct resource *res;
596 
597 	data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
598 	if (!data)
599 		return -ENOMEM;
600 
601 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
602 	data->sfrbase = devm_ioremap_resource(dev, res);
603 	if (IS_ERR(data->sfrbase))
604 		return PTR_ERR(data->sfrbase);
605 
606 	irq = platform_get_irq(pdev, 0);
607 	if (irq <= 0) {
608 		dev_err(dev, "Unable to find IRQ resource\n");
609 		return irq;
610 	}
611 
612 	ret = devm_request_irq(dev, irq, exynos_sysmmu_irq, 0,
613 				dev_name(dev), data);
614 	if (ret) {
615 		dev_err(dev, "Unabled to register handler of irq %d\n", irq);
616 		return ret;
617 	}
618 
619 	data->clk = devm_clk_get(dev, "sysmmu");
620 	if (PTR_ERR(data->clk) == -ENOENT)
621 		data->clk = NULL;
622 	else if (IS_ERR(data->clk))
623 		return PTR_ERR(data->clk);
624 
625 	data->aclk = devm_clk_get(dev, "aclk");
626 	if (PTR_ERR(data->aclk) == -ENOENT)
627 		data->aclk = NULL;
628 	else if (IS_ERR(data->aclk))
629 		return PTR_ERR(data->aclk);
630 
631 	data->pclk = devm_clk_get(dev, "pclk");
632 	if (PTR_ERR(data->pclk) == -ENOENT)
633 		data->pclk = NULL;
634 	else if (IS_ERR(data->pclk))
635 		return PTR_ERR(data->pclk);
636 
637 	if (!data->clk && (!data->aclk || !data->pclk)) {
638 		dev_err(dev, "Failed to get device clock(s)!\n");
639 		return -ENOSYS;
640 	}
641 
642 	data->clk_master = devm_clk_get(dev, "master");
643 	if (PTR_ERR(data->clk_master) == -ENOENT)
644 		data->clk_master = NULL;
645 	else if (IS_ERR(data->clk_master))
646 		return PTR_ERR(data->clk_master);
647 
648 	data->sysmmu = dev;
649 	spin_lock_init(&data->lock);
650 
651 	platform_set_drvdata(pdev, data);
652 
653 	__sysmmu_get_version(data);
654 	if (PG_ENT_SHIFT < 0) {
655 		if (MMU_MAJ_VER(data->version) < 5)
656 			PG_ENT_SHIFT = SYSMMU_PG_ENT_SHIFT;
657 		else
658 			PG_ENT_SHIFT = SYSMMU_V5_PG_ENT_SHIFT;
659 	}
660 
661 	pm_runtime_enable(dev);
662 
663 	of_iommu_set_ops(dev->of_node, &exynos_iommu_ops);
664 
665 	return 0;
666 }
667 
668 #ifdef CONFIG_PM_SLEEP
669 static int exynos_sysmmu_suspend(struct device *dev)
670 {
671 	struct sysmmu_drvdata *data = dev_get_drvdata(dev);
672 
673 	dev_dbg(dev, "suspend\n");
674 	if (is_sysmmu_active(data)) {
675 		__sysmmu_disable_nocount(data);
676 		pm_runtime_put(dev);
677 	}
678 	return 0;
679 }
680 
681 static int exynos_sysmmu_resume(struct device *dev)
682 {
683 	struct sysmmu_drvdata *data = dev_get_drvdata(dev);
684 
685 	dev_dbg(dev, "resume\n");
686 	if (is_sysmmu_active(data)) {
687 		pm_runtime_get_sync(dev);
688 		__sysmmu_enable_nocount(data);
689 	}
690 	return 0;
691 }
692 #endif
693 
694 static const struct dev_pm_ops sysmmu_pm_ops = {
695 	SET_LATE_SYSTEM_SLEEP_PM_OPS(exynos_sysmmu_suspend, exynos_sysmmu_resume)
696 };
697 
698 static const struct of_device_id sysmmu_of_match[] __initconst = {
699 	{ .compatible	= "samsung,exynos-sysmmu", },
700 	{ },
701 };
702 
703 static struct platform_driver exynos_sysmmu_driver __refdata = {
704 	.probe	= exynos_sysmmu_probe,
705 	.driver	= {
706 		.name		= "exynos-sysmmu",
707 		.of_match_table	= sysmmu_of_match,
708 		.pm		= &sysmmu_pm_ops,
709 		.suppress_bind_attrs = true,
710 	}
711 };
712 
713 static inline void update_pte(sysmmu_pte_t *ent, sysmmu_pte_t val)
714 {
715 	dma_sync_single_for_cpu(dma_dev, virt_to_phys(ent), sizeof(*ent),
716 				DMA_TO_DEVICE);
717 	*ent = cpu_to_le32(val);
718 	dma_sync_single_for_device(dma_dev, virt_to_phys(ent), sizeof(*ent),
719 				   DMA_TO_DEVICE);
720 }
721 
722 static struct iommu_domain *exynos_iommu_domain_alloc(unsigned type)
723 {
724 	struct exynos_iommu_domain *domain;
725 	dma_addr_t handle;
726 	int i;
727 
728 	/* Check if correct PTE offsets are initialized */
729 	BUG_ON(PG_ENT_SHIFT < 0 || !dma_dev);
730 
731 	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
732 	if (!domain)
733 		return NULL;
734 
735 	if (type == IOMMU_DOMAIN_DMA) {
736 		if (iommu_get_dma_cookie(&domain->domain) != 0)
737 			goto err_pgtable;
738 	} else if (type != IOMMU_DOMAIN_UNMANAGED) {
739 		goto err_pgtable;
740 	}
741 
742 	domain->pgtable = (sysmmu_pte_t *)__get_free_pages(GFP_KERNEL, 2);
743 	if (!domain->pgtable)
744 		goto err_dma_cookie;
745 
746 	domain->lv2entcnt = (short *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1);
747 	if (!domain->lv2entcnt)
748 		goto err_counter;
749 
750 	/* Workaround for System MMU v3.3 to prevent caching 1MiB mapping */
751 	for (i = 0; i < NUM_LV1ENTRIES; i += 8) {
752 		domain->pgtable[i + 0] = ZERO_LV2LINK;
753 		domain->pgtable[i + 1] = ZERO_LV2LINK;
754 		domain->pgtable[i + 2] = ZERO_LV2LINK;
755 		domain->pgtable[i + 3] = ZERO_LV2LINK;
756 		domain->pgtable[i + 4] = ZERO_LV2LINK;
757 		domain->pgtable[i + 5] = ZERO_LV2LINK;
758 		domain->pgtable[i + 6] = ZERO_LV2LINK;
759 		domain->pgtable[i + 7] = ZERO_LV2LINK;
760 	}
761 
762 	handle = dma_map_single(dma_dev, domain->pgtable, LV1TABLE_SIZE,
763 				DMA_TO_DEVICE);
764 	/* For mapping page table entries we rely on dma == phys */
765 	BUG_ON(handle != virt_to_phys(domain->pgtable));
766 
767 	spin_lock_init(&domain->lock);
768 	spin_lock_init(&domain->pgtablelock);
769 	INIT_LIST_HEAD(&domain->clients);
770 
771 	domain->domain.geometry.aperture_start = 0;
772 	domain->domain.geometry.aperture_end   = ~0UL;
773 	domain->domain.geometry.force_aperture = true;
774 
775 	return &domain->domain;
776 
777 err_counter:
778 	free_pages((unsigned long)domain->pgtable, 2);
779 err_dma_cookie:
780 	if (type == IOMMU_DOMAIN_DMA)
781 		iommu_put_dma_cookie(&domain->domain);
782 err_pgtable:
783 	kfree(domain);
784 	return NULL;
785 }
786 
787 static void exynos_iommu_domain_free(struct iommu_domain *iommu_domain)
788 {
789 	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
790 	struct sysmmu_drvdata *data, *next;
791 	unsigned long flags;
792 	int i;
793 
794 	WARN_ON(!list_empty(&domain->clients));
795 
796 	spin_lock_irqsave(&domain->lock, flags);
797 
798 	list_for_each_entry_safe(data, next, &domain->clients, domain_node) {
799 		if (__sysmmu_disable(data))
800 			data->master = NULL;
801 		list_del_init(&data->domain_node);
802 	}
803 
804 	spin_unlock_irqrestore(&domain->lock, flags);
805 
806 	if (iommu_domain->type == IOMMU_DOMAIN_DMA)
807 		iommu_put_dma_cookie(iommu_domain);
808 
809 	dma_unmap_single(dma_dev, virt_to_phys(domain->pgtable), LV1TABLE_SIZE,
810 			 DMA_TO_DEVICE);
811 
812 	for (i = 0; i < NUM_LV1ENTRIES; i++)
813 		if (lv1ent_page(domain->pgtable + i)) {
814 			phys_addr_t base = lv2table_base(domain->pgtable + i);
815 
816 			dma_unmap_single(dma_dev, base, LV2TABLE_SIZE,
817 					 DMA_TO_DEVICE);
818 			kmem_cache_free(lv2table_kmem_cache,
819 					phys_to_virt(base));
820 		}
821 
822 	free_pages((unsigned long)domain->pgtable, 2);
823 	free_pages((unsigned long)domain->lv2entcnt, 1);
824 	kfree(domain);
825 }
826 
827 static void exynos_iommu_detach_device(struct iommu_domain *iommu_domain,
828 				    struct device *dev)
829 {
830 	struct exynos_iommu_owner *owner = dev->archdata.iommu;
831 	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
832 	phys_addr_t pagetable = virt_to_phys(domain->pgtable);
833 	struct sysmmu_drvdata *data, *next;
834 	unsigned long flags;
835 	bool found = false;
836 
837 	if (!has_sysmmu(dev) || owner->domain != iommu_domain)
838 		return;
839 
840 	spin_lock_irqsave(&domain->lock, flags);
841 	list_for_each_entry_safe(data, next, &domain->clients, domain_node) {
842 		if (data->master == dev) {
843 			if (__sysmmu_disable(data)) {
844 				data->master = NULL;
845 				list_del_init(&data->domain_node);
846 			}
847 			pm_runtime_put(data->sysmmu);
848 			found = true;
849 		}
850 	}
851 	spin_unlock_irqrestore(&domain->lock, flags);
852 
853 	owner->domain = NULL;
854 
855 	if (found)
856 		dev_dbg(dev, "%s: Detached IOMMU with pgtable %pa\n",
857 					__func__, &pagetable);
858 	else
859 		dev_err(dev, "%s: No IOMMU is attached\n", __func__);
860 }
861 
862 static int exynos_iommu_attach_device(struct iommu_domain *iommu_domain,
863 				   struct device *dev)
864 {
865 	struct exynos_iommu_owner *owner = dev->archdata.iommu;
866 	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
867 	struct sysmmu_drvdata *data;
868 	phys_addr_t pagetable = virt_to_phys(domain->pgtable);
869 	unsigned long flags;
870 	int ret = -ENODEV;
871 
872 	if (!has_sysmmu(dev))
873 		return -ENODEV;
874 
875 	if (owner->domain)
876 		exynos_iommu_detach_device(owner->domain, dev);
877 
878 	list_for_each_entry(data, &owner->controllers, owner_node) {
879 		pm_runtime_get_sync(data->sysmmu);
880 		ret = __sysmmu_enable(data, pagetable, domain);
881 		if (ret >= 0) {
882 			data->master = dev;
883 
884 			spin_lock_irqsave(&domain->lock, flags);
885 			list_add_tail(&data->domain_node, &domain->clients);
886 			spin_unlock_irqrestore(&domain->lock, flags);
887 		}
888 	}
889 
890 	if (ret < 0) {
891 		dev_err(dev, "%s: Failed to attach IOMMU with pgtable %pa\n",
892 					__func__, &pagetable);
893 		return ret;
894 	}
895 
896 	owner->domain = iommu_domain;
897 	dev_dbg(dev, "%s: Attached IOMMU with pgtable %pa %s\n",
898 		__func__, &pagetable, (ret == 0) ? "" : ", again");
899 
900 	return ret;
901 }
902 
903 static sysmmu_pte_t *alloc_lv2entry(struct exynos_iommu_domain *domain,
904 		sysmmu_pte_t *sent, sysmmu_iova_t iova, short *pgcounter)
905 {
906 	if (lv1ent_section(sent)) {
907 		WARN(1, "Trying mapping on %#08x mapped with 1MiB page", iova);
908 		return ERR_PTR(-EADDRINUSE);
909 	}
910 
911 	if (lv1ent_fault(sent)) {
912 		sysmmu_pte_t *pent;
913 		bool need_flush_flpd_cache = lv1ent_zero(sent);
914 
915 		pent = kmem_cache_zalloc(lv2table_kmem_cache, GFP_ATOMIC);
916 		BUG_ON((uintptr_t)pent & (LV2TABLE_SIZE - 1));
917 		if (!pent)
918 			return ERR_PTR(-ENOMEM);
919 
920 		update_pte(sent, mk_lv1ent_page(virt_to_phys(pent)));
921 		kmemleak_ignore(pent);
922 		*pgcounter = NUM_LV2ENTRIES;
923 		dma_map_single(dma_dev, pent, LV2TABLE_SIZE, DMA_TO_DEVICE);
924 
925 		/*
926 		 * If pre-fetched SLPD is a faulty SLPD in zero_l2_table,
927 		 * FLPD cache may cache the address of zero_l2_table. This
928 		 * function replaces the zero_l2_table with new L2 page table
929 		 * to write valid mappings.
930 		 * Accessing the valid area may cause page fault since FLPD
931 		 * cache may still cache zero_l2_table for the valid area
932 		 * instead of new L2 page table that has the mapping
933 		 * information of the valid area.
934 		 * Thus any replacement of zero_l2_table with other valid L2
935 		 * page table must involve FLPD cache invalidation for System
936 		 * MMU v3.3.
937 		 * FLPD cache invalidation is performed with TLB invalidation
938 		 * by VPN without blocking. It is safe to invalidate TLB without
939 		 * blocking because the target address of TLB invalidation is
940 		 * not currently mapped.
941 		 */
942 		if (need_flush_flpd_cache) {
943 			struct sysmmu_drvdata *data;
944 
945 			spin_lock(&domain->lock);
946 			list_for_each_entry(data, &domain->clients, domain_node)
947 				sysmmu_tlb_invalidate_flpdcache(data, iova);
948 			spin_unlock(&domain->lock);
949 		}
950 	}
951 
952 	return page_entry(sent, iova);
953 }
954 
955 static int lv1set_section(struct exynos_iommu_domain *domain,
956 			  sysmmu_pte_t *sent, sysmmu_iova_t iova,
957 			  phys_addr_t paddr, short *pgcnt)
958 {
959 	if (lv1ent_section(sent)) {
960 		WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
961 			iova);
962 		return -EADDRINUSE;
963 	}
964 
965 	if (lv1ent_page(sent)) {
966 		if (*pgcnt != NUM_LV2ENTRIES) {
967 			WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
968 				iova);
969 			return -EADDRINUSE;
970 		}
971 
972 		kmem_cache_free(lv2table_kmem_cache, page_entry(sent, 0));
973 		*pgcnt = 0;
974 	}
975 
976 	update_pte(sent, mk_lv1ent_sect(paddr));
977 
978 	spin_lock(&domain->lock);
979 	if (lv1ent_page_zero(sent)) {
980 		struct sysmmu_drvdata *data;
981 		/*
982 		 * Flushing FLPD cache in System MMU v3.3 that may cache a FLPD
983 		 * entry by speculative prefetch of SLPD which has no mapping.
984 		 */
985 		list_for_each_entry(data, &domain->clients, domain_node)
986 			sysmmu_tlb_invalidate_flpdcache(data, iova);
987 	}
988 	spin_unlock(&domain->lock);
989 
990 	return 0;
991 }
992 
993 static int lv2set_page(sysmmu_pte_t *pent, phys_addr_t paddr, size_t size,
994 								short *pgcnt)
995 {
996 	if (size == SPAGE_SIZE) {
997 		if (WARN_ON(!lv2ent_fault(pent)))
998 			return -EADDRINUSE;
999 
1000 		update_pte(pent, mk_lv2ent_spage(paddr));
1001 		*pgcnt -= 1;
1002 	} else { /* size == LPAGE_SIZE */
1003 		int i;
1004 		dma_addr_t pent_base = virt_to_phys(pent);
1005 
1006 		dma_sync_single_for_cpu(dma_dev, pent_base,
1007 					sizeof(*pent) * SPAGES_PER_LPAGE,
1008 					DMA_TO_DEVICE);
1009 		for (i = 0; i < SPAGES_PER_LPAGE; i++, pent++) {
1010 			if (WARN_ON(!lv2ent_fault(pent))) {
1011 				if (i > 0)
1012 					memset(pent - i, 0, sizeof(*pent) * i);
1013 				return -EADDRINUSE;
1014 			}
1015 
1016 			*pent = mk_lv2ent_lpage(paddr);
1017 		}
1018 		dma_sync_single_for_device(dma_dev, pent_base,
1019 					   sizeof(*pent) * SPAGES_PER_LPAGE,
1020 					   DMA_TO_DEVICE);
1021 		*pgcnt -= SPAGES_PER_LPAGE;
1022 	}
1023 
1024 	return 0;
1025 }
1026 
1027 /*
1028  * *CAUTION* to the I/O virtual memory managers that support exynos-iommu:
1029  *
1030  * System MMU v3.x has advanced logic to improve address translation
1031  * performance with caching more page table entries by a page table walk.
1032  * However, the logic has a bug that while caching faulty page table entries,
1033  * System MMU reports page fault if the cached fault entry is hit even though
1034  * the fault entry is updated to a valid entry after the entry is cached.
1035  * To prevent caching faulty page table entries which may be updated to valid
1036  * entries later, the virtual memory manager should care about the workaround
1037  * for the problem. The following describes the workaround.
1038  *
1039  * Any two consecutive I/O virtual address regions must have a hole of 128KiB
1040  * at maximum to prevent misbehavior of System MMU 3.x (workaround for h/w bug).
1041  *
1042  * Precisely, any start address of I/O virtual region must be aligned with
1043  * the following sizes for System MMU v3.1 and v3.2.
1044  * System MMU v3.1: 128KiB
1045  * System MMU v3.2: 256KiB
1046  *
1047  * Because System MMU v3.3 caches page table entries more aggressively, it needs
1048  * more workarounds.
1049  * - Any two consecutive I/O virtual regions must have a hole of size larger
1050  *   than or equal to 128KiB.
1051  * - Start address of an I/O virtual region must be aligned by 128KiB.
1052  */
1053 static int exynos_iommu_map(struct iommu_domain *iommu_domain,
1054 			    unsigned long l_iova, phys_addr_t paddr, size_t size,
1055 			    int prot)
1056 {
1057 	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1058 	sysmmu_pte_t *entry;
1059 	sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
1060 	unsigned long flags;
1061 	int ret = -ENOMEM;
1062 
1063 	BUG_ON(domain->pgtable == NULL);
1064 
1065 	spin_lock_irqsave(&domain->pgtablelock, flags);
1066 
1067 	entry = section_entry(domain->pgtable, iova);
1068 
1069 	if (size == SECT_SIZE) {
1070 		ret = lv1set_section(domain, entry, iova, paddr,
1071 				     &domain->lv2entcnt[lv1ent_offset(iova)]);
1072 	} else {
1073 		sysmmu_pte_t *pent;
1074 
1075 		pent = alloc_lv2entry(domain, entry, iova,
1076 				      &domain->lv2entcnt[lv1ent_offset(iova)]);
1077 
1078 		if (IS_ERR(pent))
1079 			ret = PTR_ERR(pent);
1080 		else
1081 			ret = lv2set_page(pent, paddr, size,
1082 				       &domain->lv2entcnt[lv1ent_offset(iova)]);
1083 	}
1084 
1085 	if (ret)
1086 		pr_err("%s: Failed(%d) to map %#zx bytes @ %#x\n",
1087 			__func__, ret, size, iova);
1088 
1089 	spin_unlock_irqrestore(&domain->pgtablelock, flags);
1090 
1091 	return ret;
1092 }
1093 
1094 static void exynos_iommu_tlb_invalidate_entry(struct exynos_iommu_domain *domain,
1095 					      sysmmu_iova_t iova, size_t size)
1096 {
1097 	struct sysmmu_drvdata *data;
1098 	unsigned long flags;
1099 
1100 	spin_lock_irqsave(&domain->lock, flags);
1101 
1102 	list_for_each_entry(data, &domain->clients, domain_node)
1103 		sysmmu_tlb_invalidate_entry(data, iova, size);
1104 
1105 	spin_unlock_irqrestore(&domain->lock, flags);
1106 }
1107 
1108 static size_t exynos_iommu_unmap(struct iommu_domain *iommu_domain,
1109 				 unsigned long l_iova, size_t size)
1110 {
1111 	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1112 	sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
1113 	sysmmu_pte_t *ent;
1114 	size_t err_pgsize;
1115 	unsigned long flags;
1116 
1117 	BUG_ON(domain->pgtable == NULL);
1118 
1119 	spin_lock_irqsave(&domain->pgtablelock, flags);
1120 
1121 	ent = section_entry(domain->pgtable, iova);
1122 
1123 	if (lv1ent_section(ent)) {
1124 		if (WARN_ON(size < SECT_SIZE)) {
1125 			err_pgsize = SECT_SIZE;
1126 			goto err;
1127 		}
1128 
1129 		/* workaround for h/w bug in System MMU v3.3 */
1130 		update_pte(ent, ZERO_LV2LINK);
1131 		size = SECT_SIZE;
1132 		goto done;
1133 	}
1134 
1135 	if (unlikely(lv1ent_fault(ent))) {
1136 		if (size > SECT_SIZE)
1137 			size = SECT_SIZE;
1138 		goto done;
1139 	}
1140 
1141 	/* lv1ent_page(sent) == true here */
1142 
1143 	ent = page_entry(ent, iova);
1144 
1145 	if (unlikely(lv2ent_fault(ent))) {
1146 		size = SPAGE_SIZE;
1147 		goto done;
1148 	}
1149 
1150 	if (lv2ent_small(ent)) {
1151 		update_pte(ent, 0);
1152 		size = SPAGE_SIZE;
1153 		domain->lv2entcnt[lv1ent_offset(iova)] += 1;
1154 		goto done;
1155 	}
1156 
1157 	/* lv1ent_large(ent) == true here */
1158 	if (WARN_ON(size < LPAGE_SIZE)) {
1159 		err_pgsize = LPAGE_SIZE;
1160 		goto err;
1161 	}
1162 
1163 	dma_sync_single_for_cpu(dma_dev, virt_to_phys(ent),
1164 				sizeof(*ent) * SPAGES_PER_LPAGE,
1165 				DMA_TO_DEVICE);
1166 	memset(ent, 0, sizeof(*ent) * SPAGES_PER_LPAGE);
1167 	dma_sync_single_for_device(dma_dev, virt_to_phys(ent),
1168 				   sizeof(*ent) * SPAGES_PER_LPAGE,
1169 				   DMA_TO_DEVICE);
1170 	size = LPAGE_SIZE;
1171 	domain->lv2entcnt[lv1ent_offset(iova)] += SPAGES_PER_LPAGE;
1172 done:
1173 	spin_unlock_irqrestore(&domain->pgtablelock, flags);
1174 
1175 	exynos_iommu_tlb_invalidate_entry(domain, iova, size);
1176 
1177 	return size;
1178 err:
1179 	spin_unlock_irqrestore(&domain->pgtablelock, flags);
1180 
1181 	pr_err("%s: Failed: size(%#zx) @ %#x is smaller than page size %#zx\n",
1182 		__func__, size, iova, err_pgsize);
1183 
1184 	return 0;
1185 }
1186 
1187 static phys_addr_t exynos_iommu_iova_to_phys(struct iommu_domain *iommu_domain,
1188 					  dma_addr_t iova)
1189 {
1190 	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1191 	sysmmu_pte_t *entry;
1192 	unsigned long flags;
1193 	phys_addr_t phys = 0;
1194 
1195 	spin_lock_irqsave(&domain->pgtablelock, flags);
1196 
1197 	entry = section_entry(domain->pgtable, iova);
1198 
1199 	if (lv1ent_section(entry)) {
1200 		phys = section_phys(entry) + section_offs(iova);
1201 	} else if (lv1ent_page(entry)) {
1202 		entry = page_entry(entry, iova);
1203 
1204 		if (lv2ent_large(entry))
1205 			phys = lpage_phys(entry) + lpage_offs(iova);
1206 		else if (lv2ent_small(entry))
1207 			phys = spage_phys(entry) + spage_offs(iova);
1208 	}
1209 
1210 	spin_unlock_irqrestore(&domain->pgtablelock, flags);
1211 
1212 	return phys;
1213 }
1214 
1215 static struct iommu_group *get_device_iommu_group(struct device *dev)
1216 {
1217 	struct iommu_group *group;
1218 
1219 	group = iommu_group_get(dev);
1220 	if (!group)
1221 		group = iommu_group_alloc();
1222 
1223 	return group;
1224 }
1225 
1226 static int exynos_iommu_add_device(struct device *dev)
1227 {
1228 	struct iommu_group *group;
1229 
1230 	if (!has_sysmmu(dev))
1231 		return -ENODEV;
1232 
1233 	group = iommu_group_get_for_dev(dev);
1234 
1235 	if (IS_ERR(group))
1236 		return PTR_ERR(group);
1237 
1238 	iommu_group_put(group);
1239 
1240 	return 0;
1241 }
1242 
1243 static void exynos_iommu_remove_device(struct device *dev)
1244 {
1245 	if (!has_sysmmu(dev))
1246 		return;
1247 
1248 	iommu_group_remove_device(dev);
1249 }
1250 
1251 static int exynos_iommu_of_xlate(struct device *dev,
1252 				 struct of_phandle_args *spec)
1253 {
1254 	struct exynos_iommu_owner *owner = dev->archdata.iommu;
1255 	struct platform_device *sysmmu = of_find_device_by_node(spec->np);
1256 	struct sysmmu_drvdata *data;
1257 
1258 	if (!sysmmu)
1259 		return -ENODEV;
1260 
1261 	data = platform_get_drvdata(sysmmu);
1262 	if (!data)
1263 		return -ENODEV;
1264 
1265 	if (!owner) {
1266 		owner = kzalloc(sizeof(*owner), GFP_KERNEL);
1267 		if (!owner)
1268 			return -ENOMEM;
1269 
1270 		INIT_LIST_HEAD(&owner->controllers);
1271 		dev->archdata.iommu = owner;
1272 	}
1273 
1274 	list_add_tail(&data->owner_node, &owner->controllers);
1275 	return 0;
1276 }
1277 
1278 static struct iommu_ops exynos_iommu_ops = {
1279 	.domain_alloc = exynos_iommu_domain_alloc,
1280 	.domain_free = exynos_iommu_domain_free,
1281 	.attach_dev = exynos_iommu_attach_device,
1282 	.detach_dev = exynos_iommu_detach_device,
1283 	.map = exynos_iommu_map,
1284 	.unmap = exynos_iommu_unmap,
1285 	.map_sg = default_iommu_map_sg,
1286 	.iova_to_phys = exynos_iommu_iova_to_phys,
1287 	.device_group = get_device_iommu_group,
1288 	.add_device = exynos_iommu_add_device,
1289 	.remove_device = exynos_iommu_remove_device,
1290 	.pgsize_bitmap = SECT_SIZE | LPAGE_SIZE | SPAGE_SIZE,
1291 	.of_xlate = exynos_iommu_of_xlate,
1292 };
1293 
1294 static bool init_done;
1295 
1296 static int __init exynos_iommu_init(void)
1297 {
1298 	int ret;
1299 
1300 	lv2table_kmem_cache = kmem_cache_create("exynos-iommu-lv2table",
1301 				LV2TABLE_SIZE, LV2TABLE_SIZE, 0, NULL);
1302 	if (!lv2table_kmem_cache) {
1303 		pr_err("%s: Failed to create kmem cache\n", __func__);
1304 		return -ENOMEM;
1305 	}
1306 
1307 	ret = platform_driver_register(&exynos_sysmmu_driver);
1308 	if (ret) {
1309 		pr_err("%s: Failed to register driver\n", __func__);
1310 		goto err_reg_driver;
1311 	}
1312 
1313 	zero_lv2_table = kmem_cache_zalloc(lv2table_kmem_cache, GFP_KERNEL);
1314 	if (zero_lv2_table == NULL) {
1315 		pr_err("%s: Failed to allocate zero level2 page table\n",
1316 			__func__);
1317 		ret = -ENOMEM;
1318 		goto err_zero_lv2;
1319 	}
1320 
1321 	ret = bus_set_iommu(&platform_bus_type, &exynos_iommu_ops);
1322 	if (ret) {
1323 		pr_err("%s: Failed to register exynos-iommu driver.\n",
1324 								__func__);
1325 		goto err_set_iommu;
1326 	}
1327 
1328 	init_done = true;
1329 
1330 	return 0;
1331 err_set_iommu:
1332 	kmem_cache_free(lv2table_kmem_cache, zero_lv2_table);
1333 err_zero_lv2:
1334 	platform_driver_unregister(&exynos_sysmmu_driver);
1335 err_reg_driver:
1336 	kmem_cache_destroy(lv2table_kmem_cache);
1337 	return ret;
1338 }
1339 
1340 static int __init exynos_iommu_of_setup(struct device_node *np)
1341 {
1342 	struct platform_device *pdev;
1343 
1344 	if (!init_done)
1345 		exynos_iommu_init();
1346 
1347 	pdev = of_platform_device_create(np, NULL, platform_bus_type.dev_root);
1348 	if (!pdev)
1349 		return -ENODEV;
1350 
1351 	/*
1352 	 * use the first registered sysmmu device for performing
1353 	 * dma mapping operations on iommu page tables (cpu cache flush)
1354 	 */
1355 	if (!dma_dev)
1356 		dma_dev = &pdev->dev;
1357 
1358 	return 0;
1359 }
1360 
1361 IOMMU_OF_DECLARE(exynos_iommu_of, "samsung,exynos-sysmmu",
1362 		 exynos_iommu_of_setup);
1363