1 /* 2 * Copyright (c) 2011,2016 Samsung Electronics Co., Ltd. 3 * http://www.samsung.com 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 */ 9 10 #ifdef CONFIG_EXYNOS_IOMMU_DEBUG 11 #define DEBUG 12 #endif 13 14 #include <linux/clk.h> 15 #include <linux/dma-mapping.h> 16 #include <linux/err.h> 17 #include <linux/io.h> 18 #include <linux/iommu.h> 19 #include <linux/interrupt.h> 20 #include <linux/list.h> 21 #include <linux/of.h> 22 #include <linux/of_iommu.h> 23 #include <linux/of_platform.h> 24 #include <linux/platform_device.h> 25 #include <linux/pm_runtime.h> 26 #include <linux/slab.h> 27 #include <linux/dma-iommu.h> 28 29 typedef u32 sysmmu_iova_t; 30 typedef u32 sysmmu_pte_t; 31 32 /* We do not consider super section mapping (16MB) */ 33 #define SECT_ORDER 20 34 #define LPAGE_ORDER 16 35 #define SPAGE_ORDER 12 36 37 #define SECT_SIZE (1 << SECT_ORDER) 38 #define LPAGE_SIZE (1 << LPAGE_ORDER) 39 #define SPAGE_SIZE (1 << SPAGE_ORDER) 40 41 #define SECT_MASK (~(SECT_SIZE - 1)) 42 #define LPAGE_MASK (~(LPAGE_SIZE - 1)) 43 #define SPAGE_MASK (~(SPAGE_SIZE - 1)) 44 45 #define lv1ent_fault(sent) ((*(sent) == ZERO_LV2LINK) || \ 46 ((*(sent) & 3) == 0) || ((*(sent) & 3) == 3)) 47 #define lv1ent_zero(sent) (*(sent) == ZERO_LV2LINK) 48 #define lv1ent_page_zero(sent) ((*(sent) & 3) == 1) 49 #define lv1ent_page(sent) ((*(sent) != ZERO_LV2LINK) && \ 50 ((*(sent) & 3) == 1)) 51 #define lv1ent_section(sent) ((*(sent) & 3) == 2) 52 53 #define lv2ent_fault(pent) ((*(pent) & 3) == 0) 54 #define lv2ent_small(pent) ((*(pent) & 2) == 2) 55 #define lv2ent_large(pent) ((*(pent) & 3) == 1) 56 57 #ifdef CONFIG_BIG_ENDIAN 58 #warning "revisit driver if we can enable big-endian ptes" 59 #endif 60 61 /* 62 * v1.x - v3.x SYSMMU supports 32bit physical and 32bit virtual address spaces 63 * v5.0 introduced support for 36bit physical address space by shifting 64 * all page entry values by 4 bits. 65 * All SYSMMU controllers in the system support the address spaces of the same 66 * size, so PG_ENT_SHIFT can be initialized on first SYSMMU probe to proper 67 * value (0 or 4). 68 */ 69 static short PG_ENT_SHIFT = -1; 70 #define SYSMMU_PG_ENT_SHIFT 0 71 #define SYSMMU_V5_PG_ENT_SHIFT 4 72 73 static const sysmmu_pte_t *LV1_PROT; 74 static const sysmmu_pte_t SYSMMU_LV1_PROT[] = { 75 ((0 << 15) | (0 << 10)), /* no access */ 76 ((1 << 15) | (1 << 10)), /* IOMMU_READ only */ 77 ((0 << 15) | (1 << 10)), /* IOMMU_WRITE not supported, use read/write */ 78 ((0 << 15) | (1 << 10)), /* IOMMU_READ | IOMMU_WRITE */ 79 }; 80 static const sysmmu_pte_t SYSMMU_V5_LV1_PROT[] = { 81 (0 << 4), /* no access */ 82 (1 << 4), /* IOMMU_READ only */ 83 (2 << 4), /* IOMMU_WRITE only */ 84 (3 << 4), /* IOMMU_READ | IOMMU_WRITE */ 85 }; 86 87 static const sysmmu_pte_t *LV2_PROT; 88 static const sysmmu_pte_t SYSMMU_LV2_PROT[] = { 89 ((0 << 9) | (0 << 4)), /* no access */ 90 ((1 << 9) | (1 << 4)), /* IOMMU_READ only */ 91 ((0 << 9) | (1 << 4)), /* IOMMU_WRITE not supported, use read/write */ 92 ((0 << 9) | (1 << 4)), /* IOMMU_READ | IOMMU_WRITE */ 93 }; 94 static const sysmmu_pte_t SYSMMU_V5_LV2_PROT[] = { 95 (0 << 2), /* no access */ 96 (1 << 2), /* IOMMU_READ only */ 97 (2 << 2), /* IOMMU_WRITE only */ 98 (3 << 2), /* IOMMU_READ | IOMMU_WRITE */ 99 }; 100 101 #define SYSMMU_SUPPORTED_PROT_BITS (IOMMU_READ | IOMMU_WRITE) 102 103 #define sect_to_phys(ent) (((phys_addr_t) ent) << PG_ENT_SHIFT) 104 #define section_phys(sent) (sect_to_phys(*(sent)) & SECT_MASK) 105 #define section_offs(iova) (iova & (SECT_SIZE - 1)) 106 #define lpage_phys(pent) (sect_to_phys(*(pent)) & LPAGE_MASK) 107 #define lpage_offs(iova) (iova & (LPAGE_SIZE - 1)) 108 #define spage_phys(pent) (sect_to_phys(*(pent)) & SPAGE_MASK) 109 #define spage_offs(iova) (iova & (SPAGE_SIZE - 1)) 110 111 #define NUM_LV1ENTRIES 4096 112 #define NUM_LV2ENTRIES (SECT_SIZE / SPAGE_SIZE) 113 114 static u32 lv1ent_offset(sysmmu_iova_t iova) 115 { 116 return iova >> SECT_ORDER; 117 } 118 119 static u32 lv2ent_offset(sysmmu_iova_t iova) 120 { 121 return (iova >> SPAGE_ORDER) & (NUM_LV2ENTRIES - 1); 122 } 123 124 #define LV1TABLE_SIZE (NUM_LV1ENTRIES * sizeof(sysmmu_pte_t)) 125 #define LV2TABLE_SIZE (NUM_LV2ENTRIES * sizeof(sysmmu_pte_t)) 126 127 #define SPAGES_PER_LPAGE (LPAGE_SIZE / SPAGE_SIZE) 128 #define lv2table_base(sent) (sect_to_phys(*(sent) & 0xFFFFFFC0)) 129 130 #define mk_lv1ent_sect(pa, prot) ((pa >> PG_ENT_SHIFT) | LV1_PROT[prot] | 2) 131 #define mk_lv1ent_page(pa) ((pa >> PG_ENT_SHIFT) | 1) 132 #define mk_lv2ent_lpage(pa, prot) ((pa >> PG_ENT_SHIFT) | LV2_PROT[prot] | 1) 133 #define mk_lv2ent_spage(pa, prot) ((pa >> PG_ENT_SHIFT) | LV2_PROT[prot] | 2) 134 135 #define CTRL_ENABLE 0x5 136 #define CTRL_BLOCK 0x7 137 #define CTRL_DISABLE 0x0 138 139 #define CFG_LRU 0x1 140 #define CFG_EAP (1 << 2) 141 #define CFG_QOS(n) ((n & 0xF) << 7) 142 #define CFG_ACGEN (1 << 24) /* System MMU 3.3 only */ 143 #define CFG_SYSSEL (1 << 22) /* System MMU 3.2 only */ 144 #define CFG_FLPDCACHE (1 << 20) /* System MMU 3.2+ only */ 145 146 /* common registers */ 147 #define REG_MMU_CTRL 0x000 148 #define REG_MMU_CFG 0x004 149 #define REG_MMU_STATUS 0x008 150 #define REG_MMU_VERSION 0x034 151 152 #define MMU_MAJ_VER(val) ((val) >> 7) 153 #define MMU_MIN_VER(val) ((val) & 0x7F) 154 #define MMU_RAW_VER(reg) (((reg) >> 21) & ((1 << 11) - 1)) /* 11 bits */ 155 156 #define MAKE_MMU_VER(maj, min) ((((maj) & 0xF) << 7) | ((min) & 0x7F)) 157 158 /* v1.x - v3.x registers */ 159 #define REG_MMU_FLUSH 0x00C 160 #define REG_MMU_FLUSH_ENTRY 0x010 161 #define REG_PT_BASE_ADDR 0x014 162 #define REG_INT_STATUS 0x018 163 #define REG_INT_CLEAR 0x01C 164 165 #define REG_PAGE_FAULT_ADDR 0x024 166 #define REG_AW_FAULT_ADDR 0x028 167 #define REG_AR_FAULT_ADDR 0x02C 168 #define REG_DEFAULT_SLAVE_ADDR 0x030 169 170 /* v5.x registers */ 171 #define REG_V5_PT_BASE_PFN 0x00C 172 #define REG_V5_MMU_FLUSH_ALL 0x010 173 #define REG_V5_MMU_FLUSH_ENTRY 0x014 174 #define REG_V5_INT_STATUS 0x060 175 #define REG_V5_INT_CLEAR 0x064 176 #define REG_V5_FAULT_AR_VA 0x070 177 #define REG_V5_FAULT_AW_VA 0x080 178 179 #define has_sysmmu(dev) (dev->archdata.iommu != NULL) 180 181 static struct device *dma_dev; 182 static struct kmem_cache *lv2table_kmem_cache; 183 static sysmmu_pte_t *zero_lv2_table; 184 #define ZERO_LV2LINK mk_lv1ent_page(virt_to_phys(zero_lv2_table)) 185 186 static sysmmu_pte_t *section_entry(sysmmu_pte_t *pgtable, sysmmu_iova_t iova) 187 { 188 return pgtable + lv1ent_offset(iova); 189 } 190 191 static sysmmu_pte_t *page_entry(sysmmu_pte_t *sent, sysmmu_iova_t iova) 192 { 193 return (sysmmu_pte_t *)phys_to_virt( 194 lv2table_base(sent)) + lv2ent_offset(iova); 195 } 196 197 /* 198 * IOMMU fault information register 199 */ 200 struct sysmmu_fault_info { 201 unsigned int bit; /* bit number in STATUS register */ 202 unsigned short addr_reg; /* register to read VA fault address */ 203 const char *name; /* human readable fault name */ 204 unsigned int type; /* fault type for report_iommu_fault */ 205 }; 206 207 static const struct sysmmu_fault_info sysmmu_faults[] = { 208 { 0, REG_PAGE_FAULT_ADDR, "PAGE", IOMMU_FAULT_READ }, 209 { 1, REG_AR_FAULT_ADDR, "AR MULTI-HIT", IOMMU_FAULT_READ }, 210 { 2, REG_AW_FAULT_ADDR, "AW MULTI-HIT", IOMMU_FAULT_WRITE }, 211 { 3, REG_DEFAULT_SLAVE_ADDR, "BUS ERROR", IOMMU_FAULT_READ }, 212 { 4, REG_AR_FAULT_ADDR, "AR SECURITY PROTECTION", IOMMU_FAULT_READ }, 213 { 5, REG_AR_FAULT_ADDR, "AR ACCESS PROTECTION", IOMMU_FAULT_READ }, 214 { 6, REG_AW_FAULT_ADDR, "AW SECURITY PROTECTION", IOMMU_FAULT_WRITE }, 215 { 7, REG_AW_FAULT_ADDR, "AW ACCESS PROTECTION", IOMMU_FAULT_WRITE }, 216 }; 217 218 static const struct sysmmu_fault_info sysmmu_v5_faults[] = { 219 { 0, REG_V5_FAULT_AR_VA, "AR PTW", IOMMU_FAULT_READ }, 220 { 1, REG_V5_FAULT_AR_VA, "AR PAGE", IOMMU_FAULT_READ }, 221 { 2, REG_V5_FAULT_AR_VA, "AR MULTI-HIT", IOMMU_FAULT_READ }, 222 { 3, REG_V5_FAULT_AR_VA, "AR ACCESS PROTECTION", IOMMU_FAULT_READ }, 223 { 4, REG_V5_FAULT_AR_VA, "AR SECURITY PROTECTION", IOMMU_FAULT_READ }, 224 { 16, REG_V5_FAULT_AW_VA, "AW PTW", IOMMU_FAULT_WRITE }, 225 { 17, REG_V5_FAULT_AW_VA, "AW PAGE", IOMMU_FAULT_WRITE }, 226 { 18, REG_V5_FAULT_AW_VA, "AW MULTI-HIT", IOMMU_FAULT_WRITE }, 227 { 19, REG_V5_FAULT_AW_VA, "AW ACCESS PROTECTION", IOMMU_FAULT_WRITE }, 228 { 20, REG_V5_FAULT_AW_VA, "AW SECURITY PROTECTION", IOMMU_FAULT_WRITE }, 229 }; 230 231 /* 232 * This structure is attached to dev.archdata.iommu of the master device 233 * on device add, contains a list of SYSMMU controllers defined by device tree, 234 * which are bound to given master device. It is usually referenced by 'owner' 235 * pointer. 236 */ 237 struct exynos_iommu_owner { 238 struct list_head controllers; /* list of sysmmu_drvdata.owner_node */ 239 struct iommu_domain *domain; /* domain this device is attached */ 240 struct mutex rpm_lock; /* for runtime pm of all sysmmus */ 241 }; 242 243 /* 244 * This structure exynos specific generalization of struct iommu_domain. 245 * It contains list of SYSMMU controllers from all master devices, which has 246 * been attached to this domain and page tables of IO address space defined by 247 * it. It is usually referenced by 'domain' pointer. 248 */ 249 struct exynos_iommu_domain { 250 struct list_head clients; /* list of sysmmu_drvdata.domain_node */ 251 sysmmu_pte_t *pgtable; /* lv1 page table, 16KB */ 252 short *lv2entcnt; /* free lv2 entry counter for each section */ 253 spinlock_t lock; /* lock for modyfying list of clients */ 254 spinlock_t pgtablelock; /* lock for modifying page table @ pgtable */ 255 struct iommu_domain domain; /* generic domain data structure */ 256 }; 257 258 /* 259 * This structure hold all data of a single SYSMMU controller, this includes 260 * hw resources like registers and clocks, pointers and list nodes to connect 261 * it to all other structures, internal state and parameters read from device 262 * tree. It is usually referenced by 'data' pointer. 263 */ 264 struct sysmmu_drvdata { 265 struct device *sysmmu; /* SYSMMU controller device */ 266 struct device *master; /* master device (owner) */ 267 void __iomem *sfrbase; /* our registers */ 268 struct clk *clk; /* SYSMMU's clock */ 269 struct clk *aclk; /* SYSMMU's aclk clock */ 270 struct clk *pclk; /* SYSMMU's pclk clock */ 271 struct clk *clk_master; /* master's device clock */ 272 spinlock_t lock; /* lock for modyfying state */ 273 bool active; /* current status */ 274 struct exynos_iommu_domain *domain; /* domain we belong to */ 275 struct list_head domain_node; /* node for domain clients list */ 276 struct list_head owner_node; /* node for owner controllers list */ 277 phys_addr_t pgtable; /* assigned page table structure */ 278 unsigned int version; /* our version */ 279 280 struct iommu_device iommu; /* IOMMU core handle */ 281 }; 282 283 static struct exynos_iommu_domain *to_exynos_domain(struct iommu_domain *dom) 284 { 285 return container_of(dom, struct exynos_iommu_domain, domain); 286 } 287 288 static void sysmmu_unblock(struct sysmmu_drvdata *data) 289 { 290 writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL); 291 } 292 293 static bool sysmmu_block(struct sysmmu_drvdata *data) 294 { 295 int i = 120; 296 297 writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL); 298 while ((i > 0) && !(readl(data->sfrbase + REG_MMU_STATUS) & 1)) 299 --i; 300 301 if (!(readl(data->sfrbase + REG_MMU_STATUS) & 1)) { 302 sysmmu_unblock(data); 303 return false; 304 } 305 306 return true; 307 } 308 309 static void __sysmmu_tlb_invalidate(struct sysmmu_drvdata *data) 310 { 311 if (MMU_MAJ_VER(data->version) < 5) 312 writel(0x1, data->sfrbase + REG_MMU_FLUSH); 313 else 314 writel(0x1, data->sfrbase + REG_V5_MMU_FLUSH_ALL); 315 } 316 317 static void __sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data, 318 sysmmu_iova_t iova, unsigned int num_inv) 319 { 320 unsigned int i; 321 322 for (i = 0; i < num_inv; i++) { 323 if (MMU_MAJ_VER(data->version) < 5) 324 writel((iova & SPAGE_MASK) | 1, 325 data->sfrbase + REG_MMU_FLUSH_ENTRY); 326 else 327 writel((iova & SPAGE_MASK) | 1, 328 data->sfrbase + REG_V5_MMU_FLUSH_ENTRY); 329 iova += SPAGE_SIZE; 330 } 331 } 332 333 static void __sysmmu_set_ptbase(struct sysmmu_drvdata *data, phys_addr_t pgd) 334 { 335 if (MMU_MAJ_VER(data->version) < 5) 336 writel(pgd, data->sfrbase + REG_PT_BASE_ADDR); 337 else 338 writel(pgd >> PAGE_SHIFT, 339 data->sfrbase + REG_V5_PT_BASE_PFN); 340 341 __sysmmu_tlb_invalidate(data); 342 } 343 344 static void __sysmmu_enable_clocks(struct sysmmu_drvdata *data) 345 { 346 BUG_ON(clk_prepare_enable(data->clk_master)); 347 BUG_ON(clk_prepare_enable(data->clk)); 348 BUG_ON(clk_prepare_enable(data->pclk)); 349 BUG_ON(clk_prepare_enable(data->aclk)); 350 } 351 352 static void __sysmmu_disable_clocks(struct sysmmu_drvdata *data) 353 { 354 clk_disable_unprepare(data->aclk); 355 clk_disable_unprepare(data->pclk); 356 clk_disable_unprepare(data->clk); 357 clk_disable_unprepare(data->clk_master); 358 } 359 360 static void __sysmmu_get_version(struct sysmmu_drvdata *data) 361 { 362 u32 ver; 363 364 __sysmmu_enable_clocks(data); 365 366 ver = readl(data->sfrbase + REG_MMU_VERSION); 367 368 /* controllers on some SoCs don't report proper version */ 369 if (ver == 0x80000001u) 370 data->version = MAKE_MMU_VER(1, 0); 371 else 372 data->version = MMU_RAW_VER(ver); 373 374 dev_dbg(data->sysmmu, "hardware version: %d.%d\n", 375 MMU_MAJ_VER(data->version), MMU_MIN_VER(data->version)); 376 377 __sysmmu_disable_clocks(data); 378 } 379 380 static void show_fault_information(struct sysmmu_drvdata *data, 381 const struct sysmmu_fault_info *finfo, 382 sysmmu_iova_t fault_addr) 383 { 384 sysmmu_pte_t *ent; 385 386 dev_err(data->sysmmu, "%s: %s FAULT occurred at %#x\n", 387 dev_name(data->master), finfo->name, fault_addr); 388 dev_dbg(data->sysmmu, "Page table base: %pa\n", &data->pgtable); 389 ent = section_entry(phys_to_virt(data->pgtable), fault_addr); 390 dev_dbg(data->sysmmu, "\tLv1 entry: %#x\n", *ent); 391 if (lv1ent_page(ent)) { 392 ent = page_entry(ent, fault_addr); 393 dev_dbg(data->sysmmu, "\t Lv2 entry: %#x\n", *ent); 394 } 395 } 396 397 static irqreturn_t exynos_sysmmu_irq(int irq, void *dev_id) 398 { 399 /* SYSMMU is in blocked state when interrupt occurred. */ 400 struct sysmmu_drvdata *data = dev_id; 401 const struct sysmmu_fault_info *finfo; 402 unsigned int i, n, itype; 403 sysmmu_iova_t fault_addr = -1; 404 unsigned short reg_status, reg_clear; 405 int ret = -ENOSYS; 406 407 WARN_ON(!data->active); 408 409 if (MMU_MAJ_VER(data->version) < 5) { 410 reg_status = REG_INT_STATUS; 411 reg_clear = REG_INT_CLEAR; 412 finfo = sysmmu_faults; 413 n = ARRAY_SIZE(sysmmu_faults); 414 } else { 415 reg_status = REG_V5_INT_STATUS; 416 reg_clear = REG_V5_INT_CLEAR; 417 finfo = sysmmu_v5_faults; 418 n = ARRAY_SIZE(sysmmu_v5_faults); 419 } 420 421 spin_lock(&data->lock); 422 423 clk_enable(data->clk_master); 424 425 itype = __ffs(readl(data->sfrbase + reg_status)); 426 for (i = 0; i < n; i++, finfo++) 427 if (finfo->bit == itype) 428 break; 429 /* unknown/unsupported fault */ 430 BUG_ON(i == n); 431 432 /* print debug message */ 433 fault_addr = readl(data->sfrbase + finfo->addr_reg); 434 show_fault_information(data, finfo, fault_addr); 435 436 if (data->domain) 437 ret = report_iommu_fault(&data->domain->domain, 438 data->master, fault_addr, finfo->type); 439 /* fault is not recovered by fault handler */ 440 BUG_ON(ret != 0); 441 442 writel(1 << itype, data->sfrbase + reg_clear); 443 444 sysmmu_unblock(data); 445 446 clk_disable(data->clk_master); 447 448 spin_unlock(&data->lock); 449 450 return IRQ_HANDLED; 451 } 452 453 static void __sysmmu_disable(struct sysmmu_drvdata *data) 454 { 455 unsigned long flags; 456 457 clk_enable(data->clk_master); 458 459 spin_lock_irqsave(&data->lock, flags); 460 writel(CTRL_DISABLE, data->sfrbase + REG_MMU_CTRL); 461 writel(0, data->sfrbase + REG_MMU_CFG); 462 data->active = false; 463 spin_unlock_irqrestore(&data->lock, flags); 464 465 __sysmmu_disable_clocks(data); 466 } 467 468 static void __sysmmu_init_config(struct sysmmu_drvdata *data) 469 { 470 unsigned int cfg; 471 472 if (data->version <= MAKE_MMU_VER(3, 1)) 473 cfg = CFG_LRU | CFG_QOS(15); 474 else if (data->version <= MAKE_MMU_VER(3, 2)) 475 cfg = CFG_LRU | CFG_QOS(15) | CFG_FLPDCACHE | CFG_SYSSEL; 476 else 477 cfg = CFG_QOS(15) | CFG_FLPDCACHE | CFG_ACGEN; 478 479 cfg |= CFG_EAP; /* enable access protection bits check */ 480 481 writel(cfg, data->sfrbase + REG_MMU_CFG); 482 } 483 484 static void __sysmmu_enable(struct sysmmu_drvdata *data) 485 { 486 unsigned long flags; 487 488 __sysmmu_enable_clocks(data); 489 490 spin_lock_irqsave(&data->lock, flags); 491 writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL); 492 __sysmmu_init_config(data); 493 __sysmmu_set_ptbase(data, data->pgtable); 494 writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL); 495 data->active = true; 496 spin_unlock_irqrestore(&data->lock, flags); 497 498 /* 499 * SYSMMU driver keeps master's clock enabled only for the short 500 * time, while accessing the registers. For performing address 501 * translation during DMA transaction it relies on the client 502 * driver to enable it. 503 */ 504 clk_disable(data->clk_master); 505 } 506 507 static void sysmmu_tlb_invalidate_flpdcache(struct sysmmu_drvdata *data, 508 sysmmu_iova_t iova) 509 { 510 unsigned long flags; 511 512 spin_lock_irqsave(&data->lock, flags); 513 if (data->active && data->version >= MAKE_MMU_VER(3, 3)) { 514 clk_enable(data->clk_master); 515 __sysmmu_tlb_invalidate_entry(data, iova, 1); 516 clk_disable(data->clk_master); 517 } 518 spin_unlock_irqrestore(&data->lock, flags); 519 } 520 521 static void sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data, 522 sysmmu_iova_t iova, size_t size) 523 { 524 unsigned long flags; 525 526 spin_lock_irqsave(&data->lock, flags); 527 if (data->active) { 528 unsigned int num_inv = 1; 529 530 clk_enable(data->clk_master); 531 532 /* 533 * L2TLB invalidation required 534 * 4KB page: 1 invalidation 535 * 64KB page: 16 invalidations 536 * 1MB page: 64 invalidations 537 * because it is set-associative TLB 538 * with 8-way and 64 sets. 539 * 1MB page can be cached in one of all sets. 540 * 64KB page can be one of 16 consecutive sets. 541 */ 542 if (MMU_MAJ_VER(data->version) == 2) 543 num_inv = min_t(unsigned int, size / PAGE_SIZE, 64); 544 545 if (sysmmu_block(data)) { 546 __sysmmu_tlb_invalidate_entry(data, iova, num_inv); 547 sysmmu_unblock(data); 548 } 549 clk_disable(data->clk_master); 550 } 551 spin_unlock_irqrestore(&data->lock, flags); 552 } 553 554 static struct iommu_ops exynos_iommu_ops; 555 556 static int __init exynos_sysmmu_probe(struct platform_device *pdev) 557 { 558 int irq, ret; 559 struct device *dev = &pdev->dev; 560 struct sysmmu_drvdata *data; 561 struct resource *res; 562 563 data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL); 564 if (!data) 565 return -ENOMEM; 566 567 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 568 data->sfrbase = devm_ioremap_resource(dev, res); 569 if (IS_ERR(data->sfrbase)) 570 return PTR_ERR(data->sfrbase); 571 572 irq = platform_get_irq(pdev, 0); 573 if (irq <= 0) { 574 dev_err(dev, "Unable to find IRQ resource\n"); 575 return irq; 576 } 577 578 ret = devm_request_irq(dev, irq, exynos_sysmmu_irq, 0, 579 dev_name(dev), data); 580 if (ret) { 581 dev_err(dev, "Unabled to register handler of irq %d\n", irq); 582 return ret; 583 } 584 585 data->clk = devm_clk_get(dev, "sysmmu"); 586 if (PTR_ERR(data->clk) == -ENOENT) 587 data->clk = NULL; 588 else if (IS_ERR(data->clk)) 589 return PTR_ERR(data->clk); 590 591 data->aclk = devm_clk_get(dev, "aclk"); 592 if (PTR_ERR(data->aclk) == -ENOENT) 593 data->aclk = NULL; 594 else if (IS_ERR(data->aclk)) 595 return PTR_ERR(data->aclk); 596 597 data->pclk = devm_clk_get(dev, "pclk"); 598 if (PTR_ERR(data->pclk) == -ENOENT) 599 data->pclk = NULL; 600 else if (IS_ERR(data->pclk)) 601 return PTR_ERR(data->pclk); 602 603 if (!data->clk && (!data->aclk || !data->pclk)) { 604 dev_err(dev, "Failed to get device clock(s)!\n"); 605 return -ENOSYS; 606 } 607 608 data->clk_master = devm_clk_get(dev, "master"); 609 if (PTR_ERR(data->clk_master) == -ENOENT) 610 data->clk_master = NULL; 611 else if (IS_ERR(data->clk_master)) 612 return PTR_ERR(data->clk_master); 613 614 data->sysmmu = dev; 615 spin_lock_init(&data->lock); 616 617 ret = iommu_device_sysfs_add(&data->iommu, &pdev->dev, NULL, 618 dev_name(data->sysmmu)); 619 if (ret) 620 return ret; 621 622 iommu_device_set_ops(&data->iommu, &exynos_iommu_ops); 623 iommu_device_set_fwnode(&data->iommu, &dev->of_node->fwnode); 624 625 ret = iommu_device_register(&data->iommu); 626 if (ret) 627 return ret; 628 629 platform_set_drvdata(pdev, data); 630 631 __sysmmu_get_version(data); 632 if (PG_ENT_SHIFT < 0) { 633 if (MMU_MAJ_VER(data->version) < 5) { 634 PG_ENT_SHIFT = SYSMMU_PG_ENT_SHIFT; 635 LV1_PROT = SYSMMU_LV1_PROT; 636 LV2_PROT = SYSMMU_LV2_PROT; 637 } else { 638 PG_ENT_SHIFT = SYSMMU_V5_PG_ENT_SHIFT; 639 LV1_PROT = SYSMMU_V5_LV1_PROT; 640 LV2_PROT = SYSMMU_V5_LV2_PROT; 641 } 642 } 643 644 pm_runtime_enable(dev); 645 646 return 0; 647 } 648 649 static int __maybe_unused exynos_sysmmu_suspend(struct device *dev) 650 { 651 struct sysmmu_drvdata *data = dev_get_drvdata(dev); 652 struct device *master = data->master; 653 654 if (master) { 655 struct exynos_iommu_owner *owner = master->archdata.iommu; 656 657 mutex_lock(&owner->rpm_lock); 658 if (data->domain) { 659 dev_dbg(data->sysmmu, "saving state\n"); 660 __sysmmu_disable(data); 661 } 662 mutex_unlock(&owner->rpm_lock); 663 } 664 return 0; 665 } 666 667 static int __maybe_unused exynos_sysmmu_resume(struct device *dev) 668 { 669 struct sysmmu_drvdata *data = dev_get_drvdata(dev); 670 struct device *master = data->master; 671 672 if (master) { 673 struct exynos_iommu_owner *owner = master->archdata.iommu; 674 675 mutex_lock(&owner->rpm_lock); 676 if (data->domain) { 677 dev_dbg(data->sysmmu, "restoring state\n"); 678 __sysmmu_enable(data); 679 } 680 mutex_unlock(&owner->rpm_lock); 681 } 682 return 0; 683 } 684 685 static const struct dev_pm_ops sysmmu_pm_ops = { 686 SET_RUNTIME_PM_OPS(exynos_sysmmu_suspend, exynos_sysmmu_resume, NULL) 687 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, 688 pm_runtime_force_resume) 689 }; 690 691 static const struct of_device_id sysmmu_of_match[] __initconst = { 692 { .compatible = "samsung,exynos-sysmmu", }, 693 { }, 694 }; 695 696 static struct platform_driver exynos_sysmmu_driver __refdata = { 697 .probe = exynos_sysmmu_probe, 698 .driver = { 699 .name = "exynos-sysmmu", 700 .of_match_table = sysmmu_of_match, 701 .pm = &sysmmu_pm_ops, 702 .suppress_bind_attrs = true, 703 } 704 }; 705 706 static inline void update_pte(sysmmu_pte_t *ent, sysmmu_pte_t val) 707 { 708 dma_sync_single_for_cpu(dma_dev, virt_to_phys(ent), sizeof(*ent), 709 DMA_TO_DEVICE); 710 *ent = cpu_to_le32(val); 711 dma_sync_single_for_device(dma_dev, virt_to_phys(ent), sizeof(*ent), 712 DMA_TO_DEVICE); 713 } 714 715 static struct iommu_domain *exynos_iommu_domain_alloc(unsigned type) 716 { 717 struct exynos_iommu_domain *domain; 718 dma_addr_t handle; 719 int i; 720 721 /* Check if correct PTE offsets are initialized */ 722 BUG_ON(PG_ENT_SHIFT < 0 || !dma_dev); 723 724 domain = kzalloc(sizeof(*domain), GFP_KERNEL); 725 if (!domain) 726 return NULL; 727 728 if (type == IOMMU_DOMAIN_DMA) { 729 if (iommu_get_dma_cookie(&domain->domain) != 0) 730 goto err_pgtable; 731 } else if (type != IOMMU_DOMAIN_UNMANAGED) { 732 goto err_pgtable; 733 } 734 735 domain->pgtable = (sysmmu_pte_t *)__get_free_pages(GFP_KERNEL, 2); 736 if (!domain->pgtable) 737 goto err_dma_cookie; 738 739 domain->lv2entcnt = (short *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1); 740 if (!domain->lv2entcnt) 741 goto err_counter; 742 743 /* Workaround for System MMU v3.3 to prevent caching 1MiB mapping */ 744 for (i = 0; i < NUM_LV1ENTRIES; i += 8) { 745 domain->pgtable[i + 0] = ZERO_LV2LINK; 746 domain->pgtable[i + 1] = ZERO_LV2LINK; 747 domain->pgtable[i + 2] = ZERO_LV2LINK; 748 domain->pgtable[i + 3] = ZERO_LV2LINK; 749 domain->pgtable[i + 4] = ZERO_LV2LINK; 750 domain->pgtable[i + 5] = ZERO_LV2LINK; 751 domain->pgtable[i + 6] = ZERO_LV2LINK; 752 domain->pgtable[i + 7] = ZERO_LV2LINK; 753 } 754 755 handle = dma_map_single(dma_dev, domain->pgtable, LV1TABLE_SIZE, 756 DMA_TO_DEVICE); 757 /* For mapping page table entries we rely on dma == phys */ 758 BUG_ON(handle != virt_to_phys(domain->pgtable)); 759 if (dma_mapping_error(dma_dev, handle)) 760 goto err_lv2ent; 761 762 spin_lock_init(&domain->lock); 763 spin_lock_init(&domain->pgtablelock); 764 INIT_LIST_HEAD(&domain->clients); 765 766 domain->domain.geometry.aperture_start = 0; 767 domain->domain.geometry.aperture_end = ~0UL; 768 domain->domain.geometry.force_aperture = true; 769 770 return &domain->domain; 771 772 err_lv2ent: 773 free_pages((unsigned long)domain->lv2entcnt, 1); 774 err_counter: 775 free_pages((unsigned long)domain->pgtable, 2); 776 err_dma_cookie: 777 if (type == IOMMU_DOMAIN_DMA) 778 iommu_put_dma_cookie(&domain->domain); 779 err_pgtable: 780 kfree(domain); 781 return NULL; 782 } 783 784 static void exynos_iommu_domain_free(struct iommu_domain *iommu_domain) 785 { 786 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain); 787 struct sysmmu_drvdata *data, *next; 788 unsigned long flags; 789 int i; 790 791 WARN_ON(!list_empty(&domain->clients)); 792 793 spin_lock_irqsave(&domain->lock, flags); 794 795 list_for_each_entry_safe(data, next, &domain->clients, domain_node) { 796 spin_lock(&data->lock); 797 __sysmmu_disable(data); 798 data->pgtable = 0; 799 data->domain = NULL; 800 list_del_init(&data->domain_node); 801 spin_unlock(&data->lock); 802 } 803 804 spin_unlock_irqrestore(&domain->lock, flags); 805 806 if (iommu_domain->type == IOMMU_DOMAIN_DMA) 807 iommu_put_dma_cookie(iommu_domain); 808 809 dma_unmap_single(dma_dev, virt_to_phys(domain->pgtable), LV1TABLE_SIZE, 810 DMA_TO_DEVICE); 811 812 for (i = 0; i < NUM_LV1ENTRIES; i++) 813 if (lv1ent_page(domain->pgtable + i)) { 814 phys_addr_t base = lv2table_base(domain->pgtable + i); 815 816 dma_unmap_single(dma_dev, base, LV2TABLE_SIZE, 817 DMA_TO_DEVICE); 818 kmem_cache_free(lv2table_kmem_cache, 819 phys_to_virt(base)); 820 } 821 822 free_pages((unsigned long)domain->pgtable, 2); 823 free_pages((unsigned long)domain->lv2entcnt, 1); 824 kfree(domain); 825 } 826 827 static void exynos_iommu_detach_device(struct iommu_domain *iommu_domain, 828 struct device *dev) 829 { 830 struct exynos_iommu_owner *owner = dev->archdata.iommu; 831 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain); 832 phys_addr_t pagetable = virt_to_phys(domain->pgtable); 833 struct sysmmu_drvdata *data, *next; 834 unsigned long flags; 835 836 if (!has_sysmmu(dev) || owner->domain != iommu_domain) 837 return; 838 839 mutex_lock(&owner->rpm_lock); 840 841 list_for_each_entry(data, &owner->controllers, owner_node) { 842 pm_runtime_get_noresume(data->sysmmu); 843 if (pm_runtime_active(data->sysmmu)) 844 __sysmmu_disable(data); 845 pm_runtime_put(data->sysmmu); 846 } 847 848 spin_lock_irqsave(&domain->lock, flags); 849 list_for_each_entry_safe(data, next, &domain->clients, domain_node) { 850 spin_lock(&data->lock); 851 data->pgtable = 0; 852 data->domain = NULL; 853 list_del_init(&data->domain_node); 854 spin_unlock(&data->lock); 855 } 856 owner->domain = NULL; 857 spin_unlock_irqrestore(&domain->lock, flags); 858 859 mutex_unlock(&owner->rpm_lock); 860 861 dev_dbg(dev, "%s: Detached IOMMU with pgtable %pa\n", __func__, 862 &pagetable); 863 } 864 865 static int exynos_iommu_attach_device(struct iommu_domain *iommu_domain, 866 struct device *dev) 867 { 868 struct exynos_iommu_owner *owner = dev->archdata.iommu; 869 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain); 870 struct sysmmu_drvdata *data; 871 phys_addr_t pagetable = virt_to_phys(domain->pgtable); 872 unsigned long flags; 873 874 if (!has_sysmmu(dev)) 875 return -ENODEV; 876 877 if (owner->domain) 878 exynos_iommu_detach_device(owner->domain, dev); 879 880 mutex_lock(&owner->rpm_lock); 881 882 spin_lock_irqsave(&domain->lock, flags); 883 list_for_each_entry(data, &owner->controllers, owner_node) { 884 spin_lock(&data->lock); 885 data->pgtable = pagetable; 886 data->domain = domain; 887 list_add_tail(&data->domain_node, &domain->clients); 888 spin_unlock(&data->lock); 889 } 890 owner->domain = iommu_domain; 891 spin_unlock_irqrestore(&domain->lock, flags); 892 893 list_for_each_entry(data, &owner->controllers, owner_node) { 894 pm_runtime_get_noresume(data->sysmmu); 895 if (pm_runtime_active(data->sysmmu)) 896 __sysmmu_enable(data); 897 pm_runtime_put(data->sysmmu); 898 } 899 900 mutex_unlock(&owner->rpm_lock); 901 902 dev_dbg(dev, "%s: Attached IOMMU with pgtable %pa\n", __func__, 903 &pagetable); 904 905 return 0; 906 } 907 908 static sysmmu_pte_t *alloc_lv2entry(struct exynos_iommu_domain *domain, 909 sysmmu_pte_t *sent, sysmmu_iova_t iova, short *pgcounter) 910 { 911 if (lv1ent_section(sent)) { 912 WARN(1, "Trying mapping on %#08x mapped with 1MiB page", iova); 913 return ERR_PTR(-EADDRINUSE); 914 } 915 916 if (lv1ent_fault(sent)) { 917 dma_addr_t handle; 918 sysmmu_pte_t *pent; 919 bool need_flush_flpd_cache = lv1ent_zero(sent); 920 921 pent = kmem_cache_zalloc(lv2table_kmem_cache, GFP_ATOMIC); 922 BUG_ON((uintptr_t)pent & (LV2TABLE_SIZE - 1)); 923 if (!pent) 924 return ERR_PTR(-ENOMEM); 925 926 update_pte(sent, mk_lv1ent_page(virt_to_phys(pent))); 927 kmemleak_ignore(pent); 928 *pgcounter = NUM_LV2ENTRIES; 929 handle = dma_map_single(dma_dev, pent, LV2TABLE_SIZE, 930 DMA_TO_DEVICE); 931 if (dma_mapping_error(dma_dev, handle)) { 932 kmem_cache_free(lv2table_kmem_cache, pent); 933 return ERR_PTR(-EADDRINUSE); 934 } 935 936 /* 937 * If pre-fetched SLPD is a faulty SLPD in zero_l2_table, 938 * FLPD cache may cache the address of zero_l2_table. This 939 * function replaces the zero_l2_table with new L2 page table 940 * to write valid mappings. 941 * Accessing the valid area may cause page fault since FLPD 942 * cache may still cache zero_l2_table for the valid area 943 * instead of new L2 page table that has the mapping 944 * information of the valid area. 945 * Thus any replacement of zero_l2_table with other valid L2 946 * page table must involve FLPD cache invalidation for System 947 * MMU v3.3. 948 * FLPD cache invalidation is performed with TLB invalidation 949 * by VPN without blocking. It is safe to invalidate TLB without 950 * blocking because the target address of TLB invalidation is 951 * not currently mapped. 952 */ 953 if (need_flush_flpd_cache) { 954 struct sysmmu_drvdata *data; 955 956 spin_lock(&domain->lock); 957 list_for_each_entry(data, &domain->clients, domain_node) 958 sysmmu_tlb_invalidate_flpdcache(data, iova); 959 spin_unlock(&domain->lock); 960 } 961 } 962 963 return page_entry(sent, iova); 964 } 965 966 static int lv1set_section(struct exynos_iommu_domain *domain, 967 sysmmu_pte_t *sent, sysmmu_iova_t iova, 968 phys_addr_t paddr, int prot, short *pgcnt) 969 { 970 if (lv1ent_section(sent)) { 971 WARN(1, "Trying mapping on 1MiB@%#08x that is mapped", 972 iova); 973 return -EADDRINUSE; 974 } 975 976 if (lv1ent_page(sent)) { 977 if (*pgcnt != NUM_LV2ENTRIES) { 978 WARN(1, "Trying mapping on 1MiB@%#08x that is mapped", 979 iova); 980 return -EADDRINUSE; 981 } 982 983 kmem_cache_free(lv2table_kmem_cache, page_entry(sent, 0)); 984 *pgcnt = 0; 985 } 986 987 update_pte(sent, mk_lv1ent_sect(paddr, prot)); 988 989 spin_lock(&domain->lock); 990 if (lv1ent_page_zero(sent)) { 991 struct sysmmu_drvdata *data; 992 /* 993 * Flushing FLPD cache in System MMU v3.3 that may cache a FLPD 994 * entry by speculative prefetch of SLPD which has no mapping. 995 */ 996 list_for_each_entry(data, &domain->clients, domain_node) 997 sysmmu_tlb_invalidate_flpdcache(data, iova); 998 } 999 spin_unlock(&domain->lock); 1000 1001 return 0; 1002 } 1003 1004 static int lv2set_page(sysmmu_pte_t *pent, phys_addr_t paddr, size_t size, 1005 int prot, short *pgcnt) 1006 { 1007 if (size == SPAGE_SIZE) { 1008 if (WARN_ON(!lv2ent_fault(pent))) 1009 return -EADDRINUSE; 1010 1011 update_pte(pent, mk_lv2ent_spage(paddr, prot)); 1012 *pgcnt -= 1; 1013 } else { /* size == LPAGE_SIZE */ 1014 int i; 1015 dma_addr_t pent_base = virt_to_phys(pent); 1016 1017 dma_sync_single_for_cpu(dma_dev, pent_base, 1018 sizeof(*pent) * SPAGES_PER_LPAGE, 1019 DMA_TO_DEVICE); 1020 for (i = 0; i < SPAGES_PER_LPAGE; i++, pent++) { 1021 if (WARN_ON(!lv2ent_fault(pent))) { 1022 if (i > 0) 1023 memset(pent - i, 0, sizeof(*pent) * i); 1024 return -EADDRINUSE; 1025 } 1026 1027 *pent = mk_lv2ent_lpage(paddr, prot); 1028 } 1029 dma_sync_single_for_device(dma_dev, pent_base, 1030 sizeof(*pent) * SPAGES_PER_LPAGE, 1031 DMA_TO_DEVICE); 1032 *pgcnt -= SPAGES_PER_LPAGE; 1033 } 1034 1035 return 0; 1036 } 1037 1038 /* 1039 * *CAUTION* to the I/O virtual memory managers that support exynos-iommu: 1040 * 1041 * System MMU v3.x has advanced logic to improve address translation 1042 * performance with caching more page table entries by a page table walk. 1043 * However, the logic has a bug that while caching faulty page table entries, 1044 * System MMU reports page fault if the cached fault entry is hit even though 1045 * the fault entry is updated to a valid entry after the entry is cached. 1046 * To prevent caching faulty page table entries which may be updated to valid 1047 * entries later, the virtual memory manager should care about the workaround 1048 * for the problem. The following describes the workaround. 1049 * 1050 * Any two consecutive I/O virtual address regions must have a hole of 128KiB 1051 * at maximum to prevent misbehavior of System MMU 3.x (workaround for h/w bug). 1052 * 1053 * Precisely, any start address of I/O virtual region must be aligned with 1054 * the following sizes for System MMU v3.1 and v3.2. 1055 * System MMU v3.1: 128KiB 1056 * System MMU v3.2: 256KiB 1057 * 1058 * Because System MMU v3.3 caches page table entries more aggressively, it needs 1059 * more workarounds. 1060 * - Any two consecutive I/O virtual regions must have a hole of size larger 1061 * than or equal to 128KiB. 1062 * - Start address of an I/O virtual region must be aligned by 128KiB. 1063 */ 1064 static int exynos_iommu_map(struct iommu_domain *iommu_domain, 1065 unsigned long l_iova, phys_addr_t paddr, size_t size, 1066 int prot) 1067 { 1068 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain); 1069 sysmmu_pte_t *entry; 1070 sysmmu_iova_t iova = (sysmmu_iova_t)l_iova; 1071 unsigned long flags; 1072 int ret = -ENOMEM; 1073 1074 BUG_ON(domain->pgtable == NULL); 1075 prot &= SYSMMU_SUPPORTED_PROT_BITS; 1076 1077 spin_lock_irqsave(&domain->pgtablelock, flags); 1078 1079 entry = section_entry(domain->pgtable, iova); 1080 1081 if (size == SECT_SIZE) { 1082 ret = lv1set_section(domain, entry, iova, paddr, prot, 1083 &domain->lv2entcnt[lv1ent_offset(iova)]); 1084 } else { 1085 sysmmu_pte_t *pent; 1086 1087 pent = alloc_lv2entry(domain, entry, iova, 1088 &domain->lv2entcnt[lv1ent_offset(iova)]); 1089 1090 if (IS_ERR(pent)) 1091 ret = PTR_ERR(pent); 1092 else 1093 ret = lv2set_page(pent, paddr, size, prot, 1094 &domain->lv2entcnt[lv1ent_offset(iova)]); 1095 } 1096 1097 if (ret) 1098 pr_err("%s: Failed(%d) to map %#zx bytes @ %#x\n", 1099 __func__, ret, size, iova); 1100 1101 spin_unlock_irqrestore(&domain->pgtablelock, flags); 1102 1103 return ret; 1104 } 1105 1106 static void exynos_iommu_tlb_invalidate_entry(struct exynos_iommu_domain *domain, 1107 sysmmu_iova_t iova, size_t size) 1108 { 1109 struct sysmmu_drvdata *data; 1110 unsigned long flags; 1111 1112 spin_lock_irqsave(&domain->lock, flags); 1113 1114 list_for_each_entry(data, &domain->clients, domain_node) 1115 sysmmu_tlb_invalidate_entry(data, iova, size); 1116 1117 spin_unlock_irqrestore(&domain->lock, flags); 1118 } 1119 1120 static size_t exynos_iommu_unmap(struct iommu_domain *iommu_domain, 1121 unsigned long l_iova, size_t size) 1122 { 1123 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain); 1124 sysmmu_iova_t iova = (sysmmu_iova_t)l_iova; 1125 sysmmu_pte_t *ent; 1126 size_t err_pgsize; 1127 unsigned long flags; 1128 1129 BUG_ON(domain->pgtable == NULL); 1130 1131 spin_lock_irqsave(&domain->pgtablelock, flags); 1132 1133 ent = section_entry(domain->pgtable, iova); 1134 1135 if (lv1ent_section(ent)) { 1136 if (WARN_ON(size < SECT_SIZE)) { 1137 err_pgsize = SECT_SIZE; 1138 goto err; 1139 } 1140 1141 /* workaround for h/w bug in System MMU v3.3 */ 1142 update_pte(ent, ZERO_LV2LINK); 1143 size = SECT_SIZE; 1144 goto done; 1145 } 1146 1147 if (unlikely(lv1ent_fault(ent))) { 1148 if (size > SECT_SIZE) 1149 size = SECT_SIZE; 1150 goto done; 1151 } 1152 1153 /* lv1ent_page(sent) == true here */ 1154 1155 ent = page_entry(ent, iova); 1156 1157 if (unlikely(lv2ent_fault(ent))) { 1158 size = SPAGE_SIZE; 1159 goto done; 1160 } 1161 1162 if (lv2ent_small(ent)) { 1163 update_pte(ent, 0); 1164 size = SPAGE_SIZE; 1165 domain->lv2entcnt[lv1ent_offset(iova)] += 1; 1166 goto done; 1167 } 1168 1169 /* lv1ent_large(ent) == true here */ 1170 if (WARN_ON(size < LPAGE_SIZE)) { 1171 err_pgsize = LPAGE_SIZE; 1172 goto err; 1173 } 1174 1175 dma_sync_single_for_cpu(dma_dev, virt_to_phys(ent), 1176 sizeof(*ent) * SPAGES_PER_LPAGE, 1177 DMA_TO_DEVICE); 1178 memset(ent, 0, sizeof(*ent) * SPAGES_PER_LPAGE); 1179 dma_sync_single_for_device(dma_dev, virt_to_phys(ent), 1180 sizeof(*ent) * SPAGES_PER_LPAGE, 1181 DMA_TO_DEVICE); 1182 size = LPAGE_SIZE; 1183 domain->lv2entcnt[lv1ent_offset(iova)] += SPAGES_PER_LPAGE; 1184 done: 1185 spin_unlock_irqrestore(&domain->pgtablelock, flags); 1186 1187 exynos_iommu_tlb_invalidate_entry(domain, iova, size); 1188 1189 return size; 1190 err: 1191 spin_unlock_irqrestore(&domain->pgtablelock, flags); 1192 1193 pr_err("%s: Failed: size(%#zx) @ %#x is smaller than page size %#zx\n", 1194 __func__, size, iova, err_pgsize); 1195 1196 return 0; 1197 } 1198 1199 static phys_addr_t exynos_iommu_iova_to_phys(struct iommu_domain *iommu_domain, 1200 dma_addr_t iova) 1201 { 1202 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain); 1203 sysmmu_pte_t *entry; 1204 unsigned long flags; 1205 phys_addr_t phys = 0; 1206 1207 spin_lock_irqsave(&domain->pgtablelock, flags); 1208 1209 entry = section_entry(domain->pgtable, iova); 1210 1211 if (lv1ent_section(entry)) { 1212 phys = section_phys(entry) + section_offs(iova); 1213 } else if (lv1ent_page(entry)) { 1214 entry = page_entry(entry, iova); 1215 1216 if (lv2ent_large(entry)) 1217 phys = lpage_phys(entry) + lpage_offs(iova); 1218 else if (lv2ent_small(entry)) 1219 phys = spage_phys(entry) + spage_offs(iova); 1220 } 1221 1222 spin_unlock_irqrestore(&domain->pgtablelock, flags); 1223 1224 return phys; 1225 } 1226 1227 static struct iommu_group *get_device_iommu_group(struct device *dev) 1228 { 1229 struct iommu_group *group; 1230 1231 group = iommu_group_get(dev); 1232 if (!group) 1233 group = iommu_group_alloc(); 1234 1235 return group; 1236 } 1237 1238 static int exynos_iommu_add_device(struct device *dev) 1239 { 1240 struct iommu_group *group; 1241 1242 if (!has_sysmmu(dev)) 1243 return -ENODEV; 1244 1245 group = iommu_group_get_for_dev(dev); 1246 1247 if (IS_ERR(group)) 1248 return PTR_ERR(group); 1249 1250 iommu_group_put(group); 1251 1252 return 0; 1253 } 1254 1255 static void exynos_iommu_remove_device(struct device *dev) 1256 { 1257 struct exynos_iommu_owner *owner = dev->archdata.iommu; 1258 1259 if (!has_sysmmu(dev)) 1260 return; 1261 1262 if (owner->domain) { 1263 struct iommu_group *group = iommu_group_get(dev); 1264 1265 if (group) { 1266 WARN_ON(owner->domain != 1267 iommu_group_default_domain(group)); 1268 exynos_iommu_detach_device(owner->domain, dev); 1269 iommu_group_put(group); 1270 } 1271 } 1272 iommu_group_remove_device(dev); 1273 } 1274 1275 static int exynos_iommu_of_xlate(struct device *dev, 1276 struct of_phandle_args *spec) 1277 { 1278 struct exynos_iommu_owner *owner = dev->archdata.iommu; 1279 struct platform_device *sysmmu = of_find_device_by_node(spec->np); 1280 struct sysmmu_drvdata *data, *entry; 1281 1282 if (!sysmmu) 1283 return -ENODEV; 1284 1285 data = platform_get_drvdata(sysmmu); 1286 if (!data) 1287 return -ENODEV; 1288 1289 if (!owner) { 1290 owner = kzalloc(sizeof(*owner), GFP_KERNEL); 1291 if (!owner) 1292 return -ENOMEM; 1293 1294 INIT_LIST_HEAD(&owner->controllers); 1295 mutex_init(&owner->rpm_lock); 1296 dev->archdata.iommu = owner; 1297 } 1298 1299 list_for_each_entry(entry, &owner->controllers, owner_node) 1300 if (entry == data) 1301 return 0; 1302 1303 list_add_tail(&data->owner_node, &owner->controllers); 1304 data->master = dev; 1305 1306 /* 1307 * SYSMMU will be runtime activated via device link (dependency) to its 1308 * master device, so there are no direct calls to pm_runtime_get/put 1309 * in this driver. 1310 */ 1311 device_link_add(dev, data->sysmmu, DL_FLAG_PM_RUNTIME); 1312 1313 return 0; 1314 } 1315 1316 static struct iommu_ops exynos_iommu_ops = { 1317 .domain_alloc = exynos_iommu_domain_alloc, 1318 .domain_free = exynos_iommu_domain_free, 1319 .attach_dev = exynos_iommu_attach_device, 1320 .detach_dev = exynos_iommu_detach_device, 1321 .map = exynos_iommu_map, 1322 .unmap = exynos_iommu_unmap, 1323 .map_sg = default_iommu_map_sg, 1324 .iova_to_phys = exynos_iommu_iova_to_phys, 1325 .device_group = get_device_iommu_group, 1326 .add_device = exynos_iommu_add_device, 1327 .remove_device = exynos_iommu_remove_device, 1328 .pgsize_bitmap = SECT_SIZE | LPAGE_SIZE | SPAGE_SIZE, 1329 .of_xlate = exynos_iommu_of_xlate, 1330 }; 1331 1332 static bool init_done; 1333 1334 static int __init exynos_iommu_init(void) 1335 { 1336 int ret; 1337 1338 lv2table_kmem_cache = kmem_cache_create("exynos-iommu-lv2table", 1339 LV2TABLE_SIZE, LV2TABLE_SIZE, 0, NULL); 1340 if (!lv2table_kmem_cache) { 1341 pr_err("%s: Failed to create kmem cache\n", __func__); 1342 return -ENOMEM; 1343 } 1344 1345 ret = platform_driver_register(&exynos_sysmmu_driver); 1346 if (ret) { 1347 pr_err("%s: Failed to register driver\n", __func__); 1348 goto err_reg_driver; 1349 } 1350 1351 zero_lv2_table = kmem_cache_zalloc(lv2table_kmem_cache, GFP_KERNEL); 1352 if (zero_lv2_table == NULL) { 1353 pr_err("%s: Failed to allocate zero level2 page table\n", 1354 __func__); 1355 ret = -ENOMEM; 1356 goto err_zero_lv2; 1357 } 1358 1359 ret = bus_set_iommu(&platform_bus_type, &exynos_iommu_ops); 1360 if (ret) { 1361 pr_err("%s: Failed to register exynos-iommu driver.\n", 1362 __func__); 1363 goto err_set_iommu; 1364 } 1365 1366 init_done = true; 1367 1368 return 0; 1369 err_set_iommu: 1370 kmem_cache_free(lv2table_kmem_cache, zero_lv2_table); 1371 err_zero_lv2: 1372 platform_driver_unregister(&exynos_sysmmu_driver); 1373 err_reg_driver: 1374 kmem_cache_destroy(lv2table_kmem_cache); 1375 return ret; 1376 } 1377 1378 static int __init exynos_iommu_of_setup(struct device_node *np) 1379 { 1380 struct platform_device *pdev; 1381 1382 if (!init_done) 1383 exynos_iommu_init(); 1384 1385 pdev = of_platform_device_create(np, NULL, platform_bus_type.dev_root); 1386 if (!pdev) 1387 return -ENODEV; 1388 1389 /* 1390 * use the first registered sysmmu device for performing 1391 * dma mapping operations on iommu page tables (cpu cache flush) 1392 */ 1393 if (!dma_dev) 1394 dma_dev = &pdev->dev; 1395 1396 return 0; 1397 } 1398 1399 IOMMU_OF_DECLARE(exynos_iommu_of, "samsung,exynos-sysmmu", 1400 exynos_iommu_of_setup); 1401