xref: /openbmc/linux/drivers/iommu/exynos-iommu.c (revision 4e1a33b1)
1 /*
2  * Copyright (c) 2011,2016 Samsung Electronics Co., Ltd.
3  *		http://www.samsung.com
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  */
9 
10 #ifdef CONFIG_EXYNOS_IOMMU_DEBUG
11 #define DEBUG
12 #endif
13 
14 #include <linux/clk.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/err.h>
17 #include <linux/io.h>
18 #include <linux/iommu.h>
19 #include <linux/interrupt.h>
20 #include <linux/list.h>
21 #include <linux/of.h>
22 #include <linux/of_iommu.h>
23 #include <linux/of_platform.h>
24 #include <linux/platform_device.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/slab.h>
27 #include <linux/dma-iommu.h>
28 
29 typedef u32 sysmmu_iova_t;
30 typedef u32 sysmmu_pte_t;
31 
32 /* We do not consider super section mapping (16MB) */
33 #define SECT_ORDER 20
34 #define LPAGE_ORDER 16
35 #define SPAGE_ORDER 12
36 
37 #define SECT_SIZE (1 << SECT_ORDER)
38 #define LPAGE_SIZE (1 << LPAGE_ORDER)
39 #define SPAGE_SIZE (1 << SPAGE_ORDER)
40 
41 #define SECT_MASK (~(SECT_SIZE - 1))
42 #define LPAGE_MASK (~(LPAGE_SIZE - 1))
43 #define SPAGE_MASK (~(SPAGE_SIZE - 1))
44 
45 #define lv1ent_fault(sent) ((*(sent) == ZERO_LV2LINK) || \
46 			   ((*(sent) & 3) == 0) || ((*(sent) & 3) == 3))
47 #define lv1ent_zero(sent) (*(sent) == ZERO_LV2LINK)
48 #define lv1ent_page_zero(sent) ((*(sent) & 3) == 1)
49 #define lv1ent_page(sent) ((*(sent) != ZERO_LV2LINK) && \
50 			  ((*(sent) & 3) == 1))
51 #define lv1ent_section(sent) ((*(sent) & 3) == 2)
52 
53 #define lv2ent_fault(pent) ((*(pent) & 3) == 0)
54 #define lv2ent_small(pent) ((*(pent) & 2) == 2)
55 #define lv2ent_large(pent) ((*(pent) & 3) == 1)
56 
57 #ifdef CONFIG_BIG_ENDIAN
58 #warning "revisit driver if we can enable big-endian ptes"
59 #endif
60 
61 /*
62  * v1.x - v3.x SYSMMU supports 32bit physical and 32bit virtual address spaces
63  * v5.0 introduced support for 36bit physical address space by shifting
64  * all page entry values by 4 bits.
65  * All SYSMMU controllers in the system support the address spaces of the same
66  * size, so PG_ENT_SHIFT can be initialized on first SYSMMU probe to proper
67  * value (0 or 4).
68  */
69 static short PG_ENT_SHIFT = -1;
70 #define SYSMMU_PG_ENT_SHIFT 0
71 #define SYSMMU_V5_PG_ENT_SHIFT 4
72 
73 static const sysmmu_pte_t *LV1_PROT;
74 static const sysmmu_pte_t SYSMMU_LV1_PROT[] = {
75 	((0 << 15) | (0 << 10)), /* no access */
76 	((1 << 15) | (1 << 10)), /* IOMMU_READ only */
77 	((0 << 15) | (1 << 10)), /* IOMMU_WRITE not supported, use read/write */
78 	((0 << 15) | (1 << 10)), /* IOMMU_READ | IOMMU_WRITE */
79 };
80 static const sysmmu_pte_t SYSMMU_V5_LV1_PROT[] = {
81 	(0 << 4), /* no access */
82 	(1 << 4), /* IOMMU_READ only */
83 	(2 << 4), /* IOMMU_WRITE only */
84 	(3 << 4), /* IOMMU_READ | IOMMU_WRITE */
85 };
86 
87 static const sysmmu_pte_t *LV2_PROT;
88 static const sysmmu_pte_t SYSMMU_LV2_PROT[] = {
89 	((0 << 9) | (0 << 4)), /* no access */
90 	((1 << 9) | (1 << 4)), /* IOMMU_READ only */
91 	((0 << 9) | (1 << 4)), /* IOMMU_WRITE not supported, use read/write */
92 	((0 << 9) | (1 << 4)), /* IOMMU_READ | IOMMU_WRITE */
93 };
94 static const sysmmu_pte_t SYSMMU_V5_LV2_PROT[] = {
95 	(0 << 2), /* no access */
96 	(1 << 2), /* IOMMU_READ only */
97 	(2 << 2), /* IOMMU_WRITE only */
98 	(3 << 2), /* IOMMU_READ | IOMMU_WRITE */
99 };
100 
101 #define SYSMMU_SUPPORTED_PROT_BITS (IOMMU_READ | IOMMU_WRITE)
102 
103 #define sect_to_phys(ent) (((phys_addr_t) ent) << PG_ENT_SHIFT)
104 #define section_phys(sent) (sect_to_phys(*(sent)) & SECT_MASK)
105 #define section_offs(iova) (iova & (SECT_SIZE - 1))
106 #define lpage_phys(pent) (sect_to_phys(*(pent)) & LPAGE_MASK)
107 #define lpage_offs(iova) (iova & (LPAGE_SIZE - 1))
108 #define spage_phys(pent) (sect_to_phys(*(pent)) & SPAGE_MASK)
109 #define spage_offs(iova) (iova & (SPAGE_SIZE - 1))
110 
111 #define NUM_LV1ENTRIES 4096
112 #define NUM_LV2ENTRIES (SECT_SIZE / SPAGE_SIZE)
113 
114 static u32 lv1ent_offset(sysmmu_iova_t iova)
115 {
116 	return iova >> SECT_ORDER;
117 }
118 
119 static u32 lv2ent_offset(sysmmu_iova_t iova)
120 {
121 	return (iova >> SPAGE_ORDER) & (NUM_LV2ENTRIES - 1);
122 }
123 
124 #define LV1TABLE_SIZE (NUM_LV1ENTRIES * sizeof(sysmmu_pte_t))
125 #define LV2TABLE_SIZE (NUM_LV2ENTRIES * sizeof(sysmmu_pte_t))
126 
127 #define SPAGES_PER_LPAGE (LPAGE_SIZE / SPAGE_SIZE)
128 #define lv2table_base(sent) (sect_to_phys(*(sent) & 0xFFFFFFC0))
129 
130 #define mk_lv1ent_sect(pa, prot) ((pa >> PG_ENT_SHIFT) | LV1_PROT[prot] | 2)
131 #define mk_lv1ent_page(pa) ((pa >> PG_ENT_SHIFT) | 1)
132 #define mk_lv2ent_lpage(pa, prot) ((pa >> PG_ENT_SHIFT) | LV2_PROT[prot] | 1)
133 #define mk_lv2ent_spage(pa, prot) ((pa >> PG_ENT_SHIFT) | LV2_PROT[prot] | 2)
134 
135 #define CTRL_ENABLE	0x5
136 #define CTRL_BLOCK	0x7
137 #define CTRL_DISABLE	0x0
138 
139 #define CFG_LRU		0x1
140 #define CFG_EAP		(1 << 2)
141 #define CFG_QOS(n)	((n & 0xF) << 7)
142 #define CFG_ACGEN	(1 << 24) /* System MMU 3.3 only */
143 #define CFG_SYSSEL	(1 << 22) /* System MMU 3.2 only */
144 #define CFG_FLPDCACHE	(1 << 20) /* System MMU 3.2+ only */
145 
146 /* common registers */
147 #define REG_MMU_CTRL		0x000
148 #define REG_MMU_CFG		0x004
149 #define REG_MMU_STATUS		0x008
150 #define REG_MMU_VERSION		0x034
151 
152 #define MMU_MAJ_VER(val)	((val) >> 7)
153 #define MMU_MIN_VER(val)	((val) & 0x7F)
154 #define MMU_RAW_VER(reg)	(((reg) >> 21) & ((1 << 11) - 1)) /* 11 bits */
155 
156 #define MAKE_MMU_VER(maj, min)	((((maj) & 0xF) << 7) | ((min) & 0x7F))
157 
158 /* v1.x - v3.x registers */
159 #define REG_MMU_FLUSH		0x00C
160 #define REG_MMU_FLUSH_ENTRY	0x010
161 #define REG_PT_BASE_ADDR	0x014
162 #define REG_INT_STATUS		0x018
163 #define REG_INT_CLEAR		0x01C
164 
165 #define REG_PAGE_FAULT_ADDR	0x024
166 #define REG_AW_FAULT_ADDR	0x028
167 #define REG_AR_FAULT_ADDR	0x02C
168 #define REG_DEFAULT_SLAVE_ADDR	0x030
169 
170 /* v5.x registers */
171 #define REG_V5_PT_BASE_PFN	0x00C
172 #define REG_V5_MMU_FLUSH_ALL	0x010
173 #define REG_V5_MMU_FLUSH_ENTRY	0x014
174 #define REG_V5_INT_STATUS	0x060
175 #define REG_V5_INT_CLEAR	0x064
176 #define REG_V5_FAULT_AR_VA	0x070
177 #define REG_V5_FAULT_AW_VA	0x080
178 
179 #define has_sysmmu(dev)		(dev->archdata.iommu != NULL)
180 
181 static struct device *dma_dev;
182 static struct kmem_cache *lv2table_kmem_cache;
183 static sysmmu_pte_t *zero_lv2_table;
184 #define ZERO_LV2LINK mk_lv1ent_page(virt_to_phys(zero_lv2_table))
185 
186 static sysmmu_pte_t *section_entry(sysmmu_pte_t *pgtable, sysmmu_iova_t iova)
187 {
188 	return pgtable + lv1ent_offset(iova);
189 }
190 
191 static sysmmu_pte_t *page_entry(sysmmu_pte_t *sent, sysmmu_iova_t iova)
192 {
193 	return (sysmmu_pte_t *)phys_to_virt(
194 				lv2table_base(sent)) + lv2ent_offset(iova);
195 }
196 
197 /*
198  * IOMMU fault information register
199  */
200 struct sysmmu_fault_info {
201 	unsigned int bit;	/* bit number in STATUS register */
202 	unsigned short addr_reg; /* register to read VA fault address */
203 	const char *name;	/* human readable fault name */
204 	unsigned int type;	/* fault type for report_iommu_fault */
205 };
206 
207 static const struct sysmmu_fault_info sysmmu_faults[] = {
208 	{ 0, REG_PAGE_FAULT_ADDR, "PAGE", IOMMU_FAULT_READ },
209 	{ 1, REG_AR_FAULT_ADDR, "AR MULTI-HIT", IOMMU_FAULT_READ },
210 	{ 2, REG_AW_FAULT_ADDR, "AW MULTI-HIT", IOMMU_FAULT_WRITE },
211 	{ 3, REG_DEFAULT_SLAVE_ADDR, "BUS ERROR", IOMMU_FAULT_READ },
212 	{ 4, REG_AR_FAULT_ADDR, "AR SECURITY PROTECTION", IOMMU_FAULT_READ },
213 	{ 5, REG_AR_FAULT_ADDR, "AR ACCESS PROTECTION", IOMMU_FAULT_READ },
214 	{ 6, REG_AW_FAULT_ADDR, "AW SECURITY PROTECTION", IOMMU_FAULT_WRITE },
215 	{ 7, REG_AW_FAULT_ADDR, "AW ACCESS PROTECTION", IOMMU_FAULT_WRITE },
216 };
217 
218 static const struct sysmmu_fault_info sysmmu_v5_faults[] = {
219 	{ 0, REG_V5_FAULT_AR_VA, "AR PTW", IOMMU_FAULT_READ },
220 	{ 1, REG_V5_FAULT_AR_VA, "AR PAGE", IOMMU_FAULT_READ },
221 	{ 2, REG_V5_FAULT_AR_VA, "AR MULTI-HIT", IOMMU_FAULT_READ },
222 	{ 3, REG_V5_FAULT_AR_VA, "AR ACCESS PROTECTION", IOMMU_FAULT_READ },
223 	{ 4, REG_V5_FAULT_AR_VA, "AR SECURITY PROTECTION", IOMMU_FAULT_READ },
224 	{ 16, REG_V5_FAULT_AW_VA, "AW PTW", IOMMU_FAULT_WRITE },
225 	{ 17, REG_V5_FAULT_AW_VA, "AW PAGE", IOMMU_FAULT_WRITE },
226 	{ 18, REG_V5_FAULT_AW_VA, "AW MULTI-HIT", IOMMU_FAULT_WRITE },
227 	{ 19, REG_V5_FAULT_AW_VA, "AW ACCESS PROTECTION", IOMMU_FAULT_WRITE },
228 	{ 20, REG_V5_FAULT_AW_VA, "AW SECURITY PROTECTION", IOMMU_FAULT_WRITE },
229 };
230 
231 /*
232  * This structure is attached to dev.archdata.iommu of the master device
233  * on device add, contains a list of SYSMMU controllers defined by device tree,
234  * which are bound to given master device. It is usually referenced by 'owner'
235  * pointer.
236 */
237 struct exynos_iommu_owner {
238 	struct list_head controllers;	/* list of sysmmu_drvdata.owner_node */
239 	struct iommu_domain *domain;	/* domain this device is attached */
240 	struct mutex rpm_lock;		/* for runtime pm of all sysmmus */
241 };
242 
243 /*
244  * This structure exynos specific generalization of struct iommu_domain.
245  * It contains list of SYSMMU controllers from all master devices, which has
246  * been attached to this domain and page tables of IO address space defined by
247  * it. It is usually referenced by 'domain' pointer.
248  */
249 struct exynos_iommu_domain {
250 	struct list_head clients; /* list of sysmmu_drvdata.domain_node */
251 	sysmmu_pte_t *pgtable;	/* lv1 page table, 16KB */
252 	short *lv2entcnt;	/* free lv2 entry counter for each section */
253 	spinlock_t lock;	/* lock for modyfying list of clients */
254 	spinlock_t pgtablelock;	/* lock for modifying page table @ pgtable */
255 	struct iommu_domain domain; /* generic domain data structure */
256 };
257 
258 /*
259  * This structure hold all data of a single SYSMMU controller, this includes
260  * hw resources like registers and clocks, pointers and list nodes to connect
261  * it to all other structures, internal state and parameters read from device
262  * tree. It is usually referenced by 'data' pointer.
263  */
264 struct sysmmu_drvdata {
265 	struct device *sysmmu;		/* SYSMMU controller device */
266 	struct device *master;		/* master device (owner) */
267 	void __iomem *sfrbase;		/* our registers */
268 	struct clk *clk;		/* SYSMMU's clock */
269 	struct clk *aclk;		/* SYSMMU's aclk clock */
270 	struct clk *pclk;		/* SYSMMU's pclk clock */
271 	struct clk *clk_master;		/* master's device clock */
272 	spinlock_t lock;		/* lock for modyfying state */
273 	bool active;			/* current status */
274 	struct exynos_iommu_domain *domain; /* domain we belong to */
275 	struct list_head domain_node;	/* node for domain clients list */
276 	struct list_head owner_node;	/* node for owner controllers list */
277 	phys_addr_t pgtable;		/* assigned page table structure */
278 	unsigned int version;		/* our version */
279 
280 	struct iommu_device iommu;	/* IOMMU core handle */
281 };
282 
283 static struct exynos_iommu_domain *to_exynos_domain(struct iommu_domain *dom)
284 {
285 	return container_of(dom, struct exynos_iommu_domain, domain);
286 }
287 
288 static void sysmmu_unblock(struct sysmmu_drvdata *data)
289 {
290 	writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL);
291 }
292 
293 static bool sysmmu_block(struct sysmmu_drvdata *data)
294 {
295 	int i = 120;
296 
297 	writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL);
298 	while ((i > 0) && !(readl(data->sfrbase + REG_MMU_STATUS) & 1))
299 		--i;
300 
301 	if (!(readl(data->sfrbase + REG_MMU_STATUS) & 1)) {
302 		sysmmu_unblock(data);
303 		return false;
304 	}
305 
306 	return true;
307 }
308 
309 static void __sysmmu_tlb_invalidate(struct sysmmu_drvdata *data)
310 {
311 	if (MMU_MAJ_VER(data->version) < 5)
312 		writel(0x1, data->sfrbase + REG_MMU_FLUSH);
313 	else
314 		writel(0x1, data->sfrbase + REG_V5_MMU_FLUSH_ALL);
315 }
316 
317 static void __sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data,
318 				sysmmu_iova_t iova, unsigned int num_inv)
319 {
320 	unsigned int i;
321 
322 	for (i = 0; i < num_inv; i++) {
323 		if (MMU_MAJ_VER(data->version) < 5)
324 			writel((iova & SPAGE_MASK) | 1,
325 				     data->sfrbase + REG_MMU_FLUSH_ENTRY);
326 		else
327 			writel((iova & SPAGE_MASK) | 1,
328 				     data->sfrbase + REG_V5_MMU_FLUSH_ENTRY);
329 		iova += SPAGE_SIZE;
330 	}
331 }
332 
333 static void __sysmmu_set_ptbase(struct sysmmu_drvdata *data, phys_addr_t pgd)
334 {
335 	if (MMU_MAJ_VER(data->version) < 5)
336 		writel(pgd, data->sfrbase + REG_PT_BASE_ADDR);
337 	else
338 		writel(pgd >> PAGE_SHIFT,
339 			     data->sfrbase + REG_V5_PT_BASE_PFN);
340 
341 	__sysmmu_tlb_invalidate(data);
342 }
343 
344 static void __sysmmu_enable_clocks(struct sysmmu_drvdata *data)
345 {
346 	BUG_ON(clk_prepare_enable(data->clk_master));
347 	BUG_ON(clk_prepare_enable(data->clk));
348 	BUG_ON(clk_prepare_enable(data->pclk));
349 	BUG_ON(clk_prepare_enable(data->aclk));
350 }
351 
352 static void __sysmmu_disable_clocks(struct sysmmu_drvdata *data)
353 {
354 	clk_disable_unprepare(data->aclk);
355 	clk_disable_unprepare(data->pclk);
356 	clk_disable_unprepare(data->clk);
357 	clk_disable_unprepare(data->clk_master);
358 }
359 
360 static void __sysmmu_get_version(struct sysmmu_drvdata *data)
361 {
362 	u32 ver;
363 
364 	__sysmmu_enable_clocks(data);
365 
366 	ver = readl(data->sfrbase + REG_MMU_VERSION);
367 
368 	/* controllers on some SoCs don't report proper version */
369 	if (ver == 0x80000001u)
370 		data->version = MAKE_MMU_VER(1, 0);
371 	else
372 		data->version = MMU_RAW_VER(ver);
373 
374 	dev_dbg(data->sysmmu, "hardware version: %d.%d\n",
375 		MMU_MAJ_VER(data->version), MMU_MIN_VER(data->version));
376 
377 	__sysmmu_disable_clocks(data);
378 }
379 
380 static void show_fault_information(struct sysmmu_drvdata *data,
381 				   const struct sysmmu_fault_info *finfo,
382 				   sysmmu_iova_t fault_addr)
383 {
384 	sysmmu_pte_t *ent;
385 
386 	dev_err(data->sysmmu, "%s: %s FAULT occurred at %#x\n",
387 		dev_name(data->master), finfo->name, fault_addr);
388 	dev_dbg(data->sysmmu, "Page table base: %pa\n", &data->pgtable);
389 	ent = section_entry(phys_to_virt(data->pgtable), fault_addr);
390 	dev_dbg(data->sysmmu, "\tLv1 entry: %#x\n", *ent);
391 	if (lv1ent_page(ent)) {
392 		ent = page_entry(ent, fault_addr);
393 		dev_dbg(data->sysmmu, "\t Lv2 entry: %#x\n", *ent);
394 	}
395 }
396 
397 static irqreturn_t exynos_sysmmu_irq(int irq, void *dev_id)
398 {
399 	/* SYSMMU is in blocked state when interrupt occurred. */
400 	struct sysmmu_drvdata *data = dev_id;
401 	const struct sysmmu_fault_info *finfo;
402 	unsigned int i, n, itype;
403 	sysmmu_iova_t fault_addr = -1;
404 	unsigned short reg_status, reg_clear;
405 	int ret = -ENOSYS;
406 
407 	WARN_ON(!data->active);
408 
409 	if (MMU_MAJ_VER(data->version) < 5) {
410 		reg_status = REG_INT_STATUS;
411 		reg_clear = REG_INT_CLEAR;
412 		finfo = sysmmu_faults;
413 		n = ARRAY_SIZE(sysmmu_faults);
414 	} else {
415 		reg_status = REG_V5_INT_STATUS;
416 		reg_clear = REG_V5_INT_CLEAR;
417 		finfo = sysmmu_v5_faults;
418 		n = ARRAY_SIZE(sysmmu_v5_faults);
419 	}
420 
421 	spin_lock(&data->lock);
422 
423 	clk_enable(data->clk_master);
424 
425 	itype = __ffs(readl(data->sfrbase + reg_status));
426 	for (i = 0; i < n; i++, finfo++)
427 		if (finfo->bit == itype)
428 			break;
429 	/* unknown/unsupported fault */
430 	BUG_ON(i == n);
431 
432 	/* print debug message */
433 	fault_addr = readl(data->sfrbase + finfo->addr_reg);
434 	show_fault_information(data, finfo, fault_addr);
435 
436 	if (data->domain)
437 		ret = report_iommu_fault(&data->domain->domain,
438 					data->master, fault_addr, finfo->type);
439 	/* fault is not recovered by fault handler */
440 	BUG_ON(ret != 0);
441 
442 	writel(1 << itype, data->sfrbase + reg_clear);
443 
444 	sysmmu_unblock(data);
445 
446 	clk_disable(data->clk_master);
447 
448 	spin_unlock(&data->lock);
449 
450 	return IRQ_HANDLED;
451 }
452 
453 static void __sysmmu_disable(struct sysmmu_drvdata *data)
454 {
455 	unsigned long flags;
456 
457 	clk_enable(data->clk_master);
458 
459 	spin_lock_irqsave(&data->lock, flags);
460 	writel(CTRL_DISABLE, data->sfrbase + REG_MMU_CTRL);
461 	writel(0, data->sfrbase + REG_MMU_CFG);
462 	data->active = false;
463 	spin_unlock_irqrestore(&data->lock, flags);
464 
465 	__sysmmu_disable_clocks(data);
466 }
467 
468 static void __sysmmu_init_config(struct sysmmu_drvdata *data)
469 {
470 	unsigned int cfg;
471 
472 	if (data->version <= MAKE_MMU_VER(3, 1))
473 		cfg = CFG_LRU | CFG_QOS(15);
474 	else if (data->version <= MAKE_MMU_VER(3, 2))
475 		cfg = CFG_LRU | CFG_QOS(15) | CFG_FLPDCACHE | CFG_SYSSEL;
476 	else
477 		cfg = CFG_QOS(15) | CFG_FLPDCACHE | CFG_ACGEN;
478 
479 	cfg |= CFG_EAP; /* enable access protection bits check */
480 
481 	writel(cfg, data->sfrbase + REG_MMU_CFG);
482 }
483 
484 static void __sysmmu_enable(struct sysmmu_drvdata *data)
485 {
486 	unsigned long flags;
487 
488 	__sysmmu_enable_clocks(data);
489 
490 	spin_lock_irqsave(&data->lock, flags);
491 	writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL);
492 	__sysmmu_init_config(data);
493 	__sysmmu_set_ptbase(data, data->pgtable);
494 	writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL);
495 	data->active = true;
496 	spin_unlock_irqrestore(&data->lock, flags);
497 
498 	/*
499 	 * SYSMMU driver keeps master's clock enabled only for the short
500 	 * time, while accessing the registers. For performing address
501 	 * translation during DMA transaction it relies on the client
502 	 * driver to enable it.
503 	 */
504 	clk_disable(data->clk_master);
505 }
506 
507 static void sysmmu_tlb_invalidate_flpdcache(struct sysmmu_drvdata *data,
508 					    sysmmu_iova_t iova)
509 {
510 	unsigned long flags;
511 
512 	spin_lock_irqsave(&data->lock, flags);
513 	if (data->active && data->version >= MAKE_MMU_VER(3, 3)) {
514 		clk_enable(data->clk_master);
515 		__sysmmu_tlb_invalidate_entry(data, iova, 1);
516 		clk_disable(data->clk_master);
517 	}
518 	spin_unlock_irqrestore(&data->lock, flags);
519 }
520 
521 static void sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data,
522 					sysmmu_iova_t iova, size_t size)
523 {
524 	unsigned long flags;
525 
526 	spin_lock_irqsave(&data->lock, flags);
527 	if (data->active) {
528 		unsigned int num_inv = 1;
529 
530 		clk_enable(data->clk_master);
531 
532 		/*
533 		 * L2TLB invalidation required
534 		 * 4KB page: 1 invalidation
535 		 * 64KB page: 16 invalidations
536 		 * 1MB page: 64 invalidations
537 		 * because it is set-associative TLB
538 		 * with 8-way and 64 sets.
539 		 * 1MB page can be cached in one of all sets.
540 		 * 64KB page can be one of 16 consecutive sets.
541 		 */
542 		if (MMU_MAJ_VER(data->version) == 2)
543 			num_inv = min_t(unsigned int, size / PAGE_SIZE, 64);
544 
545 		if (sysmmu_block(data)) {
546 			__sysmmu_tlb_invalidate_entry(data, iova, num_inv);
547 			sysmmu_unblock(data);
548 		}
549 		clk_disable(data->clk_master);
550 	}
551 	spin_unlock_irqrestore(&data->lock, flags);
552 }
553 
554 static struct iommu_ops exynos_iommu_ops;
555 
556 static int __init exynos_sysmmu_probe(struct platform_device *pdev)
557 {
558 	int irq, ret;
559 	struct device *dev = &pdev->dev;
560 	struct sysmmu_drvdata *data;
561 	struct resource *res;
562 
563 	data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
564 	if (!data)
565 		return -ENOMEM;
566 
567 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
568 	data->sfrbase = devm_ioremap_resource(dev, res);
569 	if (IS_ERR(data->sfrbase))
570 		return PTR_ERR(data->sfrbase);
571 
572 	irq = platform_get_irq(pdev, 0);
573 	if (irq <= 0) {
574 		dev_err(dev, "Unable to find IRQ resource\n");
575 		return irq;
576 	}
577 
578 	ret = devm_request_irq(dev, irq, exynos_sysmmu_irq, 0,
579 				dev_name(dev), data);
580 	if (ret) {
581 		dev_err(dev, "Unabled to register handler of irq %d\n", irq);
582 		return ret;
583 	}
584 
585 	data->clk = devm_clk_get(dev, "sysmmu");
586 	if (PTR_ERR(data->clk) == -ENOENT)
587 		data->clk = NULL;
588 	else if (IS_ERR(data->clk))
589 		return PTR_ERR(data->clk);
590 
591 	data->aclk = devm_clk_get(dev, "aclk");
592 	if (PTR_ERR(data->aclk) == -ENOENT)
593 		data->aclk = NULL;
594 	else if (IS_ERR(data->aclk))
595 		return PTR_ERR(data->aclk);
596 
597 	data->pclk = devm_clk_get(dev, "pclk");
598 	if (PTR_ERR(data->pclk) == -ENOENT)
599 		data->pclk = NULL;
600 	else if (IS_ERR(data->pclk))
601 		return PTR_ERR(data->pclk);
602 
603 	if (!data->clk && (!data->aclk || !data->pclk)) {
604 		dev_err(dev, "Failed to get device clock(s)!\n");
605 		return -ENOSYS;
606 	}
607 
608 	data->clk_master = devm_clk_get(dev, "master");
609 	if (PTR_ERR(data->clk_master) == -ENOENT)
610 		data->clk_master = NULL;
611 	else if (IS_ERR(data->clk_master))
612 		return PTR_ERR(data->clk_master);
613 
614 	data->sysmmu = dev;
615 	spin_lock_init(&data->lock);
616 
617 	ret = iommu_device_sysfs_add(&data->iommu, &pdev->dev, NULL,
618 				     dev_name(data->sysmmu));
619 	if (ret)
620 		return ret;
621 
622 	iommu_device_set_ops(&data->iommu, &exynos_iommu_ops);
623 	iommu_device_set_fwnode(&data->iommu, &dev->of_node->fwnode);
624 
625 	ret = iommu_device_register(&data->iommu);
626 	if (ret)
627 		return ret;
628 
629 	platform_set_drvdata(pdev, data);
630 
631 	__sysmmu_get_version(data);
632 	if (PG_ENT_SHIFT < 0) {
633 		if (MMU_MAJ_VER(data->version) < 5) {
634 			PG_ENT_SHIFT = SYSMMU_PG_ENT_SHIFT;
635 			LV1_PROT = SYSMMU_LV1_PROT;
636 			LV2_PROT = SYSMMU_LV2_PROT;
637 		} else {
638 			PG_ENT_SHIFT = SYSMMU_V5_PG_ENT_SHIFT;
639 			LV1_PROT = SYSMMU_V5_LV1_PROT;
640 			LV2_PROT = SYSMMU_V5_LV2_PROT;
641 		}
642 	}
643 
644 	pm_runtime_enable(dev);
645 
646 	return 0;
647 }
648 
649 static int __maybe_unused exynos_sysmmu_suspend(struct device *dev)
650 {
651 	struct sysmmu_drvdata *data = dev_get_drvdata(dev);
652 	struct device *master = data->master;
653 
654 	if (master) {
655 		struct exynos_iommu_owner *owner = master->archdata.iommu;
656 
657 		mutex_lock(&owner->rpm_lock);
658 		if (data->domain) {
659 			dev_dbg(data->sysmmu, "saving state\n");
660 			__sysmmu_disable(data);
661 		}
662 		mutex_unlock(&owner->rpm_lock);
663 	}
664 	return 0;
665 }
666 
667 static int __maybe_unused exynos_sysmmu_resume(struct device *dev)
668 {
669 	struct sysmmu_drvdata *data = dev_get_drvdata(dev);
670 	struct device *master = data->master;
671 
672 	if (master) {
673 		struct exynos_iommu_owner *owner = master->archdata.iommu;
674 
675 		mutex_lock(&owner->rpm_lock);
676 		if (data->domain) {
677 			dev_dbg(data->sysmmu, "restoring state\n");
678 			__sysmmu_enable(data);
679 		}
680 		mutex_unlock(&owner->rpm_lock);
681 	}
682 	return 0;
683 }
684 
685 static const struct dev_pm_ops sysmmu_pm_ops = {
686 	SET_RUNTIME_PM_OPS(exynos_sysmmu_suspend, exynos_sysmmu_resume, NULL)
687 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
688 				pm_runtime_force_resume)
689 };
690 
691 static const struct of_device_id sysmmu_of_match[] __initconst = {
692 	{ .compatible	= "samsung,exynos-sysmmu", },
693 	{ },
694 };
695 
696 static struct platform_driver exynos_sysmmu_driver __refdata = {
697 	.probe	= exynos_sysmmu_probe,
698 	.driver	= {
699 		.name		= "exynos-sysmmu",
700 		.of_match_table	= sysmmu_of_match,
701 		.pm		= &sysmmu_pm_ops,
702 		.suppress_bind_attrs = true,
703 	}
704 };
705 
706 static inline void update_pte(sysmmu_pte_t *ent, sysmmu_pte_t val)
707 {
708 	dma_sync_single_for_cpu(dma_dev, virt_to_phys(ent), sizeof(*ent),
709 				DMA_TO_DEVICE);
710 	*ent = cpu_to_le32(val);
711 	dma_sync_single_for_device(dma_dev, virt_to_phys(ent), sizeof(*ent),
712 				   DMA_TO_DEVICE);
713 }
714 
715 static struct iommu_domain *exynos_iommu_domain_alloc(unsigned type)
716 {
717 	struct exynos_iommu_domain *domain;
718 	dma_addr_t handle;
719 	int i;
720 
721 	/* Check if correct PTE offsets are initialized */
722 	BUG_ON(PG_ENT_SHIFT < 0 || !dma_dev);
723 
724 	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
725 	if (!domain)
726 		return NULL;
727 
728 	if (type == IOMMU_DOMAIN_DMA) {
729 		if (iommu_get_dma_cookie(&domain->domain) != 0)
730 			goto err_pgtable;
731 	} else if (type != IOMMU_DOMAIN_UNMANAGED) {
732 		goto err_pgtable;
733 	}
734 
735 	domain->pgtable = (sysmmu_pte_t *)__get_free_pages(GFP_KERNEL, 2);
736 	if (!domain->pgtable)
737 		goto err_dma_cookie;
738 
739 	domain->lv2entcnt = (short *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1);
740 	if (!domain->lv2entcnt)
741 		goto err_counter;
742 
743 	/* Workaround for System MMU v3.3 to prevent caching 1MiB mapping */
744 	for (i = 0; i < NUM_LV1ENTRIES; i += 8) {
745 		domain->pgtable[i + 0] = ZERO_LV2LINK;
746 		domain->pgtable[i + 1] = ZERO_LV2LINK;
747 		domain->pgtable[i + 2] = ZERO_LV2LINK;
748 		domain->pgtable[i + 3] = ZERO_LV2LINK;
749 		domain->pgtable[i + 4] = ZERO_LV2LINK;
750 		domain->pgtable[i + 5] = ZERO_LV2LINK;
751 		domain->pgtable[i + 6] = ZERO_LV2LINK;
752 		domain->pgtable[i + 7] = ZERO_LV2LINK;
753 	}
754 
755 	handle = dma_map_single(dma_dev, domain->pgtable, LV1TABLE_SIZE,
756 				DMA_TO_DEVICE);
757 	/* For mapping page table entries we rely on dma == phys */
758 	BUG_ON(handle != virt_to_phys(domain->pgtable));
759 	if (dma_mapping_error(dma_dev, handle))
760 		goto err_lv2ent;
761 
762 	spin_lock_init(&domain->lock);
763 	spin_lock_init(&domain->pgtablelock);
764 	INIT_LIST_HEAD(&domain->clients);
765 
766 	domain->domain.geometry.aperture_start = 0;
767 	domain->domain.geometry.aperture_end   = ~0UL;
768 	domain->domain.geometry.force_aperture = true;
769 
770 	return &domain->domain;
771 
772 err_lv2ent:
773 	free_pages((unsigned long)domain->lv2entcnt, 1);
774 err_counter:
775 	free_pages((unsigned long)domain->pgtable, 2);
776 err_dma_cookie:
777 	if (type == IOMMU_DOMAIN_DMA)
778 		iommu_put_dma_cookie(&domain->domain);
779 err_pgtable:
780 	kfree(domain);
781 	return NULL;
782 }
783 
784 static void exynos_iommu_domain_free(struct iommu_domain *iommu_domain)
785 {
786 	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
787 	struct sysmmu_drvdata *data, *next;
788 	unsigned long flags;
789 	int i;
790 
791 	WARN_ON(!list_empty(&domain->clients));
792 
793 	spin_lock_irqsave(&domain->lock, flags);
794 
795 	list_for_each_entry_safe(data, next, &domain->clients, domain_node) {
796 		spin_lock(&data->lock);
797 		__sysmmu_disable(data);
798 		data->pgtable = 0;
799 		data->domain = NULL;
800 		list_del_init(&data->domain_node);
801 		spin_unlock(&data->lock);
802 	}
803 
804 	spin_unlock_irqrestore(&domain->lock, flags);
805 
806 	if (iommu_domain->type == IOMMU_DOMAIN_DMA)
807 		iommu_put_dma_cookie(iommu_domain);
808 
809 	dma_unmap_single(dma_dev, virt_to_phys(domain->pgtable), LV1TABLE_SIZE,
810 			 DMA_TO_DEVICE);
811 
812 	for (i = 0; i < NUM_LV1ENTRIES; i++)
813 		if (lv1ent_page(domain->pgtable + i)) {
814 			phys_addr_t base = lv2table_base(domain->pgtable + i);
815 
816 			dma_unmap_single(dma_dev, base, LV2TABLE_SIZE,
817 					 DMA_TO_DEVICE);
818 			kmem_cache_free(lv2table_kmem_cache,
819 					phys_to_virt(base));
820 		}
821 
822 	free_pages((unsigned long)domain->pgtable, 2);
823 	free_pages((unsigned long)domain->lv2entcnt, 1);
824 	kfree(domain);
825 }
826 
827 static void exynos_iommu_detach_device(struct iommu_domain *iommu_domain,
828 				    struct device *dev)
829 {
830 	struct exynos_iommu_owner *owner = dev->archdata.iommu;
831 	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
832 	phys_addr_t pagetable = virt_to_phys(domain->pgtable);
833 	struct sysmmu_drvdata *data, *next;
834 	unsigned long flags;
835 
836 	if (!has_sysmmu(dev) || owner->domain != iommu_domain)
837 		return;
838 
839 	mutex_lock(&owner->rpm_lock);
840 
841 	list_for_each_entry(data, &owner->controllers, owner_node) {
842 		pm_runtime_get_noresume(data->sysmmu);
843 		if (pm_runtime_active(data->sysmmu))
844 			__sysmmu_disable(data);
845 		pm_runtime_put(data->sysmmu);
846 	}
847 
848 	spin_lock_irqsave(&domain->lock, flags);
849 	list_for_each_entry_safe(data, next, &domain->clients, domain_node) {
850 		spin_lock(&data->lock);
851 		data->pgtable = 0;
852 		data->domain = NULL;
853 		list_del_init(&data->domain_node);
854 		spin_unlock(&data->lock);
855 	}
856 	owner->domain = NULL;
857 	spin_unlock_irqrestore(&domain->lock, flags);
858 
859 	mutex_unlock(&owner->rpm_lock);
860 
861 	dev_dbg(dev, "%s: Detached IOMMU with pgtable %pa\n", __func__,
862 		&pagetable);
863 }
864 
865 static int exynos_iommu_attach_device(struct iommu_domain *iommu_domain,
866 				   struct device *dev)
867 {
868 	struct exynos_iommu_owner *owner = dev->archdata.iommu;
869 	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
870 	struct sysmmu_drvdata *data;
871 	phys_addr_t pagetable = virt_to_phys(domain->pgtable);
872 	unsigned long flags;
873 
874 	if (!has_sysmmu(dev))
875 		return -ENODEV;
876 
877 	if (owner->domain)
878 		exynos_iommu_detach_device(owner->domain, dev);
879 
880 	mutex_lock(&owner->rpm_lock);
881 
882 	spin_lock_irqsave(&domain->lock, flags);
883 	list_for_each_entry(data, &owner->controllers, owner_node) {
884 		spin_lock(&data->lock);
885 		data->pgtable = pagetable;
886 		data->domain = domain;
887 		list_add_tail(&data->domain_node, &domain->clients);
888 		spin_unlock(&data->lock);
889 	}
890 	owner->domain = iommu_domain;
891 	spin_unlock_irqrestore(&domain->lock, flags);
892 
893 	list_for_each_entry(data, &owner->controllers, owner_node) {
894 		pm_runtime_get_noresume(data->sysmmu);
895 		if (pm_runtime_active(data->sysmmu))
896 			__sysmmu_enable(data);
897 		pm_runtime_put(data->sysmmu);
898 	}
899 
900 	mutex_unlock(&owner->rpm_lock);
901 
902 	dev_dbg(dev, "%s: Attached IOMMU with pgtable %pa\n", __func__,
903 		&pagetable);
904 
905 	return 0;
906 }
907 
908 static sysmmu_pte_t *alloc_lv2entry(struct exynos_iommu_domain *domain,
909 		sysmmu_pte_t *sent, sysmmu_iova_t iova, short *pgcounter)
910 {
911 	if (lv1ent_section(sent)) {
912 		WARN(1, "Trying mapping on %#08x mapped with 1MiB page", iova);
913 		return ERR_PTR(-EADDRINUSE);
914 	}
915 
916 	if (lv1ent_fault(sent)) {
917 		dma_addr_t handle;
918 		sysmmu_pte_t *pent;
919 		bool need_flush_flpd_cache = lv1ent_zero(sent);
920 
921 		pent = kmem_cache_zalloc(lv2table_kmem_cache, GFP_ATOMIC);
922 		BUG_ON((uintptr_t)pent & (LV2TABLE_SIZE - 1));
923 		if (!pent)
924 			return ERR_PTR(-ENOMEM);
925 
926 		update_pte(sent, mk_lv1ent_page(virt_to_phys(pent)));
927 		kmemleak_ignore(pent);
928 		*pgcounter = NUM_LV2ENTRIES;
929 		handle = dma_map_single(dma_dev, pent, LV2TABLE_SIZE,
930 					DMA_TO_DEVICE);
931 		if (dma_mapping_error(dma_dev, handle)) {
932 			kmem_cache_free(lv2table_kmem_cache, pent);
933 			return ERR_PTR(-EADDRINUSE);
934 		}
935 
936 		/*
937 		 * If pre-fetched SLPD is a faulty SLPD in zero_l2_table,
938 		 * FLPD cache may cache the address of zero_l2_table. This
939 		 * function replaces the zero_l2_table with new L2 page table
940 		 * to write valid mappings.
941 		 * Accessing the valid area may cause page fault since FLPD
942 		 * cache may still cache zero_l2_table for the valid area
943 		 * instead of new L2 page table that has the mapping
944 		 * information of the valid area.
945 		 * Thus any replacement of zero_l2_table with other valid L2
946 		 * page table must involve FLPD cache invalidation for System
947 		 * MMU v3.3.
948 		 * FLPD cache invalidation is performed with TLB invalidation
949 		 * by VPN without blocking. It is safe to invalidate TLB without
950 		 * blocking because the target address of TLB invalidation is
951 		 * not currently mapped.
952 		 */
953 		if (need_flush_flpd_cache) {
954 			struct sysmmu_drvdata *data;
955 
956 			spin_lock(&domain->lock);
957 			list_for_each_entry(data, &domain->clients, domain_node)
958 				sysmmu_tlb_invalidate_flpdcache(data, iova);
959 			spin_unlock(&domain->lock);
960 		}
961 	}
962 
963 	return page_entry(sent, iova);
964 }
965 
966 static int lv1set_section(struct exynos_iommu_domain *domain,
967 			  sysmmu_pte_t *sent, sysmmu_iova_t iova,
968 			  phys_addr_t paddr, int prot, short *pgcnt)
969 {
970 	if (lv1ent_section(sent)) {
971 		WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
972 			iova);
973 		return -EADDRINUSE;
974 	}
975 
976 	if (lv1ent_page(sent)) {
977 		if (*pgcnt != NUM_LV2ENTRIES) {
978 			WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
979 				iova);
980 			return -EADDRINUSE;
981 		}
982 
983 		kmem_cache_free(lv2table_kmem_cache, page_entry(sent, 0));
984 		*pgcnt = 0;
985 	}
986 
987 	update_pte(sent, mk_lv1ent_sect(paddr, prot));
988 
989 	spin_lock(&domain->lock);
990 	if (lv1ent_page_zero(sent)) {
991 		struct sysmmu_drvdata *data;
992 		/*
993 		 * Flushing FLPD cache in System MMU v3.3 that may cache a FLPD
994 		 * entry by speculative prefetch of SLPD which has no mapping.
995 		 */
996 		list_for_each_entry(data, &domain->clients, domain_node)
997 			sysmmu_tlb_invalidate_flpdcache(data, iova);
998 	}
999 	spin_unlock(&domain->lock);
1000 
1001 	return 0;
1002 }
1003 
1004 static int lv2set_page(sysmmu_pte_t *pent, phys_addr_t paddr, size_t size,
1005 		       int prot, short *pgcnt)
1006 {
1007 	if (size == SPAGE_SIZE) {
1008 		if (WARN_ON(!lv2ent_fault(pent)))
1009 			return -EADDRINUSE;
1010 
1011 		update_pte(pent, mk_lv2ent_spage(paddr, prot));
1012 		*pgcnt -= 1;
1013 	} else { /* size == LPAGE_SIZE */
1014 		int i;
1015 		dma_addr_t pent_base = virt_to_phys(pent);
1016 
1017 		dma_sync_single_for_cpu(dma_dev, pent_base,
1018 					sizeof(*pent) * SPAGES_PER_LPAGE,
1019 					DMA_TO_DEVICE);
1020 		for (i = 0; i < SPAGES_PER_LPAGE; i++, pent++) {
1021 			if (WARN_ON(!lv2ent_fault(pent))) {
1022 				if (i > 0)
1023 					memset(pent - i, 0, sizeof(*pent) * i);
1024 				return -EADDRINUSE;
1025 			}
1026 
1027 			*pent = mk_lv2ent_lpage(paddr, prot);
1028 		}
1029 		dma_sync_single_for_device(dma_dev, pent_base,
1030 					   sizeof(*pent) * SPAGES_PER_LPAGE,
1031 					   DMA_TO_DEVICE);
1032 		*pgcnt -= SPAGES_PER_LPAGE;
1033 	}
1034 
1035 	return 0;
1036 }
1037 
1038 /*
1039  * *CAUTION* to the I/O virtual memory managers that support exynos-iommu:
1040  *
1041  * System MMU v3.x has advanced logic to improve address translation
1042  * performance with caching more page table entries by a page table walk.
1043  * However, the logic has a bug that while caching faulty page table entries,
1044  * System MMU reports page fault if the cached fault entry is hit even though
1045  * the fault entry is updated to a valid entry after the entry is cached.
1046  * To prevent caching faulty page table entries which may be updated to valid
1047  * entries later, the virtual memory manager should care about the workaround
1048  * for the problem. The following describes the workaround.
1049  *
1050  * Any two consecutive I/O virtual address regions must have a hole of 128KiB
1051  * at maximum to prevent misbehavior of System MMU 3.x (workaround for h/w bug).
1052  *
1053  * Precisely, any start address of I/O virtual region must be aligned with
1054  * the following sizes for System MMU v3.1 and v3.2.
1055  * System MMU v3.1: 128KiB
1056  * System MMU v3.2: 256KiB
1057  *
1058  * Because System MMU v3.3 caches page table entries more aggressively, it needs
1059  * more workarounds.
1060  * - Any two consecutive I/O virtual regions must have a hole of size larger
1061  *   than or equal to 128KiB.
1062  * - Start address of an I/O virtual region must be aligned by 128KiB.
1063  */
1064 static int exynos_iommu_map(struct iommu_domain *iommu_domain,
1065 			    unsigned long l_iova, phys_addr_t paddr, size_t size,
1066 			    int prot)
1067 {
1068 	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1069 	sysmmu_pte_t *entry;
1070 	sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
1071 	unsigned long flags;
1072 	int ret = -ENOMEM;
1073 
1074 	BUG_ON(domain->pgtable == NULL);
1075 	prot &= SYSMMU_SUPPORTED_PROT_BITS;
1076 
1077 	spin_lock_irqsave(&domain->pgtablelock, flags);
1078 
1079 	entry = section_entry(domain->pgtable, iova);
1080 
1081 	if (size == SECT_SIZE) {
1082 		ret = lv1set_section(domain, entry, iova, paddr, prot,
1083 				     &domain->lv2entcnt[lv1ent_offset(iova)]);
1084 	} else {
1085 		sysmmu_pte_t *pent;
1086 
1087 		pent = alloc_lv2entry(domain, entry, iova,
1088 				      &domain->lv2entcnt[lv1ent_offset(iova)]);
1089 
1090 		if (IS_ERR(pent))
1091 			ret = PTR_ERR(pent);
1092 		else
1093 			ret = lv2set_page(pent, paddr, size, prot,
1094 				       &domain->lv2entcnt[lv1ent_offset(iova)]);
1095 	}
1096 
1097 	if (ret)
1098 		pr_err("%s: Failed(%d) to map %#zx bytes @ %#x\n",
1099 			__func__, ret, size, iova);
1100 
1101 	spin_unlock_irqrestore(&domain->pgtablelock, flags);
1102 
1103 	return ret;
1104 }
1105 
1106 static void exynos_iommu_tlb_invalidate_entry(struct exynos_iommu_domain *domain,
1107 					      sysmmu_iova_t iova, size_t size)
1108 {
1109 	struct sysmmu_drvdata *data;
1110 	unsigned long flags;
1111 
1112 	spin_lock_irqsave(&domain->lock, flags);
1113 
1114 	list_for_each_entry(data, &domain->clients, domain_node)
1115 		sysmmu_tlb_invalidate_entry(data, iova, size);
1116 
1117 	spin_unlock_irqrestore(&domain->lock, flags);
1118 }
1119 
1120 static size_t exynos_iommu_unmap(struct iommu_domain *iommu_domain,
1121 				 unsigned long l_iova, size_t size)
1122 {
1123 	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1124 	sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
1125 	sysmmu_pte_t *ent;
1126 	size_t err_pgsize;
1127 	unsigned long flags;
1128 
1129 	BUG_ON(domain->pgtable == NULL);
1130 
1131 	spin_lock_irqsave(&domain->pgtablelock, flags);
1132 
1133 	ent = section_entry(domain->pgtable, iova);
1134 
1135 	if (lv1ent_section(ent)) {
1136 		if (WARN_ON(size < SECT_SIZE)) {
1137 			err_pgsize = SECT_SIZE;
1138 			goto err;
1139 		}
1140 
1141 		/* workaround for h/w bug in System MMU v3.3 */
1142 		update_pte(ent, ZERO_LV2LINK);
1143 		size = SECT_SIZE;
1144 		goto done;
1145 	}
1146 
1147 	if (unlikely(lv1ent_fault(ent))) {
1148 		if (size > SECT_SIZE)
1149 			size = SECT_SIZE;
1150 		goto done;
1151 	}
1152 
1153 	/* lv1ent_page(sent) == true here */
1154 
1155 	ent = page_entry(ent, iova);
1156 
1157 	if (unlikely(lv2ent_fault(ent))) {
1158 		size = SPAGE_SIZE;
1159 		goto done;
1160 	}
1161 
1162 	if (lv2ent_small(ent)) {
1163 		update_pte(ent, 0);
1164 		size = SPAGE_SIZE;
1165 		domain->lv2entcnt[lv1ent_offset(iova)] += 1;
1166 		goto done;
1167 	}
1168 
1169 	/* lv1ent_large(ent) == true here */
1170 	if (WARN_ON(size < LPAGE_SIZE)) {
1171 		err_pgsize = LPAGE_SIZE;
1172 		goto err;
1173 	}
1174 
1175 	dma_sync_single_for_cpu(dma_dev, virt_to_phys(ent),
1176 				sizeof(*ent) * SPAGES_PER_LPAGE,
1177 				DMA_TO_DEVICE);
1178 	memset(ent, 0, sizeof(*ent) * SPAGES_PER_LPAGE);
1179 	dma_sync_single_for_device(dma_dev, virt_to_phys(ent),
1180 				   sizeof(*ent) * SPAGES_PER_LPAGE,
1181 				   DMA_TO_DEVICE);
1182 	size = LPAGE_SIZE;
1183 	domain->lv2entcnt[lv1ent_offset(iova)] += SPAGES_PER_LPAGE;
1184 done:
1185 	spin_unlock_irqrestore(&domain->pgtablelock, flags);
1186 
1187 	exynos_iommu_tlb_invalidate_entry(domain, iova, size);
1188 
1189 	return size;
1190 err:
1191 	spin_unlock_irqrestore(&domain->pgtablelock, flags);
1192 
1193 	pr_err("%s: Failed: size(%#zx) @ %#x is smaller than page size %#zx\n",
1194 		__func__, size, iova, err_pgsize);
1195 
1196 	return 0;
1197 }
1198 
1199 static phys_addr_t exynos_iommu_iova_to_phys(struct iommu_domain *iommu_domain,
1200 					  dma_addr_t iova)
1201 {
1202 	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1203 	sysmmu_pte_t *entry;
1204 	unsigned long flags;
1205 	phys_addr_t phys = 0;
1206 
1207 	spin_lock_irqsave(&domain->pgtablelock, flags);
1208 
1209 	entry = section_entry(domain->pgtable, iova);
1210 
1211 	if (lv1ent_section(entry)) {
1212 		phys = section_phys(entry) + section_offs(iova);
1213 	} else if (lv1ent_page(entry)) {
1214 		entry = page_entry(entry, iova);
1215 
1216 		if (lv2ent_large(entry))
1217 			phys = lpage_phys(entry) + lpage_offs(iova);
1218 		else if (lv2ent_small(entry))
1219 			phys = spage_phys(entry) + spage_offs(iova);
1220 	}
1221 
1222 	spin_unlock_irqrestore(&domain->pgtablelock, flags);
1223 
1224 	return phys;
1225 }
1226 
1227 static struct iommu_group *get_device_iommu_group(struct device *dev)
1228 {
1229 	struct iommu_group *group;
1230 
1231 	group = iommu_group_get(dev);
1232 	if (!group)
1233 		group = iommu_group_alloc();
1234 
1235 	return group;
1236 }
1237 
1238 static int exynos_iommu_add_device(struct device *dev)
1239 {
1240 	struct iommu_group *group;
1241 
1242 	if (!has_sysmmu(dev))
1243 		return -ENODEV;
1244 
1245 	group = iommu_group_get_for_dev(dev);
1246 
1247 	if (IS_ERR(group))
1248 		return PTR_ERR(group);
1249 
1250 	iommu_group_put(group);
1251 
1252 	return 0;
1253 }
1254 
1255 static void exynos_iommu_remove_device(struct device *dev)
1256 {
1257 	struct exynos_iommu_owner *owner = dev->archdata.iommu;
1258 
1259 	if (!has_sysmmu(dev))
1260 		return;
1261 
1262 	if (owner->domain) {
1263 		struct iommu_group *group = iommu_group_get(dev);
1264 
1265 		if (group) {
1266 			WARN_ON(owner->domain !=
1267 				iommu_group_default_domain(group));
1268 			exynos_iommu_detach_device(owner->domain, dev);
1269 			iommu_group_put(group);
1270 		}
1271 	}
1272 	iommu_group_remove_device(dev);
1273 }
1274 
1275 static int exynos_iommu_of_xlate(struct device *dev,
1276 				 struct of_phandle_args *spec)
1277 {
1278 	struct exynos_iommu_owner *owner = dev->archdata.iommu;
1279 	struct platform_device *sysmmu = of_find_device_by_node(spec->np);
1280 	struct sysmmu_drvdata *data, *entry;
1281 
1282 	if (!sysmmu)
1283 		return -ENODEV;
1284 
1285 	data = platform_get_drvdata(sysmmu);
1286 	if (!data)
1287 		return -ENODEV;
1288 
1289 	if (!owner) {
1290 		owner = kzalloc(sizeof(*owner), GFP_KERNEL);
1291 		if (!owner)
1292 			return -ENOMEM;
1293 
1294 		INIT_LIST_HEAD(&owner->controllers);
1295 		mutex_init(&owner->rpm_lock);
1296 		dev->archdata.iommu = owner;
1297 	}
1298 
1299 	list_for_each_entry(entry, &owner->controllers, owner_node)
1300 		if (entry == data)
1301 			return 0;
1302 
1303 	list_add_tail(&data->owner_node, &owner->controllers);
1304 	data->master = dev;
1305 
1306 	/*
1307 	 * SYSMMU will be runtime activated via device link (dependency) to its
1308 	 * master device, so there are no direct calls to pm_runtime_get/put
1309 	 * in this driver.
1310 	 */
1311 	device_link_add(dev, data->sysmmu, DL_FLAG_PM_RUNTIME);
1312 
1313 	return 0;
1314 }
1315 
1316 static struct iommu_ops exynos_iommu_ops = {
1317 	.domain_alloc = exynos_iommu_domain_alloc,
1318 	.domain_free = exynos_iommu_domain_free,
1319 	.attach_dev = exynos_iommu_attach_device,
1320 	.detach_dev = exynos_iommu_detach_device,
1321 	.map = exynos_iommu_map,
1322 	.unmap = exynos_iommu_unmap,
1323 	.map_sg = default_iommu_map_sg,
1324 	.iova_to_phys = exynos_iommu_iova_to_phys,
1325 	.device_group = get_device_iommu_group,
1326 	.add_device = exynos_iommu_add_device,
1327 	.remove_device = exynos_iommu_remove_device,
1328 	.pgsize_bitmap = SECT_SIZE | LPAGE_SIZE | SPAGE_SIZE,
1329 	.of_xlate = exynos_iommu_of_xlate,
1330 };
1331 
1332 static bool init_done;
1333 
1334 static int __init exynos_iommu_init(void)
1335 {
1336 	int ret;
1337 
1338 	lv2table_kmem_cache = kmem_cache_create("exynos-iommu-lv2table",
1339 				LV2TABLE_SIZE, LV2TABLE_SIZE, 0, NULL);
1340 	if (!lv2table_kmem_cache) {
1341 		pr_err("%s: Failed to create kmem cache\n", __func__);
1342 		return -ENOMEM;
1343 	}
1344 
1345 	ret = platform_driver_register(&exynos_sysmmu_driver);
1346 	if (ret) {
1347 		pr_err("%s: Failed to register driver\n", __func__);
1348 		goto err_reg_driver;
1349 	}
1350 
1351 	zero_lv2_table = kmem_cache_zalloc(lv2table_kmem_cache, GFP_KERNEL);
1352 	if (zero_lv2_table == NULL) {
1353 		pr_err("%s: Failed to allocate zero level2 page table\n",
1354 			__func__);
1355 		ret = -ENOMEM;
1356 		goto err_zero_lv2;
1357 	}
1358 
1359 	ret = bus_set_iommu(&platform_bus_type, &exynos_iommu_ops);
1360 	if (ret) {
1361 		pr_err("%s: Failed to register exynos-iommu driver.\n",
1362 								__func__);
1363 		goto err_set_iommu;
1364 	}
1365 
1366 	init_done = true;
1367 
1368 	return 0;
1369 err_set_iommu:
1370 	kmem_cache_free(lv2table_kmem_cache, zero_lv2_table);
1371 err_zero_lv2:
1372 	platform_driver_unregister(&exynos_sysmmu_driver);
1373 err_reg_driver:
1374 	kmem_cache_destroy(lv2table_kmem_cache);
1375 	return ret;
1376 }
1377 
1378 static int __init exynos_iommu_of_setup(struct device_node *np)
1379 {
1380 	struct platform_device *pdev;
1381 
1382 	if (!init_done)
1383 		exynos_iommu_init();
1384 
1385 	pdev = of_platform_device_create(np, NULL, platform_bus_type.dev_root);
1386 	if (!pdev)
1387 		return -ENODEV;
1388 
1389 	/*
1390 	 * use the first registered sysmmu device for performing
1391 	 * dma mapping operations on iommu page tables (cpu cache flush)
1392 	 */
1393 	if (!dma_dev)
1394 		dma_dev = &pdev->dev;
1395 
1396 	return 0;
1397 }
1398 
1399 IOMMU_OF_DECLARE(exynos_iommu_of, "samsung,exynos-sysmmu",
1400 		 exynos_iommu_of_setup);
1401