xref: /openbmc/linux/drivers/iommu/dma-iommu.c (revision ddc141e5)
1 /*
2  * A fairly generic DMA-API to IOMMU-API glue layer.
3  *
4  * Copyright (C) 2014-2015 ARM Ltd.
5  *
6  * based in part on arch/arm/mm/dma-mapping.c:
7  * Copyright (C) 2000-2004 Russell King
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #include <linux/device.h>
23 #include <linux/dma-iommu.h>
24 #include <linux/gfp.h>
25 #include <linux/huge_mm.h>
26 #include <linux/iommu.h>
27 #include <linux/iova.h>
28 #include <linux/irq.h>
29 #include <linux/mm.h>
30 #include <linux/pci.h>
31 #include <linux/scatterlist.h>
32 #include <linux/vmalloc.h>
33 
34 #define IOMMU_MAPPING_ERROR	0
35 
36 struct iommu_dma_msi_page {
37 	struct list_head	list;
38 	dma_addr_t		iova;
39 	phys_addr_t		phys;
40 };
41 
42 enum iommu_dma_cookie_type {
43 	IOMMU_DMA_IOVA_COOKIE,
44 	IOMMU_DMA_MSI_COOKIE,
45 };
46 
47 struct iommu_dma_cookie {
48 	enum iommu_dma_cookie_type	type;
49 	union {
50 		/* Full allocator for IOMMU_DMA_IOVA_COOKIE */
51 		struct iova_domain	iovad;
52 		/* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
53 		dma_addr_t		msi_iova;
54 	};
55 	struct list_head		msi_page_list;
56 	spinlock_t			msi_lock;
57 };
58 
59 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
60 {
61 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
62 		return cookie->iovad.granule;
63 	return PAGE_SIZE;
64 }
65 
66 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
67 {
68 	struct iommu_dma_cookie *cookie;
69 
70 	cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
71 	if (cookie) {
72 		spin_lock_init(&cookie->msi_lock);
73 		INIT_LIST_HEAD(&cookie->msi_page_list);
74 		cookie->type = type;
75 	}
76 	return cookie;
77 }
78 
79 int iommu_dma_init(void)
80 {
81 	return iova_cache_get();
82 }
83 
84 /**
85  * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
86  * @domain: IOMMU domain to prepare for DMA-API usage
87  *
88  * IOMMU drivers should normally call this from their domain_alloc
89  * callback when domain->type == IOMMU_DOMAIN_DMA.
90  */
91 int iommu_get_dma_cookie(struct iommu_domain *domain)
92 {
93 	if (domain->iova_cookie)
94 		return -EEXIST;
95 
96 	domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
97 	if (!domain->iova_cookie)
98 		return -ENOMEM;
99 
100 	return 0;
101 }
102 EXPORT_SYMBOL(iommu_get_dma_cookie);
103 
104 /**
105  * iommu_get_msi_cookie - Acquire just MSI remapping resources
106  * @domain: IOMMU domain to prepare
107  * @base: Start address of IOVA region for MSI mappings
108  *
109  * Users who manage their own IOVA allocation and do not want DMA API support,
110  * but would still like to take advantage of automatic MSI remapping, can use
111  * this to initialise their own domain appropriately. Users should reserve a
112  * contiguous IOVA region, starting at @base, large enough to accommodate the
113  * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
114  * used by the devices attached to @domain.
115  */
116 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
117 {
118 	struct iommu_dma_cookie *cookie;
119 
120 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
121 		return -EINVAL;
122 
123 	if (domain->iova_cookie)
124 		return -EEXIST;
125 
126 	cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
127 	if (!cookie)
128 		return -ENOMEM;
129 
130 	cookie->msi_iova = base;
131 	domain->iova_cookie = cookie;
132 	return 0;
133 }
134 EXPORT_SYMBOL(iommu_get_msi_cookie);
135 
136 /**
137  * iommu_put_dma_cookie - Release a domain's DMA mapping resources
138  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
139  *          iommu_get_msi_cookie()
140  *
141  * IOMMU drivers should normally call this from their domain_free callback.
142  */
143 void iommu_put_dma_cookie(struct iommu_domain *domain)
144 {
145 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
146 	struct iommu_dma_msi_page *msi, *tmp;
147 
148 	if (!cookie)
149 		return;
150 
151 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule)
152 		put_iova_domain(&cookie->iovad);
153 
154 	list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
155 		list_del(&msi->list);
156 		kfree(msi);
157 	}
158 	kfree(cookie);
159 	domain->iova_cookie = NULL;
160 }
161 EXPORT_SYMBOL(iommu_put_dma_cookie);
162 
163 /**
164  * iommu_dma_get_resv_regions - Reserved region driver helper
165  * @dev: Device from iommu_get_resv_regions()
166  * @list: Reserved region list from iommu_get_resv_regions()
167  *
168  * IOMMU drivers can use this to implement their .get_resv_regions callback
169  * for general non-IOMMU-specific reservations. Currently, this covers host
170  * bridge windows for PCI devices.
171  */
172 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
173 {
174 	struct pci_host_bridge *bridge;
175 	struct resource_entry *window;
176 
177 	if (!dev_is_pci(dev))
178 		return;
179 
180 	bridge = pci_find_host_bridge(to_pci_dev(dev)->bus);
181 	resource_list_for_each_entry(window, &bridge->windows) {
182 		struct iommu_resv_region *region;
183 		phys_addr_t start;
184 		size_t length;
185 
186 		if (resource_type(window->res) != IORESOURCE_MEM)
187 			continue;
188 
189 		start = window->res->start - window->offset;
190 		length = window->res->end - window->res->start + 1;
191 		region = iommu_alloc_resv_region(start, length, 0,
192 				IOMMU_RESV_RESERVED);
193 		if (!region)
194 			return;
195 
196 		list_add_tail(&region->list, list);
197 	}
198 }
199 EXPORT_SYMBOL(iommu_dma_get_resv_regions);
200 
201 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
202 		phys_addr_t start, phys_addr_t end)
203 {
204 	struct iova_domain *iovad = &cookie->iovad;
205 	struct iommu_dma_msi_page *msi_page;
206 	int i, num_pages;
207 
208 	start -= iova_offset(iovad, start);
209 	num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
210 
211 	msi_page = kcalloc(num_pages, sizeof(*msi_page), GFP_KERNEL);
212 	if (!msi_page)
213 		return -ENOMEM;
214 
215 	for (i = 0; i < num_pages; i++) {
216 		msi_page[i].phys = start;
217 		msi_page[i].iova = start;
218 		INIT_LIST_HEAD(&msi_page[i].list);
219 		list_add(&msi_page[i].list, &cookie->msi_page_list);
220 		start += iovad->granule;
221 	}
222 
223 	return 0;
224 }
225 
226 static int iova_reserve_iommu_regions(struct device *dev,
227 		struct iommu_domain *domain)
228 {
229 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
230 	struct iova_domain *iovad = &cookie->iovad;
231 	struct iommu_resv_region *region;
232 	LIST_HEAD(resv_regions);
233 	int ret = 0;
234 
235 	iommu_get_resv_regions(dev, &resv_regions);
236 	list_for_each_entry(region, &resv_regions, list) {
237 		unsigned long lo, hi;
238 
239 		/* We ARE the software that manages these! */
240 		if (region->type == IOMMU_RESV_SW_MSI)
241 			continue;
242 
243 		lo = iova_pfn(iovad, region->start);
244 		hi = iova_pfn(iovad, region->start + region->length - 1);
245 		reserve_iova(iovad, lo, hi);
246 
247 		if (region->type == IOMMU_RESV_MSI)
248 			ret = cookie_init_hw_msi_region(cookie, region->start,
249 					region->start + region->length);
250 		if (ret)
251 			break;
252 	}
253 	iommu_put_resv_regions(dev, &resv_regions);
254 
255 	return ret;
256 }
257 
258 /**
259  * iommu_dma_init_domain - Initialise a DMA mapping domain
260  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
261  * @base: IOVA at which the mappable address space starts
262  * @size: Size of IOVA space
263  * @dev: Device the domain is being initialised for
264  *
265  * @base and @size should be exact multiples of IOMMU page granularity to
266  * avoid rounding surprises. If necessary, we reserve the page at address 0
267  * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
268  * any change which could make prior IOVAs invalid will fail.
269  */
270 int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
271 		u64 size, struct device *dev)
272 {
273 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
274 	struct iova_domain *iovad = &cookie->iovad;
275 	unsigned long order, base_pfn, end_pfn;
276 
277 	if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
278 		return -EINVAL;
279 
280 	/* Use the smallest supported page size for IOVA granularity */
281 	order = __ffs(domain->pgsize_bitmap);
282 	base_pfn = max_t(unsigned long, 1, base >> order);
283 	end_pfn = (base + size - 1) >> order;
284 
285 	/* Check the domain allows at least some access to the device... */
286 	if (domain->geometry.force_aperture) {
287 		if (base > domain->geometry.aperture_end ||
288 		    base + size <= domain->geometry.aperture_start) {
289 			pr_warn("specified DMA range outside IOMMU capability\n");
290 			return -EFAULT;
291 		}
292 		/* ...then finally give it a kicking to make sure it fits */
293 		base_pfn = max_t(unsigned long, base_pfn,
294 				domain->geometry.aperture_start >> order);
295 	}
296 
297 	/* start_pfn is always nonzero for an already-initialised domain */
298 	if (iovad->start_pfn) {
299 		if (1UL << order != iovad->granule ||
300 		    base_pfn != iovad->start_pfn) {
301 			pr_warn("Incompatible range for DMA domain\n");
302 			return -EFAULT;
303 		}
304 
305 		return 0;
306 	}
307 
308 	init_iova_domain(iovad, 1UL << order, base_pfn);
309 	if (!dev)
310 		return 0;
311 
312 	return iova_reserve_iommu_regions(dev, domain);
313 }
314 EXPORT_SYMBOL(iommu_dma_init_domain);
315 
316 /**
317  * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
318  *                    page flags.
319  * @dir: Direction of DMA transfer
320  * @coherent: Is the DMA master cache-coherent?
321  * @attrs: DMA attributes for the mapping
322  *
323  * Return: corresponding IOMMU API page protection flags
324  */
325 int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
326 		     unsigned long attrs)
327 {
328 	int prot = coherent ? IOMMU_CACHE : 0;
329 
330 	if (attrs & DMA_ATTR_PRIVILEGED)
331 		prot |= IOMMU_PRIV;
332 
333 	switch (dir) {
334 	case DMA_BIDIRECTIONAL:
335 		return prot | IOMMU_READ | IOMMU_WRITE;
336 	case DMA_TO_DEVICE:
337 		return prot | IOMMU_READ;
338 	case DMA_FROM_DEVICE:
339 		return prot | IOMMU_WRITE;
340 	default:
341 		return 0;
342 	}
343 }
344 
345 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
346 		size_t size, dma_addr_t dma_limit, struct device *dev)
347 {
348 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
349 	struct iova_domain *iovad = &cookie->iovad;
350 	unsigned long shift, iova_len, iova = 0;
351 
352 	if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
353 		cookie->msi_iova += size;
354 		return cookie->msi_iova - size;
355 	}
356 
357 	shift = iova_shift(iovad);
358 	iova_len = size >> shift;
359 	/*
360 	 * Freeing non-power-of-two-sized allocations back into the IOVA caches
361 	 * will come back to bite us badly, so we have to waste a bit of space
362 	 * rounding up anything cacheable to make sure that can't happen. The
363 	 * order of the unadjusted size will still match upon freeing.
364 	 */
365 	if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1)))
366 		iova_len = roundup_pow_of_two(iova_len);
367 
368 	if (domain->geometry.force_aperture)
369 		dma_limit = min(dma_limit, domain->geometry.aperture_end);
370 
371 	/* Try to get PCI devices a SAC address */
372 	if (dma_limit > DMA_BIT_MASK(32) && dev_is_pci(dev))
373 		iova = alloc_iova_fast(iovad, iova_len,
374 				       DMA_BIT_MASK(32) >> shift, false);
375 
376 	if (!iova)
377 		iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift,
378 				       true);
379 
380 	return (dma_addr_t)iova << shift;
381 }
382 
383 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
384 		dma_addr_t iova, size_t size)
385 {
386 	struct iova_domain *iovad = &cookie->iovad;
387 
388 	/* The MSI case is only ever cleaning up its most recent allocation */
389 	if (cookie->type == IOMMU_DMA_MSI_COOKIE)
390 		cookie->msi_iova -= size;
391 	else
392 		free_iova_fast(iovad, iova_pfn(iovad, iova),
393 				size >> iova_shift(iovad));
394 }
395 
396 static void __iommu_dma_unmap(struct iommu_domain *domain, dma_addr_t dma_addr,
397 		size_t size)
398 {
399 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
400 	struct iova_domain *iovad = &cookie->iovad;
401 	size_t iova_off = iova_offset(iovad, dma_addr);
402 
403 	dma_addr -= iova_off;
404 	size = iova_align(iovad, size + iova_off);
405 
406 	WARN_ON(iommu_unmap(domain, dma_addr, size) != size);
407 	iommu_dma_free_iova(cookie, dma_addr, size);
408 }
409 
410 static void __iommu_dma_free_pages(struct page **pages, int count)
411 {
412 	while (count--)
413 		__free_page(pages[count]);
414 	kvfree(pages);
415 }
416 
417 static struct page **__iommu_dma_alloc_pages(unsigned int count,
418 		unsigned long order_mask, gfp_t gfp)
419 {
420 	struct page **pages;
421 	unsigned int i = 0, array_size = count * sizeof(*pages);
422 
423 	order_mask &= (2U << MAX_ORDER) - 1;
424 	if (!order_mask)
425 		return NULL;
426 
427 	if (array_size <= PAGE_SIZE)
428 		pages = kzalloc(array_size, GFP_KERNEL);
429 	else
430 		pages = vzalloc(array_size);
431 	if (!pages)
432 		return NULL;
433 
434 	/* IOMMU can map any pages, so himem can also be used here */
435 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
436 
437 	while (count) {
438 		struct page *page = NULL;
439 		unsigned int order_size;
440 
441 		/*
442 		 * Higher-order allocations are a convenience rather
443 		 * than a necessity, hence using __GFP_NORETRY until
444 		 * falling back to minimum-order allocations.
445 		 */
446 		for (order_mask &= (2U << __fls(count)) - 1;
447 		     order_mask; order_mask &= ~order_size) {
448 			unsigned int order = __fls(order_mask);
449 
450 			order_size = 1U << order;
451 			page = alloc_pages((order_mask - order_size) ?
452 					   gfp | __GFP_NORETRY : gfp, order);
453 			if (!page)
454 				continue;
455 			if (!order)
456 				break;
457 			if (!PageCompound(page)) {
458 				split_page(page, order);
459 				break;
460 			} else if (!split_huge_page(page)) {
461 				break;
462 			}
463 			__free_pages(page, order);
464 		}
465 		if (!page) {
466 			__iommu_dma_free_pages(pages, i);
467 			return NULL;
468 		}
469 		count -= order_size;
470 		while (order_size--)
471 			pages[i++] = page++;
472 	}
473 	return pages;
474 }
475 
476 /**
477  * iommu_dma_free - Free a buffer allocated by iommu_dma_alloc()
478  * @dev: Device which owns this buffer
479  * @pages: Array of buffer pages as returned by iommu_dma_alloc()
480  * @size: Size of buffer in bytes
481  * @handle: DMA address of buffer
482  *
483  * Frees both the pages associated with the buffer, and the array
484  * describing them
485  */
486 void iommu_dma_free(struct device *dev, struct page **pages, size_t size,
487 		dma_addr_t *handle)
488 {
489 	__iommu_dma_unmap(iommu_get_domain_for_dev(dev), *handle, size);
490 	__iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
491 	*handle = IOMMU_MAPPING_ERROR;
492 }
493 
494 /**
495  * iommu_dma_alloc - Allocate and map a buffer contiguous in IOVA space
496  * @dev: Device to allocate memory for. Must be a real device
497  *	 attached to an iommu_dma_domain
498  * @size: Size of buffer in bytes
499  * @gfp: Allocation flags
500  * @attrs: DMA attributes for this allocation
501  * @prot: IOMMU mapping flags
502  * @handle: Out argument for allocated DMA handle
503  * @flush_page: Arch callback which must ensure PAGE_SIZE bytes from the
504  *		given VA/PA are visible to the given non-coherent device.
505  *
506  * If @size is less than PAGE_SIZE, then a full CPU page will be allocated,
507  * but an IOMMU which supports smaller pages might not map the whole thing.
508  *
509  * Return: Array of struct page pointers describing the buffer,
510  *	   or NULL on failure.
511  */
512 struct page **iommu_dma_alloc(struct device *dev, size_t size, gfp_t gfp,
513 		unsigned long attrs, int prot, dma_addr_t *handle,
514 		void (*flush_page)(struct device *, const void *, phys_addr_t))
515 {
516 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
517 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
518 	struct iova_domain *iovad = &cookie->iovad;
519 	struct page **pages;
520 	struct sg_table sgt;
521 	dma_addr_t iova;
522 	unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
523 
524 	*handle = IOMMU_MAPPING_ERROR;
525 
526 	min_size = alloc_sizes & -alloc_sizes;
527 	if (min_size < PAGE_SIZE) {
528 		min_size = PAGE_SIZE;
529 		alloc_sizes |= PAGE_SIZE;
530 	} else {
531 		size = ALIGN(size, min_size);
532 	}
533 	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
534 		alloc_sizes = min_size;
535 
536 	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
537 	pages = __iommu_dma_alloc_pages(count, alloc_sizes >> PAGE_SHIFT, gfp);
538 	if (!pages)
539 		return NULL;
540 
541 	size = iova_align(iovad, size);
542 	iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
543 	if (!iova)
544 		goto out_free_pages;
545 
546 	if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL))
547 		goto out_free_iova;
548 
549 	if (!(prot & IOMMU_CACHE)) {
550 		struct sg_mapping_iter miter;
551 		/*
552 		 * The CPU-centric flushing implied by SG_MITER_TO_SG isn't
553 		 * sufficient here, so skip it by using the "wrong" direction.
554 		 */
555 		sg_miter_start(&miter, sgt.sgl, sgt.orig_nents, SG_MITER_FROM_SG);
556 		while (sg_miter_next(&miter))
557 			flush_page(dev, miter.addr, page_to_phys(miter.page));
558 		sg_miter_stop(&miter);
559 	}
560 
561 	if (iommu_map_sg(domain, iova, sgt.sgl, sgt.orig_nents, prot)
562 			< size)
563 		goto out_free_sg;
564 
565 	*handle = iova;
566 	sg_free_table(&sgt);
567 	return pages;
568 
569 out_free_sg:
570 	sg_free_table(&sgt);
571 out_free_iova:
572 	iommu_dma_free_iova(cookie, iova, size);
573 out_free_pages:
574 	__iommu_dma_free_pages(pages, count);
575 	return NULL;
576 }
577 
578 /**
579  * iommu_dma_mmap - Map a buffer into provided user VMA
580  * @pages: Array representing buffer from iommu_dma_alloc()
581  * @size: Size of buffer in bytes
582  * @vma: VMA describing requested userspace mapping
583  *
584  * Maps the pages of the buffer in @pages into @vma. The caller is responsible
585  * for verifying the correct size and protection of @vma beforehand.
586  */
587 
588 int iommu_dma_mmap(struct page **pages, size_t size, struct vm_area_struct *vma)
589 {
590 	unsigned long uaddr = vma->vm_start;
591 	unsigned int i, count = PAGE_ALIGN(size) >> PAGE_SHIFT;
592 	int ret = -ENXIO;
593 
594 	for (i = vma->vm_pgoff; i < count && uaddr < vma->vm_end; i++) {
595 		ret = vm_insert_page(vma, uaddr, pages[i]);
596 		if (ret)
597 			break;
598 		uaddr += PAGE_SIZE;
599 	}
600 	return ret;
601 }
602 
603 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
604 		size_t size, int prot)
605 {
606 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
607 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
608 	size_t iova_off = 0;
609 	dma_addr_t iova;
610 
611 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE) {
612 		iova_off = iova_offset(&cookie->iovad, phys);
613 		size = iova_align(&cookie->iovad, size + iova_off);
614 	}
615 
616 	iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
617 	if (!iova)
618 		return IOMMU_MAPPING_ERROR;
619 
620 	if (iommu_map(domain, iova, phys - iova_off, size, prot)) {
621 		iommu_dma_free_iova(cookie, iova, size);
622 		return IOMMU_MAPPING_ERROR;
623 	}
624 	return iova + iova_off;
625 }
626 
627 dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
628 		unsigned long offset, size_t size, int prot)
629 {
630 	return __iommu_dma_map(dev, page_to_phys(page) + offset, size, prot);
631 }
632 
633 void iommu_dma_unmap_page(struct device *dev, dma_addr_t handle, size_t size,
634 		enum dma_data_direction dir, unsigned long attrs)
635 {
636 	__iommu_dma_unmap(iommu_get_domain_for_dev(dev), handle, size);
637 }
638 
639 /*
640  * Prepare a successfully-mapped scatterlist to give back to the caller.
641  *
642  * At this point the segments are already laid out by iommu_dma_map_sg() to
643  * avoid individually crossing any boundaries, so we merely need to check a
644  * segment's start address to avoid concatenating across one.
645  */
646 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
647 		dma_addr_t dma_addr)
648 {
649 	struct scatterlist *s, *cur = sg;
650 	unsigned long seg_mask = dma_get_seg_boundary(dev);
651 	unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
652 	int i, count = 0;
653 
654 	for_each_sg(sg, s, nents, i) {
655 		/* Restore this segment's original unaligned fields first */
656 		unsigned int s_iova_off = sg_dma_address(s);
657 		unsigned int s_length = sg_dma_len(s);
658 		unsigned int s_iova_len = s->length;
659 
660 		s->offset += s_iova_off;
661 		s->length = s_length;
662 		sg_dma_address(s) = IOMMU_MAPPING_ERROR;
663 		sg_dma_len(s) = 0;
664 
665 		/*
666 		 * Now fill in the real DMA data. If...
667 		 * - there is a valid output segment to append to
668 		 * - and this segment starts on an IOVA page boundary
669 		 * - but doesn't fall at a segment boundary
670 		 * - and wouldn't make the resulting output segment too long
671 		 */
672 		if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
673 		    (cur_len + s_length <= max_len)) {
674 			/* ...then concatenate it with the previous one */
675 			cur_len += s_length;
676 		} else {
677 			/* Otherwise start the next output segment */
678 			if (i > 0)
679 				cur = sg_next(cur);
680 			cur_len = s_length;
681 			count++;
682 
683 			sg_dma_address(cur) = dma_addr + s_iova_off;
684 		}
685 
686 		sg_dma_len(cur) = cur_len;
687 		dma_addr += s_iova_len;
688 
689 		if (s_length + s_iova_off < s_iova_len)
690 			cur_len = 0;
691 	}
692 	return count;
693 }
694 
695 /*
696  * If mapping failed, then just restore the original list,
697  * but making sure the DMA fields are invalidated.
698  */
699 static void __invalidate_sg(struct scatterlist *sg, int nents)
700 {
701 	struct scatterlist *s;
702 	int i;
703 
704 	for_each_sg(sg, s, nents, i) {
705 		if (sg_dma_address(s) != IOMMU_MAPPING_ERROR)
706 			s->offset += sg_dma_address(s);
707 		if (sg_dma_len(s))
708 			s->length = sg_dma_len(s);
709 		sg_dma_address(s) = IOMMU_MAPPING_ERROR;
710 		sg_dma_len(s) = 0;
711 	}
712 }
713 
714 /*
715  * The DMA API client is passing in a scatterlist which could describe
716  * any old buffer layout, but the IOMMU API requires everything to be
717  * aligned to IOMMU pages. Hence the need for this complicated bit of
718  * impedance-matching, to be able to hand off a suitably-aligned list,
719  * but still preserve the original offsets and sizes for the caller.
720  */
721 int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
722 		int nents, int prot)
723 {
724 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
725 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
726 	struct iova_domain *iovad = &cookie->iovad;
727 	struct scatterlist *s, *prev = NULL;
728 	dma_addr_t iova;
729 	size_t iova_len = 0;
730 	unsigned long mask = dma_get_seg_boundary(dev);
731 	int i;
732 
733 	/*
734 	 * Work out how much IOVA space we need, and align the segments to
735 	 * IOVA granules for the IOMMU driver to handle. With some clever
736 	 * trickery we can modify the list in-place, but reversibly, by
737 	 * stashing the unaligned parts in the as-yet-unused DMA fields.
738 	 */
739 	for_each_sg(sg, s, nents, i) {
740 		size_t s_iova_off = iova_offset(iovad, s->offset);
741 		size_t s_length = s->length;
742 		size_t pad_len = (mask - iova_len + 1) & mask;
743 
744 		sg_dma_address(s) = s_iova_off;
745 		sg_dma_len(s) = s_length;
746 		s->offset -= s_iova_off;
747 		s_length = iova_align(iovad, s_length + s_iova_off);
748 		s->length = s_length;
749 
750 		/*
751 		 * Due to the alignment of our single IOVA allocation, we can
752 		 * depend on these assumptions about the segment boundary mask:
753 		 * - If mask size >= IOVA size, then the IOVA range cannot
754 		 *   possibly fall across a boundary, so we don't care.
755 		 * - If mask size < IOVA size, then the IOVA range must start
756 		 *   exactly on a boundary, therefore we can lay things out
757 		 *   based purely on segment lengths without needing to know
758 		 *   the actual addresses beforehand.
759 		 * - The mask must be a power of 2, so pad_len == 0 if
760 		 *   iova_len == 0, thus we cannot dereference prev the first
761 		 *   time through here (i.e. before it has a meaningful value).
762 		 */
763 		if (pad_len && pad_len < s_length - 1) {
764 			prev->length += pad_len;
765 			iova_len += pad_len;
766 		}
767 
768 		iova_len += s_length;
769 		prev = s;
770 	}
771 
772 	iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
773 	if (!iova)
774 		goto out_restore_sg;
775 
776 	/*
777 	 * We'll leave any physical concatenation to the IOMMU driver's
778 	 * implementation - it knows better than we do.
779 	 */
780 	if (iommu_map_sg(domain, iova, sg, nents, prot) < iova_len)
781 		goto out_free_iova;
782 
783 	return __finalise_sg(dev, sg, nents, iova);
784 
785 out_free_iova:
786 	iommu_dma_free_iova(cookie, iova, iova_len);
787 out_restore_sg:
788 	__invalidate_sg(sg, nents);
789 	return 0;
790 }
791 
792 void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
793 		enum dma_data_direction dir, unsigned long attrs)
794 {
795 	dma_addr_t start, end;
796 	struct scatterlist *tmp;
797 	int i;
798 	/*
799 	 * The scatterlist segments are mapped into a single
800 	 * contiguous IOVA allocation, so this is incredibly easy.
801 	 */
802 	start = sg_dma_address(sg);
803 	for_each_sg(sg_next(sg), tmp, nents - 1, i) {
804 		if (sg_dma_len(tmp) == 0)
805 			break;
806 		sg = tmp;
807 	}
808 	end = sg_dma_address(sg) + sg_dma_len(sg);
809 	__iommu_dma_unmap(iommu_get_domain_for_dev(dev), start, end - start);
810 }
811 
812 dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
813 		size_t size, enum dma_data_direction dir, unsigned long attrs)
814 {
815 	return __iommu_dma_map(dev, phys, size,
816 			dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO);
817 }
818 
819 void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
820 		size_t size, enum dma_data_direction dir, unsigned long attrs)
821 {
822 	__iommu_dma_unmap(iommu_get_domain_for_dev(dev), handle, size);
823 }
824 
825 int iommu_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
826 {
827 	return dma_addr == IOMMU_MAPPING_ERROR;
828 }
829 
830 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
831 		phys_addr_t msi_addr, struct iommu_domain *domain)
832 {
833 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
834 	struct iommu_dma_msi_page *msi_page;
835 	dma_addr_t iova;
836 	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
837 	size_t size = cookie_msi_granule(cookie);
838 
839 	msi_addr &= ~(phys_addr_t)(size - 1);
840 	list_for_each_entry(msi_page, &cookie->msi_page_list, list)
841 		if (msi_page->phys == msi_addr)
842 			return msi_page;
843 
844 	msi_page = kzalloc(sizeof(*msi_page), GFP_ATOMIC);
845 	if (!msi_page)
846 		return NULL;
847 
848 	iova = __iommu_dma_map(dev, msi_addr, size, prot);
849 	if (iommu_dma_mapping_error(dev, iova))
850 		goto out_free_page;
851 
852 	INIT_LIST_HEAD(&msi_page->list);
853 	msi_page->phys = msi_addr;
854 	msi_page->iova = iova;
855 	list_add(&msi_page->list, &cookie->msi_page_list);
856 	return msi_page;
857 
858 out_free_page:
859 	kfree(msi_page);
860 	return NULL;
861 }
862 
863 void iommu_dma_map_msi_msg(int irq, struct msi_msg *msg)
864 {
865 	struct device *dev = msi_desc_to_dev(irq_get_msi_desc(irq));
866 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
867 	struct iommu_dma_cookie *cookie;
868 	struct iommu_dma_msi_page *msi_page;
869 	phys_addr_t msi_addr = (u64)msg->address_hi << 32 | msg->address_lo;
870 	unsigned long flags;
871 
872 	if (!domain || !domain->iova_cookie)
873 		return;
874 
875 	cookie = domain->iova_cookie;
876 
877 	/*
878 	 * We disable IRQs to rule out a possible inversion against
879 	 * irq_desc_lock if, say, someone tries to retarget the affinity
880 	 * of an MSI from within an IPI handler.
881 	 */
882 	spin_lock_irqsave(&cookie->msi_lock, flags);
883 	msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
884 	spin_unlock_irqrestore(&cookie->msi_lock, flags);
885 
886 	if (WARN_ON(!msi_page)) {
887 		/*
888 		 * We're called from a void callback, so the best we can do is
889 		 * 'fail' by filling the message with obviously bogus values.
890 		 * Since we got this far due to an IOMMU being present, it's
891 		 * not like the existing address would have worked anyway...
892 		 */
893 		msg->address_hi = ~0U;
894 		msg->address_lo = ~0U;
895 		msg->data = ~0U;
896 	} else {
897 		msg->address_hi = upper_32_bits(msi_page->iova);
898 		msg->address_lo &= cookie_msi_granule(cookie) - 1;
899 		msg->address_lo += lower_32_bits(msi_page->iova);
900 	}
901 }
902