xref: /openbmc/linux/drivers/iommu/dma-iommu.c (revision f0931824)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * A fairly generic DMA-API to IOMMU-API glue layer.
4  *
5  * Copyright (C) 2014-2015 ARM Ltd.
6  *
7  * based in part on arch/arm/mm/dma-mapping.c:
8  * Copyright (C) 2000-2004 Russell King
9  */
10 
11 #include <linux/acpi_iort.h>
12 #include <linux/atomic.h>
13 #include <linux/crash_dump.h>
14 #include <linux/device.h>
15 #include <linux/dma-direct.h>
16 #include <linux/dma-map-ops.h>
17 #include <linux/gfp.h>
18 #include <linux/huge_mm.h>
19 #include <linux/iommu.h>
20 #include <linux/iova.h>
21 #include <linux/irq.h>
22 #include <linux/list_sort.h>
23 #include <linux/memremap.h>
24 #include <linux/mm.h>
25 #include <linux/mutex.h>
26 #include <linux/of_iommu.h>
27 #include <linux/pci.h>
28 #include <linux/scatterlist.h>
29 #include <linux/spinlock.h>
30 #include <linux/swiotlb.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/swiotlb.h>
33 
34 #include "dma-iommu.h"
35 
36 struct iommu_dma_msi_page {
37 	struct list_head	list;
38 	dma_addr_t		iova;
39 	phys_addr_t		phys;
40 };
41 
42 enum iommu_dma_cookie_type {
43 	IOMMU_DMA_IOVA_COOKIE,
44 	IOMMU_DMA_MSI_COOKIE,
45 };
46 
47 struct iommu_dma_cookie {
48 	enum iommu_dma_cookie_type	type;
49 	union {
50 		/* Full allocator for IOMMU_DMA_IOVA_COOKIE */
51 		struct {
52 			struct iova_domain	iovad;
53 
54 			struct iova_fq __percpu *fq;	/* Flush queue */
55 			/* Number of TLB flushes that have been started */
56 			atomic64_t		fq_flush_start_cnt;
57 			/* Number of TLB flushes that have been finished */
58 			atomic64_t		fq_flush_finish_cnt;
59 			/* Timer to regularily empty the flush queues */
60 			struct timer_list	fq_timer;
61 			/* 1 when timer is active, 0 when not */
62 			atomic_t		fq_timer_on;
63 		};
64 		/* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
65 		dma_addr_t		msi_iova;
66 	};
67 	struct list_head		msi_page_list;
68 
69 	/* Domain for flush queue callback; NULL if flush queue not in use */
70 	struct iommu_domain		*fq_domain;
71 	struct mutex			mutex;
72 };
73 
74 static DEFINE_STATIC_KEY_FALSE(iommu_deferred_attach_enabled);
75 bool iommu_dma_forcedac __read_mostly;
76 
77 static int __init iommu_dma_forcedac_setup(char *str)
78 {
79 	int ret = kstrtobool(str, &iommu_dma_forcedac);
80 
81 	if (!ret && iommu_dma_forcedac)
82 		pr_info("Forcing DAC for PCI devices\n");
83 	return ret;
84 }
85 early_param("iommu.forcedac", iommu_dma_forcedac_setup);
86 
87 /* Number of entries per flush queue */
88 #define IOVA_FQ_SIZE	256
89 
90 /* Timeout (in ms) after which entries are flushed from the queue */
91 #define IOVA_FQ_TIMEOUT	10
92 
93 /* Flush queue entry for deferred flushing */
94 struct iova_fq_entry {
95 	unsigned long iova_pfn;
96 	unsigned long pages;
97 	struct list_head freelist;
98 	u64 counter; /* Flush counter when this entry was added */
99 };
100 
101 /* Per-CPU flush queue structure */
102 struct iova_fq {
103 	struct iova_fq_entry entries[IOVA_FQ_SIZE];
104 	unsigned int head, tail;
105 	spinlock_t lock;
106 };
107 
108 #define fq_ring_for_each(i, fq) \
109 	for ((i) = (fq)->head; (i) != (fq)->tail; (i) = ((i) + 1) % IOVA_FQ_SIZE)
110 
111 static inline bool fq_full(struct iova_fq *fq)
112 {
113 	assert_spin_locked(&fq->lock);
114 	return (((fq->tail + 1) % IOVA_FQ_SIZE) == fq->head);
115 }
116 
117 static inline unsigned int fq_ring_add(struct iova_fq *fq)
118 {
119 	unsigned int idx = fq->tail;
120 
121 	assert_spin_locked(&fq->lock);
122 
123 	fq->tail = (idx + 1) % IOVA_FQ_SIZE;
124 
125 	return idx;
126 }
127 
128 static void fq_ring_free(struct iommu_dma_cookie *cookie, struct iova_fq *fq)
129 {
130 	u64 counter = atomic64_read(&cookie->fq_flush_finish_cnt);
131 	unsigned int idx;
132 
133 	assert_spin_locked(&fq->lock);
134 
135 	fq_ring_for_each(idx, fq) {
136 
137 		if (fq->entries[idx].counter >= counter)
138 			break;
139 
140 		put_pages_list(&fq->entries[idx].freelist);
141 		free_iova_fast(&cookie->iovad,
142 			       fq->entries[idx].iova_pfn,
143 			       fq->entries[idx].pages);
144 
145 		fq->head = (fq->head + 1) % IOVA_FQ_SIZE;
146 	}
147 }
148 
149 static void fq_flush_iotlb(struct iommu_dma_cookie *cookie)
150 {
151 	atomic64_inc(&cookie->fq_flush_start_cnt);
152 	cookie->fq_domain->ops->flush_iotlb_all(cookie->fq_domain);
153 	atomic64_inc(&cookie->fq_flush_finish_cnt);
154 }
155 
156 static void fq_flush_timeout(struct timer_list *t)
157 {
158 	struct iommu_dma_cookie *cookie = from_timer(cookie, t, fq_timer);
159 	int cpu;
160 
161 	atomic_set(&cookie->fq_timer_on, 0);
162 	fq_flush_iotlb(cookie);
163 
164 	for_each_possible_cpu(cpu) {
165 		unsigned long flags;
166 		struct iova_fq *fq;
167 
168 		fq = per_cpu_ptr(cookie->fq, cpu);
169 		spin_lock_irqsave(&fq->lock, flags);
170 		fq_ring_free(cookie, fq);
171 		spin_unlock_irqrestore(&fq->lock, flags);
172 	}
173 }
174 
175 static void queue_iova(struct iommu_dma_cookie *cookie,
176 		unsigned long pfn, unsigned long pages,
177 		struct list_head *freelist)
178 {
179 	struct iova_fq *fq;
180 	unsigned long flags;
181 	unsigned int idx;
182 
183 	/*
184 	 * Order against the IOMMU driver's pagetable update from unmapping
185 	 * @pte, to guarantee that fq_flush_iotlb() observes that if called
186 	 * from a different CPU before we release the lock below. Full barrier
187 	 * so it also pairs with iommu_dma_init_fq() to avoid seeing partially
188 	 * written fq state here.
189 	 */
190 	smp_mb();
191 
192 	fq = raw_cpu_ptr(cookie->fq);
193 	spin_lock_irqsave(&fq->lock, flags);
194 
195 	/*
196 	 * First remove all entries from the flush queue that have already been
197 	 * flushed out on another CPU. This makes the fq_full() check below less
198 	 * likely to be true.
199 	 */
200 	fq_ring_free(cookie, fq);
201 
202 	if (fq_full(fq)) {
203 		fq_flush_iotlb(cookie);
204 		fq_ring_free(cookie, fq);
205 	}
206 
207 	idx = fq_ring_add(fq);
208 
209 	fq->entries[idx].iova_pfn = pfn;
210 	fq->entries[idx].pages    = pages;
211 	fq->entries[idx].counter  = atomic64_read(&cookie->fq_flush_start_cnt);
212 	list_splice(freelist, &fq->entries[idx].freelist);
213 
214 	spin_unlock_irqrestore(&fq->lock, flags);
215 
216 	/* Avoid false sharing as much as possible. */
217 	if (!atomic_read(&cookie->fq_timer_on) &&
218 	    !atomic_xchg(&cookie->fq_timer_on, 1))
219 		mod_timer(&cookie->fq_timer,
220 			  jiffies + msecs_to_jiffies(IOVA_FQ_TIMEOUT));
221 }
222 
223 static void iommu_dma_free_fq(struct iommu_dma_cookie *cookie)
224 {
225 	int cpu, idx;
226 
227 	if (!cookie->fq)
228 		return;
229 
230 	del_timer_sync(&cookie->fq_timer);
231 	/* The IOVAs will be torn down separately, so just free our queued pages */
232 	for_each_possible_cpu(cpu) {
233 		struct iova_fq *fq = per_cpu_ptr(cookie->fq, cpu);
234 
235 		fq_ring_for_each(idx, fq)
236 			put_pages_list(&fq->entries[idx].freelist);
237 	}
238 
239 	free_percpu(cookie->fq);
240 }
241 
242 /* sysfs updates are serialised by the mutex of the group owning @domain */
243 int iommu_dma_init_fq(struct iommu_domain *domain)
244 {
245 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
246 	struct iova_fq __percpu *queue;
247 	int i, cpu;
248 
249 	if (cookie->fq_domain)
250 		return 0;
251 
252 	atomic64_set(&cookie->fq_flush_start_cnt,  0);
253 	atomic64_set(&cookie->fq_flush_finish_cnt, 0);
254 
255 	queue = alloc_percpu(struct iova_fq);
256 	if (!queue) {
257 		pr_warn("iova flush queue initialization failed\n");
258 		return -ENOMEM;
259 	}
260 
261 	for_each_possible_cpu(cpu) {
262 		struct iova_fq *fq = per_cpu_ptr(queue, cpu);
263 
264 		fq->head = 0;
265 		fq->tail = 0;
266 
267 		spin_lock_init(&fq->lock);
268 
269 		for (i = 0; i < IOVA_FQ_SIZE; i++)
270 			INIT_LIST_HEAD(&fq->entries[i].freelist);
271 	}
272 
273 	cookie->fq = queue;
274 
275 	timer_setup(&cookie->fq_timer, fq_flush_timeout, 0);
276 	atomic_set(&cookie->fq_timer_on, 0);
277 	/*
278 	 * Prevent incomplete fq state being observable. Pairs with path from
279 	 * __iommu_dma_unmap() through iommu_dma_free_iova() to queue_iova()
280 	 */
281 	smp_wmb();
282 	WRITE_ONCE(cookie->fq_domain, domain);
283 	return 0;
284 }
285 
286 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
287 {
288 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
289 		return cookie->iovad.granule;
290 	return PAGE_SIZE;
291 }
292 
293 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
294 {
295 	struct iommu_dma_cookie *cookie;
296 
297 	cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
298 	if (cookie) {
299 		INIT_LIST_HEAD(&cookie->msi_page_list);
300 		cookie->type = type;
301 	}
302 	return cookie;
303 }
304 
305 /**
306  * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
307  * @domain: IOMMU domain to prepare for DMA-API usage
308  */
309 int iommu_get_dma_cookie(struct iommu_domain *domain)
310 {
311 	if (domain->iova_cookie)
312 		return -EEXIST;
313 
314 	domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
315 	if (!domain->iova_cookie)
316 		return -ENOMEM;
317 
318 	mutex_init(&domain->iova_cookie->mutex);
319 	return 0;
320 }
321 
322 /**
323  * iommu_get_msi_cookie - Acquire just MSI remapping resources
324  * @domain: IOMMU domain to prepare
325  * @base: Start address of IOVA region for MSI mappings
326  *
327  * Users who manage their own IOVA allocation and do not want DMA API support,
328  * but would still like to take advantage of automatic MSI remapping, can use
329  * this to initialise their own domain appropriately. Users should reserve a
330  * contiguous IOVA region, starting at @base, large enough to accommodate the
331  * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
332  * used by the devices attached to @domain.
333  */
334 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
335 {
336 	struct iommu_dma_cookie *cookie;
337 
338 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
339 		return -EINVAL;
340 
341 	if (domain->iova_cookie)
342 		return -EEXIST;
343 
344 	cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
345 	if (!cookie)
346 		return -ENOMEM;
347 
348 	cookie->msi_iova = base;
349 	domain->iova_cookie = cookie;
350 	return 0;
351 }
352 EXPORT_SYMBOL(iommu_get_msi_cookie);
353 
354 /**
355  * iommu_put_dma_cookie - Release a domain's DMA mapping resources
356  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
357  *          iommu_get_msi_cookie()
358  */
359 void iommu_put_dma_cookie(struct iommu_domain *domain)
360 {
361 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
362 	struct iommu_dma_msi_page *msi, *tmp;
363 
364 	if (!cookie)
365 		return;
366 
367 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule) {
368 		iommu_dma_free_fq(cookie);
369 		put_iova_domain(&cookie->iovad);
370 	}
371 
372 	list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
373 		list_del(&msi->list);
374 		kfree(msi);
375 	}
376 	kfree(cookie);
377 	domain->iova_cookie = NULL;
378 }
379 
380 /**
381  * iommu_dma_get_resv_regions - Reserved region driver helper
382  * @dev: Device from iommu_get_resv_regions()
383  * @list: Reserved region list from iommu_get_resv_regions()
384  *
385  * IOMMU drivers can use this to implement their .get_resv_regions callback
386  * for general non-IOMMU-specific reservations. Currently, this covers GICv3
387  * ITS region reservation on ACPI based ARM platforms that may require HW MSI
388  * reservation.
389  */
390 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
391 {
392 
393 	if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode))
394 		iort_iommu_get_resv_regions(dev, list);
395 
396 	if (dev->of_node)
397 		of_iommu_get_resv_regions(dev, list);
398 }
399 EXPORT_SYMBOL(iommu_dma_get_resv_regions);
400 
401 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
402 		phys_addr_t start, phys_addr_t end)
403 {
404 	struct iova_domain *iovad = &cookie->iovad;
405 	struct iommu_dma_msi_page *msi_page;
406 	int i, num_pages;
407 
408 	start -= iova_offset(iovad, start);
409 	num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
410 
411 	for (i = 0; i < num_pages; i++) {
412 		msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL);
413 		if (!msi_page)
414 			return -ENOMEM;
415 
416 		msi_page->phys = start;
417 		msi_page->iova = start;
418 		INIT_LIST_HEAD(&msi_page->list);
419 		list_add(&msi_page->list, &cookie->msi_page_list);
420 		start += iovad->granule;
421 	}
422 
423 	return 0;
424 }
425 
426 static int iommu_dma_ranges_sort(void *priv, const struct list_head *a,
427 		const struct list_head *b)
428 {
429 	struct resource_entry *res_a = list_entry(a, typeof(*res_a), node);
430 	struct resource_entry *res_b = list_entry(b, typeof(*res_b), node);
431 
432 	return res_a->res->start > res_b->res->start;
433 }
434 
435 static int iova_reserve_pci_windows(struct pci_dev *dev,
436 		struct iova_domain *iovad)
437 {
438 	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
439 	struct resource_entry *window;
440 	unsigned long lo, hi;
441 	phys_addr_t start = 0, end;
442 
443 	resource_list_for_each_entry(window, &bridge->windows) {
444 		if (resource_type(window->res) != IORESOURCE_MEM)
445 			continue;
446 
447 		lo = iova_pfn(iovad, window->res->start - window->offset);
448 		hi = iova_pfn(iovad, window->res->end - window->offset);
449 		reserve_iova(iovad, lo, hi);
450 	}
451 
452 	/* Get reserved DMA windows from host bridge */
453 	list_sort(NULL, &bridge->dma_ranges, iommu_dma_ranges_sort);
454 	resource_list_for_each_entry(window, &bridge->dma_ranges) {
455 		end = window->res->start - window->offset;
456 resv_iova:
457 		if (end > start) {
458 			lo = iova_pfn(iovad, start);
459 			hi = iova_pfn(iovad, end);
460 			reserve_iova(iovad, lo, hi);
461 		} else if (end < start) {
462 			/* DMA ranges should be non-overlapping */
463 			dev_err(&dev->dev,
464 				"Failed to reserve IOVA [%pa-%pa]\n",
465 				&start, &end);
466 			return -EINVAL;
467 		}
468 
469 		start = window->res->end - window->offset + 1;
470 		/* If window is last entry */
471 		if (window->node.next == &bridge->dma_ranges &&
472 		    end != ~(phys_addr_t)0) {
473 			end = ~(phys_addr_t)0;
474 			goto resv_iova;
475 		}
476 	}
477 
478 	return 0;
479 }
480 
481 static int iova_reserve_iommu_regions(struct device *dev,
482 		struct iommu_domain *domain)
483 {
484 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
485 	struct iova_domain *iovad = &cookie->iovad;
486 	struct iommu_resv_region *region;
487 	LIST_HEAD(resv_regions);
488 	int ret = 0;
489 
490 	if (dev_is_pci(dev)) {
491 		ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad);
492 		if (ret)
493 			return ret;
494 	}
495 
496 	iommu_get_resv_regions(dev, &resv_regions);
497 	list_for_each_entry(region, &resv_regions, list) {
498 		unsigned long lo, hi;
499 
500 		/* We ARE the software that manages these! */
501 		if (region->type == IOMMU_RESV_SW_MSI)
502 			continue;
503 
504 		lo = iova_pfn(iovad, region->start);
505 		hi = iova_pfn(iovad, region->start + region->length - 1);
506 		reserve_iova(iovad, lo, hi);
507 
508 		if (region->type == IOMMU_RESV_MSI)
509 			ret = cookie_init_hw_msi_region(cookie, region->start,
510 					region->start + region->length);
511 		if (ret)
512 			break;
513 	}
514 	iommu_put_resv_regions(dev, &resv_regions);
515 
516 	return ret;
517 }
518 
519 static bool dev_is_untrusted(struct device *dev)
520 {
521 	return dev_is_pci(dev) && to_pci_dev(dev)->untrusted;
522 }
523 
524 static bool dev_use_swiotlb(struct device *dev, size_t size,
525 			    enum dma_data_direction dir)
526 {
527 	return IS_ENABLED(CONFIG_SWIOTLB) &&
528 		(dev_is_untrusted(dev) ||
529 		 dma_kmalloc_needs_bounce(dev, size, dir));
530 }
531 
532 static bool dev_use_sg_swiotlb(struct device *dev, struct scatterlist *sg,
533 			       int nents, enum dma_data_direction dir)
534 {
535 	struct scatterlist *s;
536 	int i;
537 
538 	if (!IS_ENABLED(CONFIG_SWIOTLB))
539 		return false;
540 
541 	if (dev_is_untrusted(dev))
542 		return true;
543 
544 	/*
545 	 * If kmalloc() buffers are not DMA-safe for this device and
546 	 * direction, check the individual lengths in the sg list. If any
547 	 * element is deemed unsafe, use the swiotlb for bouncing.
548 	 */
549 	if (!dma_kmalloc_safe(dev, dir)) {
550 		for_each_sg(sg, s, nents, i)
551 			if (!dma_kmalloc_size_aligned(s->length))
552 				return true;
553 	}
554 
555 	return false;
556 }
557 
558 /**
559  * iommu_dma_init_domain - Initialise a DMA mapping domain
560  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
561  * @base: IOVA at which the mappable address space starts
562  * @limit: Last address of the IOVA space
563  * @dev: Device the domain is being initialised for
564  *
565  * @base and @limit + 1 should be exact multiples of IOMMU page granularity to
566  * avoid rounding surprises. If necessary, we reserve the page at address 0
567  * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
568  * any change which could make prior IOVAs invalid will fail.
569  */
570 static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
571 				 dma_addr_t limit, struct device *dev)
572 {
573 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
574 	unsigned long order, base_pfn;
575 	struct iova_domain *iovad;
576 	int ret;
577 
578 	if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
579 		return -EINVAL;
580 
581 	iovad = &cookie->iovad;
582 
583 	/* Use the smallest supported page size for IOVA granularity */
584 	order = __ffs(domain->pgsize_bitmap);
585 	base_pfn = max_t(unsigned long, 1, base >> order);
586 
587 	/* Check the domain allows at least some access to the device... */
588 	if (domain->geometry.force_aperture) {
589 		if (base > domain->geometry.aperture_end ||
590 		    limit < domain->geometry.aperture_start) {
591 			pr_warn("specified DMA range outside IOMMU capability\n");
592 			return -EFAULT;
593 		}
594 		/* ...then finally give it a kicking to make sure it fits */
595 		base_pfn = max_t(unsigned long, base_pfn,
596 				domain->geometry.aperture_start >> order);
597 	}
598 
599 	/* start_pfn is always nonzero for an already-initialised domain */
600 	mutex_lock(&cookie->mutex);
601 	if (iovad->start_pfn) {
602 		if (1UL << order != iovad->granule ||
603 		    base_pfn != iovad->start_pfn) {
604 			pr_warn("Incompatible range for DMA domain\n");
605 			ret = -EFAULT;
606 			goto done_unlock;
607 		}
608 
609 		ret = 0;
610 		goto done_unlock;
611 	}
612 
613 	init_iova_domain(iovad, 1UL << order, base_pfn);
614 	ret = iova_domain_init_rcaches(iovad);
615 	if (ret)
616 		goto done_unlock;
617 
618 	/* If the FQ fails we can simply fall back to strict mode */
619 	if (domain->type == IOMMU_DOMAIN_DMA_FQ &&
620 	    (!device_iommu_capable(dev, IOMMU_CAP_DEFERRED_FLUSH) || iommu_dma_init_fq(domain)))
621 		domain->type = IOMMU_DOMAIN_DMA;
622 
623 	ret = iova_reserve_iommu_regions(dev, domain);
624 
625 done_unlock:
626 	mutex_unlock(&cookie->mutex);
627 	return ret;
628 }
629 
630 /**
631  * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
632  *                    page flags.
633  * @dir: Direction of DMA transfer
634  * @coherent: Is the DMA master cache-coherent?
635  * @attrs: DMA attributes for the mapping
636  *
637  * Return: corresponding IOMMU API page protection flags
638  */
639 static int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
640 		     unsigned long attrs)
641 {
642 	int prot = coherent ? IOMMU_CACHE : 0;
643 
644 	if (attrs & DMA_ATTR_PRIVILEGED)
645 		prot |= IOMMU_PRIV;
646 
647 	switch (dir) {
648 	case DMA_BIDIRECTIONAL:
649 		return prot | IOMMU_READ | IOMMU_WRITE;
650 	case DMA_TO_DEVICE:
651 		return prot | IOMMU_READ;
652 	case DMA_FROM_DEVICE:
653 		return prot | IOMMU_WRITE;
654 	default:
655 		return 0;
656 	}
657 }
658 
659 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
660 		size_t size, u64 dma_limit, struct device *dev)
661 {
662 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
663 	struct iova_domain *iovad = &cookie->iovad;
664 	unsigned long shift, iova_len, iova;
665 
666 	if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
667 		cookie->msi_iova += size;
668 		return cookie->msi_iova - size;
669 	}
670 
671 	shift = iova_shift(iovad);
672 	iova_len = size >> shift;
673 
674 	dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit);
675 
676 	if (domain->geometry.force_aperture)
677 		dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end);
678 
679 	/*
680 	 * Try to use all the 32-bit PCI addresses first. The original SAC vs.
681 	 * DAC reasoning loses relevance with PCIe, but enough hardware and
682 	 * firmware bugs are still lurking out there that it's safest not to
683 	 * venture into the 64-bit space until necessary.
684 	 *
685 	 * If your device goes wrong after seeing the notice then likely either
686 	 * its driver is not setting DMA masks accurately, the hardware has
687 	 * some inherent bug in handling >32-bit addresses, or not all the
688 	 * expected address bits are wired up between the device and the IOMMU.
689 	 */
690 	if (dma_limit > DMA_BIT_MASK(32) && dev->iommu->pci_32bit_workaround) {
691 		iova = alloc_iova_fast(iovad, iova_len,
692 				       DMA_BIT_MASK(32) >> shift, false);
693 		if (iova)
694 			goto done;
695 
696 		dev->iommu->pci_32bit_workaround = false;
697 		dev_notice(dev, "Using %d-bit DMA addresses\n", bits_per(dma_limit));
698 	}
699 
700 	iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift, true);
701 done:
702 	return (dma_addr_t)iova << shift;
703 }
704 
705 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
706 		dma_addr_t iova, size_t size, struct iommu_iotlb_gather *gather)
707 {
708 	struct iova_domain *iovad = &cookie->iovad;
709 
710 	/* The MSI case is only ever cleaning up its most recent allocation */
711 	if (cookie->type == IOMMU_DMA_MSI_COOKIE)
712 		cookie->msi_iova -= size;
713 	else if (gather && gather->queued)
714 		queue_iova(cookie, iova_pfn(iovad, iova),
715 				size >> iova_shift(iovad),
716 				&gather->freelist);
717 	else
718 		free_iova_fast(iovad, iova_pfn(iovad, iova),
719 				size >> iova_shift(iovad));
720 }
721 
722 static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr,
723 		size_t size)
724 {
725 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
726 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
727 	struct iova_domain *iovad = &cookie->iovad;
728 	size_t iova_off = iova_offset(iovad, dma_addr);
729 	struct iommu_iotlb_gather iotlb_gather;
730 	size_t unmapped;
731 
732 	dma_addr -= iova_off;
733 	size = iova_align(iovad, size + iova_off);
734 	iommu_iotlb_gather_init(&iotlb_gather);
735 	iotlb_gather.queued = READ_ONCE(cookie->fq_domain);
736 
737 	unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather);
738 	WARN_ON(unmapped != size);
739 
740 	if (!iotlb_gather.queued)
741 		iommu_iotlb_sync(domain, &iotlb_gather);
742 	iommu_dma_free_iova(cookie, dma_addr, size, &iotlb_gather);
743 }
744 
745 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
746 		size_t size, int prot, u64 dma_mask)
747 {
748 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
749 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
750 	struct iova_domain *iovad = &cookie->iovad;
751 	size_t iova_off = iova_offset(iovad, phys);
752 	dma_addr_t iova;
753 
754 	if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
755 	    iommu_deferred_attach(dev, domain))
756 		return DMA_MAPPING_ERROR;
757 
758 	size = iova_align(iovad, size + iova_off);
759 
760 	iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev);
761 	if (!iova)
762 		return DMA_MAPPING_ERROR;
763 
764 	if (iommu_map(domain, iova, phys - iova_off, size, prot, GFP_ATOMIC)) {
765 		iommu_dma_free_iova(cookie, iova, size, NULL);
766 		return DMA_MAPPING_ERROR;
767 	}
768 	return iova + iova_off;
769 }
770 
771 static void __iommu_dma_free_pages(struct page **pages, int count)
772 {
773 	while (count--)
774 		__free_page(pages[count]);
775 	kvfree(pages);
776 }
777 
778 static struct page **__iommu_dma_alloc_pages(struct device *dev,
779 		unsigned int count, unsigned long order_mask, gfp_t gfp)
780 {
781 	struct page **pages;
782 	unsigned int i = 0, nid = dev_to_node(dev);
783 
784 	order_mask &= GENMASK(MAX_ORDER, 0);
785 	if (!order_mask)
786 		return NULL;
787 
788 	pages = kvcalloc(count, sizeof(*pages), GFP_KERNEL);
789 	if (!pages)
790 		return NULL;
791 
792 	/* IOMMU can map any pages, so himem can also be used here */
793 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
794 
795 	while (count) {
796 		struct page *page = NULL;
797 		unsigned int order_size;
798 
799 		/*
800 		 * Higher-order allocations are a convenience rather
801 		 * than a necessity, hence using __GFP_NORETRY until
802 		 * falling back to minimum-order allocations.
803 		 */
804 		for (order_mask &= GENMASK(__fls(count), 0);
805 		     order_mask; order_mask &= ~order_size) {
806 			unsigned int order = __fls(order_mask);
807 			gfp_t alloc_flags = gfp;
808 
809 			order_size = 1U << order;
810 			if (order_mask > order_size)
811 				alloc_flags |= __GFP_NORETRY;
812 			page = alloc_pages_node(nid, alloc_flags, order);
813 			if (!page)
814 				continue;
815 			if (order)
816 				split_page(page, order);
817 			break;
818 		}
819 		if (!page) {
820 			__iommu_dma_free_pages(pages, i);
821 			return NULL;
822 		}
823 		count -= order_size;
824 		while (order_size--)
825 			pages[i++] = page++;
826 	}
827 	return pages;
828 }
829 
830 /*
831  * If size is less than PAGE_SIZE, then a full CPU page will be allocated,
832  * but an IOMMU which supports smaller pages might not map the whole thing.
833  */
834 static struct page **__iommu_dma_alloc_noncontiguous(struct device *dev,
835 		size_t size, struct sg_table *sgt, gfp_t gfp, pgprot_t prot,
836 		unsigned long attrs)
837 {
838 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
839 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
840 	struct iova_domain *iovad = &cookie->iovad;
841 	bool coherent = dev_is_dma_coherent(dev);
842 	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
843 	unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
844 	struct page **pages;
845 	dma_addr_t iova;
846 	ssize_t ret;
847 
848 	if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
849 	    iommu_deferred_attach(dev, domain))
850 		return NULL;
851 
852 	min_size = alloc_sizes & -alloc_sizes;
853 	if (min_size < PAGE_SIZE) {
854 		min_size = PAGE_SIZE;
855 		alloc_sizes |= PAGE_SIZE;
856 	} else {
857 		size = ALIGN(size, min_size);
858 	}
859 	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
860 		alloc_sizes = min_size;
861 
862 	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
863 	pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT,
864 					gfp);
865 	if (!pages)
866 		return NULL;
867 
868 	size = iova_align(iovad, size);
869 	iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
870 	if (!iova)
871 		goto out_free_pages;
872 
873 	/*
874 	 * Remove the zone/policy flags from the GFP - these are applied to the
875 	 * __iommu_dma_alloc_pages() but are not used for the supporting
876 	 * internal allocations that follow.
877 	 */
878 	gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM | __GFP_COMP);
879 
880 	if (sg_alloc_table_from_pages(sgt, pages, count, 0, size, gfp))
881 		goto out_free_iova;
882 
883 	if (!(ioprot & IOMMU_CACHE)) {
884 		struct scatterlist *sg;
885 		int i;
886 
887 		for_each_sg(sgt->sgl, sg, sgt->orig_nents, i)
888 			arch_dma_prep_coherent(sg_page(sg), sg->length);
889 	}
890 
891 	ret = iommu_map_sg(domain, iova, sgt->sgl, sgt->orig_nents, ioprot,
892 			   gfp);
893 	if (ret < 0 || ret < size)
894 		goto out_free_sg;
895 
896 	sgt->sgl->dma_address = iova;
897 	sgt->sgl->dma_length = size;
898 	return pages;
899 
900 out_free_sg:
901 	sg_free_table(sgt);
902 out_free_iova:
903 	iommu_dma_free_iova(cookie, iova, size, NULL);
904 out_free_pages:
905 	__iommu_dma_free_pages(pages, count);
906 	return NULL;
907 }
908 
909 static void *iommu_dma_alloc_remap(struct device *dev, size_t size,
910 		dma_addr_t *dma_handle, gfp_t gfp, pgprot_t prot,
911 		unsigned long attrs)
912 {
913 	struct page **pages;
914 	struct sg_table sgt;
915 	void *vaddr;
916 
917 	pages = __iommu_dma_alloc_noncontiguous(dev, size, &sgt, gfp, prot,
918 						attrs);
919 	if (!pages)
920 		return NULL;
921 	*dma_handle = sgt.sgl->dma_address;
922 	sg_free_table(&sgt);
923 	vaddr = dma_common_pages_remap(pages, size, prot,
924 			__builtin_return_address(0));
925 	if (!vaddr)
926 		goto out_unmap;
927 	return vaddr;
928 
929 out_unmap:
930 	__iommu_dma_unmap(dev, *dma_handle, size);
931 	__iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
932 	return NULL;
933 }
934 
935 static struct sg_table *iommu_dma_alloc_noncontiguous(struct device *dev,
936 		size_t size, enum dma_data_direction dir, gfp_t gfp,
937 		unsigned long attrs)
938 {
939 	struct dma_sgt_handle *sh;
940 
941 	sh = kmalloc(sizeof(*sh), gfp);
942 	if (!sh)
943 		return NULL;
944 
945 	sh->pages = __iommu_dma_alloc_noncontiguous(dev, size, &sh->sgt, gfp,
946 						    PAGE_KERNEL, attrs);
947 	if (!sh->pages) {
948 		kfree(sh);
949 		return NULL;
950 	}
951 	return &sh->sgt;
952 }
953 
954 static void iommu_dma_free_noncontiguous(struct device *dev, size_t size,
955 		struct sg_table *sgt, enum dma_data_direction dir)
956 {
957 	struct dma_sgt_handle *sh = sgt_handle(sgt);
958 
959 	__iommu_dma_unmap(dev, sgt->sgl->dma_address, size);
960 	__iommu_dma_free_pages(sh->pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
961 	sg_free_table(&sh->sgt);
962 	kfree(sh);
963 }
964 
965 static void iommu_dma_sync_single_for_cpu(struct device *dev,
966 		dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
967 {
968 	phys_addr_t phys;
969 
970 	if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev, size, dir))
971 		return;
972 
973 	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
974 	if (!dev_is_dma_coherent(dev))
975 		arch_sync_dma_for_cpu(phys, size, dir);
976 
977 	if (is_swiotlb_buffer(dev, phys))
978 		swiotlb_sync_single_for_cpu(dev, phys, size, dir);
979 }
980 
981 static void iommu_dma_sync_single_for_device(struct device *dev,
982 		dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
983 {
984 	phys_addr_t phys;
985 
986 	if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev, size, dir))
987 		return;
988 
989 	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
990 	if (is_swiotlb_buffer(dev, phys))
991 		swiotlb_sync_single_for_device(dev, phys, size, dir);
992 
993 	if (!dev_is_dma_coherent(dev))
994 		arch_sync_dma_for_device(phys, size, dir);
995 }
996 
997 static void iommu_dma_sync_sg_for_cpu(struct device *dev,
998 		struct scatterlist *sgl, int nelems,
999 		enum dma_data_direction dir)
1000 {
1001 	struct scatterlist *sg;
1002 	int i;
1003 
1004 	if (sg_dma_is_swiotlb(sgl))
1005 		for_each_sg(sgl, sg, nelems, i)
1006 			iommu_dma_sync_single_for_cpu(dev, sg_dma_address(sg),
1007 						      sg->length, dir);
1008 	else if (!dev_is_dma_coherent(dev))
1009 		for_each_sg(sgl, sg, nelems, i)
1010 			arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir);
1011 }
1012 
1013 static void iommu_dma_sync_sg_for_device(struct device *dev,
1014 		struct scatterlist *sgl, int nelems,
1015 		enum dma_data_direction dir)
1016 {
1017 	struct scatterlist *sg;
1018 	int i;
1019 
1020 	if (sg_dma_is_swiotlb(sgl))
1021 		for_each_sg(sgl, sg, nelems, i)
1022 			iommu_dma_sync_single_for_device(dev,
1023 							 sg_dma_address(sg),
1024 							 sg->length, dir);
1025 	else if (!dev_is_dma_coherent(dev))
1026 		for_each_sg(sgl, sg, nelems, i)
1027 			arch_sync_dma_for_device(sg_phys(sg), sg->length, dir);
1028 }
1029 
1030 static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
1031 		unsigned long offset, size_t size, enum dma_data_direction dir,
1032 		unsigned long attrs)
1033 {
1034 	phys_addr_t phys = page_to_phys(page) + offset;
1035 	bool coherent = dev_is_dma_coherent(dev);
1036 	int prot = dma_info_to_prot(dir, coherent, attrs);
1037 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1038 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
1039 	struct iova_domain *iovad = &cookie->iovad;
1040 	dma_addr_t iova, dma_mask = dma_get_mask(dev);
1041 
1042 	/*
1043 	 * If both the physical buffer start address and size are
1044 	 * page aligned, we don't need to use a bounce page.
1045 	 */
1046 	if (dev_use_swiotlb(dev, size, dir) &&
1047 	    iova_offset(iovad, phys | size)) {
1048 		void *padding_start;
1049 		size_t padding_size, aligned_size;
1050 
1051 		if (!is_swiotlb_active(dev)) {
1052 			dev_warn_once(dev, "DMA bounce buffers are inactive, unable to map unaligned transaction.\n");
1053 			return DMA_MAPPING_ERROR;
1054 		}
1055 
1056 		trace_swiotlb_bounced(dev, phys, size);
1057 
1058 		aligned_size = iova_align(iovad, size);
1059 		phys = swiotlb_tbl_map_single(dev, phys, size, aligned_size,
1060 					      iova_mask(iovad), dir, attrs);
1061 
1062 		if (phys == DMA_MAPPING_ERROR)
1063 			return DMA_MAPPING_ERROR;
1064 
1065 		/* Cleanup the padding area. */
1066 		padding_start = phys_to_virt(phys);
1067 		padding_size = aligned_size;
1068 
1069 		if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
1070 		    (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) {
1071 			padding_start += size;
1072 			padding_size -= size;
1073 		}
1074 
1075 		memset(padding_start, 0, padding_size);
1076 	}
1077 
1078 	if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1079 		arch_sync_dma_for_device(phys, size, dir);
1080 
1081 	iova = __iommu_dma_map(dev, phys, size, prot, dma_mask);
1082 	if (iova == DMA_MAPPING_ERROR && is_swiotlb_buffer(dev, phys))
1083 		swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
1084 	return iova;
1085 }
1086 
1087 static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle,
1088 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1089 {
1090 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1091 	phys_addr_t phys;
1092 
1093 	phys = iommu_iova_to_phys(domain, dma_handle);
1094 	if (WARN_ON(!phys))
1095 		return;
1096 
1097 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && !dev_is_dma_coherent(dev))
1098 		arch_sync_dma_for_cpu(phys, size, dir);
1099 
1100 	__iommu_dma_unmap(dev, dma_handle, size);
1101 
1102 	if (unlikely(is_swiotlb_buffer(dev, phys)))
1103 		swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
1104 }
1105 
1106 /*
1107  * Prepare a successfully-mapped scatterlist to give back to the caller.
1108  *
1109  * At this point the segments are already laid out by iommu_dma_map_sg() to
1110  * avoid individually crossing any boundaries, so we merely need to check a
1111  * segment's start address to avoid concatenating across one.
1112  */
1113 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
1114 		dma_addr_t dma_addr)
1115 {
1116 	struct scatterlist *s, *cur = sg;
1117 	unsigned long seg_mask = dma_get_seg_boundary(dev);
1118 	unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
1119 	int i, count = 0;
1120 
1121 	for_each_sg(sg, s, nents, i) {
1122 		/* Restore this segment's original unaligned fields first */
1123 		dma_addr_t s_dma_addr = sg_dma_address(s);
1124 		unsigned int s_iova_off = sg_dma_address(s);
1125 		unsigned int s_length = sg_dma_len(s);
1126 		unsigned int s_iova_len = s->length;
1127 
1128 		sg_dma_address(s) = DMA_MAPPING_ERROR;
1129 		sg_dma_len(s) = 0;
1130 
1131 		if (sg_dma_is_bus_address(s)) {
1132 			if (i > 0)
1133 				cur = sg_next(cur);
1134 
1135 			sg_dma_unmark_bus_address(s);
1136 			sg_dma_address(cur) = s_dma_addr;
1137 			sg_dma_len(cur) = s_length;
1138 			sg_dma_mark_bus_address(cur);
1139 			count++;
1140 			cur_len = 0;
1141 			continue;
1142 		}
1143 
1144 		s->offset += s_iova_off;
1145 		s->length = s_length;
1146 
1147 		/*
1148 		 * Now fill in the real DMA data. If...
1149 		 * - there is a valid output segment to append to
1150 		 * - and this segment starts on an IOVA page boundary
1151 		 * - but doesn't fall at a segment boundary
1152 		 * - and wouldn't make the resulting output segment too long
1153 		 */
1154 		if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
1155 		    (max_len - cur_len >= s_length)) {
1156 			/* ...then concatenate it with the previous one */
1157 			cur_len += s_length;
1158 		} else {
1159 			/* Otherwise start the next output segment */
1160 			if (i > 0)
1161 				cur = sg_next(cur);
1162 			cur_len = s_length;
1163 			count++;
1164 
1165 			sg_dma_address(cur) = dma_addr + s_iova_off;
1166 		}
1167 
1168 		sg_dma_len(cur) = cur_len;
1169 		dma_addr += s_iova_len;
1170 
1171 		if (s_length + s_iova_off < s_iova_len)
1172 			cur_len = 0;
1173 	}
1174 	return count;
1175 }
1176 
1177 /*
1178  * If mapping failed, then just restore the original list,
1179  * but making sure the DMA fields are invalidated.
1180  */
1181 static void __invalidate_sg(struct scatterlist *sg, int nents)
1182 {
1183 	struct scatterlist *s;
1184 	int i;
1185 
1186 	for_each_sg(sg, s, nents, i) {
1187 		if (sg_dma_is_bus_address(s)) {
1188 			sg_dma_unmark_bus_address(s);
1189 		} else {
1190 			if (sg_dma_address(s) != DMA_MAPPING_ERROR)
1191 				s->offset += sg_dma_address(s);
1192 			if (sg_dma_len(s))
1193 				s->length = sg_dma_len(s);
1194 		}
1195 		sg_dma_address(s) = DMA_MAPPING_ERROR;
1196 		sg_dma_len(s) = 0;
1197 	}
1198 }
1199 
1200 static void iommu_dma_unmap_sg_swiotlb(struct device *dev, struct scatterlist *sg,
1201 		int nents, enum dma_data_direction dir, unsigned long attrs)
1202 {
1203 	struct scatterlist *s;
1204 	int i;
1205 
1206 	for_each_sg(sg, s, nents, i)
1207 		iommu_dma_unmap_page(dev, sg_dma_address(s),
1208 				sg_dma_len(s), dir, attrs);
1209 }
1210 
1211 static int iommu_dma_map_sg_swiotlb(struct device *dev, struct scatterlist *sg,
1212 		int nents, enum dma_data_direction dir, unsigned long attrs)
1213 {
1214 	struct scatterlist *s;
1215 	int i;
1216 
1217 	sg_dma_mark_swiotlb(sg);
1218 
1219 	for_each_sg(sg, s, nents, i) {
1220 		sg_dma_address(s) = iommu_dma_map_page(dev, sg_page(s),
1221 				s->offset, s->length, dir, attrs);
1222 		if (sg_dma_address(s) == DMA_MAPPING_ERROR)
1223 			goto out_unmap;
1224 		sg_dma_len(s) = s->length;
1225 	}
1226 
1227 	return nents;
1228 
1229 out_unmap:
1230 	iommu_dma_unmap_sg_swiotlb(dev, sg, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
1231 	return -EIO;
1232 }
1233 
1234 /*
1235  * The DMA API client is passing in a scatterlist which could describe
1236  * any old buffer layout, but the IOMMU API requires everything to be
1237  * aligned to IOMMU pages. Hence the need for this complicated bit of
1238  * impedance-matching, to be able to hand off a suitably-aligned list,
1239  * but still preserve the original offsets and sizes for the caller.
1240  */
1241 static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
1242 		int nents, enum dma_data_direction dir, unsigned long attrs)
1243 {
1244 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1245 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
1246 	struct iova_domain *iovad = &cookie->iovad;
1247 	struct scatterlist *s, *prev = NULL;
1248 	int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs);
1249 	struct pci_p2pdma_map_state p2pdma_state = {};
1250 	enum pci_p2pdma_map_type map;
1251 	dma_addr_t iova;
1252 	size_t iova_len = 0;
1253 	unsigned long mask = dma_get_seg_boundary(dev);
1254 	ssize_t ret;
1255 	int i;
1256 
1257 	if (static_branch_unlikely(&iommu_deferred_attach_enabled)) {
1258 		ret = iommu_deferred_attach(dev, domain);
1259 		if (ret)
1260 			goto out;
1261 	}
1262 
1263 	if (dev_use_sg_swiotlb(dev, sg, nents, dir))
1264 		return iommu_dma_map_sg_swiotlb(dev, sg, nents, dir, attrs);
1265 
1266 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1267 		iommu_dma_sync_sg_for_device(dev, sg, nents, dir);
1268 
1269 	/*
1270 	 * Work out how much IOVA space we need, and align the segments to
1271 	 * IOVA granules for the IOMMU driver to handle. With some clever
1272 	 * trickery we can modify the list in-place, but reversibly, by
1273 	 * stashing the unaligned parts in the as-yet-unused DMA fields.
1274 	 */
1275 	for_each_sg(sg, s, nents, i) {
1276 		size_t s_iova_off = iova_offset(iovad, s->offset);
1277 		size_t s_length = s->length;
1278 		size_t pad_len = (mask - iova_len + 1) & mask;
1279 
1280 		if (is_pci_p2pdma_page(sg_page(s))) {
1281 			map = pci_p2pdma_map_segment(&p2pdma_state, dev, s);
1282 			switch (map) {
1283 			case PCI_P2PDMA_MAP_BUS_ADDR:
1284 				/*
1285 				 * iommu_map_sg() will skip this segment as
1286 				 * it is marked as a bus address,
1287 				 * __finalise_sg() will copy the dma address
1288 				 * into the output segment.
1289 				 */
1290 				continue;
1291 			case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
1292 				/*
1293 				 * Mapping through host bridge should be
1294 				 * mapped with regular IOVAs, thus we
1295 				 * do nothing here and continue below.
1296 				 */
1297 				break;
1298 			default:
1299 				ret = -EREMOTEIO;
1300 				goto out_restore_sg;
1301 			}
1302 		}
1303 
1304 		sg_dma_address(s) = s_iova_off;
1305 		sg_dma_len(s) = s_length;
1306 		s->offset -= s_iova_off;
1307 		s_length = iova_align(iovad, s_length + s_iova_off);
1308 		s->length = s_length;
1309 
1310 		/*
1311 		 * Due to the alignment of our single IOVA allocation, we can
1312 		 * depend on these assumptions about the segment boundary mask:
1313 		 * - If mask size >= IOVA size, then the IOVA range cannot
1314 		 *   possibly fall across a boundary, so we don't care.
1315 		 * - If mask size < IOVA size, then the IOVA range must start
1316 		 *   exactly on a boundary, therefore we can lay things out
1317 		 *   based purely on segment lengths without needing to know
1318 		 *   the actual addresses beforehand.
1319 		 * - The mask must be a power of 2, so pad_len == 0 if
1320 		 *   iova_len == 0, thus we cannot dereference prev the first
1321 		 *   time through here (i.e. before it has a meaningful value).
1322 		 */
1323 		if (pad_len && pad_len < s_length - 1) {
1324 			prev->length += pad_len;
1325 			iova_len += pad_len;
1326 		}
1327 
1328 		iova_len += s_length;
1329 		prev = s;
1330 	}
1331 
1332 	if (!iova_len)
1333 		return __finalise_sg(dev, sg, nents, 0);
1334 
1335 	iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
1336 	if (!iova) {
1337 		ret = -ENOMEM;
1338 		goto out_restore_sg;
1339 	}
1340 
1341 	/*
1342 	 * We'll leave any physical concatenation to the IOMMU driver's
1343 	 * implementation - it knows better than we do.
1344 	 */
1345 	ret = iommu_map_sg(domain, iova, sg, nents, prot, GFP_ATOMIC);
1346 	if (ret < 0 || ret < iova_len)
1347 		goto out_free_iova;
1348 
1349 	return __finalise_sg(dev, sg, nents, iova);
1350 
1351 out_free_iova:
1352 	iommu_dma_free_iova(cookie, iova, iova_len, NULL);
1353 out_restore_sg:
1354 	__invalidate_sg(sg, nents);
1355 out:
1356 	if (ret != -ENOMEM && ret != -EREMOTEIO)
1357 		return -EINVAL;
1358 	return ret;
1359 }
1360 
1361 static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
1362 		int nents, enum dma_data_direction dir, unsigned long attrs)
1363 {
1364 	dma_addr_t end = 0, start;
1365 	struct scatterlist *tmp;
1366 	int i;
1367 
1368 	if (sg_dma_is_swiotlb(sg)) {
1369 		iommu_dma_unmap_sg_swiotlb(dev, sg, nents, dir, attrs);
1370 		return;
1371 	}
1372 
1373 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1374 		iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir);
1375 
1376 	/*
1377 	 * The scatterlist segments are mapped into a single
1378 	 * contiguous IOVA allocation, the start and end points
1379 	 * just have to be determined.
1380 	 */
1381 	for_each_sg(sg, tmp, nents, i) {
1382 		if (sg_dma_is_bus_address(tmp)) {
1383 			sg_dma_unmark_bus_address(tmp);
1384 			continue;
1385 		}
1386 
1387 		if (sg_dma_len(tmp) == 0)
1388 			break;
1389 
1390 		start = sg_dma_address(tmp);
1391 		break;
1392 	}
1393 
1394 	nents -= i;
1395 	for_each_sg(tmp, tmp, nents, i) {
1396 		if (sg_dma_is_bus_address(tmp)) {
1397 			sg_dma_unmark_bus_address(tmp);
1398 			continue;
1399 		}
1400 
1401 		if (sg_dma_len(tmp) == 0)
1402 			break;
1403 
1404 		end = sg_dma_address(tmp) + sg_dma_len(tmp);
1405 	}
1406 
1407 	if (end)
1408 		__iommu_dma_unmap(dev, start, end - start);
1409 }
1410 
1411 static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
1412 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1413 {
1414 	return __iommu_dma_map(dev, phys, size,
1415 			dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO,
1416 			dma_get_mask(dev));
1417 }
1418 
1419 static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
1420 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1421 {
1422 	__iommu_dma_unmap(dev, handle, size);
1423 }
1424 
1425 static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr)
1426 {
1427 	size_t alloc_size = PAGE_ALIGN(size);
1428 	int count = alloc_size >> PAGE_SHIFT;
1429 	struct page *page = NULL, **pages = NULL;
1430 
1431 	/* Non-coherent atomic allocation? Easy */
1432 	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1433 	    dma_free_from_pool(dev, cpu_addr, alloc_size))
1434 		return;
1435 
1436 	if (is_vmalloc_addr(cpu_addr)) {
1437 		/*
1438 		 * If it the address is remapped, then it's either non-coherent
1439 		 * or highmem CMA, or an iommu_dma_alloc_remap() construction.
1440 		 */
1441 		pages = dma_common_find_pages(cpu_addr);
1442 		if (!pages)
1443 			page = vmalloc_to_page(cpu_addr);
1444 		dma_common_free_remap(cpu_addr, alloc_size);
1445 	} else {
1446 		/* Lowmem means a coherent atomic or CMA allocation */
1447 		page = virt_to_page(cpu_addr);
1448 	}
1449 
1450 	if (pages)
1451 		__iommu_dma_free_pages(pages, count);
1452 	if (page)
1453 		dma_free_contiguous(dev, page, alloc_size);
1454 }
1455 
1456 static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr,
1457 		dma_addr_t handle, unsigned long attrs)
1458 {
1459 	__iommu_dma_unmap(dev, handle, size);
1460 	__iommu_dma_free(dev, size, cpu_addr);
1461 }
1462 
1463 static void *iommu_dma_alloc_pages(struct device *dev, size_t size,
1464 		struct page **pagep, gfp_t gfp, unsigned long attrs)
1465 {
1466 	bool coherent = dev_is_dma_coherent(dev);
1467 	size_t alloc_size = PAGE_ALIGN(size);
1468 	int node = dev_to_node(dev);
1469 	struct page *page = NULL;
1470 	void *cpu_addr;
1471 
1472 	page = dma_alloc_contiguous(dev, alloc_size, gfp);
1473 	if (!page)
1474 		page = alloc_pages_node(node, gfp, get_order(alloc_size));
1475 	if (!page)
1476 		return NULL;
1477 
1478 	if (!coherent || PageHighMem(page)) {
1479 		pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
1480 
1481 		cpu_addr = dma_common_contiguous_remap(page, alloc_size,
1482 				prot, __builtin_return_address(0));
1483 		if (!cpu_addr)
1484 			goto out_free_pages;
1485 
1486 		if (!coherent)
1487 			arch_dma_prep_coherent(page, size);
1488 	} else {
1489 		cpu_addr = page_address(page);
1490 	}
1491 
1492 	*pagep = page;
1493 	memset(cpu_addr, 0, alloc_size);
1494 	return cpu_addr;
1495 out_free_pages:
1496 	dma_free_contiguous(dev, page, alloc_size);
1497 	return NULL;
1498 }
1499 
1500 static void *iommu_dma_alloc(struct device *dev, size_t size,
1501 		dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1502 {
1503 	bool coherent = dev_is_dma_coherent(dev);
1504 	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
1505 	struct page *page = NULL;
1506 	void *cpu_addr;
1507 
1508 	gfp |= __GFP_ZERO;
1509 
1510 	if (gfpflags_allow_blocking(gfp) &&
1511 	    !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) {
1512 		return iommu_dma_alloc_remap(dev, size, handle, gfp,
1513 				dma_pgprot(dev, PAGE_KERNEL, attrs), attrs);
1514 	}
1515 
1516 	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1517 	    !gfpflags_allow_blocking(gfp) && !coherent)
1518 		page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr,
1519 					       gfp, NULL);
1520 	else
1521 		cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs);
1522 	if (!cpu_addr)
1523 		return NULL;
1524 
1525 	*handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot,
1526 			dev->coherent_dma_mask);
1527 	if (*handle == DMA_MAPPING_ERROR) {
1528 		__iommu_dma_free(dev, size, cpu_addr);
1529 		return NULL;
1530 	}
1531 
1532 	return cpu_addr;
1533 }
1534 
1535 static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma,
1536 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
1537 		unsigned long attrs)
1538 {
1539 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1540 	unsigned long pfn, off = vma->vm_pgoff;
1541 	int ret;
1542 
1543 	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
1544 
1545 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
1546 		return ret;
1547 
1548 	if (off >= nr_pages || vma_pages(vma) > nr_pages - off)
1549 		return -ENXIO;
1550 
1551 	if (is_vmalloc_addr(cpu_addr)) {
1552 		struct page **pages = dma_common_find_pages(cpu_addr);
1553 
1554 		if (pages)
1555 			return vm_map_pages(vma, pages, nr_pages);
1556 		pfn = vmalloc_to_pfn(cpu_addr);
1557 	} else {
1558 		pfn = page_to_pfn(virt_to_page(cpu_addr));
1559 	}
1560 
1561 	return remap_pfn_range(vma, vma->vm_start, pfn + off,
1562 			       vma->vm_end - vma->vm_start,
1563 			       vma->vm_page_prot);
1564 }
1565 
1566 static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
1567 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
1568 		unsigned long attrs)
1569 {
1570 	struct page *page;
1571 	int ret;
1572 
1573 	if (is_vmalloc_addr(cpu_addr)) {
1574 		struct page **pages = dma_common_find_pages(cpu_addr);
1575 
1576 		if (pages) {
1577 			return sg_alloc_table_from_pages(sgt, pages,
1578 					PAGE_ALIGN(size) >> PAGE_SHIFT,
1579 					0, size, GFP_KERNEL);
1580 		}
1581 
1582 		page = vmalloc_to_page(cpu_addr);
1583 	} else {
1584 		page = virt_to_page(cpu_addr);
1585 	}
1586 
1587 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
1588 	if (!ret)
1589 		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
1590 	return ret;
1591 }
1592 
1593 static unsigned long iommu_dma_get_merge_boundary(struct device *dev)
1594 {
1595 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1596 
1597 	return (1UL << __ffs(domain->pgsize_bitmap)) - 1;
1598 }
1599 
1600 static size_t iommu_dma_opt_mapping_size(void)
1601 {
1602 	return iova_rcache_range();
1603 }
1604 
1605 static size_t iommu_dma_max_mapping_size(struct device *dev)
1606 {
1607 	if (dev_is_untrusted(dev))
1608 		return swiotlb_max_mapping_size(dev);
1609 
1610 	return SIZE_MAX;
1611 }
1612 
1613 static const struct dma_map_ops iommu_dma_ops = {
1614 	.flags			= DMA_F_PCI_P2PDMA_SUPPORTED,
1615 	.alloc			= iommu_dma_alloc,
1616 	.free			= iommu_dma_free,
1617 	.alloc_pages		= dma_common_alloc_pages,
1618 	.free_pages		= dma_common_free_pages,
1619 	.alloc_noncontiguous	= iommu_dma_alloc_noncontiguous,
1620 	.free_noncontiguous	= iommu_dma_free_noncontiguous,
1621 	.mmap			= iommu_dma_mmap,
1622 	.get_sgtable		= iommu_dma_get_sgtable,
1623 	.map_page		= iommu_dma_map_page,
1624 	.unmap_page		= iommu_dma_unmap_page,
1625 	.map_sg			= iommu_dma_map_sg,
1626 	.unmap_sg		= iommu_dma_unmap_sg,
1627 	.sync_single_for_cpu	= iommu_dma_sync_single_for_cpu,
1628 	.sync_single_for_device	= iommu_dma_sync_single_for_device,
1629 	.sync_sg_for_cpu	= iommu_dma_sync_sg_for_cpu,
1630 	.sync_sg_for_device	= iommu_dma_sync_sg_for_device,
1631 	.map_resource		= iommu_dma_map_resource,
1632 	.unmap_resource		= iommu_dma_unmap_resource,
1633 	.get_merge_boundary	= iommu_dma_get_merge_boundary,
1634 	.opt_mapping_size	= iommu_dma_opt_mapping_size,
1635 	.max_mapping_size       = iommu_dma_max_mapping_size,
1636 };
1637 
1638 /*
1639  * The IOMMU core code allocates the default DMA domain, which the underlying
1640  * IOMMU driver needs to support via the dma-iommu layer.
1641  */
1642 void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 dma_limit)
1643 {
1644 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1645 
1646 	if (!domain)
1647 		goto out_err;
1648 
1649 	/*
1650 	 * The IOMMU core code allocates the default DMA domain, which the
1651 	 * underlying IOMMU driver needs to support via the dma-iommu layer.
1652 	 */
1653 	if (iommu_is_dma_domain(domain)) {
1654 		if (iommu_dma_init_domain(domain, dma_base, dma_limit, dev))
1655 			goto out_err;
1656 		dev->dma_ops = &iommu_dma_ops;
1657 	}
1658 
1659 	return;
1660 out_err:
1661 	 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
1662 		 dev_name(dev));
1663 }
1664 EXPORT_SYMBOL_GPL(iommu_setup_dma_ops);
1665 
1666 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
1667 		phys_addr_t msi_addr, struct iommu_domain *domain)
1668 {
1669 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
1670 	struct iommu_dma_msi_page *msi_page;
1671 	dma_addr_t iova;
1672 	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1673 	size_t size = cookie_msi_granule(cookie);
1674 
1675 	msi_addr &= ~(phys_addr_t)(size - 1);
1676 	list_for_each_entry(msi_page, &cookie->msi_page_list, list)
1677 		if (msi_page->phys == msi_addr)
1678 			return msi_page;
1679 
1680 	msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL);
1681 	if (!msi_page)
1682 		return NULL;
1683 
1684 	iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
1685 	if (!iova)
1686 		goto out_free_page;
1687 
1688 	if (iommu_map(domain, iova, msi_addr, size, prot, GFP_KERNEL))
1689 		goto out_free_iova;
1690 
1691 	INIT_LIST_HEAD(&msi_page->list);
1692 	msi_page->phys = msi_addr;
1693 	msi_page->iova = iova;
1694 	list_add(&msi_page->list, &cookie->msi_page_list);
1695 	return msi_page;
1696 
1697 out_free_iova:
1698 	iommu_dma_free_iova(cookie, iova, size, NULL);
1699 out_free_page:
1700 	kfree(msi_page);
1701 	return NULL;
1702 }
1703 
1704 /**
1705  * iommu_dma_prepare_msi() - Map the MSI page in the IOMMU domain
1706  * @desc: MSI descriptor, will store the MSI page
1707  * @msi_addr: MSI target address to be mapped
1708  *
1709  * Return: 0 on success or negative error code if the mapping failed.
1710  */
1711 int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)
1712 {
1713 	struct device *dev = msi_desc_to_dev(desc);
1714 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1715 	struct iommu_dma_msi_page *msi_page;
1716 	static DEFINE_MUTEX(msi_prepare_lock); /* see below */
1717 
1718 	if (!domain || !domain->iova_cookie) {
1719 		desc->iommu_cookie = NULL;
1720 		return 0;
1721 	}
1722 
1723 	/*
1724 	 * In fact the whole prepare operation should already be serialised by
1725 	 * irq_domain_mutex further up the callchain, but that's pretty subtle
1726 	 * on its own, so consider this locking as failsafe documentation...
1727 	 */
1728 	mutex_lock(&msi_prepare_lock);
1729 	msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
1730 	mutex_unlock(&msi_prepare_lock);
1731 
1732 	msi_desc_set_iommu_cookie(desc, msi_page);
1733 
1734 	if (!msi_page)
1735 		return -ENOMEM;
1736 	return 0;
1737 }
1738 
1739 /**
1740  * iommu_dma_compose_msi_msg() - Apply translation to an MSI message
1741  * @desc: MSI descriptor prepared by iommu_dma_prepare_msi()
1742  * @msg: MSI message containing target physical address
1743  */
1744 void iommu_dma_compose_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
1745 {
1746 	struct device *dev = msi_desc_to_dev(desc);
1747 	const struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1748 	const struct iommu_dma_msi_page *msi_page;
1749 
1750 	msi_page = msi_desc_get_iommu_cookie(desc);
1751 
1752 	if (!domain || !domain->iova_cookie || WARN_ON(!msi_page))
1753 		return;
1754 
1755 	msg->address_hi = upper_32_bits(msi_page->iova);
1756 	msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1;
1757 	msg->address_lo += lower_32_bits(msi_page->iova);
1758 }
1759 
1760 static int iommu_dma_init(void)
1761 {
1762 	if (is_kdump_kernel())
1763 		static_branch_enable(&iommu_deferred_attach_enabled);
1764 
1765 	return iova_cache_get();
1766 }
1767 arch_initcall(iommu_dma_init);
1768