1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2011,2016 Samsung Electronics Co., Ltd.
4 * http://www.samsung.com
5 */
6
7 #ifdef CONFIG_EXYNOS_IOMMU_DEBUG
8 #define DEBUG
9 #endif
10
11 #include <linux/clk.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/err.h>
14 #include <linux/io.h>
15 #include <linux/iommu.h>
16 #include <linux/interrupt.h>
17 #include <linux/kmemleak.h>
18 #include <linux/list.h>
19 #include <linux/of.h>
20 #include <linux/of_platform.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/slab.h>
24
25 typedef u32 sysmmu_iova_t;
26 typedef u32 sysmmu_pte_t;
27
28 /* We do not consider super section mapping (16MB) */
29 #define SECT_ORDER 20
30 #define LPAGE_ORDER 16
31 #define SPAGE_ORDER 12
32
33 #define SECT_SIZE (1 << SECT_ORDER)
34 #define LPAGE_SIZE (1 << LPAGE_ORDER)
35 #define SPAGE_SIZE (1 << SPAGE_ORDER)
36
37 #define SECT_MASK (~(SECT_SIZE - 1))
38 #define LPAGE_MASK (~(LPAGE_SIZE - 1))
39 #define SPAGE_MASK (~(SPAGE_SIZE - 1))
40
41 #define lv1ent_fault(sent) ((*(sent) == ZERO_LV2LINK) || \
42 ((*(sent) & 3) == 0) || ((*(sent) & 3) == 3))
43 #define lv1ent_zero(sent) (*(sent) == ZERO_LV2LINK)
44 #define lv1ent_page_zero(sent) ((*(sent) & 3) == 1)
45 #define lv1ent_page(sent) ((*(sent) != ZERO_LV2LINK) && \
46 ((*(sent) & 3) == 1))
47 #define lv1ent_section(sent) ((*(sent) & 3) == 2)
48
49 #define lv2ent_fault(pent) ((*(pent) & 3) == 0)
50 #define lv2ent_small(pent) ((*(pent) & 2) == 2)
51 #define lv2ent_large(pent) ((*(pent) & 3) == 1)
52
53 /*
54 * v1.x - v3.x SYSMMU supports 32bit physical and 32bit virtual address spaces
55 * v5.0 introduced support for 36bit physical address space by shifting
56 * all page entry values by 4 bits.
57 * All SYSMMU controllers in the system support the address spaces of the same
58 * size, so PG_ENT_SHIFT can be initialized on first SYSMMU probe to proper
59 * value (0 or 4).
60 */
61 static short PG_ENT_SHIFT = -1;
62 #define SYSMMU_PG_ENT_SHIFT 0
63 #define SYSMMU_V5_PG_ENT_SHIFT 4
64
65 static const sysmmu_pte_t *LV1_PROT;
66 static const sysmmu_pte_t SYSMMU_LV1_PROT[] = {
67 ((0 << 15) | (0 << 10)), /* no access */
68 ((1 << 15) | (1 << 10)), /* IOMMU_READ only */
69 ((0 << 15) | (1 << 10)), /* IOMMU_WRITE not supported, use read/write */
70 ((0 << 15) | (1 << 10)), /* IOMMU_READ | IOMMU_WRITE */
71 };
72 static const sysmmu_pte_t SYSMMU_V5_LV1_PROT[] = {
73 (0 << 4), /* no access */
74 (1 << 4), /* IOMMU_READ only */
75 (2 << 4), /* IOMMU_WRITE only */
76 (3 << 4), /* IOMMU_READ | IOMMU_WRITE */
77 };
78
79 static const sysmmu_pte_t *LV2_PROT;
80 static const sysmmu_pte_t SYSMMU_LV2_PROT[] = {
81 ((0 << 9) | (0 << 4)), /* no access */
82 ((1 << 9) | (1 << 4)), /* IOMMU_READ only */
83 ((0 << 9) | (1 << 4)), /* IOMMU_WRITE not supported, use read/write */
84 ((0 << 9) | (1 << 4)), /* IOMMU_READ | IOMMU_WRITE */
85 };
86 static const sysmmu_pte_t SYSMMU_V5_LV2_PROT[] = {
87 (0 << 2), /* no access */
88 (1 << 2), /* IOMMU_READ only */
89 (2 << 2), /* IOMMU_WRITE only */
90 (3 << 2), /* IOMMU_READ | IOMMU_WRITE */
91 };
92
93 #define SYSMMU_SUPPORTED_PROT_BITS (IOMMU_READ | IOMMU_WRITE)
94
95 #define sect_to_phys(ent) (((phys_addr_t) ent) << PG_ENT_SHIFT)
96 #define section_phys(sent) (sect_to_phys(*(sent)) & SECT_MASK)
97 #define section_offs(iova) (iova & (SECT_SIZE - 1))
98 #define lpage_phys(pent) (sect_to_phys(*(pent)) & LPAGE_MASK)
99 #define lpage_offs(iova) (iova & (LPAGE_SIZE - 1))
100 #define spage_phys(pent) (sect_to_phys(*(pent)) & SPAGE_MASK)
101 #define spage_offs(iova) (iova & (SPAGE_SIZE - 1))
102
103 #define NUM_LV1ENTRIES 4096
104 #define NUM_LV2ENTRIES (SECT_SIZE / SPAGE_SIZE)
105
lv1ent_offset(sysmmu_iova_t iova)106 static u32 lv1ent_offset(sysmmu_iova_t iova)
107 {
108 return iova >> SECT_ORDER;
109 }
110
lv2ent_offset(sysmmu_iova_t iova)111 static u32 lv2ent_offset(sysmmu_iova_t iova)
112 {
113 return (iova >> SPAGE_ORDER) & (NUM_LV2ENTRIES - 1);
114 }
115
116 #define LV1TABLE_SIZE (NUM_LV1ENTRIES * sizeof(sysmmu_pte_t))
117 #define LV2TABLE_SIZE (NUM_LV2ENTRIES * sizeof(sysmmu_pte_t))
118
119 #define SPAGES_PER_LPAGE (LPAGE_SIZE / SPAGE_SIZE)
120 #define lv2table_base(sent) (sect_to_phys(*(sent) & 0xFFFFFFC0))
121
122 #define mk_lv1ent_sect(pa, prot) ((pa >> PG_ENT_SHIFT) | LV1_PROT[prot] | 2)
123 #define mk_lv1ent_page(pa) ((pa >> PG_ENT_SHIFT) | 1)
124 #define mk_lv2ent_lpage(pa, prot) ((pa >> PG_ENT_SHIFT) | LV2_PROT[prot] | 1)
125 #define mk_lv2ent_spage(pa, prot) ((pa >> PG_ENT_SHIFT) | LV2_PROT[prot] | 2)
126
127 #define CTRL_ENABLE 0x5
128 #define CTRL_BLOCK 0x7
129 #define CTRL_DISABLE 0x0
130
131 #define CFG_LRU 0x1
132 #define CFG_EAP (1 << 2)
133 #define CFG_QOS(n) ((n & 0xF) << 7)
134 #define CFG_ACGEN (1 << 24) /* System MMU 3.3 only */
135 #define CFG_SYSSEL (1 << 22) /* System MMU 3.2 only */
136 #define CFG_FLPDCACHE (1 << 20) /* System MMU 3.2+ only */
137
138 #define CTRL_VM_ENABLE BIT(0)
139 #define CTRL_VM_FAULT_MODE_STALL BIT(3)
140 #define CAPA0_CAPA1_EXIST BIT(11)
141 #define CAPA1_VCR_ENABLED BIT(14)
142
143 /* common registers */
144 #define REG_MMU_CTRL 0x000
145 #define REG_MMU_CFG 0x004
146 #define REG_MMU_STATUS 0x008
147 #define REG_MMU_VERSION 0x034
148
149 #define MMU_MAJ_VER(val) ((val) >> 7)
150 #define MMU_MIN_VER(val) ((val) & 0x7F)
151 #define MMU_RAW_VER(reg) (((reg) >> 21) & ((1 << 11) - 1)) /* 11 bits */
152
153 #define MAKE_MMU_VER(maj, min) ((((maj) & 0xF) << 7) | ((min) & 0x7F))
154
155 /* v1.x - v3.x registers */
156 #define REG_PAGE_FAULT_ADDR 0x024
157 #define REG_AW_FAULT_ADDR 0x028
158 #define REG_AR_FAULT_ADDR 0x02C
159 #define REG_DEFAULT_SLAVE_ADDR 0x030
160
161 /* v5.x registers */
162 #define REG_V5_FAULT_AR_VA 0x070
163 #define REG_V5_FAULT_AW_VA 0x080
164
165 /* v7.x registers */
166 #define REG_V7_CAPA0 0x870
167 #define REG_V7_CAPA1 0x874
168 #define REG_V7_CTRL_VM 0x8000
169
170 #define has_sysmmu(dev) (dev_iommu_priv_get(dev) != NULL)
171
172 static struct device *dma_dev;
173 static struct kmem_cache *lv2table_kmem_cache;
174 static sysmmu_pte_t *zero_lv2_table;
175 #define ZERO_LV2LINK mk_lv1ent_page(virt_to_phys(zero_lv2_table))
176
section_entry(sysmmu_pte_t * pgtable,sysmmu_iova_t iova)177 static sysmmu_pte_t *section_entry(sysmmu_pte_t *pgtable, sysmmu_iova_t iova)
178 {
179 return pgtable + lv1ent_offset(iova);
180 }
181
page_entry(sysmmu_pte_t * sent,sysmmu_iova_t iova)182 static sysmmu_pte_t *page_entry(sysmmu_pte_t *sent, sysmmu_iova_t iova)
183 {
184 return (sysmmu_pte_t *)phys_to_virt(
185 lv2table_base(sent)) + lv2ent_offset(iova);
186 }
187
188 struct sysmmu_fault {
189 sysmmu_iova_t addr; /* IOVA address that caused fault */
190 const char *name; /* human readable fault name */
191 unsigned int type; /* fault type for report_iommu_fault() */
192 };
193
194 struct sysmmu_v1_fault_info {
195 unsigned short addr_reg; /* register to read IOVA fault address */
196 const char *name; /* human readable fault name */
197 unsigned int type; /* fault type for report_iommu_fault */
198 };
199
200 static const struct sysmmu_v1_fault_info sysmmu_v1_faults[] = {
201 { REG_PAGE_FAULT_ADDR, "PAGE", IOMMU_FAULT_READ },
202 { REG_AR_FAULT_ADDR, "MULTI-HIT", IOMMU_FAULT_READ },
203 { REG_AW_FAULT_ADDR, "MULTI-HIT", IOMMU_FAULT_WRITE },
204 { REG_DEFAULT_SLAVE_ADDR, "BUS ERROR", IOMMU_FAULT_READ },
205 { REG_AR_FAULT_ADDR, "SECURITY PROTECTION", IOMMU_FAULT_READ },
206 { REG_AR_FAULT_ADDR, "ACCESS PROTECTION", IOMMU_FAULT_READ },
207 { REG_AW_FAULT_ADDR, "SECURITY PROTECTION", IOMMU_FAULT_WRITE },
208 { REG_AW_FAULT_ADDR, "ACCESS PROTECTION", IOMMU_FAULT_WRITE },
209 };
210
211 /* SysMMU v5 has the same faults for AR (0..4 bits) and AW (16..20 bits) */
212 static const char * const sysmmu_v5_fault_names[] = {
213 "PTW",
214 "PAGE",
215 "MULTI-HIT",
216 "ACCESS PROTECTION",
217 "SECURITY PROTECTION"
218 };
219
220 static const char * const sysmmu_v7_fault_names[] = {
221 "PTW",
222 "PAGE",
223 "ACCESS PROTECTION",
224 "RESERVED"
225 };
226
227 /*
228 * This structure is attached to dev->iommu->priv of the master device
229 * on device add, contains a list of SYSMMU controllers defined by device tree,
230 * which are bound to given master device. It is usually referenced by 'owner'
231 * pointer.
232 */
233 struct exynos_iommu_owner {
234 struct list_head controllers; /* list of sysmmu_drvdata.owner_node */
235 struct iommu_domain *domain; /* domain this device is attached */
236 struct mutex rpm_lock; /* for runtime pm of all sysmmus */
237 };
238
239 /*
240 * This structure exynos specific generalization of struct iommu_domain.
241 * It contains list of SYSMMU controllers from all master devices, which has
242 * been attached to this domain and page tables of IO address space defined by
243 * it. It is usually referenced by 'domain' pointer.
244 */
245 struct exynos_iommu_domain {
246 struct list_head clients; /* list of sysmmu_drvdata.domain_node */
247 sysmmu_pte_t *pgtable; /* lv1 page table, 16KB */
248 short *lv2entcnt; /* free lv2 entry counter for each section */
249 spinlock_t lock; /* lock for modyfying list of clients */
250 spinlock_t pgtablelock; /* lock for modifying page table @ pgtable */
251 struct iommu_domain domain; /* generic domain data structure */
252 };
253
254 struct sysmmu_drvdata;
255
256 /*
257 * SysMMU version specific data. Contains offsets for the registers which can
258 * be found in different SysMMU variants, but have different offset values.
259 * Also contains version specific callbacks to abstract the hardware.
260 */
261 struct sysmmu_variant {
262 u32 pt_base; /* page table base address (physical) */
263 u32 flush_all; /* invalidate all TLB entries */
264 u32 flush_entry; /* invalidate specific TLB entry */
265 u32 flush_range; /* invalidate TLB entries in specified range */
266 u32 flush_start; /* start address of range invalidation */
267 u32 flush_end; /* end address of range invalidation */
268 u32 int_status; /* interrupt status information */
269 u32 int_clear; /* clear the interrupt */
270 u32 fault_va; /* IOVA address that caused fault */
271 u32 fault_info; /* fault transaction info */
272
273 int (*get_fault_info)(struct sysmmu_drvdata *data, unsigned int itype,
274 struct sysmmu_fault *fault);
275 };
276
277 /*
278 * This structure hold all data of a single SYSMMU controller, this includes
279 * hw resources like registers and clocks, pointers and list nodes to connect
280 * it to all other structures, internal state and parameters read from device
281 * tree. It is usually referenced by 'data' pointer.
282 */
283 struct sysmmu_drvdata {
284 struct device *sysmmu; /* SYSMMU controller device */
285 struct device *master; /* master device (owner) */
286 struct device_link *link; /* runtime PM link to master */
287 void __iomem *sfrbase; /* our registers */
288 struct clk *clk; /* SYSMMU's clock */
289 struct clk *aclk; /* SYSMMU's aclk clock */
290 struct clk *pclk; /* SYSMMU's pclk clock */
291 struct clk *clk_master; /* master's device clock */
292 spinlock_t lock; /* lock for modyfying state */
293 bool active; /* current status */
294 struct exynos_iommu_domain *domain; /* domain we belong to */
295 struct list_head domain_node; /* node for domain clients list */
296 struct list_head owner_node; /* node for owner controllers list */
297 phys_addr_t pgtable; /* assigned page table structure */
298 unsigned int version; /* our version */
299
300 struct iommu_device iommu; /* IOMMU core handle */
301 const struct sysmmu_variant *variant; /* version specific data */
302
303 /* v7 fields */
304 bool has_vcr; /* virtual machine control register */
305 };
306
307 #define SYSMMU_REG(data, reg) ((data)->sfrbase + (data)->variant->reg)
308
exynos_sysmmu_v1_get_fault_info(struct sysmmu_drvdata * data,unsigned int itype,struct sysmmu_fault * fault)309 static int exynos_sysmmu_v1_get_fault_info(struct sysmmu_drvdata *data,
310 unsigned int itype,
311 struct sysmmu_fault *fault)
312 {
313 const struct sysmmu_v1_fault_info *finfo;
314
315 if (itype >= ARRAY_SIZE(sysmmu_v1_faults))
316 return -ENXIO;
317
318 finfo = &sysmmu_v1_faults[itype];
319 fault->addr = readl(data->sfrbase + finfo->addr_reg);
320 fault->name = finfo->name;
321 fault->type = finfo->type;
322
323 return 0;
324 }
325
exynos_sysmmu_v5_get_fault_info(struct sysmmu_drvdata * data,unsigned int itype,struct sysmmu_fault * fault)326 static int exynos_sysmmu_v5_get_fault_info(struct sysmmu_drvdata *data,
327 unsigned int itype,
328 struct sysmmu_fault *fault)
329 {
330 unsigned int addr_reg;
331
332 if (itype < ARRAY_SIZE(sysmmu_v5_fault_names)) {
333 fault->type = IOMMU_FAULT_READ;
334 addr_reg = REG_V5_FAULT_AR_VA;
335 } else if (itype >= 16 && itype <= 20) {
336 fault->type = IOMMU_FAULT_WRITE;
337 addr_reg = REG_V5_FAULT_AW_VA;
338 itype -= 16;
339 } else {
340 return -ENXIO;
341 }
342
343 fault->name = sysmmu_v5_fault_names[itype];
344 fault->addr = readl(data->sfrbase + addr_reg);
345
346 return 0;
347 }
348
exynos_sysmmu_v7_get_fault_info(struct sysmmu_drvdata * data,unsigned int itype,struct sysmmu_fault * fault)349 static int exynos_sysmmu_v7_get_fault_info(struct sysmmu_drvdata *data,
350 unsigned int itype,
351 struct sysmmu_fault *fault)
352 {
353 u32 info = readl(SYSMMU_REG(data, fault_info));
354
355 fault->addr = readl(SYSMMU_REG(data, fault_va));
356 fault->name = sysmmu_v7_fault_names[itype % 4];
357 fault->type = (info & BIT(20)) ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;
358
359 return 0;
360 }
361
362 /* SysMMU v1..v3 */
363 static const struct sysmmu_variant sysmmu_v1_variant = {
364 .flush_all = 0x0c,
365 .flush_entry = 0x10,
366 .pt_base = 0x14,
367 .int_status = 0x18,
368 .int_clear = 0x1c,
369
370 .get_fault_info = exynos_sysmmu_v1_get_fault_info,
371 };
372
373 /* SysMMU v5 */
374 static const struct sysmmu_variant sysmmu_v5_variant = {
375 .pt_base = 0x0c,
376 .flush_all = 0x10,
377 .flush_entry = 0x14,
378 .flush_range = 0x18,
379 .flush_start = 0x20,
380 .flush_end = 0x24,
381 .int_status = 0x60,
382 .int_clear = 0x64,
383
384 .get_fault_info = exynos_sysmmu_v5_get_fault_info,
385 };
386
387 /* SysMMU v7: non-VM capable register layout */
388 static const struct sysmmu_variant sysmmu_v7_variant = {
389 .pt_base = 0x0c,
390 .flush_all = 0x10,
391 .flush_entry = 0x14,
392 .flush_range = 0x18,
393 .flush_start = 0x20,
394 .flush_end = 0x24,
395 .int_status = 0x60,
396 .int_clear = 0x64,
397 .fault_va = 0x70,
398 .fault_info = 0x78,
399
400 .get_fault_info = exynos_sysmmu_v7_get_fault_info,
401 };
402
403 /* SysMMU v7: VM capable register layout */
404 static const struct sysmmu_variant sysmmu_v7_vm_variant = {
405 .pt_base = 0x800c,
406 .flush_all = 0x8010,
407 .flush_entry = 0x8014,
408 .flush_range = 0x8018,
409 .flush_start = 0x8020,
410 .flush_end = 0x8024,
411 .int_status = 0x60,
412 .int_clear = 0x64,
413 .fault_va = 0x1000,
414 .fault_info = 0x1004,
415
416 .get_fault_info = exynos_sysmmu_v7_get_fault_info,
417 };
418
to_exynos_domain(struct iommu_domain * dom)419 static struct exynos_iommu_domain *to_exynos_domain(struct iommu_domain *dom)
420 {
421 return container_of(dom, struct exynos_iommu_domain, domain);
422 }
423
sysmmu_unblock(struct sysmmu_drvdata * data)424 static void sysmmu_unblock(struct sysmmu_drvdata *data)
425 {
426 writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL);
427 }
428
sysmmu_block(struct sysmmu_drvdata * data)429 static bool sysmmu_block(struct sysmmu_drvdata *data)
430 {
431 int i = 120;
432
433 writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL);
434 while ((i > 0) && !(readl(data->sfrbase + REG_MMU_STATUS) & 1))
435 --i;
436
437 if (!(readl(data->sfrbase + REG_MMU_STATUS) & 1)) {
438 sysmmu_unblock(data);
439 return false;
440 }
441
442 return true;
443 }
444
__sysmmu_tlb_invalidate(struct sysmmu_drvdata * data)445 static void __sysmmu_tlb_invalidate(struct sysmmu_drvdata *data)
446 {
447 writel(0x1, SYSMMU_REG(data, flush_all));
448 }
449
__sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata * data,sysmmu_iova_t iova,unsigned int num_inv)450 static void __sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data,
451 sysmmu_iova_t iova, unsigned int num_inv)
452 {
453 unsigned int i;
454
455 if (MMU_MAJ_VER(data->version) < 5 || num_inv == 1) {
456 for (i = 0; i < num_inv; i++) {
457 writel((iova & SPAGE_MASK) | 1,
458 SYSMMU_REG(data, flush_entry));
459 iova += SPAGE_SIZE;
460 }
461 } else {
462 writel(iova & SPAGE_MASK, SYSMMU_REG(data, flush_start));
463 writel((iova & SPAGE_MASK) + (num_inv - 1) * SPAGE_SIZE,
464 SYSMMU_REG(data, flush_end));
465 writel(0x1, SYSMMU_REG(data, flush_range));
466 }
467 }
468
__sysmmu_set_ptbase(struct sysmmu_drvdata * data,phys_addr_t pgd)469 static void __sysmmu_set_ptbase(struct sysmmu_drvdata *data, phys_addr_t pgd)
470 {
471 u32 pt_base;
472
473 if (MMU_MAJ_VER(data->version) < 5)
474 pt_base = pgd;
475 else
476 pt_base = pgd >> SPAGE_ORDER;
477
478 writel(pt_base, SYSMMU_REG(data, pt_base));
479 __sysmmu_tlb_invalidate(data);
480 }
481
__sysmmu_enable_clocks(struct sysmmu_drvdata * data)482 static void __sysmmu_enable_clocks(struct sysmmu_drvdata *data)
483 {
484 BUG_ON(clk_prepare_enable(data->clk_master));
485 BUG_ON(clk_prepare_enable(data->clk));
486 BUG_ON(clk_prepare_enable(data->pclk));
487 BUG_ON(clk_prepare_enable(data->aclk));
488 }
489
__sysmmu_disable_clocks(struct sysmmu_drvdata * data)490 static void __sysmmu_disable_clocks(struct sysmmu_drvdata *data)
491 {
492 clk_disable_unprepare(data->aclk);
493 clk_disable_unprepare(data->pclk);
494 clk_disable_unprepare(data->clk);
495 clk_disable_unprepare(data->clk_master);
496 }
497
__sysmmu_has_capa1(struct sysmmu_drvdata * data)498 static bool __sysmmu_has_capa1(struct sysmmu_drvdata *data)
499 {
500 u32 capa0 = readl(data->sfrbase + REG_V7_CAPA0);
501
502 return capa0 & CAPA0_CAPA1_EXIST;
503 }
504
__sysmmu_get_vcr(struct sysmmu_drvdata * data)505 static void __sysmmu_get_vcr(struct sysmmu_drvdata *data)
506 {
507 u32 capa1 = readl(data->sfrbase + REG_V7_CAPA1);
508
509 data->has_vcr = capa1 & CAPA1_VCR_ENABLED;
510 }
511
__sysmmu_get_version(struct sysmmu_drvdata * data)512 static void __sysmmu_get_version(struct sysmmu_drvdata *data)
513 {
514 u32 ver;
515
516 __sysmmu_enable_clocks(data);
517
518 ver = readl(data->sfrbase + REG_MMU_VERSION);
519
520 /* controllers on some SoCs don't report proper version */
521 if (ver == 0x80000001u)
522 data->version = MAKE_MMU_VER(1, 0);
523 else
524 data->version = MMU_RAW_VER(ver);
525
526 dev_dbg(data->sysmmu, "hardware version: %d.%d\n",
527 MMU_MAJ_VER(data->version), MMU_MIN_VER(data->version));
528
529 if (MMU_MAJ_VER(data->version) < 5) {
530 data->variant = &sysmmu_v1_variant;
531 } else if (MMU_MAJ_VER(data->version) < 7) {
532 data->variant = &sysmmu_v5_variant;
533 } else {
534 if (__sysmmu_has_capa1(data))
535 __sysmmu_get_vcr(data);
536 if (data->has_vcr)
537 data->variant = &sysmmu_v7_vm_variant;
538 else
539 data->variant = &sysmmu_v7_variant;
540 }
541
542 __sysmmu_disable_clocks(data);
543 }
544
show_fault_information(struct sysmmu_drvdata * data,const struct sysmmu_fault * fault)545 static void show_fault_information(struct sysmmu_drvdata *data,
546 const struct sysmmu_fault *fault)
547 {
548 sysmmu_pte_t *ent;
549
550 dev_err(data->sysmmu, "%s: [%s] %s FAULT occurred at %#x\n",
551 dev_name(data->master),
552 fault->type == IOMMU_FAULT_READ ? "READ" : "WRITE",
553 fault->name, fault->addr);
554 dev_dbg(data->sysmmu, "Page table base: %pa\n", &data->pgtable);
555 ent = section_entry(phys_to_virt(data->pgtable), fault->addr);
556 dev_dbg(data->sysmmu, "\tLv1 entry: %#x\n", *ent);
557 if (lv1ent_page(ent)) {
558 ent = page_entry(ent, fault->addr);
559 dev_dbg(data->sysmmu, "\t Lv2 entry: %#x\n", *ent);
560 }
561 }
562
exynos_sysmmu_irq(int irq,void * dev_id)563 static irqreturn_t exynos_sysmmu_irq(int irq, void *dev_id)
564 {
565 struct sysmmu_drvdata *data = dev_id;
566 unsigned int itype;
567 struct sysmmu_fault fault;
568 int ret = -ENOSYS;
569
570 WARN_ON(!data->active);
571
572 spin_lock(&data->lock);
573 clk_enable(data->clk_master);
574
575 itype = __ffs(readl(SYSMMU_REG(data, int_status)));
576 ret = data->variant->get_fault_info(data, itype, &fault);
577 if (ret) {
578 dev_err(data->sysmmu, "Unhandled interrupt bit %u\n", itype);
579 goto out;
580 }
581 show_fault_information(data, &fault);
582
583 if (data->domain) {
584 ret = report_iommu_fault(&data->domain->domain, data->master,
585 fault.addr, fault.type);
586 }
587 if (ret)
588 panic("Unrecoverable System MMU Fault!");
589
590 out:
591 writel(1 << itype, SYSMMU_REG(data, int_clear));
592
593 /* SysMMU is in blocked state when interrupt occurred */
594 sysmmu_unblock(data);
595 clk_disable(data->clk_master);
596 spin_unlock(&data->lock);
597
598 return IRQ_HANDLED;
599 }
600
__sysmmu_disable(struct sysmmu_drvdata * data)601 static void __sysmmu_disable(struct sysmmu_drvdata *data)
602 {
603 unsigned long flags;
604
605 clk_enable(data->clk_master);
606
607 spin_lock_irqsave(&data->lock, flags);
608 writel(CTRL_DISABLE, data->sfrbase + REG_MMU_CTRL);
609 writel(0, data->sfrbase + REG_MMU_CFG);
610 data->active = false;
611 spin_unlock_irqrestore(&data->lock, flags);
612
613 __sysmmu_disable_clocks(data);
614 }
615
__sysmmu_init_config(struct sysmmu_drvdata * data)616 static void __sysmmu_init_config(struct sysmmu_drvdata *data)
617 {
618 unsigned int cfg;
619
620 if (data->version <= MAKE_MMU_VER(3, 1))
621 cfg = CFG_LRU | CFG_QOS(15);
622 else if (data->version <= MAKE_MMU_VER(3, 2))
623 cfg = CFG_LRU | CFG_QOS(15) | CFG_FLPDCACHE | CFG_SYSSEL;
624 else
625 cfg = CFG_QOS(15) | CFG_FLPDCACHE | CFG_ACGEN;
626
627 cfg |= CFG_EAP; /* enable access protection bits check */
628
629 writel(cfg, data->sfrbase + REG_MMU_CFG);
630 }
631
__sysmmu_enable_vid(struct sysmmu_drvdata * data)632 static void __sysmmu_enable_vid(struct sysmmu_drvdata *data)
633 {
634 u32 ctrl;
635
636 if (MMU_MAJ_VER(data->version) < 7 || !data->has_vcr)
637 return;
638
639 ctrl = readl(data->sfrbase + REG_V7_CTRL_VM);
640 ctrl |= CTRL_VM_ENABLE | CTRL_VM_FAULT_MODE_STALL;
641 writel(ctrl, data->sfrbase + REG_V7_CTRL_VM);
642 }
643
__sysmmu_enable(struct sysmmu_drvdata * data)644 static void __sysmmu_enable(struct sysmmu_drvdata *data)
645 {
646 unsigned long flags;
647
648 __sysmmu_enable_clocks(data);
649
650 spin_lock_irqsave(&data->lock, flags);
651 writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL);
652 __sysmmu_init_config(data);
653 __sysmmu_set_ptbase(data, data->pgtable);
654 __sysmmu_enable_vid(data);
655 writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL);
656 data->active = true;
657 spin_unlock_irqrestore(&data->lock, flags);
658
659 /*
660 * SYSMMU driver keeps master's clock enabled only for the short
661 * time, while accessing the registers. For performing address
662 * translation during DMA transaction it relies on the client
663 * driver to enable it.
664 */
665 clk_disable(data->clk_master);
666 }
667
sysmmu_tlb_invalidate_flpdcache(struct sysmmu_drvdata * data,sysmmu_iova_t iova)668 static void sysmmu_tlb_invalidate_flpdcache(struct sysmmu_drvdata *data,
669 sysmmu_iova_t iova)
670 {
671 unsigned long flags;
672
673 spin_lock_irqsave(&data->lock, flags);
674 if (data->active && data->version >= MAKE_MMU_VER(3, 3)) {
675 clk_enable(data->clk_master);
676 if (sysmmu_block(data)) {
677 if (data->version >= MAKE_MMU_VER(5, 0))
678 __sysmmu_tlb_invalidate(data);
679 else
680 __sysmmu_tlb_invalidate_entry(data, iova, 1);
681 sysmmu_unblock(data);
682 }
683 clk_disable(data->clk_master);
684 }
685 spin_unlock_irqrestore(&data->lock, flags);
686 }
687
sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata * data,sysmmu_iova_t iova,size_t size)688 static void sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data,
689 sysmmu_iova_t iova, size_t size)
690 {
691 unsigned long flags;
692
693 spin_lock_irqsave(&data->lock, flags);
694 if (data->active) {
695 unsigned int num_inv = 1;
696
697 clk_enable(data->clk_master);
698
699 /*
700 * L2TLB invalidation required
701 * 4KB page: 1 invalidation
702 * 64KB page: 16 invalidations
703 * 1MB page: 64 invalidations
704 * because it is set-associative TLB
705 * with 8-way and 64 sets.
706 * 1MB page can be cached in one of all sets.
707 * 64KB page can be one of 16 consecutive sets.
708 */
709 if (MMU_MAJ_VER(data->version) == 2)
710 num_inv = min_t(unsigned int, size / SPAGE_SIZE, 64);
711
712 if (sysmmu_block(data)) {
713 __sysmmu_tlb_invalidate_entry(data, iova, num_inv);
714 sysmmu_unblock(data);
715 }
716 clk_disable(data->clk_master);
717 }
718 spin_unlock_irqrestore(&data->lock, flags);
719 }
720
721 static const struct iommu_ops exynos_iommu_ops;
722
exynos_sysmmu_probe(struct platform_device * pdev)723 static int exynos_sysmmu_probe(struct platform_device *pdev)
724 {
725 int irq, ret;
726 struct device *dev = &pdev->dev;
727 struct sysmmu_drvdata *data;
728 struct resource *res;
729
730 data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
731 if (!data)
732 return -ENOMEM;
733
734 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
735 data->sfrbase = devm_ioremap_resource(dev, res);
736 if (IS_ERR(data->sfrbase))
737 return PTR_ERR(data->sfrbase);
738
739 irq = platform_get_irq(pdev, 0);
740 if (irq <= 0)
741 return irq;
742
743 ret = devm_request_irq(dev, irq, exynos_sysmmu_irq, 0,
744 dev_name(dev), data);
745 if (ret) {
746 dev_err(dev, "Unabled to register handler of irq %d\n", irq);
747 return ret;
748 }
749
750 data->clk = devm_clk_get_optional(dev, "sysmmu");
751 if (IS_ERR(data->clk))
752 return PTR_ERR(data->clk);
753
754 data->aclk = devm_clk_get_optional(dev, "aclk");
755 if (IS_ERR(data->aclk))
756 return PTR_ERR(data->aclk);
757
758 data->pclk = devm_clk_get_optional(dev, "pclk");
759 if (IS_ERR(data->pclk))
760 return PTR_ERR(data->pclk);
761
762 if (!data->clk && (!data->aclk || !data->pclk)) {
763 dev_err(dev, "Failed to get device clock(s)!\n");
764 return -ENOSYS;
765 }
766
767 data->clk_master = devm_clk_get_optional(dev, "master");
768 if (IS_ERR(data->clk_master))
769 return PTR_ERR(data->clk_master);
770
771 data->sysmmu = dev;
772 spin_lock_init(&data->lock);
773
774 __sysmmu_get_version(data);
775
776 ret = iommu_device_sysfs_add(&data->iommu, &pdev->dev, NULL,
777 dev_name(data->sysmmu));
778 if (ret)
779 return ret;
780
781 platform_set_drvdata(pdev, data);
782
783 if (PG_ENT_SHIFT < 0) {
784 if (MMU_MAJ_VER(data->version) < 5) {
785 PG_ENT_SHIFT = SYSMMU_PG_ENT_SHIFT;
786 LV1_PROT = SYSMMU_LV1_PROT;
787 LV2_PROT = SYSMMU_LV2_PROT;
788 } else {
789 PG_ENT_SHIFT = SYSMMU_V5_PG_ENT_SHIFT;
790 LV1_PROT = SYSMMU_V5_LV1_PROT;
791 LV2_PROT = SYSMMU_V5_LV2_PROT;
792 }
793 }
794
795 if (MMU_MAJ_VER(data->version) >= 5) {
796 ret = dma_set_mask(dev, DMA_BIT_MASK(36));
797 if (ret) {
798 dev_err(dev, "Unable to set DMA mask: %d\n", ret);
799 goto err_dma_set_mask;
800 }
801 }
802
803 /*
804 * use the first registered sysmmu device for performing
805 * dma mapping operations on iommu page tables (cpu cache flush)
806 */
807 if (!dma_dev)
808 dma_dev = &pdev->dev;
809
810 pm_runtime_enable(dev);
811
812 ret = iommu_device_register(&data->iommu, &exynos_iommu_ops, dev);
813 if (ret)
814 goto err_dma_set_mask;
815
816 return 0;
817
818 err_dma_set_mask:
819 iommu_device_sysfs_remove(&data->iommu);
820 return ret;
821 }
822
exynos_sysmmu_suspend(struct device * dev)823 static int __maybe_unused exynos_sysmmu_suspend(struct device *dev)
824 {
825 struct sysmmu_drvdata *data = dev_get_drvdata(dev);
826 struct device *master = data->master;
827
828 if (master) {
829 struct exynos_iommu_owner *owner = dev_iommu_priv_get(master);
830
831 mutex_lock(&owner->rpm_lock);
832 if (data->domain) {
833 dev_dbg(data->sysmmu, "saving state\n");
834 __sysmmu_disable(data);
835 }
836 mutex_unlock(&owner->rpm_lock);
837 }
838 return 0;
839 }
840
exynos_sysmmu_resume(struct device * dev)841 static int __maybe_unused exynos_sysmmu_resume(struct device *dev)
842 {
843 struct sysmmu_drvdata *data = dev_get_drvdata(dev);
844 struct device *master = data->master;
845
846 if (master) {
847 struct exynos_iommu_owner *owner = dev_iommu_priv_get(master);
848
849 mutex_lock(&owner->rpm_lock);
850 if (data->domain) {
851 dev_dbg(data->sysmmu, "restoring state\n");
852 __sysmmu_enable(data);
853 }
854 mutex_unlock(&owner->rpm_lock);
855 }
856 return 0;
857 }
858
859 static const struct dev_pm_ops sysmmu_pm_ops = {
860 SET_RUNTIME_PM_OPS(exynos_sysmmu_suspend, exynos_sysmmu_resume, NULL)
861 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
862 pm_runtime_force_resume)
863 };
864
865 static const struct of_device_id sysmmu_of_match[] = {
866 { .compatible = "samsung,exynos-sysmmu", },
867 { },
868 };
869
870 static struct platform_driver exynos_sysmmu_driver __refdata = {
871 .probe = exynos_sysmmu_probe,
872 .driver = {
873 .name = "exynos-sysmmu",
874 .of_match_table = sysmmu_of_match,
875 .pm = &sysmmu_pm_ops,
876 .suppress_bind_attrs = true,
877 }
878 };
879
exynos_iommu_set_pte(sysmmu_pte_t * ent,sysmmu_pte_t val)880 static inline void exynos_iommu_set_pte(sysmmu_pte_t *ent, sysmmu_pte_t val)
881 {
882 dma_sync_single_for_cpu(dma_dev, virt_to_phys(ent), sizeof(*ent),
883 DMA_TO_DEVICE);
884 *ent = cpu_to_le32(val);
885 dma_sync_single_for_device(dma_dev, virt_to_phys(ent), sizeof(*ent),
886 DMA_TO_DEVICE);
887 }
888
exynos_iommu_domain_alloc(unsigned type)889 static struct iommu_domain *exynos_iommu_domain_alloc(unsigned type)
890 {
891 struct exynos_iommu_domain *domain;
892 dma_addr_t handle;
893 int i;
894
895 /* Check if correct PTE offsets are initialized */
896 BUG_ON(PG_ENT_SHIFT < 0 || !dma_dev);
897
898 if (type != IOMMU_DOMAIN_DMA && type != IOMMU_DOMAIN_UNMANAGED)
899 return NULL;
900
901 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
902 if (!domain)
903 return NULL;
904
905 domain->pgtable = (sysmmu_pte_t *)__get_free_pages(GFP_KERNEL, 2);
906 if (!domain->pgtable)
907 goto err_pgtable;
908
909 domain->lv2entcnt = (short *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1);
910 if (!domain->lv2entcnt)
911 goto err_counter;
912
913 /* Workaround for System MMU v3.3 to prevent caching 1MiB mapping */
914 for (i = 0; i < NUM_LV1ENTRIES; i++)
915 domain->pgtable[i] = ZERO_LV2LINK;
916
917 handle = dma_map_single(dma_dev, domain->pgtable, LV1TABLE_SIZE,
918 DMA_TO_DEVICE);
919 /* For mapping page table entries we rely on dma == phys */
920 BUG_ON(handle != virt_to_phys(domain->pgtable));
921 if (dma_mapping_error(dma_dev, handle))
922 goto err_lv2ent;
923
924 spin_lock_init(&domain->lock);
925 spin_lock_init(&domain->pgtablelock);
926 INIT_LIST_HEAD(&domain->clients);
927
928 domain->domain.geometry.aperture_start = 0;
929 domain->domain.geometry.aperture_end = ~0UL;
930 domain->domain.geometry.force_aperture = true;
931
932 return &domain->domain;
933
934 err_lv2ent:
935 free_pages((unsigned long)domain->lv2entcnt, 1);
936 err_counter:
937 free_pages((unsigned long)domain->pgtable, 2);
938 err_pgtable:
939 kfree(domain);
940 return NULL;
941 }
942
exynos_iommu_domain_free(struct iommu_domain * iommu_domain)943 static void exynos_iommu_domain_free(struct iommu_domain *iommu_domain)
944 {
945 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
946 struct sysmmu_drvdata *data, *next;
947 unsigned long flags;
948 int i;
949
950 WARN_ON(!list_empty(&domain->clients));
951
952 spin_lock_irqsave(&domain->lock, flags);
953
954 list_for_each_entry_safe(data, next, &domain->clients, domain_node) {
955 spin_lock(&data->lock);
956 __sysmmu_disable(data);
957 data->pgtable = 0;
958 data->domain = NULL;
959 list_del_init(&data->domain_node);
960 spin_unlock(&data->lock);
961 }
962
963 spin_unlock_irqrestore(&domain->lock, flags);
964
965 dma_unmap_single(dma_dev, virt_to_phys(domain->pgtable), LV1TABLE_SIZE,
966 DMA_TO_DEVICE);
967
968 for (i = 0; i < NUM_LV1ENTRIES; i++)
969 if (lv1ent_page(domain->pgtable + i)) {
970 phys_addr_t base = lv2table_base(domain->pgtable + i);
971
972 dma_unmap_single(dma_dev, base, LV2TABLE_SIZE,
973 DMA_TO_DEVICE);
974 kmem_cache_free(lv2table_kmem_cache,
975 phys_to_virt(base));
976 }
977
978 free_pages((unsigned long)domain->pgtable, 2);
979 free_pages((unsigned long)domain->lv2entcnt, 1);
980 kfree(domain);
981 }
982
exynos_iommu_detach_device(struct iommu_domain * iommu_domain,struct device * dev)983 static void exynos_iommu_detach_device(struct iommu_domain *iommu_domain,
984 struct device *dev)
985 {
986 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
987 struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
988 phys_addr_t pagetable = virt_to_phys(domain->pgtable);
989 struct sysmmu_drvdata *data, *next;
990 unsigned long flags;
991
992 if (!has_sysmmu(dev) || owner->domain != iommu_domain)
993 return;
994
995 mutex_lock(&owner->rpm_lock);
996
997 list_for_each_entry(data, &owner->controllers, owner_node) {
998 pm_runtime_get_noresume(data->sysmmu);
999 if (pm_runtime_active(data->sysmmu))
1000 __sysmmu_disable(data);
1001 pm_runtime_put(data->sysmmu);
1002 }
1003
1004 spin_lock_irqsave(&domain->lock, flags);
1005 list_for_each_entry_safe(data, next, &domain->clients, domain_node) {
1006 spin_lock(&data->lock);
1007 data->pgtable = 0;
1008 data->domain = NULL;
1009 list_del_init(&data->domain_node);
1010 spin_unlock(&data->lock);
1011 }
1012 owner->domain = NULL;
1013 spin_unlock_irqrestore(&domain->lock, flags);
1014
1015 mutex_unlock(&owner->rpm_lock);
1016
1017 dev_dbg(dev, "%s: Detached IOMMU with pgtable %pa\n", __func__,
1018 &pagetable);
1019 }
1020
exynos_iommu_attach_device(struct iommu_domain * iommu_domain,struct device * dev)1021 static int exynos_iommu_attach_device(struct iommu_domain *iommu_domain,
1022 struct device *dev)
1023 {
1024 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1025 struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
1026 struct sysmmu_drvdata *data;
1027 phys_addr_t pagetable = virt_to_phys(domain->pgtable);
1028 unsigned long flags;
1029
1030 if (!has_sysmmu(dev))
1031 return -ENODEV;
1032
1033 if (owner->domain)
1034 exynos_iommu_detach_device(owner->domain, dev);
1035
1036 mutex_lock(&owner->rpm_lock);
1037
1038 spin_lock_irqsave(&domain->lock, flags);
1039 list_for_each_entry(data, &owner->controllers, owner_node) {
1040 spin_lock(&data->lock);
1041 data->pgtable = pagetable;
1042 data->domain = domain;
1043 list_add_tail(&data->domain_node, &domain->clients);
1044 spin_unlock(&data->lock);
1045 }
1046 owner->domain = iommu_domain;
1047 spin_unlock_irqrestore(&domain->lock, flags);
1048
1049 list_for_each_entry(data, &owner->controllers, owner_node) {
1050 pm_runtime_get_noresume(data->sysmmu);
1051 if (pm_runtime_active(data->sysmmu))
1052 __sysmmu_enable(data);
1053 pm_runtime_put(data->sysmmu);
1054 }
1055
1056 mutex_unlock(&owner->rpm_lock);
1057
1058 dev_dbg(dev, "%s: Attached IOMMU with pgtable %pa\n", __func__,
1059 &pagetable);
1060
1061 return 0;
1062 }
1063
alloc_lv2entry(struct exynos_iommu_domain * domain,sysmmu_pte_t * sent,sysmmu_iova_t iova,short * pgcounter)1064 static sysmmu_pte_t *alloc_lv2entry(struct exynos_iommu_domain *domain,
1065 sysmmu_pte_t *sent, sysmmu_iova_t iova, short *pgcounter)
1066 {
1067 if (lv1ent_section(sent)) {
1068 WARN(1, "Trying mapping on %#08x mapped with 1MiB page", iova);
1069 return ERR_PTR(-EADDRINUSE);
1070 }
1071
1072 if (lv1ent_fault(sent)) {
1073 dma_addr_t handle;
1074 sysmmu_pte_t *pent;
1075 bool need_flush_flpd_cache = lv1ent_zero(sent);
1076
1077 pent = kmem_cache_zalloc(lv2table_kmem_cache, GFP_ATOMIC);
1078 BUG_ON((uintptr_t)pent & (LV2TABLE_SIZE - 1));
1079 if (!pent)
1080 return ERR_PTR(-ENOMEM);
1081
1082 exynos_iommu_set_pte(sent, mk_lv1ent_page(virt_to_phys(pent)));
1083 kmemleak_ignore(pent);
1084 *pgcounter = NUM_LV2ENTRIES;
1085 handle = dma_map_single(dma_dev, pent, LV2TABLE_SIZE,
1086 DMA_TO_DEVICE);
1087 if (dma_mapping_error(dma_dev, handle)) {
1088 kmem_cache_free(lv2table_kmem_cache, pent);
1089 return ERR_PTR(-EADDRINUSE);
1090 }
1091
1092 /*
1093 * If pre-fetched SLPD is a faulty SLPD in zero_l2_table,
1094 * FLPD cache may cache the address of zero_l2_table. This
1095 * function replaces the zero_l2_table with new L2 page table
1096 * to write valid mappings.
1097 * Accessing the valid area may cause page fault since FLPD
1098 * cache may still cache zero_l2_table for the valid area
1099 * instead of new L2 page table that has the mapping
1100 * information of the valid area.
1101 * Thus any replacement of zero_l2_table with other valid L2
1102 * page table must involve FLPD cache invalidation for System
1103 * MMU v3.3.
1104 * FLPD cache invalidation is performed with TLB invalidation
1105 * by VPN without blocking. It is safe to invalidate TLB without
1106 * blocking because the target address of TLB invalidation is
1107 * not currently mapped.
1108 */
1109 if (need_flush_flpd_cache) {
1110 struct sysmmu_drvdata *data;
1111
1112 spin_lock(&domain->lock);
1113 list_for_each_entry(data, &domain->clients, domain_node)
1114 sysmmu_tlb_invalidate_flpdcache(data, iova);
1115 spin_unlock(&domain->lock);
1116 }
1117 }
1118
1119 return page_entry(sent, iova);
1120 }
1121
lv1set_section(struct exynos_iommu_domain * domain,sysmmu_pte_t * sent,sysmmu_iova_t iova,phys_addr_t paddr,int prot,short * pgcnt)1122 static int lv1set_section(struct exynos_iommu_domain *domain,
1123 sysmmu_pte_t *sent, sysmmu_iova_t iova,
1124 phys_addr_t paddr, int prot, short *pgcnt)
1125 {
1126 if (lv1ent_section(sent)) {
1127 WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
1128 iova);
1129 return -EADDRINUSE;
1130 }
1131
1132 if (lv1ent_page(sent)) {
1133 if (*pgcnt != NUM_LV2ENTRIES) {
1134 WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
1135 iova);
1136 return -EADDRINUSE;
1137 }
1138
1139 kmem_cache_free(lv2table_kmem_cache, page_entry(sent, 0));
1140 *pgcnt = 0;
1141 }
1142
1143 exynos_iommu_set_pte(sent, mk_lv1ent_sect(paddr, prot));
1144
1145 spin_lock(&domain->lock);
1146 if (lv1ent_page_zero(sent)) {
1147 struct sysmmu_drvdata *data;
1148 /*
1149 * Flushing FLPD cache in System MMU v3.3 that may cache a FLPD
1150 * entry by speculative prefetch of SLPD which has no mapping.
1151 */
1152 list_for_each_entry(data, &domain->clients, domain_node)
1153 sysmmu_tlb_invalidate_flpdcache(data, iova);
1154 }
1155 spin_unlock(&domain->lock);
1156
1157 return 0;
1158 }
1159
lv2set_page(sysmmu_pte_t * pent,phys_addr_t paddr,size_t size,int prot,short * pgcnt)1160 static int lv2set_page(sysmmu_pte_t *pent, phys_addr_t paddr, size_t size,
1161 int prot, short *pgcnt)
1162 {
1163 if (size == SPAGE_SIZE) {
1164 if (WARN_ON(!lv2ent_fault(pent)))
1165 return -EADDRINUSE;
1166
1167 exynos_iommu_set_pte(pent, mk_lv2ent_spage(paddr, prot));
1168 *pgcnt -= 1;
1169 } else { /* size == LPAGE_SIZE */
1170 int i;
1171 dma_addr_t pent_base = virt_to_phys(pent);
1172
1173 dma_sync_single_for_cpu(dma_dev, pent_base,
1174 sizeof(*pent) * SPAGES_PER_LPAGE,
1175 DMA_TO_DEVICE);
1176 for (i = 0; i < SPAGES_PER_LPAGE; i++, pent++) {
1177 if (WARN_ON(!lv2ent_fault(pent))) {
1178 if (i > 0)
1179 memset(pent - i, 0, sizeof(*pent) * i);
1180 return -EADDRINUSE;
1181 }
1182
1183 *pent = mk_lv2ent_lpage(paddr, prot);
1184 }
1185 dma_sync_single_for_device(dma_dev, pent_base,
1186 sizeof(*pent) * SPAGES_PER_LPAGE,
1187 DMA_TO_DEVICE);
1188 *pgcnt -= SPAGES_PER_LPAGE;
1189 }
1190
1191 return 0;
1192 }
1193
1194 /*
1195 * *CAUTION* to the I/O virtual memory managers that support exynos-iommu:
1196 *
1197 * System MMU v3.x has advanced logic to improve address translation
1198 * performance with caching more page table entries by a page table walk.
1199 * However, the logic has a bug that while caching faulty page table entries,
1200 * System MMU reports page fault if the cached fault entry is hit even though
1201 * the fault entry is updated to a valid entry after the entry is cached.
1202 * To prevent caching faulty page table entries which may be updated to valid
1203 * entries later, the virtual memory manager should care about the workaround
1204 * for the problem. The following describes the workaround.
1205 *
1206 * Any two consecutive I/O virtual address regions must have a hole of 128KiB
1207 * at maximum to prevent misbehavior of System MMU 3.x (workaround for h/w bug).
1208 *
1209 * Precisely, any start address of I/O virtual region must be aligned with
1210 * the following sizes for System MMU v3.1 and v3.2.
1211 * System MMU v3.1: 128KiB
1212 * System MMU v3.2: 256KiB
1213 *
1214 * Because System MMU v3.3 caches page table entries more aggressively, it needs
1215 * more workarounds.
1216 * - Any two consecutive I/O virtual regions must have a hole of size larger
1217 * than or equal to 128KiB.
1218 * - Start address of an I/O virtual region must be aligned by 128KiB.
1219 */
exynos_iommu_map(struct iommu_domain * iommu_domain,unsigned long l_iova,phys_addr_t paddr,size_t size,int prot,gfp_t gfp)1220 static int exynos_iommu_map(struct iommu_domain *iommu_domain,
1221 unsigned long l_iova, phys_addr_t paddr, size_t size,
1222 int prot, gfp_t gfp)
1223 {
1224 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1225 sysmmu_pte_t *entry;
1226 sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
1227 unsigned long flags;
1228 int ret = -ENOMEM;
1229
1230 BUG_ON(domain->pgtable == NULL);
1231 prot &= SYSMMU_SUPPORTED_PROT_BITS;
1232
1233 spin_lock_irqsave(&domain->pgtablelock, flags);
1234
1235 entry = section_entry(domain->pgtable, iova);
1236
1237 if (size == SECT_SIZE) {
1238 ret = lv1set_section(domain, entry, iova, paddr, prot,
1239 &domain->lv2entcnt[lv1ent_offset(iova)]);
1240 } else {
1241 sysmmu_pte_t *pent;
1242
1243 pent = alloc_lv2entry(domain, entry, iova,
1244 &domain->lv2entcnt[lv1ent_offset(iova)]);
1245
1246 if (IS_ERR(pent))
1247 ret = PTR_ERR(pent);
1248 else
1249 ret = lv2set_page(pent, paddr, size, prot,
1250 &domain->lv2entcnt[lv1ent_offset(iova)]);
1251 }
1252
1253 if (ret)
1254 pr_err("%s: Failed(%d) to map %#zx bytes @ %#x\n",
1255 __func__, ret, size, iova);
1256
1257 spin_unlock_irqrestore(&domain->pgtablelock, flags);
1258
1259 return ret;
1260 }
1261
exynos_iommu_tlb_invalidate_entry(struct exynos_iommu_domain * domain,sysmmu_iova_t iova,size_t size)1262 static void exynos_iommu_tlb_invalidate_entry(struct exynos_iommu_domain *domain,
1263 sysmmu_iova_t iova, size_t size)
1264 {
1265 struct sysmmu_drvdata *data;
1266 unsigned long flags;
1267
1268 spin_lock_irqsave(&domain->lock, flags);
1269
1270 list_for_each_entry(data, &domain->clients, domain_node)
1271 sysmmu_tlb_invalidate_entry(data, iova, size);
1272
1273 spin_unlock_irqrestore(&domain->lock, flags);
1274 }
1275
exynos_iommu_unmap(struct iommu_domain * iommu_domain,unsigned long l_iova,size_t size,struct iommu_iotlb_gather * gather)1276 static size_t exynos_iommu_unmap(struct iommu_domain *iommu_domain,
1277 unsigned long l_iova, size_t size,
1278 struct iommu_iotlb_gather *gather)
1279 {
1280 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1281 sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
1282 sysmmu_pte_t *ent;
1283 size_t err_pgsize;
1284 unsigned long flags;
1285
1286 BUG_ON(domain->pgtable == NULL);
1287
1288 spin_lock_irqsave(&domain->pgtablelock, flags);
1289
1290 ent = section_entry(domain->pgtable, iova);
1291
1292 if (lv1ent_section(ent)) {
1293 if (WARN_ON(size < SECT_SIZE)) {
1294 err_pgsize = SECT_SIZE;
1295 goto err;
1296 }
1297
1298 /* workaround for h/w bug in System MMU v3.3 */
1299 exynos_iommu_set_pte(ent, ZERO_LV2LINK);
1300 size = SECT_SIZE;
1301 goto done;
1302 }
1303
1304 if (unlikely(lv1ent_fault(ent))) {
1305 if (size > SECT_SIZE)
1306 size = SECT_SIZE;
1307 goto done;
1308 }
1309
1310 /* lv1ent_page(sent) == true here */
1311
1312 ent = page_entry(ent, iova);
1313
1314 if (unlikely(lv2ent_fault(ent))) {
1315 size = SPAGE_SIZE;
1316 goto done;
1317 }
1318
1319 if (lv2ent_small(ent)) {
1320 exynos_iommu_set_pte(ent, 0);
1321 size = SPAGE_SIZE;
1322 domain->lv2entcnt[lv1ent_offset(iova)] += 1;
1323 goto done;
1324 }
1325
1326 /* lv1ent_large(ent) == true here */
1327 if (WARN_ON(size < LPAGE_SIZE)) {
1328 err_pgsize = LPAGE_SIZE;
1329 goto err;
1330 }
1331
1332 dma_sync_single_for_cpu(dma_dev, virt_to_phys(ent),
1333 sizeof(*ent) * SPAGES_PER_LPAGE,
1334 DMA_TO_DEVICE);
1335 memset(ent, 0, sizeof(*ent) * SPAGES_PER_LPAGE);
1336 dma_sync_single_for_device(dma_dev, virt_to_phys(ent),
1337 sizeof(*ent) * SPAGES_PER_LPAGE,
1338 DMA_TO_DEVICE);
1339 size = LPAGE_SIZE;
1340 domain->lv2entcnt[lv1ent_offset(iova)] += SPAGES_PER_LPAGE;
1341 done:
1342 spin_unlock_irqrestore(&domain->pgtablelock, flags);
1343
1344 exynos_iommu_tlb_invalidate_entry(domain, iova, size);
1345
1346 return size;
1347 err:
1348 spin_unlock_irqrestore(&domain->pgtablelock, flags);
1349
1350 pr_err("%s: Failed: size(%#zx) @ %#x is smaller than page size %#zx\n",
1351 __func__, size, iova, err_pgsize);
1352
1353 return 0;
1354 }
1355
exynos_iommu_iova_to_phys(struct iommu_domain * iommu_domain,dma_addr_t iova)1356 static phys_addr_t exynos_iommu_iova_to_phys(struct iommu_domain *iommu_domain,
1357 dma_addr_t iova)
1358 {
1359 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1360 sysmmu_pte_t *entry;
1361 unsigned long flags;
1362 phys_addr_t phys = 0;
1363
1364 spin_lock_irqsave(&domain->pgtablelock, flags);
1365
1366 entry = section_entry(domain->pgtable, iova);
1367
1368 if (lv1ent_section(entry)) {
1369 phys = section_phys(entry) + section_offs(iova);
1370 } else if (lv1ent_page(entry)) {
1371 entry = page_entry(entry, iova);
1372
1373 if (lv2ent_large(entry))
1374 phys = lpage_phys(entry) + lpage_offs(iova);
1375 else if (lv2ent_small(entry))
1376 phys = spage_phys(entry) + spage_offs(iova);
1377 }
1378
1379 spin_unlock_irqrestore(&domain->pgtablelock, flags);
1380
1381 return phys;
1382 }
1383
exynos_iommu_probe_device(struct device * dev)1384 static struct iommu_device *exynos_iommu_probe_device(struct device *dev)
1385 {
1386 struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
1387 struct sysmmu_drvdata *data;
1388
1389 if (!has_sysmmu(dev))
1390 return ERR_PTR(-ENODEV);
1391
1392 list_for_each_entry(data, &owner->controllers, owner_node) {
1393 /*
1394 * SYSMMU will be runtime activated via device link
1395 * (dependency) to its master device, so there are no
1396 * direct calls to pm_runtime_get/put in this driver.
1397 */
1398 data->link = device_link_add(dev, data->sysmmu,
1399 DL_FLAG_STATELESS |
1400 DL_FLAG_PM_RUNTIME);
1401 }
1402
1403 /* There is always at least one entry, see exynos_iommu_of_xlate() */
1404 data = list_first_entry(&owner->controllers,
1405 struct sysmmu_drvdata, owner_node);
1406
1407 return &data->iommu;
1408 }
1409
exynos_iommu_set_platform_dma(struct device * dev)1410 static void exynos_iommu_set_platform_dma(struct device *dev)
1411 {
1412 struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
1413
1414 if (owner->domain) {
1415 struct iommu_group *group = iommu_group_get(dev);
1416
1417 if (group) {
1418 exynos_iommu_detach_device(owner->domain, dev);
1419 iommu_group_put(group);
1420 }
1421 }
1422 }
1423
exynos_iommu_release_device(struct device * dev)1424 static void exynos_iommu_release_device(struct device *dev)
1425 {
1426 struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
1427 struct sysmmu_drvdata *data;
1428
1429 exynos_iommu_set_platform_dma(dev);
1430
1431 list_for_each_entry(data, &owner->controllers, owner_node)
1432 device_link_del(data->link);
1433 }
1434
exynos_iommu_of_xlate(struct device * dev,struct of_phandle_args * spec)1435 static int exynos_iommu_of_xlate(struct device *dev,
1436 struct of_phandle_args *spec)
1437 {
1438 struct platform_device *sysmmu = of_find_device_by_node(spec->np);
1439 struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
1440 struct sysmmu_drvdata *data, *entry;
1441
1442 if (!sysmmu)
1443 return -ENODEV;
1444
1445 data = platform_get_drvdata(sysmmu);
1446 if (!data) {
1447 put_device(&sysmmu->dev);
1448 return -ENODEV;
1449 }
1450
1451 if (!owner) {
1452 owner = kzalloc(sizeof(*owner), GFP_KERNEL);
1453 if (!owner) {
1454 put_device(&sysmmu->dev);
1455 return -ENOMEM;
1456 }
1457
1458 INIT_LIST_HEAD(&owner->controllers);
1459 mutex_init(&owner->rpm_lock);
1460 dev_iommu_priv_set(dev, owner);
1461 }
1462
1463 list_for_each_entry(entry, &owner->controllers, owner_node)
1464 if (entry == data)
1465 return 0;
1466
1467 list_add_tail(&data->owner_node, &owner->controllers);
1468 data->master = dev;
1469
1470 return 0;
1471 }
1472
1473 static const struct iommu_ops exynos_iommu_ops = {
1474 .domain_alloc = exynos_iommu_domain_alloc,
1475 .device_group = generic_device_group,
1476 #ifdef CONFIG_ARM
1477 .set_platform_dma_ops = exynos_iommu_set_platform_dma,
1478 #endif
1479 .probe_device = exynos_iommu_probe_device,
1480 .release_device = exynos_iommu_release_device,
1481 .pgsize_bitmap = SECT_SIZE | LPAGE_SIZE | SPAGE_SIZE,
1482 .of_xlate = exynos_iommu_of_xlate,
1483 .default_domain_ops = &(const struct iommu_domain_ops) {
1484 .attach_dev = exynos_iommu_attach_device,
1485 .map = exynos_iommu_map,
1486 .unmap = exynos_iommu_unmap,
1487 .iova_to_phys = exynos_iommu_iova_to_phys,
1488 .free = exynos_iommu_domain_free,
1489 }
1490 };
1491
exynos_iommu_init(void)1492 static int __init exynos_iommu_init(void)
1493 {
1494 struct device_node *np;
1495 int ret;
1496
1497 np = of_find_matching_node(NULL, sysmmu_of_match);
1498 if (!np)
1499 return 0;
1500
1501 of_node_put(np);
1502
1503 lv2table_kmem_cache = kmem_cache_create("exynos-iommu-lv2table",
1504 LV2TABLE_SIZE, LV2TABLE_SIZE, 0, NULL);
1505 if (!lv2table_kmem_cache) {
1506 pr_err("%s: Failed to create kmem cache\n", __func__);
1507 return -ENOMEM;
1508 }
1509
1510 zero_lv2_table = kmem_cache_zalloc(lv2table_kmem_cache, GFP_KERNEL);
1511 if (zero_lv2_table == NULL) {
1512 pr_err("%s: Failed to allocate zero level2 page table\n",
1513 __func__);
1514 ret = -ENOMEM;
1515 goto err_zero_lv2;
1516 }
1517
1518 ret = platform_driver_register(&exynos_sysmmu_driver);
1519 if (ret) {
1520 pr_err("%s: Failed to register driver\n", __func__);
1521 goto err_reg_driver;
1522 }
1523
1524 return 0;
1525 err_reg_driver:
1526 kmem_cache_free(lv2table_kmem_cache, zero_lv2_table);
1527 err_zero_lv2:
1528 kmem_cache_destroy(lv2table_kmem_cache);
1529 return ret;
1530 }
1531 core_initcall(exynos_iommu_init);
1532