xref: /openbmc/linux/drivers/iommu/dma-iommu.c (revision d9fd5a71)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * A fairly generic DMA-API to IOMMU-API glue layer.
4  *
5  * Copyright (C) 2014-2015 ARM Ltd.
6  *
7  * based in part on arch/arm/mm/dma-mapping.c:
8  * Copyright (C) 2000-2004 Russell King
9  */
10 
11 #include <linux/acpi_iort.h>
12 #include <linux/device.h>
13 #include <linux/dma-map-ops.h>
14 #include <linux/dma-iommu.h>
15 #include <linux/gfp.h>
16 #include <linux/huge_mm.h>
17 #include <linux/iommu.h>
18 #include <linux/iova.h>
19 #include <linux/irq.h>
20 #include <linux/mm.h>
21 #include <linux/mutex.h>
22 #include <linux/pci.h>
23 #include <linux/swiotlb.h>
24 #include <linux/scatterlist.h>
25 #include <linux/vmalloc.h>
26 #include <linux/crash_dump.h>
27 #include <linux/dma-direct.h>
28 
29 struct iommu_dma_msi_page {
30 	struct list_head	list;
31 	dma_addr_t		iova;
32 	phys_addr_t		phys;
33 };
34 
35 enum iommu_dma_cookie_type {
36 	IOMMU_DMA_IOVA_COOKIE,
37 	IOMMU_DMA_MSI_COOKIE,
38 };
39 
40 struct iommu_dma_cookie {
41 	enum iommu_dma_cookie_type	type;
42 	union {
43 		/* Full allocator for IOMMU_DMA_IOVA_COOKIE */
44 		struct iova_domain	iovad;
45 		/* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
46 		dma_addr_t		msi_iova;
47 	};
48 	struct list_head		msi_page_list;
49 
50 	/* Domain for flush queue callback; NULL if flush queue not in use */
51 	struct iommu_domain		*fq_domain;
52 };
53 
54 static DEFINE_STATIC_KEY_FALSE(iommu_deferred_attach_enabled);
55 
56 void iommu_dma_free_cpu_cached_iovas(unsigned int cpu,
57 		struct iommu_domain *domain)
58 {
59 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
60 	struct iova_domain *iovad = &cookie->iovad;
61 
62 	free_cpu_cached_iovas(cpu, iovad);
63 }
64 
65 static void iommu_dma_entry_dtor(unsigned long data)
66 {
67 	struct page *freelist = (struct page *)data;
68 
69 	while (freelist) {
70 		unsigned long p = (unsigned long)page_address(freelist);
71 
72 		freelist = freelist->freelist;
73 		free_page(p);
74 	}
75 }
76 
77 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
78 {
79 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
80 		return cookie->iovad.granule;
81 	return PAGE_SIZE;
82 }
83 
84 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
85 {
86 	struct iommu_dma_cookie *cookie;
87 
88 	cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
89 	if (cookie) {
90 		INIT_LIST_HEAD(&cookie->msi_page_list);
91 		cookie->type = type;
92 	}
93 	return cookie;
94 }
95 
96 /**
97  * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
98  * @domain: IOMMU domain to prepare for DMA-API usage
99  *
100  * IOMMU drivers should normally call this from their domain_alloc
101  * callback when domain->type == IOMMU_DOMAIN_DMA.
102  */
103 int iommu_get_dma_cookie(struct iommu_domain *domain)
104 {
105 	if (domain->iova_cookie)
106 		return -EEXIST;
107 
108 	domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
109 	if (!domain->iova_cookie)
110 		return -ENOMEM;
111 
112 	return 0;
113 }
114 EXPORT_SYMBOL(iommu_get_dma_cookie);
115 
116 /**
117  * iommu_get_msi_cookie - Acquire just MSI remapping resources
118  * @domain: IOMMU domain to prepare
119  * @base: Start address of IOVA region for MSI mappings
120  *
121  * Users who manage their own IOVA allocation and do not want DMA API support,
122  * but would still like to take advantage of automatic MSI remapping, can use
123  * this to initialise their own domain appropriately. Users should reserve a
124  * contiguous IOVA region, starting at @base, large enough to accommodate the
125  * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
126  * used by the devices attached to @domain.
127  */
128 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
129 {
130 	struct iommu_dma_cookie *cookie;
131 
132 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
133 		return -EINVAL;
134 
135 	if (domain->iova_cookie)
136 		return -EEXIST;
137 
138 	cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
139 	if (!cookie)
140 		return -ENOMEM;
141 
142 	cookie->msi_iova = base;
143 	domain->iova_cookie = cookie;
144 	return 0;
145 }
146 EXPORT_SYMBOL(iommu_get_msi_cookie);
147 
148 /**
149  * iommu_put_dma_cookie - Release a domain's DMA mapping resources
150  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
151  *          iommu_get_msi_cookie()
152  *
153  * IOMMU drivers should normally call this from their domain_free callback.
154  */
155 void iommu_put_dma_cookie(struct iommu_domain *domain)
156 {
157 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
158 	struct iommu_dma_msi_page *msi, *tmp;
159 
160 	if (!cookie)
161 		return;
162 
163 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule)
164 		put_iova_domain(&cookie->iovad);
165 
166 	list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
167 		list_del(&msi->list);
168 		kfree(msi);
169 	}
170 	kfree(cookie);
171 	domain->iova_cookie = NULL;
172 }
173 EXPORT_SYMBOL(iommu_put_dma_cookie);
174 
175 /**
176  * iommu_dma_get_resv_regions - Reserved region driver helper
177  * @dev: Device from iommu_get_resv_regions()
178  * @list: Reserved region list from iommu_get_resv_regions()
179  *
180  * IOMMU drivers can use this to implement their .get_resv_regions callback
181  * for general non-IOMMU-specific reservations. Currently, this covers GICv3
182  * ITS region reservation on ACPI based ARM platforms that may require HW MSI
183  * reservation.
184  */
185 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
186 {
187 
188 	if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode))
189 		iort_iommu_msi_get_resv_regions(dev, list);
190 
191 }
192 EXPORT_SYMBOL(iommu_dma_get_resv_regions);
193 
194 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
195 		phys_addr_t start, phys_addr_t end)
196 {
197 	struct iova_domain *iovad = &cookie->iovad;
198 	struct iommu_dma_msi_page *msi_page;
199 	int i, num_pages;
200 
201 	start -= iova_offset(iovad, start);
202 	num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
203 
204 	for (i = 0; i < num_pages; i++) {
205 		msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL);
206 		if (!msi_page)
207 			return -ENOMEM;
208 
209 		msi_page->phys = start;
210 		msi_page->iova = start;
211 		INIT_LIST_HEAD(&msi_page->list);
212 		list_add(&msi_page->list, &cookie->msi_page_list);
213 		start += iovad->granule;
214 	}
215 
216 	return 0;
217 }
218 
219 static int iova_reserve_pci_windows(struct pci_dev *dev,
220 		struct iova_domain *iovad)
221 {
222 	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
223 	struct resource_entry *window;
224 	unsigned long lo, hi;
225 	phys_addr_t start = 0, end;
226 
227 	resource_list_for_each_entry(window, &bridge->windows) {
228 		if (resource_type(window->res) != IORESOURCE_MEM)
229 			continue;
230 
231 		lo = iova_pfn(iovad, window->res->start - window->offset);
232 		hi = iova_pfn(iovad, window->res->end - window->offset);
233 		reserve_iova(iovad, lo, hi);
234 	}
235 
236 	/* Get reserved DMA windows from host bridge */
237 	resource_list_for_each_entry(window, &bridge->dma_ranges) {
238 		end = window->res->start - window->offset;
239 resv_iova:
240 		if (end > start) {
241 			lo = iova_pfn(iovad, start);
242 			hi = iova_pfn(iovad, end);
243 			reserve_iova(iovad, lo, hi);
244 		} else {
245 			/* dma_ranges list should be sorted */
246 			dev_err(&dev->dev, "Failed to reserve IOVA\n");
247 			return -EINVAL;
248 		}
249 
250 		start = window->res->end - window->offset + 1;
251 		/* If window is last entry */
252 		if (window->node.next == &bridge->dma_ranges &&
253 		    end != ~(phys_addr_t)0) {
254 			end = ~(phys_addr_t)0;
255 			goto resv_iova;
256 		}
257 	}
258 
259 	return 0;
260 }
261 
262 static int iova_reserve_iommu_regions(struct device *dev,
263 		struct iommu_domain *domain)
264 {
265 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
266 	struct iova_domain *iovad = &cookie->iovad;
267 	struct iommu_resv_region *region;
268 	LIST_HEAD(resv_regions);
269 	int ret = 0;
270 
271 	if (dev_is_pci(dev)) {
272 		ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad);
273 		if (ret)
274 			return ret;
275 	}
276 
277 	iommu_get_resv_regions(dev, &resv_regions);
278 	list_for_each_entry(region, &resv_regions, list) {
279 		unsigned long lo, hi;
280 
281 		/* We ARE the software that manages these! */
282 		if (region->type == IOMMU_RESV_SW_MSI)
283 			continue;
284 
285 		lo = iova_pfn(iovad, region->start);
286 		hi = iova_pfn(iovad, region->start + region->length - 1);
287 		reserve_iova(iovad, lo, hi);
288 
289 		if (region->type == IOMMU_RESV_MSI)
290 			ret = cookie_init_hw_msi_region(cookie, region->start,
291 					region->start + region->length);
292 		if (ret)
293 			break;
294 	}
295 	iommu_put_resv_regions(dev, &resv_regions);
296 
297 	return ret;
298 }
299 
300 static void iommu_dma_flush_iotlb_all(struct iova_domain *iovad)
301 {
302 	struct iommu_dma_cookie *cookie;
303 	struct iommu_domain *domain;
304 
305 	cookie = container_of(iovad, struct iommu_dma_cookie, iovad);
306 	domain = cookie->fq_domain;
307 	/*
308 	 * The IOMMU driver supporting DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE
309 	 * implies that ops->flush_iotlb_all must be non-NULL.
310 	 */
311 	domain->ops->flush_iotlb_all(domain);
312 }
313 
314 /**
315  * iommu_dma_init_domain - Initialise a DMA mapping domain
316  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
317  * @base: IOVA at which the mappable address space starts
318  * @size: Size of IOVA space
319  * @dev: Device the domain is being initialised for
320  *
321  * @base and @size should be exact multiples of IOMMU page granularity to
322  * avoid rounding surprises. If necessary, we reserve the page at address 0
323  * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
324  * any change which could make prior IOVAs invalid will fail.
325  */
326 static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
327 		u64 size, struct device *dev)
328 {
329 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
330 	unsigned long order, base_pfn;
331 	struct iova_domain *iovad;
332 	int attr;
333 
334 	if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
335 		return -EINVAL;
336 
337 	iovad = &cookie->iovad;
338 
339 	/* Use the smallest supported page size for IOVA granularity */
340 	order = __ffs(domain->pgsize_bitmap);
341 	base_pfn = max_t(unsigned long, 1, base >> order);
342 
343 	/* Check the domain allows at least some access to the device... */
344 	if (domain->geometry.force_aperture) {
345 		if (base > domain->geometry.aperture_end ||
346 		    base + size <= domain->geometry.aperture_start) {
347 			pr_warn("specified DMA range outside IOMMU capability\n");
348 			return -EFAULT;
349 		}
350 		/* ...then finally give it a kicking to make sure it fits */
351 		base_pfn = max_t(unsigned long, base_pfn,
352 				domain->geometry.aperture_start >> order);
353 	}
354 
355 	/* start_pfn is always nonzero for an already-initialised domain */
356 	if (iovad->start_pfn) {
357 		if (1UL << order != iovad->granule ||
358 		    base_pfn != iovad->start_pfn) {
359 			pr_warn("Incompatible range for DMA domain\n");
360 			return -EFAULT;
361 		}
362 
363 		return 0;
364 	}
365 
366 	init_iova_domain(iovad, 1UL << order, base_pfn);
367 
368 	if (!cookie->fq_domain && !iommu_domain_get_attr(domain,
369 			DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE, &attr) && attr) {
370 		if (init_iova_flush_queue(iovad, iommu_dma_flush_iotlb_all,
371 					  iommu_dma_entry_dtor))
372 			pr_warn("iova flush queue initialization failed\n");
373 		else
374 			cookie->fq_domain = domain;
375 	}
376 
377 	if (!dev)
378 		return 0;
379 
380 	return iova_reserve_iommu_regions(dev, domain);
381 }
382 
383 /**
384  * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
385  *                    page flags.
386  * @dir: Direction of DMA transfer
387  * @coherent: Is the DMA master cache-coherent?
388  * @attrs: DMA attributes for the mapping
389  *
390  * Return: corresponding IOMMU API page protection flags
391  */
392 static int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
393 		     unsigned long attrs)
394 {
395 	int prot = coherent ? IOMMU_CACHE : 0;
396 
397 	if (attrs & DMA_ATTR_PRIVILEGED)
398 		prot |= IOMMU_PRIV;
399 
400 	switch (dir) {
401 	case DMA_BIDIRECTIONAL:
402 		return prot | IOMMU_READ | IOMMU_WRITE;
403 	case DMA_TO_DEVICE:
404 		return prot | IOMMU_READ;
405 	case DMA_FROM_DEVICE:
406 		return prot | IOMMU_WRITE;
407 	default:
408 		return 0;
409 	}
410 }
411 
412 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
413 		size_t size, u64 dma_limit, struct device *dev)
414 {
415 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
416 	struct iova_domain *iovad = &cookie->iovad;
417 	unsigned long shift, iova_len, iova = 0;
418 
419 	if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
420 		cookie->msi_iova += size;
421 		return cookie->msi_iova - size;
422 	}
423 
424 	shift = iova_shift(iovad);
425 	iova_len = size >> shift;
426 	/*
427 	 * Freeing non-power-of-two-sized allocations back into the IOVA caches
428 	 * will come back to bite us badly, so we have to waste a bit of space
429 	 * rounding up anything cacheable to make sure that can't happen. The
430 	 * order of the unadjusted size will still match upon freeing.
431 	 */
432 	if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1)))
433 		iova_len = roundup_pow_of_two(iova_len);
434 
435 	dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit);
436 
437 	if (domain->geometry.force_aperture)
438 		dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end);
439 
440 	/* Try to get PCI devices a SAC address */
441 	if (dma_limit > DMA_BIT_MASK(32) && dev_is_pci(dev))
442 		iova = alloc_iova_fast(iovad, iova_len,
443 				       DMA_BIT_MASK(32) >> shift, false);
444 
445 	if (!iova)
446 		iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift,
447 				       true);
448 
449 	return (dma_addr_t)iova << shift;
450 }
451 
452 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
453 		dma_addr_t iova, size_t size, struct page *freelist)
454 {
455 	struct iova_domain *iovad = &cookie->iovad;
456 
457 	/* The MSI case is only ever cleaning up its most recent allocation */
458 	if (cookie->type == IOMMU_DMA_MSI_COOKIE)
459 		cookie->msi_iova -= size;
460 	else if (cookie->fq_domain)	/* non-strict mode */
461 		queue_iova(iovad, iova_pfn(iovad, iova),
462 				size >> iova_shift(iovad),
463 				(unsigned long)freelist);
464 	else
465 		free_iova_fast(iovad, iova_pfn(iovad, iova),
466 				size >> iova_shift(iovad));
467 }
468 
469 static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr,
470 		size_t size)
471 {
472 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
473 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
474 	struct iova_domain *iovad = &cookie->iovad;
475 	size_t iova_off = iova_offset(iovad, dma_addr);
476 	struct iommu_iotlb_gather iotlb_gather;
477 	size_t unmapped;
478 
479 	dma_addr -= iova_off;
480 	size = iova_align(iovad, size + iova_off);
481 	iommu_iotlb_gather_init(&iotlb_gather);
482 
483 	unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather);
484 	WARN_ON(unmapped != size);
485 
486 	if (!cookie->fq_domain)
487 		iommu_iotlb_sync(domain, &iotlb_gather);
488 	iommu_dma_free_iova(cookie, dma_addr, size, iotlb_gather.freelist);
489 }
490 
491 static void __iommu_dma_unmap_swiotlb(struct device *dev, dma_addr_t dma_addr,
492 		size_t size, enum dma_data_direction dir,
493 		unsigned long attrs)
494 {
495 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
496 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
497 	struct iova_domain *iovad = &cookie->iovad;
498 	phys_addr_t phys;
499 
500 	phys = iommu_iova_to_phys(domain, dma_addr);
501 	if (WARN_ON(!phys))
502 		return;
503 
504 	__iommu_dma_unmap(dev, dma_addr, size);
505 
506 	if (unlikely(is_swiotlb_buffer(phys)))
507 		swiotlb_tbl_unmap_single(dev, phys, size,
508 				iova_align(iovad, size), dir, attrs);
509 }
510 
511 static bool dev_is_untrusted(struct device *dev)
512 {
513 	return dev_is_pci(dev) && to_pci_dev(dev)->untrusted;
514 }
515 
516 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
517 		size_t size, int prot, u64 dma_mask)
518 {
519 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
520 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
521 	struct iova_domain *iovad = &cookie->iovad;
522 	size_t iova_off = iova_offset(iovad, phys);
523 	dma_addr_t iova;
524 
525 	if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
526 	    iommu_deferred_attach(dev, domain))
527 		return DMA_MAPPING_ERROR;
528 
529 	size = iova_align(iovad, size + iova_off);
530 
531 	iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev);
532 	if (!iova)
533 		return DMA_MAPPING_ERROR;
534 
535 	if (iommu_map_atomic(domain, iova, phys - iova_off, size, prot)) {
536 		iommu_dma_free_iova(cookie, iova, size, NULL);
537 		return DMA_MAPPING_ERROR;
538 	}
539 	return iova + iova_off;
540 }
541 
542 static dma_addr_t __iommu_dma_map_swiotlb(struct device *dev, phys_addr_t phys,
543 		size_t org_size, dma_addr_t dma_mask, bool coherent,
544 		enum dma_data_direction dir, unsigned long attrs)
545 {
546 	int prot = dma_info_to_prot(dir, coherent, attrs);
547 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
548 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
549 	struct iova_domain *iovad = &cookie->iovad;
550 	size_t aligned_size = org_size;
551 	void *padding_start;
552 	size_t padding_size;
553 	dma_addr_t iova;
554 
555 	/*
556 	 * If both the physical buffer start address and size are
557 	 * page aligned, we don't need to use a bounce page.
558 	 */
559 	if (IS_ENABLED(CONFIG_SWIOTLB) && dev_is_untrusted(dev) &&
560 	    iova_offset(iovad, phys | org_size)) {
561 		aligned_size = iova_align(iovad, org_size);
562 		phys = swiotlb_tbl_map_single(dev, phys, org_size,
563 					      aligned_size, dir, attrs);
564 
565 		if (phys == DMA_MAPPING_ERROR)
566 			return DMA_MAPPING_ERROR;
567 
568 		/* Cleanup the padding area. */
569 		padding_start = phys_to_virt(phys);
570 		padding_size = aligned_size;
571 
572 		if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
573 		    (dir == DMA_TO_DEVICE ||
574 		     dir == DMA_BIDIRECTIONAL)) {
575 			padding_start += org_size;
576 			padding_size -= org_size;
577 		}
578 
579 		memset(padding_start, 0, padding_size);
580 	}
581 
582 	iova = __iommu_dma_map(dev, phys, aligned_size, prot, dma_mask);
583 	if ((iova == DMA_MAPPING_ERROR) && is_swiotlb_buffer(phys))
584 		swiotlb_tbl_unmap_single(dev, phys, org_size,
585 				aligned_size, dir, attrs);
586 
587 	return iova;
588 }
589 
590 static void __iommu_dma_free_pages(struct page **pages, int count)
591 {
592 	while (count--)
593 		__free_page(pages[count]);
594 	kvfree(pages);
595 }
596 
597 static struct page **__iommu_dma_alloc_pages(struct device *dev,
598 		unsigned int count, unsigned long order_mask, gfp_t gfp)
599 {
600 	struct page **pages;
601 	unsigned int i = 0, nid = dev_to_node(dev);
602 
603 	order_mask &= (2U << MAX_ORDER) - 1;
604 	if (!order_mask)
605 		return NULL;
606 
607 	pages = kvzalloc(count * sizeof(*pages), GFP_KERNEL);
608 	if (!pages)
609 		return NULL;
610 
611 	/* IOMMU can map any pages, so himem can also be used here */
612 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
613 
614 	/* It makes no sense to muck about with huge pages */
615 	gfp &= ~__GFP_COMP;
616 
617 	while (count) {
618 		struct page *page = NULL;
619 		unsigned int order_size;
620 
621 		/*
622 		 * Higher-order allocations are a convenience rather
623 		 * than a necessity, hence using __GFP_NORETRY until
624 		 * falling back to minimum-order allocations.
625 		 */
626 		for (order_mask &= (2U << __fls(count)) - 1;
627 		     order_mask; order_mask &= ~order_size) {
628 			unsigned int order = __fls(order_mask);
629 			gfp_t alloc_flags = gfp;
630 
631 			order_size = 1U << order;
632 			if (order_mask > order_size)
633 				alloc_flags |= __GFP_NORETRY;
634 			page = alloc_pages_node(nid, alloc_flags, order);
635 			if (!page)
636 				continue;
637 			if (order)
638 				split_page(page, order);
639 			break;
640 		}
641 		if (!page) {
642 			__iommu_dma_free_pages(pages, i);
643 			return NULL;
644 		}
645 		count -= order_size;
646 		while (order_size--)
647 			pages[i++] = page++;
648 	}
649 	return pages;
650 }
651 
652 /**
653  * iommu_dma_alloc_remap - Allocate and map a buffer contiguous in IOVA space
654  * @dev: Device to allocate memory for. Must be a real device
655  *	 attached to an iommu_dma_domain
656  * @size: Size of buffer in bytes
657  * @dma_handle: Out argument for allocated DMA handle
658  * @gfp: Allocation flags
659  * @prot: pgprot_t to use for the remapped mapping
660  * @attrs: DMA attributes for this allocation
661  *
662  * If @size is less than PAGE_SIZE, then a full CPU page will be allocated,
663  * but an IOMMU which supports smaller pages might not map the whole thing.
664  *
665  * Return: Mapped virtual address, or NULL on failure.
666  */
667 static void *iommu_dma_alloc_remap(struct device *dev, size_t size,
668 		dma_addr_t *dma_handle, gfp_t gfp, pgprot_t prot,
669 		unsigned long attrs)
670 {
671 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
672 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
673 	struct iova_domain *iovad = &cookie->iovad;
674 	bool coherent = dev_is_dma_coherent(dev);
675 	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
676 	unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
677 	struct page **pages;
678 	struct sg_table sgt;
679 	dma_addr_t iova;
680 	void *vaddr;
681 
682 	*dma_handle = DMA_MAPPING_ERROR;
683 
684 	if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
685 	    iommu_deferred_attach(dev, domain))
686 		return NULL;
687 
688 	min_size = alloc_sizes & -alloc_sizes;
689 	if (min_size < PAGE_SIZE) {
690 		min_size = PAGE_SIZE;
691 		alloc_sizes |= PAGE_SIZE;
692 	} else {
693 		size = ALIGN(size, min_size);
694 	}
695 	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
696 		alloc_sizes = min_size;
697 
698 	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
699 	pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT,
700 					gfp);
701 	if (!pages)
702 		return NULL;
703 
704 	size = iova_align(iovad, size);
705 	iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
706 	if (!iova)
707 		goto out_free_pages;
708 
709 	if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL))
710 		goto out_free_iova;
711 
712 	if (!(ioprot & IOMMU_CACHE)) {
713 		struct scatterlist *sg;
714 		int i;
715 
716 		for_each_sg(sgt.sgl, sg, sgt.orig_nents, i)
717 			arch_dma_prep_coherent(sg_page(sg), sg->length);
718 	}
719 
720 	if (iommu_map_sg_atomic(domain, iova, sgt.sgl, sgt.orig_nents, ioprot)
721 			< size)
722 		goto out_free_sg;
723 
724 	vaddr = dma_common_pages_remap(pages, size, prot,
725 			__builtin_return_address(0));
726 	if (!vaddr)
727 		goto out_unmap;
728 
729 	*dma_handle = iova;
730 	sg_free_table(&sgt);
731 	return vaddr;
732 
733 out_unmap:
734 	__iommu_dma_unmap(dev, iova, size);
735 out_free_sg:
736 	sg_free_table(&sgt);
737 out_free_iova:
738 	iommu_dma_free_iova(cookie, iova, size, NULL);
739 out_free_pages:
740 	__iommu_dma_free_pages(pages, count);
741 	return NULL;
742 }
743 
744 static void iommu_dma_sync_single_for_cpu(struct device *dev,
745 		dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
746 {
747 	phys_addr_t phys;
748 
749 	if (dev_is_dma_coherent(dev) && !dev_is_untrusted(dev))
750 		return;
751 
752 	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
753 	if (!dev_is_dma_coherent(dev))
754 		arch_sync_dma_for_cpu(phys, size, dir);
755 
756 	if (is_swiotlb_buffer(phys))
757 		swiotlb_tbl_sync_single(dev, phys, size, dir, SYNC_FOR_CPU);
758 }
759 
760 static void iommu_dma_sync_single_for_device(struct device *dev,
761 		dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
762 {
763 	phys_addr_t phys;
764 
765 	if (dev_is_dma_coherent(dev) && !dev_is_untrusted(dev))
766 		return;
767 
768 	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
769 	if (is_swiotlb_buffer(phys))
770 		swiotlb_tbl_sync_single(dev, phys, size, dir, SYNC_FOR_DEVICE);
771 
772 	if (!dev_is_dma_coherent(dev))
773 		arch_sync_dma_for_device(phys, size, dir);
774 }
775 
776 static void iommu_dma_sync_sg_for_cpu(struct device *dev,
777 		struct scatterlist *sgl, int nelems,
778 		enum dma_data_direction dir)
779 {
780 	struct scatterlist *sg;
781 	int i;
782 
783 	if (dev_is_dma_coherent(dev) && !dev_is_untrusted(dev))
784 		return;
785 
786 	for_each_sg(sgl, sg, nelems, i) {
787 		if (!dev_is_dma_coherent(dev))
788 			arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir);
789 
790 		if (is_swiotlb_buffer(sg_phys(sg)))
791 			swiotlb_tbl_sync_single(dev, sg_phys(sg), sg->length,
792 						dir, SYNC_FOR_CPU);
793 	}
794 }
795 
796 static void iommu_dma_sync_sg_for_device(struct device *dev,
797 		struct scatterlist *sgl, int nelems,
798 		enum dma_data_direction dir)
799 {
800 	struct scatterlist *sg;
801 	int i;
802 
803 	if (dev_is_dma_coherent(dev) && !dev_is_untrusted(dev))
804 		return;
805 
806 	for_each_sg(sgl, sg, nelems, i) {
807 		if (is_swiotlb_buffer(sg_phys(sg)))
808 			swiotlb_tbl_sync_single(dev, sg_phys(sg), sg->length,
809 						dir, SYNC_FOR_DEVICE);
810 
811 		if (!dev_is_dma_coherent(dev))
812 			arch_sync_dma_for_device(sg_phys(sg), sg->length, dir);
813 	}
814 }
815 
816 static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
817 		unsigned long offset, size_t size, enum dma_data_direction dir,
818 		unsigned long attrs)
819 {
820 	phys_addr_t phys = page_to_phys(page) + offset;
821 	bool coherent = dev_is_dma_coherent(dev);
822 	dma_addr_t dma_handle;
823 
824 	dma_handle = __iommu_dma_map_swiotlb(dev, phys, size, dma_get_mask(dev),
825 			coherent, dir, attrs);
826 	if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
827 	    dma_handle != DMA_MAPPING_ERROR)
828 		arch_sync_dma_for_device(phys, size, dir);
829 	return dma_handle;
830 }
831 
832 static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle,
833 		size_t size, enum dma_data_direction dir, unsigned long attrs)
834 {
835 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
836 		iommu_dma_sync_single_for_cpu(dev, dma_handle, size, dir);
837 	__iommu_dma_unmap_swiotlb(dev, dma_handle, size, dir, attrs);
838 }
839 
840 /*
841  * Prepare a successfully-mapped scatterlist to give back to the caller.
842  *
843  * At this point the segments are already laid out by iommu_dma_map_sg() to
844  * avoid individually crossing any boundaries, so we merely need to check a
845  * segment's start address to avoid concatenating across one.
846  */
847 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
848 		dma_addr_t dma_addr)
849 {
850 	struct scatterlist *s, *cur = sg;
851 	unsigned long seg_mask = dma_get_seg_boundary(dev);
852 	unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
853 	int i, count = 0;
854 
855 	for_each_sg(sg, s, nents, i) {
856 		/* Restore this segment's original unaligned fields first */
857 		unsigned int s_iova_off = sg_dma_address(s);
858 		unsigned int s_length = sg_dma_len(s);
859 		unsigned int s_iova_len = s->length;
860 
861 		s->offset += s_iova_off;
862 		s->length = s_length;
863 		sg_dma_address(s) = DMA_MAPPING_ERROR;
864 		sg_dma_len(s) = 0;
865 
866 		/*
867 		 * Now fill in the real DMA data. If...
868 		 * - there is a valid output segment to append to
869 		 * - and this segment starts on an IOVA page boundary
870 		 * - but doesn't fall at a segment boundary
871 		 * - and wouldn't make the resulting output segment too long
872 		 */
873 		if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
874 		    (max_len - cur_len >= s_length)) {
875 			/* ...then concatenate it with the previous one */
876 			cur_len += s_length;
877 		} else {
878 			/* Otherwise start the next output segment */
879 			if (i > 0)
880 				cur = sg_next(cur);
881 			cur_len = s_length;
882 			count++;
883 
884 			sg_dma_address(cur) = dma_addr + s_iova_off;
885 		}
886 
887 		sg_dma_len(cur) = cur_len;
888 		dma_addr += s_iova_len;
889 
890 		if (s_length + s_iova_off < s_iova_len)
891 			cur_len = 0;
892 	}
893 	return count;
894 }
895 
896 /*
897  * If mapping failed, then just restore the original list,
898  * but making sure the DMA fields are invalidated.
899  */
900 static void __invalidate_sg(struct scatterlist *sg, int nents)
901 {
902 	struct scatterlist *s;
903 	int i;
904 
905 	for_each_sg(sg, s, nents, i) {
906 		if (sg_dma_address(s) != DMA_MAPPING_ERROR)
907 			s->offset += sg_dma_address(s);
908 		if (sg_dma_len(s))
909 			s->length = sg_dma_len(s);
910 		sg_dma_address(s) = DMA_MAPPING_ERROR;
911 		sg_dma_len(s) = 0;
912 	}
913 }
914 
915 static void iommu_dma_unmap_sg_swiotlb(struct device *dev, struct scatterlist *sg,
916 		int nents, enum dma_data_direction dir, unsigned long attrs)
917 {
918 	struct scatterlist *s;
919 	int i;
920 
921 	for_each_sg(sg, s, nents, i)
922 		__iommu_dma_unmap_swiotlb(dev, sg_dma_address(s),
923 				sg_dma_len(s), dir, attrs);
924 }
925 
926 static int iommu_dma_map_sg_swiotlb(struct device *dev, struct scatterlist *sg,
927 		int nents, enum dma_data_direction dir, unsigned long attrs)
928 {
929 	struct scatterlist *s;
930 	int i;
931 
932 	for_each_sg(sg, s, nents, i) {
933 		sg_dma_address(s) = __iommu_dma_map_swiotlb(dev, sg_phys(s),
934 				s->length, dma_get_mask(dev),
935 				dev_is_dma_coherent(dev), dir, attrs);
936 		if (sg_dma_address(s) == DMA_MAPPING_ERROR)
937 			goto out_unmap;
938 		sg_dma_len(s) = s->length;
939 	}
940 
941 	return nents;
942 
943 out_unmap:
944 	iommu_dma_unmap_sg_swiotlb(dev, sg, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
945 	return 0;
946 }
947 
948 /*
949  * The DMA API client is passing in a scatterlist which could describe
950  * any old buffer layout, but the IOMMU API requires everything to be
951  * aligned to IOMMU pages. Hence the need for this complicated bit of
952  * impedance-matching, to be able to hand off a suitably-aligned list,
953  * but still preserve the original offsets and sizes for the caller.
954  */
955 static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
956 		int nents, enum dma_data_direction dir, unsigned long attrs)
957 {
958 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
959 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
960 	struct iova_domain *iovad = &cookie->iovad;
961 	struct scatterlist *s, *prev = NULL;
962 	int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs);
963 	dma_addr_t iova;
964 	size_t iova_len = 0;
965 	unsigned long mask = dma_get_seg_boundary(dev);
966 	int i;
967 
968 	if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
969 	    iommu_deferred_attach(dev, domain))
970 		return 0;
971 
972 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
973 		iommu_dma_sync_sg_for_device(dev, sg, nents, dir);
974 
975 	if (dev_is_untrusted(dev))
976 		return iommu_dma_map_sg_swiotlb(dev, sg, nents, dir, attrs);
977 
978 	/*
979 	 * Work out how much IOVA space we need, and align the segments to
980 	 * IOVA granules for the IOMMU driver to handle. With some clever
981 	 * trickery we can modify the list in-place, but reversibly, by
982 	 * stashing the unaligned parts in the as-yet-unused DMA fields.
983 	 */
984 	for_each_sg(sg, s, nents, i) {
985 		size_t s_iova_off = iova_offset(iovad, s->offset);
986 		size_t s_length = s->length;
987 		size_t pad_len = (mask - iova_len + 1) & mask;
988 
989 		sg_dma_address(s) = s_iova_off;
990 		sg_dma_len(s) = s_length;
991 		s->offset -= s_iova_off;
992 		s_length = iova_align(iovad, s_length + s_iova_off);
993 		s->length = s_length;
994 
995 		/*
996 		 * Due to the alignment of our single IOVA allocation, we can
997 		 * depend on these assumptions about the segment boundary mask:
998 		 * - If mask size >= IOVA size, then the IOVA range cannot
999 		 *   possibly fall across a boundary, so we don't care.
1000 		 * - If mask size < IOVA size, then the IOVA range must start
1001 		 *   exactly on a boundary, therefore we can lay things out
1002 		 *   based purely on segment lengths without needing to know
1003 		 *   the actual addresses beforehand.
1004 		 * - The mask must be a power of 2, so pad_len == 0 if
1005 		 *   iova_len == 0, thus we cannot dereference prev the first
1006 		 *   time through here (i.e. before it has a meaningful value).
1007 		 */
1008 		if (pad_len && pad_len < s_length - 1) {
1009 			prev->length += pad_len;
1010 			iova_len += pad_len;
1011 		}
1012 
1013 		iova_len += s_length;
1014 		prev = s;
1015 	}
1016 
1017 	iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
1018 	if (!iova)
1019 		goto out_restore_sg;
1020 
1021 	/*
1022 	 * We'll leave any physical concatenation to the IOMMU driver's
1023 	 * implementation - it knows better than we do.
1024 	 */
1025 	if (iommu_map_sg_atomic(domain, iova, sg, nents, prot) < iova_len)
1026 		goto out_free_iova;
1027 
1028 	return __finalise_sg(dev, sg, nents, iova);
1029 
1030 out_free_iova:
1031 	iommu_dma_free_iova(cookie, iova, iova_len, NULL);
1032 out_restore_sg:
1033 	__invalidate_sg(sg, nents);
1034 	return 0;
1035 }
1036 
1037 static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
1038 		int nents, enum dma_data_direction dir, unsigned long attrs)
1039 {
1040 	dma_addr_t start, end;
1041 	struct scatterlist *tmp;
1042 	int i;
1043 
1044 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1045 		iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir);
1046 
1047 	if (dev_is_untrusted(dev)) {
1048 		iommu_dma_unmap_sg_swiotlb(dev, sg, nents, dir, attrs);
1049 		return;
1050 	}
1051 
1052 	/*
1053 	 * The scatterlist segments are mapped into a single
1054 	 * contiguous IOVA allocation, so this is incredibly easy.
1055 	 */
1056 	start = sg_dma_address(sg);
1057 	for_each_sg(sg_next(sg), tmp, nents - 1, i) {
1058 		if (sg_dma_len(tmp) == 0)
1059 			break;
1060 		sg = tmp;
1061 	}
1062 	end = sg_dma_address(sg) + sg_dma_len(sg);
1063 	__iommu_dma_unmap(dev, start, end - start);
1064 }
1065 
1066 static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
1067 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1068 {
1069 	return __iommu_dma_map(dev, phys, size,
1070 			dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO,
1071 			dma_get_mask(dev));
1072 }
1073 
1074 static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
1075 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1076 {
1077 	__iommu_dma_unmap(dev, handle, size);
1078 }
1079 
1080 static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr)
1081 {
1082 	size_t alloc_size = PAGE_ALIGN(size);
1083 	int count = alloc_size >> PAGE_SHIFT;
1084 	struct page *page = NULL, **pages = NULL;
1085 
1086 	/* Non-coherent atomic allocation? Easy */
1087 	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1088 	    dma_free_from_pool(dev, cpu_addr, alloc_size))
1089 		return;
1090 
1091 	if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1092 		/*
1093 		 * If it the address is remapped, then it's either non-coherent
1094 		 * or highmem CMA, or an iommu_dma_alloc_remap() construction.
1095 		 */
1096 		pages = dma_common_find_pages(cpu_addr);
1097 		if (!pages)
1098 			page = vmalloc_to_page(cpu_addr);
1099 		dma_common_free_remap(cpu_addr, alloc_size);
1100 	} else {
1101 		/* Lowmem means a coherent atomic or CMA allocation */
1102 		page = virt_to_page(cpu_addr);
1103 	}
1104 
1105 	if (pages)
1106 		__iommu_dma_free_pages(pages, count);
1107 	if (page)
1108 		dma_free_contiguous(dev, page, alloc_size);
1109 }
1110 
1111 static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr,
1112 		dma_addr_t handle, unsigned long attrs)
1113 {
1114 	__iommu_dma_unmap(dev, handle, size);
1115 	__iommu_dma_free(dev, size, cpu_addr);
1116 }
1117 
1118 static void *iommu_dma_alloc_pages(struct device *dev, size_t size,
1119 		struct page **pagep, gfp_t gfp, unsigned long attrs)
1120 {
1121 	bool coherent = dev_is_dma_coherent(dev);
1122 	size_t alloc_size = PAGE_ALIGN(size);
1123 	int node = dev_to_node(dev);
1124 	struct page *page = NULL;
1125 	void *cpu_addr;
1126 
1127 	page = dma_alloc_contiguous(dev, alloc_size, gfp);
1128 	if (!page)
1129 		page = alloc_pages_node(node, gfp, get_order(alloc_size));
1130 	if (!page)
1131 		return NULL;
1132 
1133 	if (IS_ENABLED(CONFIG_DMA_REMAP) && (!coherent || PageHighMem(page))) {
1134 		pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
1135 
1136 		cpu_addr = dma_common_contiguous_remap(page, alloc_size,
1137 				prot, __builtin_return_address(0));
1138 		if (!cpu_addr)
1139 			goto out_free_pages;
1140 
1141 		if (!coherent)
1142 			arch_dma_prep_coherent(page, size);
1143 	} else {
1144 		cpu_addr = page_address(page);
1145 	}
1146 
1147 	*pagep = page;
1148 	memset(cpu_addr, 0, alloc_size);
1149 	return cpu_addr;
1150 out_free_pages:
1151 	dma_free_contiguous(dev, page, alloc_size);
1152 	return NULL;
1153 }
1154 
1155 static void *iommu_dma_alloc(struct device *dev, size_t size,
1156 		dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1157 {
1158 	bool coherent = dev_is_dma_coherent(dev);
1159 	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
1160 	struct page *page = NULL;
1161 	void *cpu_addr;
1162 
1163 	gfp |= __GFP_ZERO;
1164 
1165 	if (IS_ENABLED(CONFIG_DMA_REMAP) && gfpflags_allow_blocking(gfp) &&
1166 	    !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) {
1167 		return iommu_dma_alloc_remap(dev, size, handle, gfp,
1168 				dma_pgprot(dev, PAGE_KERNEL, attrs), attrs);
1169 	}
1170 
1171 	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1172 	    !gfpflags_allow_blocking(gfp) && !coherent)
1173 		page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr,
1174 					       gfp, NULL);
1175 	else
1176 		cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs);
1177 	if (!cpu_addr)
1178 		return NULL;
1179 
1180 	*handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot,
1181 			dev->coherent_dma_mask);
1182 	if (*handle == DMA_MAPPING_ERROR) {
1183 		__iommu_dma_free(dev, size, cpu_addr);
1184 		return NULL;
1185 	}
1186 
1187 	return cpu_addr;
1188 }
1189 
1190 #ifdef CONFIG_DMA_REMAP
1191 static void *iommu_dma_alloc_noncoherent(struct device *dev, size_t size,
1192 		dma_addr_t *handle, enum dma_data_direction dir, gfp_t gfp)
1193 {
1194 	if (!gfpflags_allow_blocking(gfp)) {
1195 		struct page *page;
1196 
1197 		page = dma_common_alloc_pages(dev, size, handle, dir, gfp);
1198 		if (!page)
1199 			return NULL;
1200 		return page_address(page);
1201 	}
1202 
1203 	return iommu_dma_alloc_remap(dev, size, handle, gfp | __GFP_ZERO,
1204 				     PAGE_KERNEL, 0);
1205 }
1206 
1207 static void iommu_dma_free_noncoherent(struct device *dev, size_t size,
1208 		void *cpu_addr, dma_addr_t handle, enum dma_data_direction dir)
1209 {
1210 	__iommu_dma_unmap(dev, handle, size);
1211 	__iommu_dma_free(dev, size, cpu_addr);
1212 }
1213 #else
1214 #define iommu_dma_alloc_noncoherent		NULL
1215 #define iommu_dma_free_noncoherent		NULL
1216 #endif /* CONFIG_DMA_REMAP */
1217 
1218 static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma,
1219 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
1220 		unsigned long attrs)
1221 {
1222 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1223 	unsigned long pfn, off = vma->vm_pgoff;
1224 	int ret;
1225 
1226 	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
1227 
1228 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
1229 		return ret;
1230 
1231 	if (off >= nr_pages || vma_pages(vma) > nr_pages - off)
1232 		return -ENXIO;
1233 
1234 	if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1235 		struct page **pages = dma_common_find_pages(cpu_addr);
1236 
1237 		if (pages)
1238 			return vm_map_pages(vma, pages, nr_pages);
1239 		pfn = vmalloc_to_pfn(cpu_addr);
1240 	} else {
1241 		pfn = page_to_pfn(virt_to_page(cpu_addr));
1242 	}
1243 
1244 	return remap_pfn_range(vma, vma->vm_start, pfn + off,
1245 			       vma->vm_end - vma->vm_start,
1246 			       vma->vm_page_prot);
1247 }
1248 
1249 static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
1250 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
1251 		unsigned long attrs)
1252 {
1253 	struct page *page;
1254 	int ret;
1255 
1256 	if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1257 		struct page **pages = dma_common_find_pages(cpu_addr);
1258 
1259 		if (pages) {
1260 			return sg_alloc_table_from_pages(sgt, pages,
1261 					PAGE_ALIGN(size) >> PAGE_SHIFT,
1262 					0, size, GFP_KERNEL);
1263 		}
1264 
1265 		page = vmalloc_to_page(cpu_addr);
1266 	} else {
1267 		page = virt_to_page(cpu_addr);
1268 	}
1269 
1270 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
1271 	if (!ret)
1272 		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
1273 	return ret;
1274 }
1275 
1276 static unsigned long iommu_dma_get_merge_boundary(struct device *dev)
1277 {
1278 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1279 
1280 	return (1UL << __ffs(domain->pgsize_bitmap)) - 1;
1281 }
1282 
1283 static const struct dma_map_ops iommu_dma_ops = {
1284 	.alloc			= iommu_dma_alloc,
1285 	.free			= iommu_dma_free,
1286 	.alloc_pages		= dma_common_alloc_pages,
1287 	.free_pages		= dma_common_free_pages,
1288 	.alloc_noncoherent	= iommu_dma_alloc_noncoherent,
1289 	.free_noncoherent	= iommu_dma_free_noncoherent,
1290 	.mmap			= iommu_dma_mmap,
1291 	.get_sgtable		= iommu_dma_get_sgtable,
1292 	.map_page		= iommu_dma_map_page,
1293 	.unmap_page		= iommu_dma_unmap_page,
1294 	.map_sg			= iommu_dma_map_sg,
1295 	.unmap_sg		= iommu_dma_unmap_sg,
1296 	.sync_single_for_cpu	= iommu_dma_sync_single_for_cpu,
1297 	.sync_single_for_device	= iommu_dma_sync_single_for_device,
1298 	.sync_sg_for_cpu	= iommu_dma_sync_sg_for_cpu,
1299 	.sync_sg_for_device	= iommu_dma_sync_sg_for_device,
1300 	.map_resource		= iommu_dma_map_resource,
1301 	.unmap_resource		= iommu_dma_unmap_resource,
1302 	.get_merge_boundary	= iommu_dma_get_merge_boundary,
1303 };
1304 
1305 /*
1306  * The IOMMU core code allocates the default DMA domain, which the underlying
1307  * IOMMU driver needs to support via the dma-iommu layer.
1308  */
1309 void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size)
1310 {
1311 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1312 
1313 	if (!domain)
1314 		goto out_err;
1315 
1316 	/*
1317 	 * The IOMMU core code allocates the default DMA domain, which the
1318 	 * underlying IOMMU driver needs to support via the dma-iommu layer.
1319 	 */
1320 	if (domain->type == IOMMU_DOMAIN_DMA) {
1321 		if (iommu_dma_init_domain(domain, dma_base, size, dev))
1322 			goto out_err;
1323 		dev->dma_ops = &iommu_dma_ops;
1324 	}
1325 
1326 	return;
1327 out_err:
1328 	 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
1329 		 dev_name(dev));
1330 }
1331 
1332 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
1333 		phys_addr_t msi_addr, struct iommu_domain *domain)
1334 {
1335 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
1336 	struct iommu_dma_msi_page *msi_page;
1337 	dma_addr_t iova;
1338 	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1339 	size_t size = cookie_msi_granule(cookie);
1340 
1341 	msi_addr &= ~(phys_addr_t)(size - 1);
1342 	list_for_each_entry(msi_page, &cookie->msi_page_list, list)
1343 		if (msi_page->phys == msi_addr)
1344 			return msi_page;
1345 
1346 	msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL);
1347 	if (!msi_page)
1348 		return NULL;
1349 
1350 	iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
1351 	if (!iova)
1352 		goto out_free_page;
1353 
1354 	if (iommu_map(domain, iova, msi_addr, size, prot))
1355 		goto out_free_iova;
1356 
1357 	INIT_LIST_HEAD(&msi_page->list);
1358 	msi_page->phys = msi_addr;
1359 	msi_page->iova = iova;
1360 	list_add(&msi_page->list, &cookie->msi_page_list);
1361 	return msi_page;
1362 
1363 out_free_iova:
1364 	iommu_dma_free_iova(cookie, iova, size, NULL);
1365 out_free_page:
1366 	kfree(msi_page);
1367 	return NULL;
1368 }
1369 
1370 int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)
1371 {
1372 	struct device *dev = msi_desc_to_dev(desc);
1373 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1374 	struct iommu_dma_msi_page *msi_page;
1375 	static DEFINE_MUTEX(msi_prepare_lock); /* see below */
1376 
1377 	if (!domain || !domain->iova_cookie) {
1378 		desc->iommu_cookie = NULL;
1379 		return 0;
1380 	}
1381 
1382 	/*
1383 	 * In fact the whole prepare operation should already be serialised by
1384 	 * irq_domain_mutex further up the callchain, but that's pretty subtle
1385 	 * on its own, so consider this locking as failsafe documentation...
1386 	 */
1387 	mutex_lock(&msi_prepare_lock);
1388 	msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
1389 	mutex_unlock(&msi_prepare_lock);
1390 
1391 	msi_desc_set_iommu_cookie(desc, msi_page);
1392 
1393 	if (!msi_page)
1394 		return -ENOMEM;
1395 	return 0;
1396 }
1397 
1398 void iommu_dma_compose_msi_msg(struct msi_desc *desc,
1399 			       struct msi_msg *msg)
1400 {
1401 	struct device *dev = msi_desc_to_dev(desc);
1402 	const struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1403 	const struct iommu_dma_msi_page *msi_page;
1404 
1405 	msi_page = msi_desc_get_iommu_cookie(desc);
1406 
1407 	if (!domain || !domain->iova_cookie || WARN_ON(!msi_page))
1408 		return;
1409 
1410 	msg->address_hi = upper_32_bits(msi_page->iova);
1411 	msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1;
1412 	msg->address_lo += lower_32_bits(msi_page->iova);
1413 }
1414 
1415 static int iommu_dma_init(void)
1416 {
1417 	if (is_kdump_kernel())
1418 		static_branch_enable(&iommu_deferred_attach_enabled);
1419 
1420 	return iova_cache_get();
1421 }
1422 arch_initcall(iommu_dma_init);
1423