1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * A fairly generic DMA-API to IOMMU-API glue layer. 4 * 5 * Copyright (C) 2014-2015 ARM Ltd. 6 * 7 * based in part on arch/arm/mm/dma-mapping.c: 8 * Copyright (C) 2000-2004 Russell King 9 */ 10 11 #include <linux/acpi_iort.h> 12 #include <linux/device.h> 13 #include <linux/dma-map-ops.h> 14 #include <linux/dma-iommu.h> 15 #include <linux/gfp.h> 16 #include <linux/huge_mm.h> 17 #include <linux/iommu.h> 18 #include <linux/iova.h> 19 #include <linux/irq.h> 20 #include <linux/mm.h> 21 #include <linux/mutex.h> 22 #include <linux/pci.h> 23 #include <linux/swiotlb.h> 24 #include <linux/scatterlist.h> 25 #include <linux/vmalloc.h> 26 #include <linux/crash_dump.h> 27 #include <linux/dma-direct.h> 28 29 struct iommu_dma_msi_page { 30 struct list_head list; 31 dma_addr_t iova; 32 phys_addr_t phys; 33 }; 34 35 enum iommu_dma_cookie_type { 36 IOMMU_DMA_IOVA_COOKIE, 37 IOMMU_DMA_MSI_COOKIE, 38 }; 39 40 struct iommu_dma_cookie { 41 enum iommu_dma_cookie_type type; 42 union { 43 /* Full allocator for IOMMU_DMA_IOVA_COOKIE */ 44 struct iova_domain iovad; 45 /* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */ 46 dma_addr_t msi_iova; 47 }; 48 struct list_head msi_page_list; 49 50 /* Domain for flush queue callback; NULL if flush queue not in use */ 51 struct iommu_domain *fq_domain; 52 }; 53 54 static DEFINE_STATIC_KEY_FALSE(iommu_deferred_attach_enabled); 55 bool iommu_dma_forcedac __read_mostly; 56 57 static int __init iommu_dma_forcedac_setup(char *str) 58 { 59 int ret = kstrtobool(str, &iommu_dma_forcedac); 60 61 if (!ret && iommu_dma_forcedac) 62 pr_info("Forcing DAC for PCI devices\n"); 63 return ret; 64 } 65 early_param("iommu.forcedac", iommu_dma_forcedac_setup); 66 67 static void iommu_dma_entry_dtor(unsigned long data) 68 { 69 struct page *freelist = (struct page *)data; 70 71 while (freelist) { 72 unsigned long p = (unsigned long)page_address(freelist); 73 74 freelist = freelist->freelist; 75 free_page(p); 76 } 77 } 78 79 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie) 80 { 81 if (cookie->type == IOMMU_DMA_IOVA_COOKIE) 82 return cookie->iovad.granule; 83 return PAGE_SIZE; 84 } 85 86 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type) 87 { 88 struct iommu_dma_cookie *cookie; 89 90 cookie = kzalloc(sizeof(*cookie), GFP_KERNEL); 91 if (cookie) { 92 INIT_LIST_HEAD(&cookie->msi_page_list); 93 cookie->type = type; 94 } 95 return cookie; 96 } 97 98 /** 99 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain 100 * @domain: IOMMU domain to prepare for DMA-API usage 101 */ 102 int iommu_get_dma_cookie(struct iommu_domain *domain) 103 { 104 if (domain->iova_cookie) 105 return -EEXIST; 106 107 domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE); 108 if (!domain->iova_cookie) 109 return -ENOMEM; 110 111 return 0; 112 } 113 114 /** 115 * iommu_get_msi_cookie - Acquire just MSI remapping resources 116 * @domain: IOMMU domain to prepare 117 * @base: Start address of IOVA region for MSI mappings 118 * 119 * Users who manage their own IOVA allocation and do not want DMA API support, 120 * but would still like to take advantage of automatic MSI remapping, can use 121 * this to initialise their own domain appropriately. Users should reserve a 122 * contiguous IOVA region, starting at @base, large enough to accommodate the 123 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address 124 * used by the devices attached to @domain. 125 */ 126 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base) 127 { 128 struct iommu_dma_cookie *cookie; 129 130 if (domain->type != IOMMU_DOMAIN_UNMANAGED) 131 return -EINVAL; 132 133 if (domain->iova_cookie) 134 return -EEXIST; 135 136 cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE); 137 if (!cookie) 138 return -ENOMEM; 139 140 cookie->msi_iova = base; 141 domain->iova_cookie = cookie; 142 return 0; 143 } 144 EXPORT_SYMBOL(iommu_get_msi_cookie); 145 146 /** 147 * iommu_put_dma_cookie - Release a domain's DMA mapping resources 148 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or 149 * iommu_get_msi_cookie() 150 */ 151 void iommu_put_dma_cookie(struct iommu_domain *domain) 152 { 153 struct iommu_dma_cookie *cookie = domain->iova_cookie; 154 struct iommu_dma_msi_page *msi, *tmp; 155 156 if (!cookie) 157 return; 158 159 if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule) 160 put_iova_domain(&cookie->iovad); 161 162 list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) { 163 list_del(&msi->list); 164 kfree(msi); 165 } 166 kfree(cookie); 167 domain->iova_cookie = NULL; 168 } 169 170 /** 171 * iommu_dma_get_resv_regions - Reserved region driver helper 172 * @dev: Device from iommu_get_resv_regions() 173 * @list: Reserved region list from iommu_get_resv_regions() 174 * 175 * IOMMU drivers can use this to implement their .get_resv_regions callback 176 * for general non-IOMMU-specific reservations. Currently, this covers GICv3 177 * ITS region reservation on ACPI based ARM platforms that may require HW MSI 178 * reservation. 179 */ 180 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list) 181 { 182 183 if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode)) 184 iort_iommu_msi_get_resv_regions(dev, list); 185 186 } 187 EXPORT_SYMBOL(iommu_dma_get_resv_regions); 188 189 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie, 190 phys_addr_t start, phys_addr_t end) 191 { 192 struct iova_domain *iovad = &cookie->iovad; 193 struct iommu_dma_msi_page *msi_page; 194 int i, num_pages; 195 196 start -= iova_offset(iovad, start); 197 num_pages = iova_align(iovad, end - start) >> iova_shift(iovad); 198 199 for (i = 0; i < num_pages; i++) { 200 msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL); 201 if (!msi_page) 202 return -ENOMEM; 203 204 msi_page->phys = start; 205 msi_page->iova = start; 206 INIT_LIST_HEAD(&msi_page->list); 207 list_add(&msi_page->list, &cookie->msi_page_list); 208 start += iovad->granule; 209 } 210 211 return 0; 212 } 213 214 static int iova_reserve_pci_windows(struct pci_dev *dev, 215 struct iova_domain *iovad) 216 { 217 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus); 218 struct resource_entry *window; 219 unsigned long lo, hi; 220 phys_addr_t start = 0, end; 221 222 resource_list_for_each_entry(window, &bridge->windows) { 223 if (resource_type(window->res) != IORESOURCE_MEM) 224 continue; 225 226 lo = iova_pfn(iovad, window->res->start - window->offset); 227 hi = iova_pfn(iovad, window->res->end - window->offset); 228 reserve_iova(iovad, lo, hi); 229 } 230 231 /* Get reserved DMA windows from host bridge */ 232 resource_list_for_each_entry(window, &bridge->dma_ranges) { 233 end = window->res->start - window->offset; 234 resv_iova: 235 if (end > start) { 236 lo = iova_pfn(iovad, start); 237 hi = iova_pfn(iovad, end); 238 reserve_iova(iovad, lo, hi); 239 } else if (end < start) { 240 /* dma_ranges list should be sorted */ 241 dev_err(&dev->dev, 242 "Failed to reserve IOVA [%pa-%pa]\n", 243 &start, &end); 244 return -EINVAL; 245 } 246 247 start = window->res->end - window->offset + 1; 248 /* If window is last entry */ 249 if (window->node.next == &bridge->dma_ranges && 250 end != ~(phys_addr_t)0) { 251 end = ~(phys_addr_t)0; 252 goto resv_iova; 253 } 254 } 255 256 return 0; 257 } 258 259 static int iova_reserve_iommu_regions(struct device *dev, 260 struct iommu_domain *domain) 261 { 262 struct iommu_dma_cookie *cookie = domain->iova_cookie; 263 struct iova_domain *iovad = &cookie->iovad; 264 struct iommu_resv_region *region; 265 LIST_HEAD(resv_regions); 266 int ret = 0; 267 268 if (dev_is_pci(dev)) { 269 ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad); 270 if (ret) 271 return ret; 272 } 273 274 iommu_get_resv_regions(dev, &resv_regions); 275 list_for_each_entry(region, &resv_regions, list) { 276 unsigned long lo, hi; 277 278 /* We ARE the software that manages these! */ 279 if (region->type == IOMMU_RESV_SW_MSI) 280 continue; 281 282 lo = iova_pfn(iovad, region->start); 283 hi = iova_pfn(iovad, region->start + region->length - 1); 284 reserve_iova(iovad, lo, hi); 285 286 if (region->type == IOMMU_RESV_MSI) 287 ret = cookie_init_hw_msi_region(cookie, region->start, 288 region->start + region->length); 289 if (ret) 290 break; 291 } 292 iommu_put_resv_regions(dev, &resv_regions); 293 294 return ret; 295 } 296 297 static void iommu_dma_flush_iotlb_all(struct iova_domain *iovad) 298 { 299 struct iommu_dma_cookie *cookie; 300 struct iommu_domain *domain; 301 302 cookie = container_of(iovad, struct iommu_dma_cookie, iovad); 303 domain = cookie->fq_domain; 304 305 domain->ops->flush_iotlb_all(domain); 306 } 307 308 static bool dev_is_untrusted(struct device *dev) 309 { 310 return dev_is_pci(dev) && to_pci_dev(dev)->untrusted; 311 } 312 313 static bool dev_use_swiotlb(struct device *dev) 314 { 315 return IS_ENABLED(CONFIG_SWIOTLB) && dev_is_untrusted(dev); 316 } 317 318 /* sysfs updates are serialised by the mutex of the group owning @domain */ 319 int iommu_dma_init_fq(struct iommu_domain *domain) 320 { 321 struct iommu_dma_cookie *cookie = domain->iova_cookie; 322 int ret; 323 324 if (cookie->fq_domain) 325 return 0; 326 327 ret = init_iova_flush_queue(&cookie->iovad, iommu_dma_flush_iotlb_all, 328 iommu_dma_entry_dtor); 329 if (ret) { 330 pr_warn("iova flush queue initialization failed\n"); 331 return ret; 332 } 333 /* 334 * Prevent incomplete iovad->fq being observable. Pairs with path from 335 * __iommu_dma_unmap() through iommu_dma_free_iova() to queue_iova() 336 */ 337 smp_wmb(); 338 WRITE_ONCE(cookie->fq_domain, domain); 339 return 0; 340 } 341 342 /** 343 * iommu_dma_init_domain - Initialise a DMA mapping domain 344 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() 345 * @base: IOVA at which the mappable address space starts 346 * @limit: Last address of the IOVA space 347 * @dev: Device the domain is being initialised for 348 * 349 * @base and @limit + 1 should be exact multiples of IOMMU page granularity to 350 * avoid rounding surprises. If necessary, we reserve the page at address 0 351 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but 352 * any change which could make prior IOVAs invalid will fail. 353 */ 354 static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base, 355 dma_addr_t limit, struct device *dev) 356 { 357 struct iommu_dma_cookie *cookie = domain->iova_cookie; 358 unsigned long order, base_pfn; 359 struct iova_domain *iovad; 360 361 if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE) 362 return -EINVAL; 363 364 iovad = &cookie->iovad; 365 366 /* Use the smallest supported page size for IOVA granularity */ 367 order = __ffs(domain->pgsize_bitmap); 368 base_pfn = max_t(unsigned long, 1, base >> order); 369 370 /* Check the domain allows at least some access to the device... */ 371 if (domain->geometry.force_aperture) { 372 if (base > domain->geometry.aperture_end || 373 limit < domain->geometry.aperture_start) { 374 pr_warn("specified DMA range outside IOMMU capability\n"); 375 return -EFAULT; 376 } 377 /* ...then finally give it a kicking to make sure it fits */ 378 base_pfn = max_t(unsigned long, base_pfn, 379 domain->geometry.aperture_start >> order); 380 } 381 382 /* start_pfn is always nonzero for an already-initialised domain */ 383 if (iovad->start_pfn) { 384 if (1UL << order != iovad->granule || 385 base_pfn != iovad->start_pfn) { 386 pr_warn("Incompatible range for DMA domain\n"); 387 return -EFAULT; 388 } 389 390 return 0; 391 } 392 393 init_iova_domain(iovad, 1UL << order, base_pfn); 394 395 /* If the FQ fails we can simply fall back to strict mode */ 396 if (domain->type == IOMMU_DOMAIN_DMA_FQ && iommu_dma_init_fq(domain)) 397 domain->type = IOMMU_DOMAIN_DMA; 398 399 return iova_reserve_iommu_regions(dev, domain); 400 } 401 402 /** 403 * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API 404 * page flags. 405 * @dir: Direction of DMA transfer 406 * @coherent: Is the DMA master cache-coherent? 407 * @attrs: DMA attributes for the mapping 408 * 409 * Return: corresponding IOMMU API page protection flags 410 */ 411 static int dma_info_to_prot(enum dma_data_direction dir, bool coherent, 412 unsigned long attrs) 413 { 414 int prot = coherent ? IOMMU_CACHE : 0; 415 416 if (attrs & DMA_ATTR_PRIVILEGED) 417 prot |= IOMMU_PRIV; 418 419 switch (dir) { 420 case DMA_BIDIRECTIONAL: 421 return prot | IOMMU_READ | IOMMU_WRITE; 422 case DMA_TO_DEVICE: 423 return prot | IOMMU_READ; 424 case DMA_FROM_DEVICE: 425 return prot | IOMMU_WRITE; 426 default: 427 return 0; 428 } 429 } 430 431 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain, 432 size_t size, u64 dma_limit, struct device *dev) 433 { 434 struct iommu_dma_cookie *cookie = domain->iova_cookie; 435 struct iova_domain *iovad = &cookie->iovad; 436 unsigned long shift, iova_len, iova = 0; 437 438 if (cookie->type == IOMMU_DMA_MSI_COOKIE) { 439 cookie->msi_iova += size; 440 return cookie->msi_iova - size; 441 } 442 443 shift = iova_shift(iovad); 444 iova_len = size >> shift; 445 /* 446 * Freeing non-power-of-two-sized allocations back into the IOVA caches 447 * will come back to bite us badly, so we have to waste a bit of space 448 * rounding up anything cacheable to make sure that can't happen. The 449 * order of the unadjusted size will still match upon freeing. 450 */ 451 if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1))) 452 iova_len = roundup_pow_of_two(iova_len); 453 454 dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit); 455 456 if (domain->geometry.force_aperture) 457 dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end); 458 459 /* Try to get PCI devices a SAC address */ 460 if (dma_limit > DMA_BIT_MASK(32) && !iommu_dma_forcedac && dev_is_pci(dev)) 461 iova = alloc_iova_fast(iovad, iova_len, 462 DMA_BIT_MASK(32) >> shift, false); 463 464 if (!iova) 465 iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift, 466 true); 467 468 return (dma_addr_t)iova << shift; 469 } 470 471 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie, 472 dma_addr_t iova, size_t size, struct iommu_iotlb_gather *gather) 473 { 474 struct iova_domain *iovad = &cookie->iovad; 475 476 /* The MSI case is only ever cleaning up its most recent allocation */ 477 if (cookie->type == IOMMU_DMA_MSI_COOKIE) 478 cookie->msi_iova -= size; 479 else if (gather && gather->queued) 480 queue_iova(iovad, iova_pfn(iovad, iova), 481 size >> iova_shift(iovad), 482 (unsigned long)gather->freelist); 483 else 484 free_iova_fast(iovad, iova_pfn(iovad, iova), 485 size >> iova_shift(iovad)); 486 } 487 488 static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr, 489 size_t size) 490 { 491 struct iommu_domain *domain = iommu_get_dma_domain(dev); 492 struct iommu_dma_cookie *cookie = domain->iova_cookie; 493 struct iova_domain *iovad = &cookie->iovad; 494 size_t iova_off = iova_offset(iovad, dma_addr); 495 struct iommu_iotlb_gather iotlb_gather; 496 size_t unmapped; 497 498 dma_addr -= iova_off; 499 size = iova_align(iovad, size + iova_off); 500 iommu_iotlb_gather_init(&iotlb_gather); 501 iotlb_gather.queued = READ_ONCE(cookie->fq_domain); 502 503 unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather); 504 WARN_ON(unmapped != size); 505 506 if (!iotlb_gather.queued) 507 iommu_iotlb_sync(domain, &iotlb_gather); 508 iommu_dma_free_iova(cookie, dma_addr, size, &iotlb_gather); 509 } 510 511 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys, 512 size_t size, int prot, u64 dma_mask) 513 { 514 struct iommu_domain *domain = iommu_get_dma_domain(dev); 515 struct iommu_dma_cookie *cookie = domain->iova_cookie; 516 struct iova_domain *iovad = &cookie->iovad; 517 size_t iova_off = iova_offset(iovad, phys); 518 dma_addr_t iova; 519 520 if (static_branch_unlikely(&iommu_deferred_attach_enabled) && 521 iommu_deferred_attach(dev, domain)) 522 return DMA_MAPPING_ERROR; 523 524 size = iova_align(iovad, size + iova_off); 525 526 iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev); 527 if (!iova) 528 return DMA_MAPPING_ERROR; 529 530 if (iommu_map_atomic(domain, iova, phys - iova_off, size, prot)) { 531 iommu_dma_free_iova(cookie, iova, size, NULL); 532 return DMA_MAPPING_ERROR; 533 } 534 return iova + iova_off; 535 } 536 537 static void __iommu_dma_free_pages(struct page **pages, int count) 538 { 539 while (count--) 540 __free_page(pages[count]); 541 kvfree(pages); 542 } 543 544 static struct page **__iommu_dma_alloc_pages(struct device *dev, 545 unsigned int count, unsigned long order_mask, gfp_t gfp) 546 { 547 struct page **pages; 548 unsigned int i = 0, nid = dev_to_node(dev); 549 550 order_mask &= (2U << MAX_ORDER) - 1; 551 if (!order_mask) 552 return NULL; 553 554 pages = kvcalloc(count, sizeof(*pages), GFP_KERNEL); 555 if (!pages) 556 return NULL; 557 558 /* IOMMU can map any pages, so himem can also be used here */ 559 gfp |= __GFP_NOWARN | __GFP_HIGHMEM; 560 561 /* It makes no sense to muck about with huge pages */ 562 gfp &= ~__GFP_COMP; 563 564 while (count) { 565 struct page *page = NULL; 566 unsigned int order_size; 567 568 /* 569 * Higher-order allocations are a convenience rather 570 * than a necessity, hence using __GFP_NORETRY until 571 * falling back to minimum-order allocations. 572 */ 573 for (order_mask &= (2U << __fls(count)) - 1; 574 order_mask; order_mask &= ~order_size) { 575 unsigned int order = __fls(order_mask); 576 gfp_t alloc_flags = gfp; 577 578 order_size = 1U << order; 579 if (order_mask > order_size) 580 alloc_flags |= __GFP_NORETRY; 581 page = alloc_pages_node(nid, alloc_flags, order); 582 if (!page) 583 continue; 584 if (order) 585 split_page(page, order); 586 break; 587 } 588 if (!page) { 589 __iommu_dma_free_pages(pages, i); 590 return NULL; 591 } 592 count -= order_size; 593 while (order_size--) 594 pages[i++] = page++; 595 } 596 return pages; 597 } 598 599 /* 600 * If size is less than PAGE_SIZE, then a full CPU page will be allocated, 601 * but an IOMMU which supports smaller pages might not map the whole thing. 602 */ 603 static struct page **__iommu_dma_alloc_noncontiguous(struct device *dev, 604 size_t size, struct sg_table *sgt, gfp_t gfp, pgprot_t prot, 605 unsigned long attrs) 606 { 607 struct iommu_domain *domain = iommu_get_dma_domain(dev); 608 struct iommu_dma_cookie *cookie = domain->iova_cookie; 609 struct iova_domain *iovad = &cookie->iovad; 610 bool coherent = dev_is_dma_coherent(dev); 611 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs); 612 unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap; 613 struct page **pages; 614 dma_addr_t iova; 615 616 if (static_branch_unlikely(&iommu_deferred_attach_enabled) && 617 iommu_deferred_attach(dev, domain)) 618 return NULL; 619 620 min_size = alloc_sizes & -alloc_sizes; 621 if (min_size < PAGE_SIZE) { 622 min_size = PAGE_SIZE; 623 alloc_sizes |= PAGE_SIZE; 624 } else { 625 size = ALIGN(size, min_size); 626 } 627 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES) 628 alloc_sizes = min_size; 629 630 count = PAGE_ALIGN(size) >> PAGE_SHIFT; 631 pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT, 632 gfp); 633 if (!pages) 634 return NULL; 635 636 size = iova_align(iovad, size); 637 iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev); 638 if (!iova) 639 goto out_free_pages; 640 641 if (sg_alloc_table_from_pages(sgt, pages, count, 0, size, GFP_KERNEL)) 642 goto out_free_iova; 643 644 if (!(ioprot & IOMMU_CACHE)) { 645 struct scatterlist *sg; 646 int i; 647 648 for_each_sg(sgt->sgl, sg, sgt->orig_nents, i) 649 arch_dma_prep_coherent(sg_page(sg), sg->length); 650 } 651 652 if (iommu_map_sg_atomic(domain, iova, sgt->sgl, sgt->orig_nents, ioprot) 653 < size) 654 goto out_free_sg; 655 656 sgt->sgl->dma_address = iova; 657 sgt->sgl->dma_length = size; 658 return pages; 659 660 out_free_sg: 661 sg_free_table(sgt); 662 out_free_iova: 663 iommu_dma_free_iova(cookie, iova, size, NULL); 664 out_free_pages: 665 __iommu_dma_free_pages(pages, count); 666 return NULL; 667 } 668 669 static void *iommu_dma_alloc_remap(struct device *dev, size_t size, 670 dma_addr_t *dma_handle, gfp_t gfp, pgprot_t prot, 671 unsigned long attrs) 672 { 673 struct page **pages; 674 struct sg_table sgt; 675 void *vaddr; 676 677 pages = __iommu_dma_alloc_noncontiguous(dev, size, &sgt, gfp, prot, 678 attrs); 679 if (!pages) 680 return NULL; 681 *dma_handle = sgt.sgl->dma_address; 682 sg_free_table(&sgt); 683 vaddr = dma_common_pages_remap(pages, size, prot, 684 __builtin_return_address(0)); 685 if (!vaddr) 686 goto out_unmap; 687 return vaddr; 688 689 out_unmap: 690 __iommu_dma_unmap(dev, *dma_handle, size); 691 __iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT); 692 return NULL; 693 } 694 695 #ifdef CONFIG_DMA_REMAP 696 static struct sg_table *iommu_dma_alloc_noncontiguous(struct device *dev, 697 size_t size, enum dma_data_direction dir, gfp_t gfp, 698 unsigned long attrs) 699 { 700 struct dma_sgt_handle *sh; 701 702 sh = kmalloc(sizeof(*sh), gfp); 703 if (!sh) 704 return NULL; 705 706 sh->pages = __iommu_dma_alloc_noncontiguous(dev, size, &sh->sgt, gfp, 707 PAGE_KERNEL, attrs); 708 if (!sh->pages) { 709 kfree(sh); 710 return NULL; 711 } 712 return &sh->sgt; 713 } 714 715 static void iommu_dma_free_noncontiguous(struct device *dev, size_t size, 716 struct sg_table *sgt, enum dma_data_direction dir) 717 { 718 struct dma_sgt_handle *sh = sgt_handle(sgt); 719 720 __iommu_dma_unmap(dev, sgt->sgl->dma_address, size); 721 __iommu_dma_free_pages(sh->pages, PAGE_ALIGN(size) >> PAGE_SHIFT); 722 sg_free_table(&sh->sgt); 723 kfree(sh); 724 } 725 #endif /* CONFIG_DMA_REMAP */ 726 727 static void iommu_dma_sync_single_for_cpu(struct device *dev, 728 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir) 729 { 730 phys_addr_t phys; 731 732 if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev)) 733 return; 734 735 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle); 736 if (!dev_is_dma_coherent(dev)) 737 arch_sync_dma_for_cpu(phys, size, dir); 738 739 if (is_swiotlb_buffer(dev, phys)) 740 swiotlb_sync_single_for_cpu(dev, phys, size, dir); 741 } 742 743 static void iommu_dma_sync_single_for_device(struct device *dev, 744 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir) 745 { 746 phys_addr_t phys; 747 748 if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev)) 749 return; 750 751 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle); 752 if (is_swiotlb_buffer(dev, phys)) 753 swiotlb_sync_single_for_device(dev, phys, size, dir); 754 755 if (!dev_is_dma_coherent(dev)) 756 arch_sync_dma_for_device(phys, size, dir); 757 } 758 759 static void iommu_dma_sync_sg_for_cpu(struct device *dev, 760 struct scatterlist *sgl, int nelems, 761 enum dma_data_direction dir) 762 { 763 struct scatterlist *sg; 764 int i; 765 766 if (dev_use_swiotlb(dev)) 767 for_each_sg(sgl, sg, nelems, i) 768 iommu_dma_sync_single_for_cpu(dev, sg_dma_address(sg), 769 sg->length, dir); 770 else if (!dev_is_dma_coherent(dev)) 771 for_each_sg(sgl, sg, nelems, i) 772 arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir); 773 } 774 775 static void iommu_dma_sync_sg_for_device(struct device *dev, 776 struct scatterlist *sgl, int nelems, 777 enum dma_data_direction dir) 778 { 779 struct scatterlist *sg; 780 int i; 781 782 if (dev_use_swiotlb(dev)) 783 for_each_sg(sgl, sg, nelems, i) 784 iommu_dma_sync_single_for_device(dev, 785 sg_dma_address(sg), 786 sg->length, dir); 787 else if (!dev_is_dma_coherent(dev)) 788 for_each_sg(sgl, sg, nelems, i) 789 arch_sync_dma_for_device(sg_phys(sg), sg->length, dir); 790 } 791 792 static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page, 793 unsigned long offset, size_t size, enum dma_data_direction dir, 794 unsigned long attrs) 795 { 796 phys_addr_t phys = page_to_phys(page) + offset; 797 bool coherent = dev_is_dma_coherent(dev); 798 int prot = dma_info_to_prot(dir, coherent, attrs); 799 struct iommu_domain *domain = iommu_get_dma_domain(dev); 800 struct iommu_dma_cookie *cookie = domain->iova_cookie; 801 struct iova_domain *iovad = &cookie->iovad; 802 dma_addr_t iova, dma_mask = dma_get_mask(dev); 803 804 /* 805 * If both the physical buffer start address and size are 806 * page aligned, we don't need to use a bounce page. 807 */ 808 if (dev_use_swiotlb(dev) && iova_offset(iovad, phys | size)) { 809 void *padding_start; 810 size_t padding_size, aligned_size; 811 812 aligned_size = iova_align(iovad, size); 813 phys = swiotlb_tbl_map_single(dev, phys, size, aligned_size, 814 iova_mask(iovad), dir, attrs); 815 816 if (phys == DMA_MAPPING_ERROR) 817 return DMA_MAPPING_ERROR; 818 819 /* Cleanup the padding area. */ 820 padding_start = phys_to_virt(phys); 821 padding_size = aligned_size; 822 823 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && 824 (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) { 825 padding_start += size; 826 padding_size -= size; 827 } 828 829 memset(padding_start, 0, padding_size); 830 } 831 832 if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 833 arch_sync_dma_for_device(phys, size, dir); 834 835 iova = __iommu_dma_map(dev, phys, size, prot, dma_mask); 836 if (iova == DMA_MAPPING_ERROR && is_swiotlb_buffer(dev, phys)) 837 swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs); 838 return iova; 839 } 840 841 static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle, 842 size_t size, enum dma_data_direction dir, unsigned long attrs) 843 { 844 struct iommu_domain *domain = iommu_get_dma_domain(dev); 845 phys_addr_t phys; 846 847 phys = iommu_iova_to_phys(domain, dma_handle); 848 if (WARN_ON(!phys)) 849 return; 850 851 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && !dev_is_dma_coherent(dev)) 852 arch_sync_dma_for_cpu(phys, size, dir); 853 854 __iommu_dma_unmap(dev, dma_handle, size); 855 856 if (unlikely(is_swiotlb_buffer(dev, phys))) 857 swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs); 858 } 859 860 /* 861 * Prepare a successfully-mapped scatterlist to give back to the caller. 862 * 863 * At this point the segments are already laid out by iommu_dma_map_sg() to 864 * avoid individually crossing any boundaries, so we merely need to check a 865 * segment's start address to avoid concatenating across one. 866 */ 867 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents, 868 dma_addr_t dma_addr) 869 { 870 struct scatterlist *s, *cur = sg; 871 unsigned long seg_mask = dma_get_seg_boundary(dev); 872 unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev); 873 int i, count = 0; 874 875 for_each_sg(sg, s, nents, i) { 876 /* Restore this segment's original unaligned fields first */ 877 unsigned int s_iova_off = sg_dma_address(s); 878 unsigned int s_length = sg_dma_len(s); 879 unsigned int s_iova_len = s->length; 880 881 s->offset += s_iova_off; 882 s->length = s_length; 883 sg_dma_address(s) = DMA_MAPPING_ERROR; 884 sg_dma_len(s) = 0; 885 886 /* 887 * Now fill in the real DMA data. If... 888 * - there is a valid output segment to append to 889 * - and this segment starts on an IOVA page boundary 890 * - but doesn't fall at a segment boundary 891 * - and wouldn't make the resulting output segment too long 892 */ 893 if (cur_len && !s_iova_off && (dma_addr & seg_mask) && 894 (max_len - cur_len >= s_length)) { 895 /* ...then concatenate it with the previous one */ 896 cur_len += s_length; 897 } else { 898 /* Otherwise start the next output segment */ 899 if (i > 0) 900 cur = sg_next(cur); 901 cur_len = s_length; 902 count++; 903 904 sg_dma_address(cur) = dma_addr + s_iova_off; 905 } 906 907 sg_dma_len(cur) = cur_len; 908 dma_addr += s_iova_len; 909 910 if (s_length + s_iova_off < s_iova_len) 911 cur_len = 0; 912 } 913 return count; 914 } 915 916 /* 917 * If mapping failed, then just restore the original list, 918 * but making sure the DMA fields are invalidated. 919 */ 920 static void __invalidate_sg(struct scatterlist *sg, int nents) 921 { 922 struct scatterlist *s; 923 int i; 924 925 for_each_sg(sg, s, nents, i) { 926 if (sg_dma_address(s) != DMA_MAPPING_ERROR) 927 s->offset += sg_dma_address(s); 928 if (sg_dma_len(s)) 929 s->length = sg_dma_len(s); 930 sg_dma_address(s) = DMA_MAPPING_ERROR; 931 sg_dma_len(s) = 0; 932 } 933 } 934 935 static void iommu_dma_unmap_sg_swiotlb(struct device *dev, struct scatterlist *sg, 936 int nents, enum dma_data_direction dir, unsigned long attrs) 937 { 938 struct scatterlist *s; 939 int i; 940 941 for_each_sg(sg, s, nents, i) 942 iommu_dma_unmap_page(dev, sg_dma_address(s), 943 sg_dma_len(s), dir, attrs); 944 } 945 946 static int iommu_dma_map_sg_swiotlb(struct device *dev, struct scatterlist *sg, 947 int nents, enum dma_data_direction dir, unsigned long attrs) 948 { 949 struct scatterlist *s; 950 int i; 951 952 for_each_sg(sg, s, nents, i) { 953 sg_dma_address(s) = iommu_dma_map_page(dev, sg_page(s), 954 s->offset, s->length, dir, attrs); 955 if (sg_dma_address(s) == DMA_MAPPING_ERROR) 956 goto out_unmap; 957 sg_dma_len(s) = s->length; 958 } 959 960 return nents; 961 962 out_unmap: 963 iommu_dma_unmap_sg_swiotlb(dev, sg, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC); 964 return -EIO; 965 } 966 967 /* 968 * The DMA API client is passing in a scatterlist which could describe 969 * any old buffer layout, but the IOMMU API requires everything to be 970 * aligned to IOMMU pages. Hence the need for this complicated bit of 971 * impedance-matching, to be able to hand off a suitably-aligned list, 972 * but still preserve the original offsets and sizes for the caller. 973 */ 974 static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg, 975 int nents, enum dma_data_direction dir, unsigned long attrs) 976 { 977 struct iommu_domain *domain = iommu_get_dma_domain(dev); 978 struct iommu_dma_cookie *cookie = domain->iova_cookie; 979 struct iova_domain *iovad = &cookie->iovad; 980 struct scatterlist *s, *prev = NULL; 981 int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs); 982 dma_addr_t iova; 983 size_t iova_len = 0; 984 unsigned long mask = dma_get_seg_boundary(dev); 985 ssize_t ret; 986 int i; 987 988 if (static_branch_unlikely(&iommu_deferred_attach_enabled)) { 989 ret = iommu_deferred_attach(dev, domain); 990 if (ret) 991 goto out; 992 } 993 994 if (dev_use_swiotlb(dev)) 995 return iommu_dma_map_sg_swiotlb(dev, sg, nents, dir, attrs); 996 997 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 998 iommu_dma_sync_sg_for_device(dev, sg, nents, dir); 999 1000 /* 1001 * Work out how much IOVA space we need, and align the segments to 1002 * IOVA granules for the IOMMU driver to handle. With some clever 1003 * trickery we can modify the list in-place, but reversibly, by 1004 * stashing the unaligned parts in the as-yet-unused DMA fields. 1005 */ 1006 for_each_sg(sg, s, nents, i) { 1007 size_t s_iova_off = iova_offset(iovad, s->offset); 1008 size_t s_length = s->length; 1009 size_t pad_len = (mask - iova_len + 1) & mask; 1010 1011 sg_dma_address(s) = s_iova_off; 1012 sg_dma_len(s) = s_length; 1013 s->offset -= s_iova_off; 1014 s_length = iova_align(iovad, s_length + s_iova_off); 1015 s->length = s_length; 1016 1017 /* 1018 * Due to the alignment of our single IOVA allocation, we can 1019 * depend on these assumptions about the segment boundary mask: 1020 * - If mask size >= IOVA size, then the IOVA range cannot 1021 * possibly fall across a boundary, so we don't care. 1022 * - If mask size < IOVA size, then the IOVA range must start 1023 * exactly on a boundary, therefore we can lay things out 1024 * based purely on segment lengths without needing to know 1025 * the actual addresses beforehand. 1026 * - The mask must be a power of 2, so pad_len == 0 if 1027 * iova_len == 0, thus we cannot dereference prev the first 1028 * time through here (i.e. before it has a meaningful value). 1029 */ 1030 if (pad_len && pad_len < s_length - 1) { 1031 prev->length += pad_len; 1032 iova_len += pad_len; 1033 } 1034 1035 iova_len += s_length; 1036 prev = s; 1037 } 1038 1039 iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev); 1040 if (!iova) { 1041 ret = -ENOMEM; 1042 goto out_restore_sg; 1043 } 1044 1045 /* 1046 * We'll leave any physical concatenation to the IOMMU driver's 1047 * implementation - it knows better than we do. 1048 */ 1049 ret = iommu_map_sg_atomic(domain, iova, sg, nents, prot); 1050 if (ret < iova_len) 1051 goto out_free_iova; 1052 1053 return __finalise_sg(dev, sg, nents, iova); 1054 1055 out_free_iova: 1056 iommu_dma_free_iova(cookie, iova, iova_len, NULL); 1057 out_restore_sg: 1058 __invalidate_sg(sg, nents); 1059 out: 1060 if (ret != -ENOMEM) 1061 return -EINVAL; 1062 return ret; 1063 } 1064 1065 static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, 1066 int nents, enum dma_data_direction dir, unsigned long attrs) 1067 { 1068 dma_addr_t start, end; 1069 struct scatterlist *tmp; 1070 int i; 1071 1072 if (dev_use_swiotlb(dev)) { 1073 iommu_dma_unmap_sg_swiotlb(dev, sg, nents, dir, attrs); 1074 return; 1075 } 1076 1077 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 1078 iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir); 1079 1080 /* 1081 * The scatterlist segments are mapped into a single 1082 * contiguous IOVA allocation, so this is incredibly easy. 1083 */ 1084 start = sg_dma_address(sg); 1085 for_each_sg(sg_next(sg), tmp, nents - 1, i) { 1086 if (sg_dma_len(tmp) == 0) 1087 break; 1088 sg = tmp; 1089 } 1090 end = sg_dma_address(sg) + sg_dma_len(sg); 1091 __iommu_dma_unmap(dev, start, end - start); 1092 } 1093 1094 static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys, 1095 size_t size, enum dma_data_direction dir, unsigned long attrs) 1096 { 1097 return __iommu_dma_map(dev, phys, size, 1098 dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO, 1099 dma_get_mask(dev)); 1100 } 1101 1102 static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle, 1103 size_t size, enum dma_data_direction dir, unsigned long attrs) 1104 { 1105 __iommu_dma_unmap(dev, handle, size); 1106 } 1107 1108 static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr) 1109 { 1110 size_t alloc_size = PAGE_ALIGN(size); 1111 int count = alloc_size >> PAGE_SHIFT; 1112 struct page *page = NULL, **pages = NULL; 1113 1114 /* Non-coherent atomic allocation? Easy */ 1115 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && 1116 dma_free_from_pool(dev, cpu_addr, alloc_size)) 1117 return; 1118 1119 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) { 1120 /* 1121 * If it the address is remapped, then it's either non-coherent 1122 * or highmem CMA, or an iommu_dma_alloc_remap() construction. 1123 */ 1124 pages = dma_common_find_pages(cpu_addr); 1125 if (!pages) 1126 page = vmalloc_to_page(cpu_addr); 1127 dma_common_free_remap(cpu_addr, alloc_size); 1128 } else { 1129 /* Lowmem means a coherent atomic or CMA allocation */ 1130 page = virt_to_page(cpu_addr); 1131 } 1132 1133 if (pages) 1134 __iommu_dma_free_pages(pages, count); 1135 if (page) 1136 dma_free_contiguous(dev, page, alloc_size); 1137 } 1138 1139 static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr, 1140 dma_addr_t handle, unsigned long attrs) 1141 { 1142 __iommu_dma_unmap(dev, handle, size); 1143 __iommu_dma_free(dev, size, cpu_addr); 1144 } 1145 1146 static void *iommu_dma_alloc_pages(struct device *dev, size_t size, 1147 struct page **pagep, gfp_t gfp, unsigned long attrs) 1148 { 1149 bool coherent = dev_is_dma_coherent(dev); 1150 size_t alloc_size = PAGE_ALIGN(size); 1151 int node = dev_to_node(dev); 1152 struct page *page = NULL; 1153 void *cpu_addr; 1154 1155 page = dma_alloc_contiguous(dev, alloc_size, gfp); 1156 if (!page) 1157 page = alloc_pages_node(node, gfp, get_order(alloc_size)); 1158 if (!page) 1159 return NULL; 1160 1161 if (IS_ENABLED(CONFIG_DMA_REMAP) && (!coherent || PageHighMem(page))) { 1162 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs); 1163 1164 cpu_addr = dma_common_contiguous_remap(page, alloc_size, 1165 prot, __builtin_return_address(0)); 1166 if (!cpu_addr) 1167 goto out_free_pages; 1168 1169 if (!coherent) 1170 arch_dma_prep_coherent(page, size); 1171 } else { 1172 cpu_addr = page_address(page); 1173 } 1174 1175 *pagep = page; 1176 memset(cpu_addr, 0, alloc_size); 1177 return cpu_addr; 1178 out_free_pages: 1179 dma_free_contiguous(dev, page, alloc_size); 1180 return NULL; 1181 } 1182 1183 static void *iommu_dma_alloc(struct device *dev, size_t size, 1184 dma_addr_t *handle, gfp_t gfp, unsigned long attrs) 1185 { 1186 bool coherent = dev_is_dma_coherent(dev); 1187 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs); 1188 struct page *page = NULL; 1189 void *cpu_addr; 1190 1191 gfp |= __GFP_ZERO; 1192 1193 if (IS_ENABLED(CONFIG_DMA_REMAP) && gfpflags_allow_blocking(gfp) && 1194 !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) { 1195 return iommu_dma_alloc_remap(dev, size, handle, gfp, 1196 dma_pgprot(dev, PAGE_KERNEL, attrs), attrs); 1197 } 1198 1199 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && 1200 !gfpflags_allow_blocking(gfp) && !coherent) 1201 page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr, 1202 gfp, NULL); 1203 else 1204 cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs); 1205 if (!cpu_addr) 1206 return NULL; 1207 1208 *handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot, 1209 dev->coherent_dma_mask); 1210 if (*handle == DMA_MAPPING_ERROR) { 1211 __iommu_dma_free(dev, size, cpu_addr); 1212 return NULL; 1213 } 1214 1215 return cpu_addr; 1216 } 1217 1218 static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma, 1219 void *cpu_addr, dma_addr_t dma_addr, size_t size, 1220 unsigned long attrs) 1221 { 1222 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 1223 unsigned long pfn, off = vma->vm_pgoff; 1224 int ret; 1225 1226 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs); 1227 1228 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) 1229 return ret; 1230 1231 if (off >= nr_pages || vma_pages(vma) > nr_pages - off) 1232 return -ENXIO; 1233 1234 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) { 1235 struct page **pages = dma_common_find_pages(cpu_addr); 1236 1237 if (pages) 1238 return vm_map_pages(vma, pages, nr_pages); 1239 pfn = vmalloc_to_pfn(cpu_addr); 1240 } else { 1241 pfn = page_to_pfn(virt_to_page(cpu_addr)); 1242 } 1243 1244 return remap_pfn_range(vma, vma->vm_start, pfn + off, 1245 vma->vm_end - vma->vm_start, 1246 vma->vm_page_prot); 1247 } 1248 1249 static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt, 1250 void *cpu_addr, dma_addr_t dma_addr, size_t size, 1251 unsigned long attrs) 1252 { 1253 struct page *page; 1254 int ret; 1255 1256 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) { 1257 struct page **pages = dma_common_find_pages(cpu_addr); 1258 1259 if (pages) { 1260 return sg_alloc_table_from_pages(sgt, pages, 1261 PAGE_ALIGN(size) >> PAGE_SHIFT, 1262 0, size, GFP_KERNEL); 1263 } 1264 1265 page = vmalloc_to_page(cpu_addr); 1266 } else { 1267 page = virt_to_page(cpu_addr); 1268 } 1269 1270 ret = sg_alloc_table(sgt, 1, GFP_KERNEL); 1271 if (!ret) 1272 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); 1273 return ret; 1274 } 1275 1276 static unsigned long iommu_dma_get_merge_boundary(struct device *dev) 1277 { 1278 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1279 1280 return (1UL << __ffs(domain->pgsize_bitmap)) - 1; 1281 } 1282 1283 static const struct dma_map_ops iommu_dma_ops = { 1284 .alloc = iommu_dma_alloc, 1285 .free = iommu_dma_free, 1286 .alloc_pages = dma_common_alloc_pages, 1287 .free_pages = dma_common_free_pages, 1288 #ifdef CONFIG_DMA_REMAP 1289 .alloc_noncontiguous = iommu_dma_alloc_noncontiguous, 1290 .free_noncontiguous = iommu_dma_free_noncontiguous, 1291 #endif 1292 .mmap = iommu_dma_mmap, 1293 .get_sgtable = iommu_dma_get_sgtable, 1294 .map_page = iommu_dma_map_page, 1295 .unmap_page = iommu_dma_unmap_page, 1296 .map_sg = iommu_dma_map_sg, 1297 .unmap_sg = iommu_dma_unmap_sg, 1298 .sync_single_for_cpu = iommu_dma_sync_single_for_cpu, 1299 .sync_single_for_device = iommu_dma_sync_single_for_device, 1300 .sync_sg_for_cpu = iommu_dma_sync_sg_for_cpu, 1301 .sync_sg_for_device = iommu_dma_sync_sg_for_device, 1302 .map_resource = iommu_dma_map_resource, 1303 .unmap_resource = iommu_dma_unmap_resource, 1304 .get_merge_boundary = iommu_dma_get_merge_boundary, 1305 }; 1306 1307 /* 1308 * The IOMMU core code allocates the default DMA domain, which the underlying 1309 * IOMMU driver needs to support via the dma-iommu layer. 1310 */ 1311 void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 dma_limit) 1312 { 1313 struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 1314 1315 if (!domain) 1316 goto out_err; 1317 1318 /* 1319 * The IOMMU core code allocates the default DMA domain, which the 1320 * underlying IOMMU driver needs to support via the dma-iommu layer. 1321 */ 1322 if (iommu_is_dma_domain(domain)) { 1323 if (iommu_dma_init_domain(domain, dma_base, dma_limit, dev)) 1324 goto out_err; 1325 dev->dma_ops = &iommu_dma_ops; 1326 } 1327 1328 return; 1329 out_err: 1330 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n", 1331 dev_name(dev)); 1332 } 1333 EXPORT_SYMBOL_GPL(iommu_setup_dma_ops); 1334 1335 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev, 1336 phys_addr_t msi_addr, struct iommu_domain *domain) 1337 { 1338 struct iommu_dma_cookie *cookie = domain->iova_cookie; 1339 struct iommu_dma_msi_page *msi_page; 1340 dma_addr_t iova; 1341 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO; 1342 size_t size = cookie_msi_granule(cookie); 1343 1344 msi_addr &= ~(phys_addr_t)(size - 1); 1345 list_for_each_entry(msi_page, &cookie->msi_page_list, list) 1346 if (msi_page->phys == msi_addr) 1347 return msi_page; 1348 1349 msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL); 1350 if (!msi_page) 1351 return NULL; 1352 1353 iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev); 1354 if (!iova) 1355 goto out_free_page; 1356 1357 if (iommu_map(domain, iova, msi_addr, size, prot)) 1358 goto out_free_iova; 1359 1360 INIT_LIST_HEAD(&msi_page->list); 1361 msi_page->phys = msi_addr; 1362 msi_page->iova = iova; 1363 list_add(&msi_page->list, &cookie->msi_page_list); 1364 return msi_page; 1365 1366 out_free_iova: 1367 iommu_dma_free_iova(cookie, iova, size, NULL); 1368 out_free_page: 1369 kfree(msi_page); 1370 return NULL; 1371 } 1372 1373 int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr) 1374 { 1375 struct device *dev = msi_desc_to_dev(desc); 1376 struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 1377 struct iommu_dma_msi_page *msi_page; 1378 static DEFINE_MUTEX(msi_prepare_lock); /* see below */ 1379 1380 if (!domain || !domain->iova_cookie) { 1381 desc->iommu_cookie = NULL; 1382 return 0; 1383 } 1384 1385 /* 1386 * In fact the whole prepare operation should already be serialised by 1387 * irq_domain_mutex further up the callchain, but that's pretty subtle 1388 * on its own, so consider this locking as failsafe documentation... 1389 */ 1390 mutex_lock(&msi_prepare_lock); 1391 msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain); 1392 mutex_unlock(&msi_prepare_lock); 1393 1394 msi_desc_set_iommu_cookie(desc, msi_page); 1395 1396 if (!msi_page) 1397 return -ENOMEM; 1398 return 0; 1399 } 1400 1401 void iommu_dma_compose_msi_msg(struct msi_desc *desc, 1402 struct msi_msg *msg) 1403 { 1404 struct device *dev = msi_desc_to_dev(desc); 1405 const struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 1406 const struct iommu_dma_msi_page *msi_page; 1407 1408 msi_page = msi_desc_get_iommu_cookie(desc); 1409 1410 if (!domain || !domain->iova_cookie || WARN_ON(!msi_page)) 1411 return; 1412 1413 msg->address_hi = upper_32_bits(msi_page->iova); 1414 msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1; 1415 msg->address_lo += lower_32_bits(msi_page->iova); 1416 } 1417 1418 static int iommu_dma_init(void) 1419 { 1420 if (is_kdump_kernel()) 1421 static_branch_enable(&iommu_deferred_attach_enabled); 1422 1423 return iova_cache_get(); 1424 } 1425 arch_initcall(iommu_dma_init); 1426