1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * A fairly generic DMA-API to IOMMU-API glue layer. 4 * 5 * Copyright (C) 2014-2015 ARM Ltd. 6 * 7 * based in part on arch/arm/mm/dma-mapping.c: 8 * Copyright (C) 2000-2004 Russell King 9 */ 10 11 #include <linux/acpi_iort.h> 12 #include <linux/atomic.h> 13 #include <linux/crash_dump.h> 14 #include <linux/device.h> 15 #include <linux/dma-direct.h> 16 #include <linux/dma-iommu.h> 17 #include <linux/dma-map-ops.h> 18 #include <linux/gfp.h> 19 #include <linux/huge_mm.h> 20 #include <linux/iommu.h> 21 #include <linux/iova.h> 22 #include <linux/irq.h> 23 #include <linux/mm.h> 24 #include <linux/mutex.h> 25 #include <linux/pci.h> 26 #include <linux/scatterlist.h> 27 #include <linux/spinlock.h> 28 #include <linux/swiotlb.h> 29 #include <linux/vmalloc.h> 30 31 struct iommu_dma_msi_page { 32 struct list_head list; 33 dma_addr_t iova; 34 phys_addr_t phys; 35 }; 36 37 enum iommu_dma_cookie_type { 38 IOMMU_DMA_IOVA_COOKIE, 39 IOMMU_DMA_MSI_COOKIE, 40 }; 41 42 struct iommu_dma_cookie { 43 enum iommu_dma_cookie_type type; 44 union { 45 /* Full allocator for IOMMU_DMA_IOVA_COOKIE */ 46 struct { 47 struct iova_domain iovad; 48 49 struct iova_fq __percpu *fq; /* Flush queue */ 50 /* Number of TLB flushes that have been started */ 51 atomic64_t fq_flush_start_cnt; 52 /* Number of TLB flushes that have been finished */ 53 atomic64_t fq_flush_finish_cnt; 54 /* Timer to regularily empty the flush queues */ 55 struct timer_list fq_timer; 56 /* 1 when timer is active, 0 when not */ 57 atomic_t fq_timer_on; 58 }; 59 /* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */ 60 dma_addr_t msi_iova; 61 }; 62 struct list_head msi_page_list; 63 64 /* Domain for flush queue callback; NULL if flush queue not in use */ 65 struct iommu_domain *fq_domain; 66 }; 67 68 static DEFINE_STATIC_KEY_FALSE(iommu_deferred_attach_enabled); 69 bool iommu_dma_forcedac __read_mostly; 70 71 static int __init iommu_dma_forcedac_setup(char *str) 72 { 73 int ret = kstrtobool(str, &iommu_dma_forcedac); 74 75 if (!ret && iommu_dma_forcedac) 76 pr_info("Forcing DAC for PCI devices\n"); 77 return ret; 78 } 79 early_param("iommu.forcedac", iommu_dma_forcedac_setup); 80 81 /* Number of entries per flush queue */ 82 #define IOVA_FQ_SIZE 256 83 84 /* Timeout (in ms) after which entries are flushed from the queue */ 85 #define IOVA_FQ_TIMEOUT 10 86 87 /* Flush queue entry for deferred flushing */ 88 struct iova_fq_entry { 89 unsigned long iova_pfn; 90 unsigned long pages; 91 struct list_head freelist; 92 u64 counter; /* Flush counter when this entry was added */ 93 }; 94 95 /* Per-CPU flush queue structure */ 96 struct iova_fq { 97 struct iova_fq_entry entries[IOVA_FQ_SIZE]; 98 unsigned int head, tail; 99 spinlock_t lock; 100 }; 101 102 #define fq_ring_for_each(i, fq) \ 103 for ((i) = (fq)->head; (i) != (fq)->tail; (i) = ((i) + 1) % IOVA_FQ_SIZE) 104 105 static inline bool fq_full(struct iova_fq *fq) 106 { 107 assert_spin_locked(&fq->lock); 108 return (((fq->tail + 1) % IOVA_FQ_SIZE) == fq->head); 109 } 110 111 static inline unsigned int fq_ring_add(struct iova_fq *fq) 112 { 113 unsigned int idx = fq->tail; 114 115 assert_spin_locked(&fq->lock); 116 117 fq->tail = (idx + 1) % IOVA_FQ_SIZE; 118 119 return idx; 120 } 121 122 static void fq_ring_free(struct iommu_dma_cookie *cookie, struct iova_fq *fq) 123 { 124 u64 counter = atomic64_read(&cookie->fq_flush_finish_cnt); 125 unsigned int idx; 126 127 assert_spin_locked(&fq->lock); 128 129 fq_ring_for_each(idx, fq) { 130 131 if (fq->entries[idx].counter >= counter) 132 break; 133 134 put_pages_list(&fq->entries[idx].freelist); 135 free_iova_fast(&cookie->iovad, 136 fq->entries[idx].iova_pfn, 137 fq->entries[idx].pages); 138 139 fq->head = (fq->head + 1) % IOVA_FQ_SIZE; 140 } 141 } 142 143 static void fq_flush_iotlb(struct iommu_dma_cookie *cookie) 144 { 145 atomic64_inc(&cookie->fq_flush_start_cnt); 146 cookie->fq_domain->ops->flush_iotlb_all(cookie->fq_domain); 147 atomic64_inc(&cookie->fq_flush_finish_cnt); 148 } 149 150 static void fq_flush_timeout(struct timer_list *t) 151 { 152 struct iommu_dma_cookie *cookie = from_timer(cookie, t, fq_timer); 153 int cpu; 154 155 atomic_set(&cookie->fq_timer_on, 0); 156 fq_flush_iotlb(cookie); 157 158 for_each_possible_cpu(cpu) { 159 unsigned long flags; 160 struct iova_fq *fq; 161 162 fq = per_cpu_ptr(cookie->fq, cpu); 163 spin_lock_irqsave(&fq->lock, flags); 164 fq_ring_free(cookie, fq); 165 spin_unlock_irqrestore(&fq->lock, flags); 166 } 167 } 168 169 static void queue_iova(struct iommu_dma_cookie *cookie, 170 unsigned long pfn, unsigned long pages, 171 struct list_head *freelist) 172 { 173 struct iova_fq *fq; 174 unsigned long flags; 175 unsigned int idx; 176 177 /* 178 * Order against the IOMMU driver's pagetable update from unmapping 179 * @pte, to guarantee that fq_flush_iotlb() observes that if called 180 * from a different CPU before we release the lock below. Full barrier 181 * so it also pairs with iommu_dma_init_fq() to avoid seeing partially 182 * written fq state here. 183 */ 184 smp_mb(); 185 186 fq = raw_cpu_ptr(cookie->fq); 187 spin_lock_irqsave(&fq->lock, flags); 188 189 /* 190 * First remove all entries from the flush queue that have already been 191 * flushed out on another CPU. This makes the fq_full() check below less 192 * likely to be true. 193 */ 194 fq_ring_free(cookie, fq); 195 196 if (fq_full(fq)) { 197 fq_flush_iotlb(cookie); 198 fq_ring_free(cookie, fq); 199 } 200 201 idx = fq_ring_add(fq); 202 203 fq->entries[idx].iova_pfn = pfn; 204 fq->entries[idx].pages = pages; 205 fq->entries[idx].counter = atomic64_read(&cookie->fq_flush_start_cnt); 206 list_splice(freelist, &fq->entries[idx].freelist); 207 208 spin_unlock_irqrestore(&fq->lock, flags); 209 210 /* Avoid false sharing as much as possible. */ 211 if (!atomic_read(&cookie->fq_timer_on) && 212 !atomic_xchg(&cookie->fq_timer_on, 1)) 213 mod_timer(&cookie->fq_timer, 214 jiffies + msecs_to_jiffies(IOVA_FQ_TIMEOUT)); 215 } 216 217 static void iommu_dma_free_fq(struct iommu_dma_cookie *cookie) 218 { 219 int cpu, idx; 220 221 if (!cookie->fq) 222 return; 223 224 del_timer_sync(&cookie->fq_timer); 225 /* The IOVAs will be torn down separately, so just free our queued pages */ 226 for_each_possible_cpu(cpu) { 227 struct iova_fq *fq = per_cpu_ptr(cookie->fq, cpu); 228 229 fq_ring_for_each(idx, fq) 230 put_pages_list(&fq->entries[idx].freelist); 231 } 232 233 free_percpu(cookie->fq); 234 } 235 236 /* sysfs updates are serialised by the mutex of the group owning @domain */ 237 int iommu_dma_init_fq(struct iommu_domain *domain) 238 { 239 struct iommu_dma_cookie *cookie = domain->iova_cookie; 240 struct iova_fq __percpu *queue; 241 int i, cpu; 242 243 if (cookie->fq_domain) 244 return 0; 245 246 atomic64_set(&cookie->fq_flush_start_cnt, 0); 247 atomic64_set(&cookie->fq_flush_finish_cnt, 0); 248 249 queue = alloc_percpu(struct iova_fq); 250 if (!queue) { 251 pr_warn("iova flush queue initialization failed\n"); 252 return -ENOMEM; 253 } 254 255 for_each_possible_cpu(cpu) { 256 struct iova_fq *fq = per_cpu_ptr(queue, cpu); 257 258 fq->head = 0; 259 fq->tail = 0; 260 261 spin_lock_init(&fq->lock); 262 263 for (i = 0; i < IOVA_FQ_SIZE; i++) 264 INIT_LIST_HEAD(&fq->entries[i].freelist); 265 } 266 267 cookie->fq = queue; 268 269 timer_setup(&cookie->fq_timer, fq_flush_timeout, 0); 270 atomic_set(&cookie->fq_timer_on, 0); 271 /* 272 * Prevent incomplete fq state being observable. Pairs with path from 273 * __iommu_dma_unmap() through iommu_dma_free_iova() to queue_iova() 274 */ 275 smp_wmb(); 276 WRITE_ONCE(cookie->fq_domain, domain); 277 return 0; 278 } 279 280 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie) 281 { 282 if (cookie->type == IOMMU_DMA_IOVA_COOKIE) 283 return cookie->iovad.granule; 284 return PAGE_SIZE; 285 } 286 287 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type) 288 { 289 struct iommu_dma_cookie *cookie; 290 291 cookie = kzalloc(sizeof(*cookie), GFP_KERNEL); 292 if (cookie) { 293 INIT_LIST_HEAD(&cookie->msi_page_list); 294 cookie->type = type; 295 } 296 return cookie; 297 } 298 299 /** 300 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain 301 * @domain: IOMMU domain to prepare for DMA-API usage 302 */ 303 int iommu_get_dma_cookie(struct iommu_domain *domain) 304 { 305 if (domain->iova_cookie) 306 return -EEXIST; 307 308 domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE); 309 if (!domain->iova_cookie) 310 return -ENOMEM; 311 312 return 0; 313 } 314 315 /** 316 * iommu_get_msi_cookie - Acquire just MSI remapping resources 317 * @domain: IOMMU domain to prepare 318 * @base: Start address of IOVA region for MSI mappings 319 * 320 * Users who manage their own IOVA allocation and do not want DMA API support, 321 * but would still like to take advantage of automatic MSI remapping, can use 322 * this to initialise their own domain appropriately. Users should reserve a 323 * contiguous IOVA region, starting at @base, large enough to accommodate the 324 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address 325 * used by the devices attached to @domain. 326 */ 327 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base) 328 { 329 struct iommu_dma_cookie *cookie; 330 331 if (domain->type != IOMMU_DOMAIN_UNMANAGED) 332 return -EINVAL; 333 334 if (domain->iova_cookie) 335 return -EEXIST; 336 337 cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE); 338 if (!cookie) 339 return -ENOMEM; 340 341 cookie->msi_iova = base; 342 domain->iova_cookie = cookie; 343 return 0; 344 } 345 EXPORT_SYMBOL(iommu_get_msi_cookie); 346 347 /** 348 * iommu_put_dma_cookie - Release a domain's DMA mapping resources 349 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or 350 * iommu_get_msi_cookie() 351 */ 352 void iommu_put_dma_cookie(struct iommu_domain *domain) 353 { 354 struct iommu_dma_cookie *cookie = domain->iova_cookie; 355 struct iommu_dma_msi_page *msi, *tmp; 356 357 if (!cookie) 358 return; 359 360 if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule) { 361 iommu_dma_free_fq(cookie); 362 put_iova_domain(&cookie->iovad); 363 } 364 365 list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) { 366 list_del(&msi->list); 367 kfree(msi); 368 } 369 kfree(cookie); 370 domain->iova_cookie = NULL; 371 } 372 373 /** 374 * iommu_dma_get_resv_regions - Reserved region driver helper 375 * @dev: Device from iommu_get_resv_regions() 376 * @list: Reserved region list from iommu_get_resv_regions() 377 * 378 * IOMMU drivers can use this to implement their .get_resv_regions callback 379 * for general non-IOMMU-specific reservations. Currently, this covers GICv3 380 * ITS region reservation on ACPI based ARM platforms that may require HW MSI 381 * reservation. 382 */ 383 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list) 384 { 385 386 if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode)) 387 iort_iommu_msi_get_resv_regions(dev, list); 388 389 } 390 EXPORT_SYMBOL(iommu_dma_get_resv_regions); 391 392 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie, 393 phys_addr_t start, phys_addr_t end) 394 { 395 struct iova_domain *iovad = &cookie->iovad; 396 struct iommu_dma_msi_page *msi_page; 397 int i, num_pages; 398 399 start -= iova_offset(iovad, start); 400 num_pages = iova_align(iovad, end - start) >> iova_shift(iovad); 401 402 for (i = 0; i < num_pages; i++) { 403 msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL); 404 if (!msi_page) 405 return -ENOMEM; 406 407 msi_page->phys = start; 408 msi_page->iova = start; 409 INIT_LIST_HEAD(&msi_page->list); 410 list_add(&msi_page->list, &cookie->msi_page_list); 411 start += iovad->granule; 412 } 413 414 return 0; 415 } 416 417 static int iova_reserve_pci_windows(struct pci_dev *dev, 418 struct iova_domain *iovad) 419 { 420 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus); 421 struct resource_entry *window; 422 unsigned long lo, hi; 423 phys_addr_t start = 0, end; 424 425 resource_list_for_each_entry(window, &bridge->windows) { 426 if (resource_type(window->res) != IORESOURCE_MEM) 427 continue; 428 429 lo = iova_pfn(iovad, window->res->start - window->offset); 430 hi = iova_pfn(iovad, window->res->end - window->offset); 431 reserve_iova(iovad, lo, hi); 432 } 433 434 /* Get reserved DMA windows from host bridge */ 435 resource_list_for_each_entry(window, &bridge->dma_ranges) { 436 end = window->res->start - window->offset; 437 resv_iova: 438 if (end > start) { 439 lo = iova_pfn(iovad, start); 440 hi = iova_pfn(iovad, end); 441 reserve_iova(iovad, lo, hi); 442 } else if (end < start) { 443 /* dma_ranges list should be sorted */ 444 dev_err(&dev->dev, 445 "Failed to reserve IOVA [%pa-%pa]\n", 446 &start, &end); 447 return -EINVAL; 448 } 449 450 start = window->res->end - window->offset + 1; 451 /* If window is last entry */ 452 if (window->node.next == &bridge->dma_ranges && 453 end != ~(phys_addr_t)0) { 454 end = ~(phys_addr_t)0; 455 goto resv_iova; 456 } 457 } 458 459 return 0; 460 } 461 462 static int iova_reserve_iommu_regions(struct device *dev, 463 struct iommu_domain *domain) 464 { 465 struct iommu_dma_cookie *cookie = domain->iova_cookie; 466 struct iova_domain *iovad = &cookie->iovad; 467 struct iommu_resv_region *region; 468 LIST_HEAD(resv_regions); 469 int ret = 0; 470 471 if (dev_is_pci(dev)) { 472 ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad); 473 if (ret) 474 return ret; 475 } 476 477 iommu_get_resv_regions(dev, &resv_regions); 478 list_for_each_entry(region, &resv_regions, list) { 479 unsigned long lo, hi; 480 481 /* We ARE the software that manages these! */ 482 if (region->type == IOMMU_RESV_SW_MSI) 483 continue; 484 485 lo = iova_pfn(iovad, region->start); 486 hi = iova_pfn(iovad, region->start + region->length - 1); 487 reserve_iova(iovad, lo, hi); 488 489 if (region->type == IOMMU_RESV_MSI) 490 ret = cookie_init_hw_msi_region(cookie, region->start, 491 region->start + region->length); 492 if (ret) 493 break; 494 } 495 iommu_put_resv_regions(dev, &resv_regions); 496 497 return ret; 498 } 499 500 static bool dev_is_untrusted(struct device *dev) 501 { 502 return dev_is_pci(dev) && to_pci_dev(dev)->untrusted; 503 } 504 505 static bool dev_use_swiotlb(struct device *dev) 506 { 507 return IS_ENABLED(CONFIG_SWIOTLB) && dev_is_untrusted(dev); 508 } 509 510 /** 511 * iommu_dma_init_domain - Initialise a DMA mapping domain 512 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() 513 * @base: IOVA at which the mappable address space starts 514 * @limit: Last address of the IOVA space 515 * @dev: Device the domain is being initialised for 516 * 517 * @base and @limit + 1 should be exact multiples of IOMMU page granularity to 518 * avoid rounding surprises. If necessary, we reserve the page at address 0 519 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but 520 * any change which could make prior IOVAs invalid will fail. 521 */ 522 static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base, 523 dma_addr_t limit, struct device *dev) 524 { 525 struct iommu_dma_cookie *cookie = domain->iova_cookie; 526 unsigned long order, base_pfn; 527 struct iova_domain *iovad; 528 529 if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE) 530 return -EINVAL; 531 532 iovad = &cookie->iovad; 533 534 /* Use the smallest supported page size for IOVA granularity */ 535 order = __ffs(domain->pgsize_bitmap); 536 base_pfn = max_t(unsigned long, 1, base >> order); 537 538 /* Check the domain allows at least some access to the device... */ 539 if (domain->geometry.force_aperture) { 540 if (base > domain->geometry.aperture_end || 541 limit < domain->geometry.aperture_start) { 542 pr_warn("specified DMA range outside IOMMU capability\n"); 543 return -EFAULT; 544 } 545 /* ...then finally give it a kicking to make sure it fits */ 546 base_pfn = max_t(unsigned long, base_pfn, 547 domain->geometry.aperture_start >> order); 548 } 549 550 /* start_pfn is always nonzero for an already-initialised domain */ 551 if (iovad->start_pfn) { 552 if (1UL << order != iovad->granule || 553 base_pfn != iovad->start_pfn) { 554 pr_warn("Incompatible range for DMA domain\n"); 555 return -EFAULT; 556 } 557 558 return 0; 559 } 560 561 init_iova_domain(iovad, 1UL << order, base_pfn); 562 563 /* If the FQ fails we can simply fall back to strict mode */ 564 if (domain->type == IOMMU_DOMAIN_DMA_FQ && iommu_dma_init_fq(domain)) 565 domain->type = IOMMU_DOMAIN_DMA; 566 567 return iova_reserve_iommu_regions(dev, domain); 568 } 569 570 /** 571 * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API 572 * page flags. 573 * @dir: Direction of DMA transfer 574 * @coherent: Is the DMA master cache-coherent? 575 * @attrs: DMA attributes for the mapping 576 * 577 * Return: corresponding IOMMU API page protection flags 578 */ 579 static int dma_info_to_prot(enum dma_data_direction dir, bool coherent, 580 unsigned long attrs) 581 { 582 int prot = coherent ? IOMMU_CACHE : 0; 583 584 if (attrs & DMA_ATTR_PRIVILEGED) 585 prot |= IOMMU_PRIV; 586 587 switch (dir) { 588 case DMA_BIDIRECTIONAL: 589 return prot | IOMMU_READ | IOMMU_WRITE; 590 case DMA_TO_DEVICE: 591 return prot | IOMMU_READ; 592 case DMA_FROM_DEVICE: 593 return prot | IOMMU_WRITE; 594 default: 595 return 0; 596 } 597 } 598 599 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain, 600 size_t size, u64 dma_limit, struct device *dev) 601 { 602 struct iommu_dma_cookie *cookie = domain->iova_cookie; 603 struct iova_domain *iovad = &cookie->iovad; 604 unsigned long shift, iova_len, iova = 0; 605 606 if (cookie->type == IOMMU_DMA_MSI_COOKIE) { 607 cookie->msi_iova += size; 608 return cookie->msi_iova - size; 609 } 610 611 shift = iova_shift(iovad); 612 iova_len = size >> shift; 613 614 dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit); 615 616 if (domain->geometry.force_aperture) 617 dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end); 618 619 /* Try to get PCI devices a SAC address */ 620 if (dma_limit > DMA_BIT_MASK(32) && !iommu_dma_forcedac && dev_is_pci(dev)) 621 iova = alloc_iova_fast(iovad, iova_len, 622 DMA_BIT_MASK(32) >> shift, false); 623 624 if (!iova) 625 iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift, 626 true); 627 628 return (dma_addr_t)iova << shift; 629 } 630 631 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie, 632 dma_addr_t iova, size_t size, struct iommu_iotlb_gather *gather) 633 { 634 struct iova_domain *iovad = &cookie->iovad; 635 636 /* The MSI case is only ever cleaning up its most recent allocation */ 637 if (cookie->type == IOMMU_DMA_MSI_COOKIE) 638 cookie->msi_iova -= size; 639 else if (gather && gather->queued) 640 queue_iova(cookie, iova_pfn(iovad, iova), 641 size >> iova_shift(iovad), 642 &gather->freelist); 643 else 644 free_iova_fast(iovad, iova_pfn(iovad, iova), 645 size >> iova_shift(iovad)); 646 } 647 648 static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr, 649 size_t size) 650 { 651 struct iommu_domain *domain = iommu_get_dma_domain(dev); 652 struct iommu_dma_cookie *cookie = domain->iova_cookie; 653 struct iova_domain *iovad = &cookie->iovad; 654 size_t iova_off = iova_offset(iovad, dma_addr); 655 struct iommu_iotlb_gather iotlb_gather; 656 size_t unmapped; 657 658 dma_addr -= iova_off; 659 size = iova_align(iovad, size + iova_off); 660 iommu_iotlb_gather_init(&iotlb_gather); 661 iotlb_gather.queued = READ_ONCE(cookie->fq_domain); 662 663 unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather); 664 WARN_ON(unmapped != size); 665 666 if (!iotlb_gather.queued) 667 iommu_iotlb_sync(domain, &iotlb_gather); 668 iommu_dma_free_iova(cookie, dma_addr, size, &iotlb_gather); 669 } 670 671 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys, 672 size_t size, int prot, u64 dma_mask) 673 { 674 struct iommu_domain *domain = iommu_get_dma_domain(dev); 675 struct iommu_dma_cookie *cookie = domain->iova_cookie; 676 struct iova_domain *iovad = &cookie->iovad; 677 size_t iova_off = iova_offset(iovad, phys); 678 dma_addr_t iova; 679 680 if (static_branch_unlikely(&iommu_deferred_attach_enabled) && 681 iommu_deferred_attach(dev, domain)) 682 return DMA_MAPPING_ERROR; 683 684 size = iova_align(iovad, size + iova_off); 685 686 iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev); 687 if (!iova) 688 return DMA_MAPPING_ERROR; 689 690 if (iommu_map_atomic(domain, iova, phys - iova_off, size, prot)) { 691 iommu_dma_free_iova(cookie, iova, size, NULL); 692 return DMA_MAPPING_ERROR; 693 } 694 return iova + iova_off; 695 } 696 697 static void __iommu_dma_free_pages(struct page **pages, int count) 698 { 699 while (count--) 700 __free_page(pages[count]); 701 kvfree(pages); 702 } 703 704 static struct page **__iommu_dma_alloc_pages(struct device *dev, 705 unsigned int count, unsigned long order_mask, gfp_t gfp) 706 { 707 struct page **pages; 708 unsigned int i = 0, nid = dev_to_node(dev); 709 710 order_mask &= (2U << MAX_ORDER) - 1; 711 if (!order_mask) 712 return NULL; 713 714 pages = kvcalloc(count, sizeof(*pages), GFP_KERNEL); 715 if (!pages) 716 return NULL; 717 718 /* IOMMU can map any pages, so himem can also be used here */ 719 gfp |= __GFP_NOWARN | __GFP_HIGHMEM; 720 721 /* It makes no sense to muck about with huge pages */ 722 gfp &= ~__GFP_COMP; 723 724 while (count) { 725 struct page *page = NULL; 726 unsigned int order_size; 727 728 /* 729 * Higher-order allocations are a convenience rather 730 * than a necessity, hence using __GFP_NORETRY until 731 * falling back to minimum-order allocations. 732 */ 733 for (order_mask &= (2U << __fls(count)) - 1; 734 order_mask; order_mask &= ~order_size) { 735 unsigned int order = __fls(order_mask); 736 gfp_t alloc_flags = gfp; 737 738 order_size = 1U << order; 739 if (order_mask > order_size) 740 alloc_flags |= __GFP_NORETRY; 741 page = alloc_pages_node(nid, alloc_flags, order); 742 if (!page) 743 continue; 744 if (order) 745 split_page(page, order); 746 break; 747 } 748 if (!page) { 749 __iommu_dma_free_pages(pages, i); 750 return NULL; 751 } 752 count -= order_size; 753 while (order_size--) 754 pages[i++] = page++; 755 } 756 return pages; 757 } 758 759 /* 760 * If size is less than PAGE_SIZE, then a full CPU page will be allocated, 761 * but an IOMMU which supports smaller pages might not map the whole thing. 762 */ 763 static struct page **__iommu_dma_alloc_noncontiguous(struct device *dev, 764 size_t size, struct sg_table *sgt, gfp_t gfp, pgprot_t prot, 765 unsigned long attrs) 766 { 767 struct iommu_domain *domain = iommu_get_dma_domain(dev); 768 struct iommu_dma_cookie *cookie = domain->iova_cookie; 769 struct iova_domain *iovad = &cookie->iovad; 770 bool coherent = dev_is_dma_coherent(dev); 771 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs); 772 unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap; 773 struct page **pages; 774 dma_addr_t iova; 775 776 if (static_branch_unlikely(&iommu_deferred_attach_enabled) && 777 iommu_deferred_attach(dev, domain)) 778 return NULL; 779 780 min_size = alloc_sizes & -alloc_sizes; 781 if (min_size < PAGE_SIZE) { 782 min_size = PAGE_SIZE; 783 alloc_sizes |= PAGE_SIZE; 784 } else { 785 size = ALIGN(size, min_size); 786 } 787 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES) 788 alloc_sizes = min_size; 789 790 count = PAGE_ALIGN(size) >> PAGE_SHIFT; 791 pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT, 792 gfp); 793 if (!pages) 794 return NULL; 795 796 size = iova_align(iovad, size); 797 iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev); 798 if (!iova) 799 goto out_free_pages; 800 801 if (sg_alloc_table_from_pages(sgt, pages, count, 0, size, GFP_KERNEL)) 802 goto out_free_iova; 803 804 if (!(ioprot & IOMMU_CACHE)) { 805 struct scatterlist *sg; 806 int i; 807 808 for_each_sg(sgt->sgl, sg, sgt->orig_nents, i) 809 arch_dma_prep_coherent(sg_page(sg), sg->length); 810 } 811 812 if (iommu_map_sg_atomic(domain, iova, sgt->sgl, sgt->orig_nents, ioprot) 813 < size) 814 goto out_free_sg; 815 816 sgt->sgl->dma_address = iova; 817 sgt->sgl->dma_length = size; 818 return pages; 819 820 out_free_sg: 821 sg_free_table(sgt); 822 out_free_iova: 823 iommu_dma_free_iova(cookie, iova, size, NULL); 824 out_free_pages: 825 __iommu_dma_free_pages(pages, count); 826 return NULL; 827 } 828 829 static void *iommu_dma_alloc_remap(struct device *dev, size_t size, 830 dma_addr_t *dma_handle, gfp_t gfp, pgprot_t prot, 831 unsigned long attrs) 832 { 833 struct page **pages; 834 struct sg_table sgt; 835 void *vaddr; 836 837 pages = __iommu_dma_alloc_noncontiguous(dev, size, &sgt, gfp, prot, 838 attrs); 839 if (!pages) 840 return NULL; 841 *dma_handle = sgt.sgl->dma_address; 842 sg_free_table(&sgt); 843 vaddr = dma_common_pages_remap(pages, size, prot, 844 __builtin_return_address(0)); 845 if (!vaddr) 846 goto out_unmap; 847 return vaddr; 848 849 out_unmap: 850 __iommu_dma_unmap(dev, *dma_handle, size); 851 __iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT); 852 return NULL; 853 } 854 855 #ifdef CONFIG_DMA_REMAP 856 static struct sg_table *iommu_dma_alloc_noncontiguous(struct device *dev, 857 size_t size, enum dma_data_direction dir, gfp_t gfp, 858 unsigned long attrs) 859 { 860 struct dma_sgt_handle *sh; 861 862 sh = kmalloc(sizeof(*sh), gfp); 863 if (!sh) 864 return NULL; 865 866 sh->pages = __iommu_dma_alloc_noncontiguous(dev, size, &sh->sgt, gfp, 867 PAGE_KERNEL, attrs); 868 if (!sh->pages) { 869 kfree(sh); 870 return NULL; 871 } 872 return &sh->sgt; 873 } 874 875 static void iommu_dma_free_noncontiguous(struct device *dev, size_t size, 876 struct sg_table *sgt, enum dma_data_direction dir) 877 { 878 struct dma_sgt_handle *sh = sgt_handle(sgt); 879 880 __iommu_dma_unmap(dev, sgt->sgl->dma_address, size); 881 __iommu_dma_free_pages(sh->pages, PAGE_ALIGN(size) >> PAGE_SHIFT); 882 sg_free_table(&sh->sgt); 883 kfree(sh); 884 } 885 #endif /* CONFIG_DMA_REMAP */ 886 887 static void iommu_dma_sync_single_for_cpu(struct device *dev, 888 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir) 889 { 890 phys_addr_t phys; 891 892 if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev)) 893 return; 894 895 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle); 896 if (!dev_is_dma_coherent(dev)) 897 arch_sync_dma_for_cpu(phys, size, dir); 898 899 if (is_swiotlb_buffer(dev, phys)) 900 swiotlb_sync_single_for_cpu(dev, phys, size, dir); 901 } 902 903 static void iommu_dma_sync_single_for_device(struct device *dev, 904 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir) 905 { 906 phys_addr_t phys; 907 908 if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev)) 909 return; 910 911 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle); 912 if (is_swiotlb_buffer(dev, phys)) 913 swiotlb_sync_single_for_device(dev, phys, size, dir); 914 915 if (!dev_is_dma_coherent(dev)) 916 arch_sync_dma_for_device(phys, size, dir); 917 } 918 919 static void iommu_dma_sync_sg_for_cpu(struct device *dev, 920 struct scatterlist *sgl, int nelems, 921 enum dma_data_direction dir) 922 { 923 struct scatterlist *sg; 924 int i; 925 926 if (dev_use_swiotlb(dev)) 927 for_each_sg(sgl, sg, nelems, i) 928 iommu_dma_sync_single_for_cpu(dev, sg_dma_address(sg), 929 sg->length, dir); 930 else if (!dev_is_dma_coherent(dev)) 931 for_each_sg(sgl, sg, nelems, i) 932 arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir); 933 } 934 935 static void iommu_dma_sync_sg_for_device(struct device *dev, 936 struct scatterlist *sgl, int nelems, 937 enum dma_data_direction dir) 938 { 939 struct scatterlist *sg; 940 int i; 941 942 if (dev_use_swiotlb(dev)) 943 for_each_sg(sgl, sg, nelems, i) 944 iommu_dma_sync_single_for_device(dev, 945 sg_dma_address(sg), 946 sg->length, dir); 947 else if (!dev_is_dma_coherent(dev)) 948 for_each_sg(sgl, sg, nelems, i) 949 arch_sync_dma_for_device(sg_phys(sg), sg->length, dir); 950 } 951 952 static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page, 953 unsigned long offset, size_t size, enum dma_data_direction dir, 954 unsigned long attrs) 955 { 956 phys_addr_t phys = page_to_phys(page) + offset; 957 bool coherent = dev_is_dma_coherent(dev); 958 int prot = dma_info_to_prot(dir, coherent, attrs); 959 struct iommu_domain *domain = iommu_get_dma_domain(dev); 960 struct iommu_dma_cookie *cookie = domain->iova_cookie; 961 struct iova_domain *iovad = &cookie->iovad; 962 dma_addr_t iova, dma_mask = dma_get_mask(dev); 963 964 /* 965 * If both the physical buffer start address and size are 966 * page aligned, we don't need to use a bounce page. 967 */ 968 if (dev_use_swiotlb(dev) && iova_offset(iovad, phys | size)) { 969 void *padding_start; 970 size_t padding_size, aligned_size; 971 972 aligned_size = iova_align(iovad, size); 973 phys = swiotlb_tbl_map_single(dev, phys, size, aligned_size, 974 iova_mask(iovad), dir, attrs); 975 976 if (phys == DMA_MAPPING_ERROR) 977 return DMA_MAPPING_ERROR; 978 979 /* Cleanup the padding area. */ 980 padding_start = phys_to_virt(phys); 981 padding_size = aligned_size; 982 983 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && 984 (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) { 985 padding_start += size; 986 padding_size -= size; 987 } 988 989 memset(padding_start, 0, padding_size); 990 } 991 992 if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 993 arch_sync_dma_for_device(phys, size, dir); 994 995 iova = __iommu_dma_map(dev, phys, size, prot, dma_mask); 996 if (iova == DMA_MAPPING_ERROR && is_swiotlb_buffer(dev, phys)) 997 swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs); 998 return iova; 999 } 1000 1001 static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle, 1002 size_t size, enum dma_data_direction dir, unsigned long attrs) 1003 { 1004 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1005 phys_addr_t phys; 1006 1007 phys = iommu_iova_to_phys(domain, dma_handle); 1008 if (WARN_ON(!phys)) 1009 return; 1010 1011 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && !dev_is_dma_coherent(dev)) 1012 arch_sync_dma_for_cpu(phys, size, dir); 1013 1014 __iommu_dma_unmap(dev, dma_handle, size); 1015 1016 if (unlikely(is_swiotlb_buffer(dev, phys))) 1017 swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs); 1018 } 1019 1020 /* 1021 * Prepare a successfully-mapped scatterlist to give back to the caller. 1022 * 1023 * At this point the segments are already laid out by iommu_dma_map_sg() to 1024 * avoid individually crossing any boundaries, so we merely need to check a 1025 * segment's start address to avoid concatenating across one. 1026 */ 1027 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents, 1028 dma_addr_t dma_addr) 1029 { 1030 struct scatterlist *s, *cur = sg; 1031 unsigned long seg_mask = dma_get_seg_boundary(dev); 1032 unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev); 1033 int i, count = 0; 1034 1035 for_each_sg(sg, s, nents, i) { 1036 /* Restore this segment's original unaligned fields first */ 1037 unsigned int s_iova_off = sg_dma_address(s); 1038 unsigned int s_length = sg_dma_len(s); 1039 unsigned int s_iova_len = s->length; 1040 1041 s->offset += s_iova_off; 1042 s->length = s_length; 1043 sg_dma_address(s) = DMA_MAPPING_ERROR; 1044 sg_dma_len(s) = 0; 1045 1046 /* 1047 * Now fill in the real DMA data. If... 1048 * - there is a valid output segment to append to 1049 * - and this segment starts on an IOVA page boundary 1050 * - but doesn't fall at a segment boundary 1051 * - and wouldn't make the resulting output segment too long 1052 */ 1053 if (cur_len && !s_iova_off && (dma_addr & seg_mask) && 1054 (max_len - cur_len >= s_length)) { 1055 /* ...then concatenate it with the previous one */ 1056 cur_len += s_length; 1057 } else { 1058 /* Otherwise start the next output segment */ 1059 if (i > 0) 1060 cur = sg_next(cur); 1061 cur_len = s_length; 1062 count++; 1063 1064 sg_dma_address(cur) = dma_addr + s_iova_off; 1065 } 1066 1067 sg_dma_len(cur) = cur_len; 1068 dma_addr += s_iova_len; 1069 1070 if (s_length + s_iova_off < s_iova_len) 1071 cur_len = 0; 1072 } 1073 return count; 1074 } 1075 1076 /* 1077 * If mapping failed, then just restore the original list, 1078 * but making sure the DMA fields are invalidated. 1079 */ 1080 static void __invalidate_sg(struct scatterlist *sg, int nents) 1081 { 1082 struct scatterlist *s; 1083 int i; 1084 1085 for_each_sg(sg, s, nents, i) { 1086 if (sg_dma_address(s) != DMA_MAPPING_ERROR) 1087 s->offset += sg_dma_address(s); 1088 if (sg_dma_len(s)) 1089 s->length = sg_dma_len(s); 1090 sg_dma_address(s) = DMA_MAPPING_ERROR; 1091 sg_dma_len(s) = 0; 1092 } 1093 } 1094 1095 static void iommu_dma_unmap_sg_swiotlb(struct device *dev, struct scatterlist *sg, 1096 int nents, enum dma_data_direction dir, unsigned long attrs) 1097 { 1098 struct scatterlist *s; 1099 int i; 1100 1101 for_each_sg(sg, s, nents, i) 1102 iommu_dma_unmap_page(dev, sg_dma_address(s), 1103 sg_dma_len(s), dir, attrs); 1104 } 1105 1106 static int iommu_dma_map_sg_swiotlb(struct device *dev, struct scatterlist *sg, 1107 int nents, enum dma_data_direction dir, unsigned long attrs) 1108 { 1109 struct scatterlist *s; 1110 int i; 1111 1112 for_each_sg(sg, s, nents, i) { 1113 sg_dma_address(s) = iommu_dma_map_page(dev, sg_page(s), 1114 s->offset, s->length, dir, attrs); 1115 if (sg_dma_address(s) == DMA_MAPPING_ERROR) 1116 goto out_unmap; 1117 sg_dma_len(s) = s->length; 1118 } 1119 1120 return nents; 1121 1122 out_unmap: 1123 iommu_dma_unmap_sg_swiotlb(dev, sg, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC); 1124 return -EIO; 1125 } 1126 1127 /* 1128 * The DMA API client is passing in a scatterlist which could describe 1129 * any old buffer layout, but the IOMMU API requires everything to be 1130 * aligned to IOMMU pages. Hence the need for this complicated bit of 1131 * impedance-matching, to be able to hand off a suitably-aligned list, 1132 * but still preserve the original offsets and sizes for the caller. 1133 */ 1134 static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg, 1135 int nents, enum dma_data_direction dir, unsigned long attrs) 1136 { 1137 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1138 struct iommu_dma_cookie *cookie = domain->iova_cookie; 1139 struct iova_domain *iovad = &cookie->iovad; 1140 struct scatterlist *s, *prev = NULL; 1141 int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs); 1142 dma_addr_t iova; 1143 size_t iova_len = 0; 1144 unsigned long mask = dma_get_seg_boundary(dev); 1145 ssize_t ret; 1146 int i; 1147 1148 if (static_branch_unlikely(&iommu_deferred_attach_enabled)) { 1149 ret = iommu_deferred_attach(dev, domain); 1150 if (ret) 1151 goto out; 1152 } 1153 1154 if (dev_use_swiotlb(dev)) 1155 return iommu_dma_map_sg_swiotlb(dev, sg, nents, dir, attrs); 1156 1157 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 1158 iommu_dma_sync_sg_for_device(dev, sg, nents, dir); 1159 1160 /* 1161 * Work out how much IOVA space we need, and align the segments to 1162 * IOVA granules for the IOMMU driver to handle. With some clever 1163 * trickery we can modify the list in-place, but reversibly, by 1164 * stashing the unaligned parts in the as-yet-unused DMA fields. 1165 */ 1166 for_each_sg(sg, s, nents, i) { 1167 size_t s_iova_off = iova_offset(iovad, s->offset); 1168 size_t s_length = s->length; 1169 size_t pad_len = (mask - iova_len + 1) & mask; 1170 1171 sg_dma_address(s) = s_iova_off; 1172 sg_dma_len(s) = s_length; 1173 s->offset -= s_iova_off; 1174 s_length = iova_align(iovad, s_length + s_iova_off); 1175 s->length = s_length; 1176 1177 /* 1178 * Due to the alignment of our single IOVA allocation, we can 1179 * depend on these assumptions about the segment boundary mask: 1180 * - If mask size >= IOVA size, then the IOVA range cannot 1181 * possibly fall across a boundary, so we don't care. 1182 * - If mask size < IOVA size, then the IOVA range must start 1183 * exactly on a boundary, therefore we can lay things out 1184 * based purely on segment lengths without needing to know 1185 * the actual addresses beforehand. 1186 * - The mask must be a power of 2, so pad_len == 0 if 1187 * iova_len == 0, thus we cannot dereference prev the first 1188 * time through here (i.e. before it has a meaningful value). 1189 */ 1190 if (pad_len && pad_len < s_length - 1) { 1191 prev->length += pad_len; 1192 iova_len += pad_len; 1193 } 1194 1195 iova_len += s_length; 1196 prev = s; 1197 } 1198 1199 iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev); 1200 if (!iova) { 1201 ret = -ENOMEM; 1202 goto out_restore_sg; 1203 } 1204 1205 /* 1206 * We'll leave any physical concatenation to the IOMMU driver's 1207 * implementation - it knows better than we do. 1208 */ 1209 ret = iommu_map_sg_atomic(domain, iova, sg, nents, prot); 1210 if (ret < iova_len) 1211 goto out_free_iova; 1212 1213 return __finalise_sg(dev, sg, nents, iova); 1214 1215 out_free_iova: 1216 iommu_dma_free_iova(cookie, iova, iova_len, NULL); 1217 out_restore_sg: 1218 __invalidate_sg(sg, nents); 1219 out: 1220 if (ret != -ENOMEM) 1221 return -EINVAL; 1222 return ret; 1223 } 1224 1225 static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, 1226 int nents, enum dma_data_direction dir, unsigned long attrs) 1227 { 1228 dma_addr_t start, end; 1229 struct scatterlist *tmp; 1230 int i; 1231 1232 if (dev_use_swiotlb(dev)) { 1233 iommu_dma_unmap_sg_swiotlb(dev, sg, nents, dir, attrs); 1234 return; 1235 } 1236 1237 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 1238 iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir); 1239 1240 /* 1241 * The scatterlist segments are mapped into a single 1242 * contiguous IOVA allocation, so this is incredibly easy. 1243 */ 1244 start = sg_dma_address(sg); 1245 for_each_sg(sg_next(sg), tmp, nents - 1, i) { 1246 if (sg_dma_len(tmp) == 0) 1247 break; 1248 sg = tmp; 1249 } 1250 end = sg_dma_address(sg) + sg_dma_len(sg); 1251 __iommu_dma_unmap(dev, start, end - start); 1252 } 1253 1254 static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys, 1255 size_t size, enum dma_data_direction dir, unsigned long attrs) 1256 { 1257 return __iommu_dma_map(dev, phys, size, 1258 dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO, 1259 dma_get_mask(dev)); 1260 } 1261 1262 static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle, 1263 size_t size, enum dma_data_direction dir, unsigned long attrs) 1264 { 1265 __iommu_dma_unmap(dev, handle, size); 1266 } 1267 1268 static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr) 1269 { 1270 size_t alloc_size = PAGE_ALIGN(size); 1271 int count = alloc_size >> PAGE_SHIFT; 1272 struct page *page = NULL, **pages = NULL; 1273 1274 /* Non-coherent atomic allocation? Easy */ 1275 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && 1276 dma_free_from_pool(dev, cpu_addr, alloc_size)) 1277 return; 1278 1279 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) { 1280 /* 1281 * If it the address is remapped, then it's either non-coherent 1282 * or highmem CMA, or an iommu_dma_alloc_remap() construction. 1283 */ 1284 pages = dma_common_find_pages(cpu_addr); 1285 if (!pages) 1286 page = vmalloc_to_page(cpu_addr); 1287 dma_common_free_remap(cpu_addr, alloc_size); 1288 } else { 1289 /* Lowmem means a coherent atomic or CMA allocation */ 1290 page = virt_to_page(cpu_addr); 1291 } 1292 1293 if (pages) 1294 __iommu_dma_free_pages(pages, count); 1295 if (page) 1296 dma_free_contiguous(dev, page, alloc_size); 1297 } 1298 1299 static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr, 1300 dma_addr_t handle, unsigned long attrs) 1301 { 1302 __iommu_dma_unmap(dev, handle, size); 1303 __iommu_dma_free(dev, size, cpu_addr); 1304 } 1305 1306 static void *iommu_dma_alloc_pages(struct device *dev, size_t size, 1307 struct page **pagep, gfp_t gfp, unsigned long attrs) 1308 { 1309 bool coherent = dev_is_dma_coherent(dev); 1310 size_t alloc_size = PAGE_ALIGN(size); 1311 int node = dev_to_node(dev); 1312 struct page *page = NULL; 1313 void *cpu_addr; 1314 1315 page = dma_alloc_contiguous(dev, alloc_size, gfp); 1316 if (!page) 1317 page = alloc_pages_node(node, gfp, get_order(alloc_size)); 1318 if (!page) 1319 return NULL; 1320 1321 if (IS_ENABLED(CONFIG_DMA_REMAP) && (!coherent || PageHighMem(page))) { 1322 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs); 1323 1324 cpu_addr = dma_common_contiguous_remap(page, alloc_size, 1325 prot, __builtin_return_address(0)); 1326 if (!cpu_addr) 1327 goto out_free_pages; 1328 1329 if (!coherent) 1330 arch_dma_prep_coherent(page, size); 1331 } else { 1332 cpu_addr = page_address(page); 1333 } 1334 1335 *pagep = page; 1336 memset(cpu_addr, 0, alloc_size); 1337 return cpu_addr; 1338 out_free_pages: 1339 dma_free_contiguous(dev, page, alloc_size); 1340 return NULL; 1341 } 1342 1343 static void *iommu_dma_alloc(struct device *dev, size_t size, 1344 dma_addr_t *handle, gfp_t gfp, unsigned long attrs) 1345 { 1346 bool coherent = dev_is_dma_coherent(dev); 1347 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs); 1348 struct page *page = NULL; 1349 void *cpu_addr; 1350 1351 gfp |= __GFP_ZERO; 1352 1353 if (IS_ENABLED(CONFIG_DMA_REMAP) && gfpflags_allow_blocking(gfp) && 1354 !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) { 1355 return iommu_dma_alloc_remap(dev, size, handle, gfp, 1356 dma_pgprot(dev, PAGE_KERNEL, attrs), attrs); 1357 } 1358 1359 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && 1360 !gfpflags_allow_blocking(gfp) && !coherent) 1361 page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr, 1362 gfp, NULL); 1363 else 1364 cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs); 1365 if (!cpu_addr) 1366 return NULL; 1367 1368 *handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot, 1369 dev->coherent_dma_mask); 1370 if (*handle == DMA_MAPPING_ERROR) { 1371 __iommu_dma_free(dev, size, cpu_addr); 1372 return NULL; 1373 } 1374 1375 return cpu_addr; 1376 } 1377 1378 static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma, 1379 void *cpu_addr, dma_addr_t dma_addr, size_t size, 1380 unsigned long attrs) 1381 { 1382 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 1383 unsigned long pfn, off = vma->vm_pgoff; 1384 int ret; 1385 1386 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs); 1387 1388 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) 1389 return ret; 1390 1391 if (off >= nr_pages || vma_pages(vma) > nr_pages - off) 1392 return -ENXIO; 1393 1394 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) { 1395 struct page **pages = dma_common_find_pages(cpu_addr); 1396 1397 if (pages) 1398 return vm_map_pages(vma, pages, nr_pages); 1399 pfn = vmalloc_to_pfn(cpu_addr); 1400 } else { 1401 pfn = page_to_pfn(virt_to_page(cpu_addr)); 1402 } 1403 1404 return remap_pfn_range(vma, vma->vm_start, pfn + off, 1405 vma->vm_end - vma->vm_start, 1406 vma->vm_page_prot); 1407 } 1408 1409 static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt, 1410 void *cpu_addr, dma_addr_t dma_addr, size_t size, 1411 unsigned long attrs) 1412 { 1413 struct page *page; 1414 int ret; 1415 1416 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) { 1417 struct page **pages = dma_common_find_pages(cpu_addr); 1418 1419 if (pages) { 1420 return sg_alloc_table_from_pages(sgt, pages, 1421 PAGE_ALIGN(size) >> PAGE_SHIFT, 1422 0, size, GFP_KERNEL); 1423 } 1424 1425 page = vmalloc_to_page(cpu_addr); 1426 } else { 1427 page = virt_to_page(cpu_addr); 1428 } 1429 1430 ret = sg_alloc_table(sgt, 1, GFP_KERNEL); 1431 if (!ret) 1432 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); 1433 return ret; 1434 } 1435 1436 static unsigned long iommu_dma_get_merge_boundary(struct device *dev) 1437 { 1438 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1439 1440 return (1UL << __ffs(domain->pgsize_bitmap)) - 1; 1441 } 1442 1443 static const struct dma_map_ops iommu_dma_ops = { 1444 .alloc = iommu_dma_alloc, 1445 .free = iommu_dma_free, 1446 .alloc_pages = dma_common_alloc_pages, 1447 .free_pages = dma_common_free_pages, 1448 #ifdef CONFIG_DMA_REMAP 1449 .alloc_noncontiguous = iommu_dma_alloc_noncontiguous, 1450 .free_noncontiguous = iommu_dma_free_noncontiguous, 1451 #endif 1452 .mmap = iommu_dma_mmap, 1453 .get_sgtable = iommu_dma_get_sgtable, 1454 .map_page = iommu_dma_map_page, 1455 .unmap_page = iommu_dma_unmap_page, 1456 .map_sg = iommu_dma_map_sg, 1457 .unmap_sg = iommu_dma_unmap_sg, 1458 .sync_single_for_cpu = iommu_dma_sync_single_for_cpu, 1459 .sync_single_for_device = iommu_dma_sync_single_for_device, 1460 .sync_sg_for_cpu = iommu_dma_sync_sg_for_cpu, 1461 .sync_sg_for_device = iommu_dma_sync_sg_for_device, 1462 .map_resource = iommu_dma_map_resource, 1463 .unmap_resource = iommu_dma_unmap_resource, 1464 .get_merge_boundary = iommu_dma_get_merge_boundary, 1465 }; 1466 1467 /* 1468 * The IOMMU core code allocates the default DMA domain, which the underlying 1469 * IOMMU driver needs to support via the dma-iommu layer. 1470 */ 1471 void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 dma_limit) 1472 { 1473 struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 1474 1475 if (!domain) 1476 goto out_err; 1477 1478 /* 1479 * The IOMMU core code allocates the default DMA domain, which the 1480 * underlying IOMMU driver needs to support via the dma-iommu layer. 1481 */ 1482 if (iommu_is_dma_domain(domain)) { 1483 if (iommu_dma_init_domain(domain, dma_base, dma_limit, dev)) 1484 goto out_err; 1485 dev->dma_ops = &iommu_dma_ops; 1486 } 1487 1488 return; 1489 out_err: 1490 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n", 1491 dev_name(dev)); 1492 } 1493 EXPORT_SYMBOL_GPL(iommu_setup_dma_ops); 1494 1495 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev, 1496 phys_addr_t msi_addr, struct iommu_domain *domain) 1497 { 1498 struct iommu_dma_cookie *cookie = domain->iova_cookie; 1499 struct iommu_dma_msi_page *msi_page; 1500 dma_addr_t iova; 1501 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO; 1502 size_t size = cookie_msi_granule(cookie); 1503 1504 msi_addr &= ~(phys_addr_t)(size - 1); 1505 list_for_each_entry(msi_page, &cookie->msi_page_list, list) 1506 if (msi_page->phys == msi_addr) 1507 return msi_page; 1508 1509 msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL); 1510 if (!msi_page) 1511 return NULL; 1512 1513 iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev); 1514 if (!iova) 1515 goto out_free_page; 1516 1517 if (iommu_map(domain, iova, msi_addr, size, prot)) 1518 goto out_free_iova; 1519 1520 INIT_LIST_HEAD(&msi_page->list); 1521 msi_page->phys = msi_addr; 1522 msi_page->iova = iova; 1523 list_add(&msi_page->list, &cookie->msi_page_list); 1524 return msi_page; 1525 1526 out_free_iova: 1527 iommu_dma_free_iova(cookie, iova, size, NULL); 1528 out_free_page: 1529 kfree(msi_page); 1530 return NULL; 1531 } 1532 1533 int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr) 1534 { 1535 struct device *dev = msi_desc_to_dev(desc); 1536 struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 1537 struct iommu_dma_msi_page *msi_page; 1538 static DEFINE_MUTEX(msi_prepare_lock); /* see below */ 1539 1540 if (!domain || !domain->iova_cookie) { 1541 desc->iommu_cookie = NULL; 1542 return 0; 1543 } 1544 1545 /* 1546 * In fact the whole prepare operation should already be serialised by 1547 * irq_domain_mutex further up the callchain, but that's pretty subtle 1548 * on its own, so consider this locking as failsafe documentation... 1549 */ 1550 mutex_lock(&msi_prepare_lock); 1551 msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain); 1552 mutex_unlock(&msi_prepare_lock); 1553 1554 msi_desc_set_iommu_cookie(desc, msi_page); 1555 1556 if (!msi_page) 1557 return -ENOMEM; 1558 return 0; 1559 } 1560 1561 void iommu_dma_compose_msi_msg(struct msi_desc *desc, 1562 struct msi_msg *msg) 1563 { 1564 struct device *dev = msi_desc_to_dev(desc); 1565 const struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 1566 const struct iommu_dma_msi_page *msi_page; 1567 1568 msi_page = msi_desc_get_iommu_cookie(desc); 1569 1570 if (!domain || !domain->iova_cookie || WARN_ON(!msi_page)) 1571 return; 1572 1573 msg->address_hi = upper_32_bits(msi_page->iova); 1574 msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1; 1575 msg->address_lo += lower_32_bits(msi_page->iova); 1576 } 1577 1578 static int iommu_dma_init(void) 1579 { 1580 if (is_kdump_kernel()) 1581 static_branch_enable(&iommu_deferred_attach_enabled); 1582 1583 return iova_cache_get(); 1584 } 1585 arch_initcall(iommu_dma_init); 1586