xref: /openbmc/linux/drivers/iommu/exynos-iommu.c (revision a8da474e)
1 /* linux/drivers/iommu/exynos_iommu.c
2  *
3  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4  *		http://www.samsung.com
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #ifdef CONFIG_EXYNOS_IOMMU_DEBUG
12 #define DEBUG
13 #endif
14 
15 #include <linux/clk.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/err.h>
18 #include <linux/io.h>
19 #include <linux/iommu.h>
20 #include <linux/interrupt.h>
21 #include <linux/list.h>
22 #include <linux/of.h>
23 #include <linux/of_iommu.h>
24 #include <linux/of_platform.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/slab.h>
28 
29 #include <asm/cacheflush.h>
30 #include <asm/dma-iommu.h>
31 #include <asm/pgtable.h>
32 
33 typedef u32 sysmmu_iova_t;
34 typedef u32 sysmmu_pte_t;
35 
36 /* We do not consider super section mapping (16MB) */
37 #define SECT_ORDER 20
38 #define LPAGE_ORDER 16
39 #define SPAGE_ORDER 12
40 
41 #define SECT_SIZE (1 << SECT_ORDER)
42 #define LPAGE_SIZE (1 << LPAGE_ORDER)
43 #define SPAGE_SIZE (1 << SPAGE_ORDER)
44 
45 #define SECT_MASK (~(SECT_SIZE - 1))
46 #define LPAGE_MASK (~(LPAGE_SIZE - 1))
47 #define SPAGE_MASK (~(SPAGE_SIZE - 1))
48 
49 #define lv1ent_fault(sent) ((*(sent) == ZERO_LV2LINK) || \
50 			   ((*(sent) & 3) == 0) || ((*(sent) & 3) == 3))
51 #define lv1ent_zero(sent) (*(sent) == ZERO_LV2LINK)
52 #define lv1ent_page_zero(sent) ((*(sent) & 3) == 1)
53 #define lv1ent_page(sent) ((*(sent) != ZERO_LV2LINK) && \
54 			  ((*(sent) & 3) == 1))
55 #define lv1ent_section(sent) ((*(sent) & 3) == 2)
56 
57 #define lv2ent_fault(pent) ((*(pent) & 3) == 0)
58 #define lv2ent_small(pent) ((*(pent) & 2) == 2)
59 #define lv2ent_large(pent) ((*(pent) & 3) == 1)
60 
61 static u32 sysmmu_page_offset(sysmmu_iova_t iova, u32 size)
62 {
63 	return iova & (size - 1);
64 }
65 
66 #define section_phys(sent) (*(sent) & SECT_MASK)
67 #define section_offs(iova) sysmmu_page_offset((iova), SECT_SIZE)
68 #define lpage_phys(pent) (*(pent) & LPAGE_MASK)
69 #define lpage_offs(iova) sysmmu_page_offset((iova), LPAGE_SIZE)
70 #define spage_phys(pent) (*(pent) & SPAGE_MASK)
71 #define spage_offs(iova) sysmmu_page_offset((iova), SPAGE_SIZE)
72 
73 #define NUM_LV1ENTRIES 4096
74 #define NUM_LV2ENTRIES (SECT_SIZE / SPAGE_SIZE)
75 
76 static u32 lv1ent_offset(sysmmu_iova_t iova)
77 {
78 	return iova >> SECT_ORDER;
79 }
80 
81 static u32 lv2ent_offset(sysmmu_iova_t iova)
82 {
83 	return (iova >> SPAGE_ORDER) & (NUM_LV2ENTRIES - 1);
84 }
85 
86 #define LV2TABLE_SIZE (NUM_LV2ENTRIES * sizeof(sysmmu_pte_t))
87 
88 #define SPAGES_PER_LPAGE (LPAGE_SIZE / SPAGE_SIZE)
89 
90 #define lv2table_base(sent) (*(sent) & 0xFFFFFC00)
91 
92 #define mk_lv1ent_sect(pa) ((pa) | 2)
93 #define mk_lv1ent_page(pa) ((pa) | 1)
94 #define mk_lv2ent_lpage(pa) ((pa) | 1)
95 #define mk_lv2ent_spage(pa) ((pa) | 2)
96 
97 #define CTRL_ENABLE	0x5
98 #define CTRL_BLOCK	0x7
99 #define CTRL_DISABLE	0x0
100 
101 #define CFG_LRU		0x1
102 #define CFG_QOS(n)	((n & 0xF) << 7)
103 #define CFG_MASK	0x0150FFFF /* Selecting bit 0-15, 20, 22 and 24 */
104 #define CFG_ACGEN	(1 << 24) /* System MMU 3.3 only */
105 #define CFG_SYSSEL	(1 << 22) /* System MMU 3.2 only */
106 #define CFG_FLPDCACHE	(1 << 20) /* System MMU 3.2+ only */
107 
108 #define REG_MMU_CTRL		0x000
109 #define REG_MMU_CFG		0x004
110 #define REG_MMU_STATUS		0x008
111 #define REG_MMU_FLUSH		0x00C
112 #define REG_MMU_FLUSH_ENTRY	0x010
113 #define REG_PT_BASE_ADDR	0x014
114 #define REG_INT_STATUS		0x018
115 #define REG_INT_CLEAR		0x01C
116 
117 #define REG_PAGE_FAULT_ADDR	0x024
118 #define REG_AW_FAULT_ADDR	0x028
119 #define REG_AR_FAULT_ADDR	0x02C
120 #define REG_DEFAULT_SLAVE_ADDR	0x030
121 
122 #define REG_MMU_VERSION		0x034
123 
124 #define MMU_MAJ_VER(val)	((val) >> 7)
125 #define MMU_MIN_VER(val)	((val) & 0x7F)
126 #define MMU_RAW_VER(reg)	(((reg) >> 21) & ((1 << 11) - 1)) /* 11 bits */
127 
128 #define MAKE_MMU_VER(maj, min)	((((maj) & 0xF) << 7) | ((min) & 0x7F))
129 
130 #define REG_PB0_SADDR		0x04C
131 #define REG_PB0_EADDR		0x050
132 #define REG_PB1_SADDR		0x054
133 #define REG_PB1_EADDR		0x058
134 
135 #define has_sysmmu(dev)		(dev->archdata.iommu != NULL)
136 
137 static struct kmem_cache *lv2table_kmem_cache;
138 static sysmmu_pte_t *zero_lv2_table;
139 #define ZERO_LV2LINK mk_lv1ent_page(virt_to_phys(zero_lv2_table))
140 
141 static sysmmu_pte_t *section_entry(sysmmu_pte_t *pgtable, sysmmu_iova_t iova)
142 {
143 	return pgtable + lv1ent_offset(iova);
144 }
145 
146 static sysmmu_pte_t *page_entry(sysmmu_pte_t *sent, sysmmu_iova_t iova)
147 {
148 	return (sysmmu_pte_t *)phys_to_virt(
149 				lv2table_base(sent)) + lv2ent_offset(iova);
150 }
151 
152 enum exynos_sysmmu_inttype {
153 	SYSMMU_PAGEFAULT,
154 	SYSMMU_AR_MULTIHIT,
155 	SYSMMU_AW_MULTIHIT,
156 	SYSMMU_BUSERROR,
157 	SYSMMU_AR_SECURITY,
158 	SYSMMU_AR_ACCESS,
159 	SYSMMU_AW_SECURITY,
160 	SYSMMU_AW_PROTECTION, /* 7 */
161 	SYSMMU_FAULT_UNKNOWN,
162 	SYSMMU_FAULTS_NUM
163 };
164 
165 static unsigned short fault_reg_offset[SYSMMU_FAULTS_NUM] = {
166 	REG_PAGE_FAULT_ADDR,
167 	REG_AR_FAULT_ADDR,
168 	REG_AW_FAULT_ADDR,
169 	REG_DEFAULT_SLAVE_ADDR,
170 	REG_AR_FAULT_ADDR,
171 	REG_AR_FAULT_ADDR,
172 	REG_AW_FAULT_ADDR,
173 	REG_AW_FAULT_ADDR
174 };
175 
176 static char *sysmmu_fault_name[SYSMMU_FAULTS_NUM] = {
177 	"PAGE FAULT",
178 	"AR MULTI-HIT FAULT",
179 	"AW MULTI-HIT FAULT",
180 	"BUS ERROR",
181 	"AR SECURITY PROTECTION FAULT",
182 	"AR ACCESS PROTECTION FAULT",
183 	"AW SECURITY PROTECTION FAULT",
184 	"AW ACCESS PROTECTION FAULT",
185 	"UNKNOWN FAULT"
186 };
187 
188 /*
189  * This structure is attached to dev.archdata.iommu of the master device
190  * on device add, contains a list of SYSMMU controllers defined by device tree,
191  * which are bound to given master device. It is usually referenced by 'owner'
192  * pointer.
193 */
194 struct exynos_iommu_owner {
195 	struct list_head controllers;	/* list of sysmmu_drvdata.owner_node */
196 };
197 
198 /*
199  * This structure exynos specific generalization of struct iommu_domain.
200  * It contains list of SYSMMU controllers from all master devices, which has
201  * been attached to this domain and page tables of IO address space defined by
202  * it. It is usually referenced by 'domain' pointer.
203  */
204 struct exynos_iommu_domain {
205 	struct list_head clients; /* list of sysmmu_drvdata.domain_node */
206 	sysmmu_pte_t *pgtable;	/* lv1 page table, 16KB */
207 	short *lv2entcnt;	/* free lv2 entry counter for each section */
208 	spinlock_t lock;	/* lock for modyfying list of clients */
209 	spinlock_t pgtablelock;	/* lock for modifying page table @ pgtable */
210 	struct iommu_domain domain; /* generic domain data structure */
211 };
212 
213 /*
214  * This structure hold all data of a single SYSMMU controller, this includes
215  * hw resources like registers and clocks, pointers and list nodes to connect
216  * it to all other structures, internal state and parameters read from device
217  * tree. It is usually referenced by 'data' pointer.
218  */
219 struct sysmmu_drvdata {
220 	struct device *sysmmu;		/* SYSMMU controller device */
221 	struct device *master;		/* master device (owner) */
222 	void __iomem *sfrbase;		/* our registers */
223 	struct clk *clk;		/* SYSMMU's clock */
224 	struct clk *clk_master;		/* master's device clock */
225 	int activations;		/* number of calls to sysmmu_enable */
226 	spinlock_t lock;		/* lock for modyfying state */
227 	struct exynos_iommu_domain *domain; /* domain we belong to */
228 	struct list_head domain_node;	/* node for domain clients list */
229 	struct list_head owner_node;	/* node for owner controllers list */
230 	phys_addr_t pgtable;		/* assigned page table structure */
231 	unsigned int version;		/* our version */
232 };
233 
234 static struct exynos_iommu_domain *to_exynos_domain(struct iommu_domain *dom)
235 {
236 	return container_of(dom, struct exynos_iommu_domain, domain);
237 }
238 
239 static bool set_sysmmu_active(struct sysmmu_drvdata *data)
240 {
241 	/* return true if the System MMU was not active previously
242 	   and it needs to be initialized */
243 	return ++data->activations == 1;
244 }
245 
246 static bool set_sysmmu_inactive(struct sysmmu_drvdata *data)
247 {
248 	/* return true if the System MMU is needed to be disabled */
249 	BUG_ON(data->activations < 1);
250 	return --data->activations == 0;
251 }
252 
253 static bool is_sysmmu_active(struct sysmmu_drvdata *data)
254 {
255 	return data->activations > 0;
256 }
257 
258 static void sysmmu_unblock(void __iomem *sfrbase)
259 {
260 	__raw_writel(CTRL_ENABLE, sfrbase + REG_MMU_CTRL);
261 }
262 
263 static bool sysmmu_block(void __iomem *sfrbase)
264 {
265 	int i = 120;
266 
267 	__raw_writel(CTRL_BLOCK, sfrbase + REG_MMU_CTRL);
268 	while ((i > 0) && !(__raw_readl(sfrbase + REG_MMU_STATUS) & 1))
269 		--i;
270 
271 	if (!(__raw_readl(sfrbase + REG_MMU_STATUS) & 1)) {
272 		sysmmu_unblock(sfrbase);
273 		return false;
274 	}
275 
276 	return true;
277 }
278 
279 static void __sysmmu_tlb_invalidate(void __iomem *sfrbase)
280 {
281 	__raw_writel(0x1, sfrbase + REG_MMU_FLUSH);
282 }
283 
284 static void __sysmmu_tlb_invalidate_entry(void __iomem *sfrbase,
285 				sysmmu_iova_t iova, unsigned int num_inv)
286 {
287 	unsigned int i;
288 
289 	for (i = 0; i < num_inv; i++) {
290 		__raw_writel((iova & SPAGE_MASK) | 1,
291 				sfrbase + REG_MMU_FLUSH_ENTRY);
292 		iova += SPAGE_SIZE;
293 	}
294 }
295 
296 static void __sysmmu_set_ptbase(void __iomem *sfrbase,
297 				       phys_addr_t pgd)
298 {
299 	__raw_writel(pgd, sfrbase + REG_PT_BASE_ADDR);
300 
301 	__sysmmu_tlb_invalidate(sfrbase);
302 }
303 
304 static void show_fault_information(const char *name,
305 		enum exynos_sysmmu_inttype itype,
306 		phys_addr_t pgtable_base, sysmmu_iova_t fault_addr)
307 {
308 	sysmmu_pte_t *ent;
309 
310 	if ((itype >= SYSMMU_FAULTS_NUM) || (itype < SYSMMU_PAGEFAULT))
311 		itype = SYSMMU_FAULT_UNKNOWN;
312 
313 	pr_err("%s occurred at %#x by %s(Page table base: %pa)\n",
314 		sysmmu_fault_name[itype], fault_addr, name, &pgtable_base);
315 
316 	ent = section_entry(phys_to_virt(pgtable_base), fault_addr);
317 	pr_err("\tLv1 entry: %#x\n", *ent);
318 
319 	if (lv1ent_page(ent)) {
320 		ent = page_entry(ent, fault_addr);
321 		pr_err("\t Lv2 entry: %#x\n", *ent);
322 	}
323 }
324 
325 static irqreturn_t exynos_sysmmu_irq(int irq, void *dev_id)
326 {
327 	/* SYSMMU is in blocked state when interrupt occurred. */
328 	struct sysmmu_drvdata *data = dev_id;
329 	enum exynos_sysmmu_inttype itype;
330 	sysmmu_iova_t addr = -1;
331 	int ret = -ENOSYS;
332 
333 	WARN_ON(!is_sysmmu_active(data));
334 
335 	spin_lock(&data->lock);
336 
337 	if (!IS_ERR(data->clk_master))
338 		clk_enable(data->clk_master);
339 
340 	itype = (enum exynos_sysmmu_inttype)
341 		__ffs(__raw_readl(data->sfrbase + REG_INT_STATUS));
342 	if (WARN_ON(!((itype >= 0) && (itype < SYSMMU_FAULT_UNKNOWN))))
343 		itype = SYSMMU_FAULT_UNKNOWN;
344 	else
345 		addr = __raw_readl(data->sfrbase + fault_reg_offset[itype]);
346 
347 	if (itype == SYSMMU_FAULT_UNKNOWN) {
348 		pr_err("%s: Fault is not occurred by System MMU '%s'!\n",
349 			__func__, dev_name(data->sysmmu));
350 		pr_err("%s: Please check if IRQ is correctly configured.\n",
351 			__func__);
352 		BUG();
353 	} else {
354 		unsigned int base =
355 				__raw_readl(data->sfrbase + REG_PT_BASE_ADDR);
356 		show_fault_information(dev_name(data->sysmmu),
357 					itype, base, addr);
358 		if (data->domain)
359 			ret = report_iommu_fault(&data->domain->domain,
360 					data->master, addr, itype);
361 	}
362 
363 	/* fault is not recovered by fault handler */
364 	BUG_ON(ret != 0);
365 
366 	__raw_writel(1 << itype, data->sfrbase + REG_INT_CLEAR);
367 
368 	sysmmu_unblock(data->sfrbase);
369 
370 	if (!IS_ERR(data->clk_master))
371 		clk_disable(data->clk_master);
372 
373 	spin_unlock(&data->lock);
374 
375 	return IRQ_HANDLED;
376 }
377 
378 static void __sysmmu_disable_nocount(struct sysmmu_drvdata *data)
379 {
380 	if (!IS_ERR(data->clk_master))
381 		clk_enable(data->clk_master);
382 
383 	__raw_writel(CTRL_DISABLE, data->sfrbase + REG_MMU_CTRL);
384 	__raw_writel(0, data->sfrbase + REG_MMU_CFG);
385 
386 	clk_disable(data->clk);
387 	if (!IS_ERR(data->clk_master))
388 		clk_disable(data->clk_master);
389 }
390 
391 static bool __sysmmu_disable(struct sysmmu_drvdata *data)
392 {
393 	bool disabled;
394 	unsigned long flags;
395 
396 	spin_lock_irqsave(&data->lock, flags);
397 
398 	disabled = set_sysmmu_inactive(data);
399 
400 	if (disabled) {
401 		data->pgtable = 0;
402 		data->domain = NULL;
403 
404 		__sysmmu_disable_nocount(data);
405 
406 		dev_dbg(data->sysmmu, "Disabled\n");
407 	} else  {
408 		dev_dbg(data->sysmmu, "%d times left to disable\n",
409 					data->activations);
410 	}
411 
412 	spin_unlock_irqrestore(&data->lock, flags);
413 
414 	return disabled;
415 }
416 
417 static void __sysmmu_init_config(struct sysmmu_drvdata *data)
418 {
419 	unsigned int cfg = CFG_LRU | CFG_QOS(15);
420 	unsigned int ver;
421 
422 	ver = MMU_RAW_VER(__raw_readl(data->sfrbase + REG_MMU_VERSION));
423 	if (MMU_MAJ_VER(ver) == 3) {
424 		if (MMU_MIN_VER(ver) >= 2) {
425 			cfg |= CFG_FLPDCACHE;
426 			if (MMU_MIN_VER(ver) == 3) {
427 				cfg |= CFG_ACGEN;
428 				cfg &= ~CFG_LRU;
429 			} else {
430 				cfg |= CFG_SYSSEL;
431 			}
432 		}
433 	}
434 
435 	__raw_writel(cfg, data->sfrbase + REG_MMU_CFG);
436 	data->version = ver;
437 }
438 
439 static void __sysmmu_enable_nocount(struct sysmmu_drvdata *data)
440 {
441 	if (!IS_ERR(data->clk_master))
442 		clk_enable(data->clk_master);
443 	clk_enable(data->clk);
444 
445 	__raw_writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL);
446 
447 	__sysmmu_init_config(data);
448 
449 	__sysmmu_set_ptbase(data->sfrbase, data->pgtable);
450 
451 	__raw_writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL);
452 
453 	if (!IS_ERR(data->clk_master))
454 		clk_disable(data->clk_master);
455 }
456 
457 static int __sysmmu_enable(struct sysmmu_drvdata *data, phys_addr_t pgtable,
458 			   struct exynos_iommu_domain *domain)
459 {
460 	int ret = 0;
461 	unsigned long flags;
462 
463 	spin_lock_irqsave(&data->lock, flags);
464 	if (set_sysmmu_active(data)) {
465 		data->pgtable = pgtable;
466 		data->domain = domain;
467 
468 		__sysmmu_enable_nocount(data);
469 
470 		dev_dbg(data->sysmmu, "Enabled\n");
471 	} else {
472 		ret = (pgtable == data->pgtable) ? 1 : -EBUSY;
473 
474 		dev_dbg(data->sysmmu, "already enabled\n");
475 	}
476 
477 	if (WARN_ON(ret < 0))
478 		set_sysmmu_inactive(data); /* decrement count */
479 
480 	spin_unlock_irqrestore(&data->lock, flags);
481 
482 	return ret;
483 }
484 
485 static void __sysmmu_tlb_invalidate_flpdcache(struct sysmmu_drvdata *data,
486 					      sysmmu_iova_t iova)
487 {
488 	if (data->version == MAKE_MMU_VER(3, 3))
489 		__raw_writel(iova | 0x1, data->sfrbase + REG_MMU_FLUSH_ENTRY);
490 }
491 
492 static void sysmmu_tlb_invalidate_flpdcache(struct sysmmu_drvdata *data,
493 					    sysmmu_iova_t iova)
494 {
495 	unsigned long flags;
496 
497 	if (!IS_ERR(data->clk_master))
498 		clk_enable(data->clk_master);
499 
500 	spin_lock_irqsave(&data->lock, flags);
501 	if (is_sysmmu_active(data))
502 		__sysmmu_tlb_invalidate_flpdcache(data, iova);
503 	spin_unlock_irqrestore(&data->lock, flags);
504 
505 	if (!IS_ERR(data->clk_master))
506 		clk_disable(data->clk_master);
507 }
508 
509 static void sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data,
510 					sysmmu_iova_t iova, size_t size)
511 {
512 	unsigned long flags;
513 
514 	spin_lock_irqsave(&data->lock, flags);
515 	if (is_sysmmu_active(data)) {
516 		unsigned int num_inv = 1;
517 
518 		if (!IS_ERR(data->clk_master))
519 			clk_enable(data->clk_master);
520 
521 		/*
522 		 * L2TLB invalidation required
523 		 * 4KB page: 1 invalidation
524 		 * 64KB page: 16 invalidations
525 		 * 1MB page: 64 invalidations
526 		 * because it is set-associative TLB
527 		 * with 8-way and 64 sets.
528 		 * 1MB page can be cached in one of all sets.
529 		 * 64KB page can be one of 16 consecutive sets.
530 		 */
531 		if (MMU_MAJ_VER(data->version) == 2)
532 			num_inv = min_t(unsigned int, size / PAGE_SIZE, 64);
533 
534 		if (sysmmu_block(data->sfrbase)) {
535 			__sysmmu_tlb_invalidate_entry(
536 				data->sfrbase, iova, num_inv);
537 			sysmmu_unblock(data->sfrbase);
538 		}
539 		if (!IS_ERR(data->clk_master))
540 			clk_disable(data->clk_master);
541 	} else {
542 		dev_dbg(data->master,
543 			"disabled. Skipping TLB invalidation @ %#x\n", iova);
544 	}
545 	spin_unlock_irqrestore(&data->lock, flags);
546 }
547 
548 static int __init exynos_sysmmu_probe(struct platform_device *pdev)
549 {
550 	int irq, ret;
551 	struct device *dev = &pdev->dev;
552 	struct sysmmu_drvdata *data;
553 	struct resource *res;
554 
555 	data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
556 	if (!data)
557 		return -ENOMEM;
558 
559 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
560 	data->sfrbase = devm_ioremap_resource(dev, res);
561 	if (IS_ERR(data->sfrbase))
562 		return PTR_ERR(data->sfrbase);
563 
564 	irq = platform_get_irq(pdev, 0);
565 	if (irq <= 0) {
566 		dev_err(dev, "Unable to find IRQ resource\n");
567 		return irq;
568 	}
569 
570 	ret = devm_request_irq(dev, irq, exynos_sysmmu_irq, 0,
571 				dev_name(dev), data);
572 	if (ret) {
573 		dev_err(dev, "Unabled to register handler of irq %d\n", irq);
574 		return ret;
575 	}
576 
577 	data->clk = devm_clk_get(dev, "sysmmu");
578 	if (IS_ERR(data->clk)) {
579 		dev_err(dev, "Failed to get clock!\n");
580 		return PTR_ERR(data->clk);
581 	} else  {
582 		ret = clk_prepare(data->clk);
583 		if (ret) {
584 			dev_err(dev, "Failed to prepare clk\n");
585 			return ret;
586 		}
587 	}
588 
589 	data->clk_master = devm_clk_get(dev, "master");
590 	if (!IS_ERR(data->clk_master)) {
591 		ret = clk_prepare(data->clk_master);
592 		if (ret) {
593 			clk_unprepare(data->clk);
594 			dev_err(dev, "Failed to prepare master's clk\n");
595 			return ret;
596 		}
597 	}
598 
599 	data->sysmmu = dev;
600 	spin_lock_init(&data->lock);
601 
602 	platform_set_drvdata(pdev, data);
603 
604 	pm_runtime_enable(dev);
605 
606 	return 0;
607 }
608 
609 #ifdef CONFIG_PM_SLEEP
610 static int exynos_sysmmu_suspend(struct device *dev)
611 {
612 	struct sysmmu_drvdata *data = dev_get_drvdata(dev);
613 
614 	dev_dbg(dev, "suspend\n");
615 	if (is_sysmmu_active(data)) {
616 		__sysmmu_disable_nocount(data);
617 		pm_runtime_put(dev);
618 	}
619 	return 0;
620 }
621 
622 static int exynos_sysmmu_resume(struct device *dev)
623 {
624 	struct sysmmu_drvdata *data = dev_get_drvdata(dev);
625 
626 	dev_dbg(dev, "resume\n");
627 	if (is_sysmmu_active(data)) {
628 		pm_runtime_get_sync(dev);
629 		__sysmmu_enable_nocount(data);
630 	}
631 	return 0;
632 }
633 #endif
634 
635 static const struct dev_pm_ops sysmmu_pm_ops = {
636 	SET_LATE_SYSTEM_SLEEP_PM_OPS(exynos_sysmmu_suspend, exynos_sysmmu_resume)
637 };
638 
639 static const struct of_device_id sysmmu_of_match[] __initconst = {
640 	{ .compatible	= "samsung,exynos-sysmmu", },
641 	{ },
642 };
643 
644 static struct platform_driver exynos_sysmmu_driver __refdata = {
645 	.probe	= exynos_sysmmu_probe,
646 	.driver	= {
647 		.name		= "exynos-sysmmu",
648 		.of_match_table	= sysmmu_of_match,
649 		.pm		= &sysmmu_pm_ops,
650 	}
651 };
652 
653 static inline void pgtable_flush(void *vastart, void *vaend)
654 {
655 	dmac_flush_range(vastart, vaend);
656 	outer_flush_range(virt_to_phys(vastart),
657 				virt_to_phys(vaend));
658 }
659 
660 static struct iommu_domain *exynos_iommu_domain_alloc(unsigned type)
661 {
662 	struct exynos_iommu_domain *domain;
663 	int i;
664 
665 	if (type != IOMMU_DOMAIN_UNMANAGED)
666 		return NULL;
667 
668 	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
669 	if (!domain)
670 		return NULL;
671 
672 	domain->pgtable = (sysmmu_pte_t *)__get_free_pages(GFP_KERNEL, 2);
673 	if (!domain->pgtable)
674 		goto err_pgtable;
675 
676 	domain->lv2entcnt = (short *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1);
677 	if (!domain->lv2entcnt)
678 		goto err_counter;
679 
680 	/* Workaround for System MMU v3.3 to prevent caching 1MiB mapping */
681 	for (i = 0; i < NUM_LV1ENTRIES; i += 8) {
682 		domain->pgtable[i + 0] = ZERO_LV2LINK;
683 		domain->pgtable[i + 1] = ZERO_LV2LINK;
684 		domain->pgtable[i + 2] = ZERO_LV2LINK;
685 		domain->pgtable[i + 3] = ZERO_LV2LINK;
686 		domain->pgtable[i + 4] = ZERO_LV2LINK;
687 		domain->pgtable[i + 5] = ZERO_LV2LINK;
688 		domain->pgtable[i + 6] = ZERO_LV2LINK;
689 		domain->pgtable[i + 7] = ZERO_LV2LINK;
690 	}
691 
692 	pgtable_flush(domain->pgtable, domain->pgtable + NUM_LV1ENTRIES);
693 
694 	spin_lock_init(&domain->lock);
695 	spin_lock_init(&domain->pgtablelock);
696 	INIT_LIST_HEAD(&domain->clients);
697 
698 	domain->domain.geometry.aperture_start = 0;
699 	domain->domain.geometry.aperture_end   = ~0UL;
700 	domain->domain.geometry.force_aperture = true;
701 
702 	return &domain->domain;
703 
704 err_counter:
705 	free_pages((unsigned long)domain->pgtable, 2);
706 err_pgtable:
707 	kfree(domain);
708 	return NULL;
709 }
710 
711 static void exynos_iommu_domain_free(struct iommu_domain *iommu_domain)
712 {
713 	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
714 	struct sysmmu_drvdata *data, *next;
715 	unsigned long flags;
716 	int i;
717 
718 	WARN_ON(!list_empty(&domain->clients));
719 
720 	spin_lock_irqsave(&domain->lock, flags);
721 
722 	list_for_each_entry_safe(data, next, &domain->clients, domain_node) {
723 		if (__sysmmu_disable(data))
724 			data->master = NULL;
725 		list_del_init(&data->domain_node);
726 	}
727 
728 	spin_unlock_irqrestore(&domain->lock, flags);
729 
730 	for (i = 0; i < NUM_LV1ENTRIES; i++)
731 		if (lv1ent_page(domain->pgtable + i))
732 			kmem_cache_free(lv2table_kmem_cache,
733 				phys_to_virt(lv2table_base(domain->pgtable + i)));
734 
735 	free_pages((unsigned long)domain->pgtable, 2);
736 	free_pages((unsigned long)domain->lv2entcnt, 1);
737 	kfree(domain);
738 }
739 
740 static int exynos_iommu_attach_device(struct iommu_domain *iommu_domain,
741 				   struct device *dev)
742 {
743 	struct exynos_iommu_owner *owner = dev->archdata.iommu;
744 	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
745 	struct sysmmu_drvdata *data;
746 	phys_addr_t pagetable = virt_to_phys(domain->pgtable);
747 	unsigned long flags;
748 	int ret = -ENODEV;
749 
750 	if (!has_sysmmu(dev))
751 		return -ENODEV;
752 
753 	list_for_each_entry(data, &owner->controllers, owner_node) {
754 		pm_runtime_get_sync(data->sysmmu);
755 		ret = __sysmmu_enable(data, pagetable, domain);
756 		if (ret >= 0) {
757 			data->master = dev;
758 
759 			spin_lock_irqsave(&domain->lock, flags);
760 			list_add_tail(&data->domain_node, &domain->clients);
761 			spin_unlock_irqrestore(&domain->lock, flags);
762 		}
763 	}
764 
765 	if (ret < 0) {
766 		dev_err(dev, "%s: Failed to attach IOMMU with pgtable %pa\n",
767 					__func__, &pagetable);
768 		return ret;
769 	}
770 
771 	dev_dbg(dev, "%s: Attached IOMMU with pgtable %pa %s\n",
772 		__func__, &pagetable, (ret == 0) ? "" : ", again");
773 
774 	return ret;
775 }
776 
777 static void exynos_iommu_detach_device(struct iommu_domain *iommu_domain,
778 				    struct device *dev)
779 {
780 	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
781 	phys_addr_t pagetable = virt_to_phys(domain->pgtable);
782 	struct sysmmu_drvdata *data, *next;
783 	unsigned long flags;
784 	bool found = false;
785 
786 	if (!has_sysmmu(dev))
787 		return;
788 
789 	spin_lock_irqsave(&domain->lock, flags);
790 	list_for_each_entry_safe(data, next, &domain->clients, domain_node) {
791 		if (data->master == dev) {
792 			if (__sysmmu_disable(data)) {
793 				data->master = NULL;
794 				list_del_init(&data->domain_node);
795 			}
796 			pm_runtime_put(data->sysmmu);
797 			found = true;
798 		}
799 	}
800 	spin_unlock_irqrestore(&domain->lock, flags);
801 
802 	if (found)
803 		dev_dbg(dev, "%s: Detached IOMMU with pgtable %pa\n",
804 					__func__, &pagetable);
805 	else
806 		dev_err(dev, "%s: No IOMMU is attached\n", __func__);
807 }
808 
809 static sysmmu_pte_t *alloc_lv2entry(struct exynos_iommu_domain *domain,
810 		sysmmu_pte_t *sent, sysmmu_iova_t iova, short *pgcounter)
811 {
812 	if (lv1ent_section(sent)) {
813 		WARN(1, "Trying mapping on %#08x mapped with 1MiB page", iova);
814 		return ERR_PTR(-EADDRINUSE);
815 	}
816 
817 	if (lv1ent_fault(sent)) {
818 		sysmmu_pte_t *pent;
819 		bool need_flush_flpd_cache = lv1ent_zero(sent);
820 
821 		pent = kmem_cache_zalloc(lv2table_kmem_cache, GFP_ATOMIC);
822 		BUG_ON((unsigned int)pent & (LV2TABLE_SIZE - 1));
823 		if (!pent)
824 			return ERR_PTR(-ENOMEM);
825 
826 		*sent = mk_lv1ent_page(virt_to_phys(pent));
827 		kmemleak_ignore(pent);
828 		*pgcounter = NUM_LV2ENTRIES;
829 		pgtable_flush(pent, pent + NUM_LV2ENTRIES);
830 		pgtable_flush(sent, sent + 1);
831 
832 		/*
833 		 * If pre-fetched SLPD is a faulty SLPD in zero_l2_table,
834 		 * FLPD cache may cache the address of zero_l2_table. This
835 		 * function replaces the zero_l2_table with new L2 page table
836 		 * to write valid mappings.
837 		 * Accessing the valid area may cause page fault since FLPD
838 		 * cache may still cache zero_l2_table for the valid area
839 		 * instead of new L2 page table that has the mapping
840 		 * information of the valid area.
841 		 * Thus any replacement of zero_l2_table with other valid L2
842 		 * page table must involve FLPD cache invalidation for System
843 		 * MMU v3.3.
844 		 * FLPD cache invalidation is performed with TLB invalidation
845 		 * by VPN without blocking. It is safe to invalidate TLB without
846 		 * blocking because the target address of TLB invalidation is
847 		 * not currently mapped.
848 		 */
849 		if (need_flush_flpd_cache) {
850 			struct sysmmu_drvdata *data;
851 
852 			spin_lock(&domain->lock);
853 			list_for_each_entry(data, &domain->clients, domain_node)
854 				sysmmu_tlb_invalidate_flpdcache(data, iova);
855 			spin_unlock(&domain->lock);
856 		}
857 	}
858 
859 	return page_entry(sent, iova);
860 }
861 
862 static int lv1set_section(struct exynos_iommu_domain *domain,
863 			  sysmmu_pte_t *sent, sysmmu_iova_t iova,
864 			  phys_addr_t paddr, short *pgcnt)
865 {
866 	if (lv1ent_section(sent)) {
867 		WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
868 			iova);
869 		return -EADDRINUSE;
870 	}
871 
872 	if (lv1ent_page(sent)) {
873 		if (*pgcnt != NUM_LV2ENTRIES) {
874 			WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
875 				iova);
876 			return -EADDRINUSE;
877 		}
878 
879 		kmem_cache_free(lv2table_kmem_cache, page_entry(sent, 0));
880 		*pgcnt = 0;
881 	}
882 
883 	*sent = mk_lv1ent_sect(paddr);
884 
885 	pgtable_flush(sent, sent + 1);
886 
887 	spin_lock(&domain->lock);
888 	if (lv1ent_page_zero(sent)) {
889 		struct sysmmu_drvdata *data;
890 		/*
891 		 * Flushing FLPD cache in System MMU v3.3 that may cache a FLPD
892 		 * entry by speculative prefetch of SLPD which has no mapping.
893 		 */
894 		list_for_each_entry(data, &domain->clients, domain_node)
895 			sysmmu_tlb_invalidate_flpdcache(data, iova);
896 	}
897 	spin_unlock(&domain->lock);
898 
899 	return 0;
900 }
901 
902 static int lv2set_page(sysmmu_pte_t *pent, phys_addr_t paddr, size_t size,
903 								short *pgcnt)
904 {
905 	if (size == SPAGE_SIZE) {
906 		if (WARN_ON(!lv2ent_fault(pent)))
907 			return -EADDRINUSE;
908 
909 		*pent = mk_lv2ent_spage(paddr);
910 		pgtable_flush(pent, pent + 1);
911 		*pgcnt -= 1;
912 	} else { /* size == LPAGE_SIZE */
913 		int i;
914 
915 		for (i = 0; i < SPAGES_PER_LPAGE; i++, pent++) {
916 			if (WARN_ON(!lv2ent_fault(pent))) {
917 				if (i > 0)
918 					memset(pent - i, 0, sizeof(*pent) * i);
919 				return -EADDRINUSE;
920 			}
921 
922 			*pent = mk_lv2ent_lpage(paddr);
923 		}
924 		pgtable_flush(pent - SPAGES_PER_LPAGE, pent);
925 		*pgcnt -= SPAGES_PER_LPAGE;
926 	}
927 
928 	return 0;
929 }
930 
931 /*
932  * *CAUTION* to the I/O virtual memory managers that support exynos-iommu:
933  *
934  * System MMU v3.x has advanced logic to improve address translation
935  * performance with caching more page table entries by a page table walk.
936  * However, the logic has a bug that while caching faulty page table entries,
937  * System MMU reports page fault if the cached fault entry is hit even though
938  * the fault entry is updated to a valid entry after the entry is cached.
939  * To prevent caching faulty page table entries which may be updated to valid
940  * entries later, the virtual memory manager should care about the workaround
941  * for the problem. The following describes the workaround.
942  *
943  * Any two consecutive I/O virtual address regions must have a hole of 128KiB
944  * at maximum to prevent misbehavior of System MMU 3.x (workaround for h/w bug).
945  *
946  * Precisely, any start address of I/O virtual region must be aligned with
947  * the following sizes for System MMU v3.1 and v3.2.
948  * System MMU v3.1: 128KiB
949  * System MMU v3.2: 256KiB
950  *
951  * Because System MMU v3.3 caches page table entries more aggressively, it needs
952  * more workarounds.
953  * - Any two consecutive I/O virtual regions must have a hole of size larger
954  *   than or equal to 128KiB.
955  * - Start address of an I/O virtual region must be aligned by 128KiB.
956  */
957 static int exynos_iommu_map(struct iommu_domain *iommu_domain,
958 			    unsigned long l_iova, phys_addr_t paddr, size_t size,
959 			    int prot)
960 {
961 	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
962 	sysmmu_pte_t *entry;
963 	sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
964 	unsigned long flags;
965 	int ret = -ENOMEM;
966 
967 	BUG_ON(domain->pgtable == NULL);
968 
969 	spin_lock_irqsave(&domain->pgtablelock, flags);
970 
971 	entry = section_entry(domain->pgtable, iova);
972 
973 	if (size == SECT_SIZE) {
974 		ret = lv1set_section(domain, entry, iova, paddr,
975 				     &domain->lv2entcnt[lv1ent_offset(iova)]);
976 	} else {
977 		sysmmu_pte_t *pent;
978 
979 		pent = alloc_lv2entry(domain, entry, iova,
980 				      &domain->lv2entcnt[lv1ent_offset(iova)]);
981 
982 		if (IS_ERR(pent))
983 			ret = PTR_ERR(pent);
984 		else
985 			ret = lv2set_page(pent, paddr, size,
986 				       &domain->lv2entcnt[lv1ent_offset(iova)]);
987 	}
988 
989 	if (ret)
990 		pr_err("%s: Failed(%d) to map %#zx bytes @ %#x\n",
991 			__func__, ret, size, iova);
992 
993 	spin_unlock_irqrestore(&domain->pgtablelock, flags);
994 
995 	return ret;
996 }
997 
998 static void exynos_iommu_tlb_invalidate_entry(struct exynos_iommu_domain *domain,
999 					      sysmmu_iova_t iova, size_t size)
1000 {
1001 	struct sysmmu_drvdata *data;
1002 	unsigned long flags;
1003 
1004 	spin_lock_irqsave(&domain->lock, flags);
1005 
1006 	list_for_each_entry(data, &domain->clients, domain_node)
1007 		sysmmu_tlb_invalidate_entry(data, iova, size);
1008 
1009 	spin_unlock_irqrestore(&domain->lock, flags);
1010 }
1011 
1012 static size_t exynos_iommu_unmap(struct iommu_domain *iommu_domain,
1013 				 unsigned long l_iova, size_t size)
1014 {
1015 	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1016 	sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
1017 	sysmmu_pte_t *ent;
1018 	size_t err_pgsize;
1019 	unsigned long flags;
1020 
1021 	BUG_ON(domain->pgtable == NULL);
1022 
1023 	spin_lock_irqsave(&domain->pgtablelock, flags);
1024 
1025 	ent = section_entry(domain->pgtable, iova);
1026 
1027 	if (lv1ent_section(ent)) {
1028 		if (WARN_ON(size < SECT_SIZE)) {
1029 			err_pgsize = SECT_SIZE;
1030 			goto err;
1031 		}
1032 
1033 		/* workaround for h/w bug in System MMU v3.3 */
1034 		*ent = ZERO_LV2LINK;
1035 		pgtable_flush(ent, ent + 1);
1036 		size = SECT_SIZE;
1037 		goto done;
1038 	}
1039 
1040 	if (unlikely(lv1ent_fault(ent))) {
1041 		if (size > SECT_SIZE)
1042 			size = SECT_SIZE;
1043 		goto done;
1044 	}
1045 
1046 	/* lv1ent_page(sent) == true here */
1047 
1048 	ent = page_entry(ent, iova);
1049 
1050 	if (unlikely(lv2ent_fault(ent))) {
1051 		size = SPAGE_SIZE;
1052 		goto done;
1053 	}
1054 
1055 	if (lv2ent_small(ent)) {
1056 		*ent = 0;
1057 		size = SPAGE_SIZE;
1058 		pgtable_flush(ent, ent + 1);
1059 		domain->lv2entcnt[lv1ent_offset(iova)] += 1;
1060 		goto done;
1061 	}
1062 
1063 	/* lv1ent_large(ent) == true here */
1064 	if (WARN_ON(size < LPAGE_SIZE)) {
1065 		err_pgsize = LPAGE_SIZE;
1066 		goto err;
1067 	}
1068 
1069 	memset(ent, 0, sizeof(*ent) * SPAGES_PER_LPAGE);
1070 	pgtable_flush(ent, ent + SPAGES_PER_LPAGE);
1071 
1072 	size = LPAGE_SIZE;
1073 	domain->lv2entcnt[lv1ent_offset(iova)] += SPAGES_PER_LPAGE;
1074 done:
1075 	spin_unlock_irqrestore(&domain->pgtablelock, flags);
1076 
1077 	exynos_iommu_tlb_invalidate_entry(domain, iova, size);
1078 
1079 	return size;
1080 err:
1081 	spin_unlock_irqrestore(&domain->pgtablelock, flags);
1082 
1083 	pr_err("%s: Failed: size(%#zx) @ %#x is smaller than page size %#zx\n",
1084 		__func__, size, iova, err_pgsize);
1085 
1086 	return 0;
1087 }
1088 
1089 static phys_addr_t exynos_iommu_iova_to_phys(struct iommu_domain *iommu_domain,
1090 					  dma_addr_t iova)
1091 {
1092 	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1093 	sysmmu_pte_t *entry;
1094 	unsigned long flags;
1095 	phys_addr_t phys = 0;
1096 
1097 	spin_lock_irqsave(&domain->pgtablelock, flags);
1098 
1099 	entry = section_entry(domain->pgtable, iova);
1100 
1101 	if (lv1ent_section(entry)) {
1102 		phys = section_phys(entry) + section_offs(iova);
1103 	} else if (lv1ent_page(entry)) {
1104 		entry = page_entry(entry, iova);
1105 
1106 		if (lv2ent_large(entry))
1107 			phys = lpage_phys(entry) + lpage_offs(iova);
1108 		else if (lv2ent_small(entry))
1109 			phys = spage_phys(entry) + spage_offs(iova);
1110 	}
1111 
1112 	spin_unlock_irqrestore(&domain->pgtablelock, flags);
1113 
1114 	return phys;
1115 }
1116 
1117 static int exynos_iommu_add_device(struct device *dev)
1118 {
1119 	struct iommu_group *group;
1120 	int ret;
1121 
1122 	if (!has_sysmmu(dev))
1123 		return -ENODEV;
1124 
1125 	group = iommu_group_get(dev);
1126 
1127 	if (!group) {
1128 		group = iommu_group_alloc();
1129 		if (IS_ERR(group)) {
1130 			dev_err(dev, "Failed to allocate IOMMU group\n");
1131 			return PTR_ERR(group);
1132 		}
1133 	}
1134 
1135 	ret = iommu_group_add_device(group, dev);
1136 	iommu_group_put(group);
1137 
1138 	return ret;
1139 }
1140 
1141 static void exynos_iommu_remove_device(struct device *dev)
1142 {
1143 	if (!has_sysmmu(dev))
1144 		return;
1145 
1146 	iommu_group_remove_device(dev);
1147 }
1148 
1149 static int exynos_iommu_of_xlate(struct device *dev,
1150 				 struct of_phandle_args *spec)
1151 {
1152 	struct exynos_iommu_owner *owner = dev->archdata.iommu;
1153 	struct platform_device *sysmmu = of_find_device_by_node(spec->np);
1154 	struct sysmmu_drvdata *data;
1155 
1156 	if (!sysmmu)
1157 		return -ENODEV;
1158 
1159 	data = platform_get_drvdata(sysmmu);
1160 	if (!data)
1161 		return -ENODEV;
1162 
1163 	if (!owner) {
1164 		owner = kzalloc(sizeof(*owner), GFP_KERNEL);
1165 		if (!owner)
1166 			return -ENOMEM;
1167 
1168 		INIT_LIST_HEAD(&owner->controllers);
1169 		dev->archdata.iommu = owner;
1170 	}
1171 
1172 	list_add_tail(&data->owner_node, &owner->controllers);
1173 	return 0;
1174 }
1175 
1176 static struct iommu_ops exynos_iommu_ops = {
1177 	.domain_alloc = exynos_iommu_domain_alloc,
1178 	.domain_free = exynos_iommu_domain_free,
1179 	.attach_dev = exynos_iommu_attach_device,
1180 	.detach_dev = exynos_iommu_detach_device,
1181 	.map = exynos_iommu_map,
1182 	.unmap = exynos_iommu_unmap,
1183 	.map_sg = default_iommu_map_sg,
1184 	.iova_to_phys = exynos_iommu_iova_to_phys,
1185 	.add_device = exynos_iommu_add_device,
1186 	.remove_device = exynos_iommu_remove_device,
1187 	.pgsize_bitmap = SECT_SIZE | LPAGE_SIZE | SPAGE_SIZE,
1188 	.of_xlate = exynos_iommu_of_xlate,
1189 };
1190 
1191 static bool init_done;
1192 
1193 static int __init exynos_iommu_init(void)
1194 {
1195 	int ret;
1196 
1197 	lv2table_kmem_cache = kmem_cache_create("exynos-iommu-lv2table",
1198 				LV2TABLE_SIZE, LV2TABLE_SIZE, 0, NULL);
1199 	if (!lv2table_kmem_cache) {
1200 		pr_err("%s: Failed to create kmem cache\n", __func__);
1201 		return -ENOMEM;
1202 	}
1203 
1204 	ret = platform_driver_register(&exynos_sysmmu_driver);
1205 	if (ret) {
1206 		pr_err("%s: Failed to register driver\n", __func__);
1207 		goto err_reg_driver;
1208 	}
1209 
1210 	zero_lv2_table = kmem_cache_zalloc(lv2table_kmem_cache, GFP_KERNEL);
1211 	if (zero_lv2_table == NULL) {
1212 		pr_err("%s: Failed to allocate zero level2 page table\n",
1213 			__func__);
1214 		ret = -ENOMEM;
1215 		goto err_zero_lv2;
1216 	}
1217 
1218 	ret = bus_set_iommu(&platform_bus_type, &exynos_iommu_ops);
1219 	if (ret) {
1220 		pr_err("%s: Failed to register exynos-iommu driver.\n",
1221 								__func__);
1222 		goto err_set_iommu;
1223 	}
1224 
1225 	init_done = true;
1226 
1227 	return 0;
1228 err_set_iommu:
1229 	kmem_cache_free(lv2table_kmem_cache, zero_lv2_table);
1230 err_zero_lv2:
1231 	platform_driver_unregister(&exynos_sysmmu_driver);
1232 err_reg_driver:
1233 	kmem_cache_destroy(lv2table_kmem_cache);
1234 	return ret;
1235 }
1236 
1237 static int __init exynos_iommu_of_setup(struct device_node *np)
1238 {
1239 	struct platform_device *pdev;
1240 
1241 	if (!init_done)
1242 		exynos_iommu_init();
1243 
1244 	pdev = of_platform_device_create(np, NULL, platform_bus_type.dev_root);
1245 	if (IS_ERR(pdev))
1246 		return PTR_ERR(pdev);
1247 
1248 	of_iommu_set_ops(np, &exynos_iommu_ops);
1249 	return 0;
1250 }
1251 
1252 IOMMU_OF_DECLARE(exynos_iommu_of, "samsung,exynos-sysmmu",
1253 		 exynos_iommu_of_setup);
1254