xref: /openbmc/linux/drivers/iommu/dma-iommu.c (revision cc6c6912)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * A fairly generic DMA-API to IOMMU-API glue layer.
4  *
5  * Copyright (C) 2014-2015 ARM Ltd.
6  *
7  * based in part on arch/arm/mm/dma-mapping.c:
8  * Copyright (C) 2000-2004 Russell King
9  */
10 
11 #include <linux/acpi_iort.h>
12 #include <linux/device.h>
13 #include <linux/dma-contiguous.h>
14 #include <linux/dma-iommu.h>
15 #include <linux/dma-noncoherent.h>
16 #include <linux/gfp.h>
17 #include <linux/huge_mm.h>
18 #include <linux/iommu.h>
19 #include <linux/iova.h>
20 #include <linux/irq.h>
21 #include <linux/mm.h>
22 #include <linux/pci.h>
23 #include <linux/scatterlist.h>
24 #include <linux/vmalloc.h>
25 #include <linux/crash_dump.h>
26 
27 struct iommu_dma_msi_page {
28 	struct list_head	list;
29 	dma_addr_t		iova;
30 	phys_addr_t		phys;
31 };
32 
33 enum iommu_dma_cookie_type {
34 	IOMMU_DMA_IOVA_COOKIE,
35 	IOMMU_DMA_MSI_COOKIE,
36 };
37 
38 struct iommu_dma_cookie {
39 	enum iommu_dma_cookie_type	type;
40 	union {
41 		/* Full allocator for IOMMU_DMA_IOVA_COOKIE */
42 		struct iova_domain	iovad;
43 		/* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
44 		dma_addr_t		msi_iova;
45 	};
46 	struct list_head		msi_page_list;
47 	spinlock_t			msi_lock;
48 
49 	/* Domain for flush queue callback; NULL if flush queue not in use */
50 	struct iommu_domain		*fq_domain;
51 };
52 
53 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
54 {
55 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
56 		return cookie->iovad.granule;
57 	return PAGE_SIZE;
58 }
59 
60 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
61 {
62 	struct iommu_dma_cookie *cookie;
63 
64 	cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
65 	if (cookie) {
66 		spin_lock_init(&cookie->msi_lock);
67 		INIT_LIST_HEAD(&cookie->msi_page_list);
68 		cookie->type = type;
69 	}
70 	return cookie;
71 }
72 
73 /**
74  * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
75  * @domain: IOMMU domain to prepare for DMA-API usage
76  *
77  * IOMMU drivers should normally call this from their domain_alloc
78  * callback when domain->type == IOMMU_DOMAIN_DMA.
79  */
80 int iommu_get_dma_cookie(struct iommu_domain *domain)
81 {
82 	if (domain->iova_cookie)
83 		return -EEXIST;
84 
85 	domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
86 	if (!domain->iova_cookie)
87 		return -ENOMEM;
88 
89 	return 0;
90 }
91 EXPORT_SYMBOL(iommu_get_dma_cookie);
92 
93 /**
94  * iommu_get_msi_cookie - Acquire just MSI remapping resources
95  * @domain: IOMMU domain to prepare
96  * @base: Start address of IOVA region for MSI mappings
97  *
98  * Users who manage their own IOVA allocation and do not want DMA API support,
99  * but would still like to take advantage of automatic MSI remapping, can use
100  * this to initialise their own domain appropriately. Users should reserve a
101  * contiguous IOVA region, starting at @base, large enough to accommodate the
102  * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
103  * used by the devices attached to @domain.
104  */
105 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
106 {
107 	struct iommu_dma_cookie *cookie;
108 
109 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
110 		return -EINVAL;
111 
112 	if (domain->iova_cookie)
113 		return -EEXIST;
114 
115 	cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
116 	if (!cookie)
117 		return -ENOMEM;
118 
119 	cookie->msi_iova = base;
120 	domain->iova_cookie = cookie;
121 	return 0;
122 }
123 EXPORT_SYMBOL(iommu_get_msi_cookie);
124 
125 /**
126  * iommu_put_dma_cookie - Release a domain's DMA mapping resources
127  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
128  *          iommu_get_msi_cookie()
129  *
130  * IOMMU drivers should normally call this from their domain_free callback.
131  */
132 void iommu_put_dma_cookie(struct iommu_domain *domain)
133 {
134 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
135 	struct iommu_dma_msi_page *msi, *tmp;
136 
137 	if (!cookie)
138 		return;
139 
140 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule)
141 		put_iova_domain(&cookie->iovad);
142 
143 	list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
144 		list_del(&msi->list);
145 		kfree(msi);
146 	}
147 	kfree(cookie);
148 	domain->iova_cookie = NULL;
149 }
150 EXPORT_SYMBOL(iommu_put_dma_cookie);
151 
152 /**
153  * iommu_dma_get_resv_regions - Reserved region driver helper
154  * @dev: Device from iommu_get_resv_regions()
155  * @list: Reserved region list from iommu_get_resv_regions()
156  *
157  * IOMMU drivers can use this to implement their .get_resv_regions callback
158  * for general non-IOMMU-specific reservations. Currently, this covers GICv3
159  * ITS region reservation on ACPI based ARM platforms that may require HW MSI
160  * reservation.
161  */
162 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
163 {
164 
165 	if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode))
166 		iort_iommu_msi_get_resv_regions(dev, list);
167 
168 }
169 EXPORT_SYMBOL(iommu_dma_get_resv_regions);
170 
171 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
172 		phys_addr_t start, phys_addr_t end)
173 {
174 	struct iova_domain *iovad = &cookie->iovad;
175 	struct iommu_dma_msi_page *msi_page;
176 	int i, num_pages;
177 
178 	start -= iova_offset(iovad, start);
179 	num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
180 
181 	msi_page = kcalloc(num_pages, sizeof(*msi_page), GFP_KERNEL);
182 	if (!msi_page)
183 		return -ENOMEM;
184 
185 	for (i = 0; i < num_pages; i++) {
186 		msi_page[i].phys = start;
187 		msi_page[i].iova = start;
188 		INIT_LIST_HEAD(&msi_page[i].list);
189 		list_add(&msi_page[i].list, &cookie->msi_page_list);
190 		start += iovad->granule;
191 	}
192 
193 	return 0;
194 }
195 
196 static int iova_reserve_pci_windows(struct pci_dev *dev,
197 		struct iova_domain *iovad)
198 {
199 	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
200 	struct resource_entry *window;
201 	unsigned long lo, hi;
202 	phys_addr_t start = 0, end;
203 
204 	resource_list_for_each_entry(window, &bridge->windows) {
205 		if (resource_type(window->res) != IORESOURCE_MEM)
206 			continue;
207 
208 		lo = iova_pfn(iovad, window->res->start - window->offset);
209 		hi = iova_pfn(iovad, window->res->end - window->offset);
210 		reserve_iova(iovad, lo, hi);
211 	}
212 
213 	/* Get reserved DMA windows from host bridge */
214 	resource_list_for_each_entry(window, &bridge->dma_ranges) {
215 		end = window->res->start - window->offset;
216 resv_iova:
217 		if (end > start) {
218 			lo = iova_pfn(iovad, start);
219 			hi = iova_pfn(iovad, end);
220 			reserve_iova(iovad, lo, hi);
221 		} else {
222 			/* dma_ranges list should be sorted */
223 			dev_err(&dev->dev, "Failed to reserve IOVA\n");
224 			return -EINVAL;
225 		}
226 
227 		start = window->res->end - window->offset + 1;
228 		/* If window is last entry */
229 		if (window->node.next == &bridge->dma_ranges &&
230 		    end != ~(phys_addr_t)0) {
231 			end = ~(phys_addr_t)0;
232 			goto resv_iova;
233 		}
234 	}
235 
236 	return 0;
237 }
238 
239 static int iova_reserve_iommu_regions(struct device *dev,
240 		struct iommu_domain *domain)
241 {
242 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
243 	struct iova_domain *iovad = &cookie->iovad;
244 	struct iommu_resv_region *region;
245 	LIST_HEAD(resv_regions);
246 	int ret = 0;
247 
248 	if (dev_is_pci(dev)) {
249 		ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad);
250 		if (ret)
251 			return ret;
252 	}
253 
254 	iommu_get_resv_regions(dev, &resv_regions);
255 	list_for_each_entry(region, &resv_regions, list) {
256 		unsigned long lo, hi;
257 
258 		/* We ARE the software that manages these! */
259 		if (region->type == IOMMU_RESV_SW_MSI)
260 			continue;
261 
262 		lo = iova_pfn(iovad, region->start);
263 		hi = iova_pfn(iovad, region->start + region->length - 1);
264 		reserve_iova(iovad, lo, hi);
265 
266 		if (region->type == IOMMU_RESV_MSI)
267 			ret = cookie_init_hw_msi_region(cookie, region->start,
268 					region->start + region->length);
269 		if (ret)
270 			break;
271 	}
272 	iommu_put_resv_regions(dev, &resv_regions);
273 
274 	return ret;
275 }
276 
277 static void iommu_dma_flush_iotlb_all(struct iova_domain *iovad)
278 {
279 	struct iommu_dma_cookie *cookie;
280 	struct iommu_domain *domain;
281 
282 	cookie = container_of(iovad, struct iommu_dma_cookie, iovad);
283 	domain = cookie->fq_domain;
284 	/*
285 	 * The IOMMU driver supporting DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE
286 	 * implies that ops->flush_iotlb_all must be non-NULL.
287 	 */
288 	domain->ops->flush_iotlb_all(domain);
289 }
290 
291 /**
292  * iommu_dma_init_domain - Initialise a DMA mapping domain
293  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
294  * @base: IOVA at which the mappable address space starts
295  * @size: Size of IOVA space
296  * @dev: Device the domain is being initialised for
297  *
298  * @base and @size should be exact multiples of IOMMU page granularity to
299  * avoid rounding surprises. If necessary, we reserve the page at address 0
300  * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
301  * any change which could make prior IOVAs invalid will fail.
302  */
303 static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
304 		u64 size, struct device *dev)
305 {
306 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
307 	unsigned long order, base_pfn;
308 	struct iova_domain *iovad;
309 	int attr;
310 
311 	if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
312 		return -EINVAL;
313 
314 	iovad = &cookie->iovad;
315 
316 	/* Use the smallest supported page size for IOVA granularity */
317 	order = __ffs(domain->pgsize_bitmap);
318 	base_pfn = max_t(unsigned long, 1, base >> order);
319 
320 	/* Check the domain allows at least some access to the device... */
321 	if (domain->geometry.force_aperture) {
322 		if (base > domain->geometry.aperture_end ||
323 		    base + size <= domain->geometry.aperture_start) {
324 			pr_warn("specified DMA range outside IOMMU capability\n");
325 			return -EFAULT;
326 		}
327 		/* ...then finally give it a kicking to make sure it fits */
328 		base_pfn = max_t(unsigned long, base_pfn,
329 				domain->geometry.aperture_start >> order);
330 	}
331 
332 	/* start_pfn is always nonzero for an already-initialised domain */
333 	if (iovad->start_pfn) {
334 		if (1UL << order != iovad->granule ||
335 		    base_pfn != iovad->start_pfn) {
336 			pr_warn("Incompatible range for DMA domain\n");
337 			return -EFAULT;
338 		}
339 
340 		return 0;
341 	}
342 
343 	init_iova_domain(iovad, 1UL << order, base_pfn);
344 
345 	if (!cookie->fq_domain && !iommu_domain_get_attr(domain,
346 			DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE, &attr) && attr) {
347 		cookie->fq_domain = domain;
348 		init_iova_flush_queue(iovad, iommu_dma_flush_iotlb_all, NULL);
349 	}
350 
351 	if (!dev)
352 		return 0;
353 
354 	return iova_reserve_iommu_regions(dev, domain);
355 }
356 
357 static int iommu_dma_deferred_attach(struct device *dev,
358 		struct iommu_domain *domain)
359 {
360 	const struct iommu_ops *ops = domain->ops;
361 
362 	if (!is_kdump_kernel())
363 		return 0;
364 
365 	if (unlikely(ops->is_attach_deferred &&
366 			ops->is_attach_deferred(domain, dev)))
367 		return iommu_attach_device(domain, dev);
368 
369 	return 0;
370 }
371 
372 /**
373  * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
374  *                    page flags.
375  * @dir: Direction of DMA transfer
376  * @coherent: Is the DMA master cache-coherent?
377  * @attrs: DMA attributes for the mapping
378  *
379  * Return: corresponding IOMMU API page protection flags
380  */
381 static int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
382 		     unsigned long attrs)
383 {
384 	int prot = coherent ? IOMMU_CACHE : 0;
385 
386 	if (attrs & DMA_ATTR_PRIVILEGED)
387 		prot |= IOMMU_PRIV;
388 
389 	switch (dir) {
390 	case DMA_BIDIRECTIONAL:
391 		return prot | IOMMU_READ | IOMMU_WRITE;
392 	case DMA_TO_DEVICE:
393 		return prot | IOMMU_READ;
394 	case DMA_FROM_DEVICE:
395 		return prot | IOMMU_WRITE;
396 	default:
397 		return 0;
398 	}
399 }
400 
401 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
402 		size_t size, dma_addr_t dma_limit, struct device *dev)
403 {
404 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
405 	struct iova_domain *iovad = &cookie->iovad;
406 	unsigned long shift, iova_len, iova = 0;
407 
408 	if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
409 		cookie->msi_iova += size;
410 		return cookie->msi_iova - size;
411 	}
412 
413 	shift = iova_shift(iovad);
414 	iova_len = size >> shift;
415 	/*
416 	 * Freeing non-power-of-two-sized allocations back into the IOVA caches
417 	 * will come back to bite us badly, so we have to waste a bit of space
418 	 * rounding up anything cacheable to make sure that can't happen. The
419 	 * order of the unadjusted size will still match upon freeing.
420 	 */
421 	if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1)))
422 		iova_len = roundup_pow_of_two(iova_len);
423 
424 	dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit);
425 
426 	if (domain->geometry.force_aperture)
427 		dma_limit = min(dma_limit, domain->geometry.aperture_end);
428 
429 	/* Try to get PCI devices a SAC address */
430 	if (dma_limit > DMA_BIT_MASK(32) && dev_is_pci(dev))
431 		iova = alloc_iova_fast(iovad, iova_len,
432 				       DMA_BIT_MASK(32) >> shift, false);
433 
434 	if (!iova)
435 		iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift,
436 				       true);
437 
438 	return (dma_addr_t)iova << shift;
439 }
440 
441 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
442 		dma_addr_t iova, size_t size)
443 {
444 	struct iova_domain *iovad = &cookie->iovad;
445 
446 	/* The MSI case is only ever cleaning up its most recent allocation */
447 	if (cookie->type == IOMMU_DMA_MSI_COOKIE)
448 		cookie->msi_iova -= size;
449 	else if (cookie->fq_domain)	/* non-strict mode */
450 		queue_iova(iovad, iova_pfn(iovad, iova),
451 				size >> iova_shift(iovad), 0);
452 	else
453 		free_iova_fast(iovad, iova_pfn(iovad, iova),
454 				size >> iova_shift(iovad));
455 }
456 
457 static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr,
458 		size_t size)
459 {
460 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
461 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
462 	struct iova_domain *iovad = &cookie->iovad;
463 	size_t iova_off = iova_offset(iovad, dma_addr);
464 	struct iommu_iotlb_gather iotlb_gather;
465 	size_t unmapped;
466 
467 	dma_addr -= iova_off;
468 	size = iova_align(iovad, size + iova_off);
469 	iommu_iotlb_gather_init(&iotlb_gather);
470 
471 	unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather);
472 	WARN_ON(unmapped != size);
473 
474 	if (!cookie->fq_domain)
475 		iommu_tlb_sync(domain, &iotlb_gather);
476 	iommu_dma_free_iova(cookie, dma_addr, size);
477 }
478 
479 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
480 		size_t size, int prot, dma_addr_t dma_mask)
481 {
482 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
483 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
484 	struct iova_domain *iovad = &cookie->iovad;
485 	size_t iova_off = iova_offset(iovad, phys);
486 	dma_addr_t iova;
487 
488 	if (unlikely(iommu_dma_deferred_attach(dev, domain)))
489 		return DMA_MAPPING_ERROR;
490 
491 	size = iova_align(iovad, size + iova_off);
492 
493 	iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev);
494 	if (!iova)
495 		return DMA_MAPPING_ERROR;
496 
497 	if (iommu_map_atomic(domain, iova, phys - iova_off, size, prot)) {
498 		iommu_dma_free_iova(cookie, iova, size);
499 		return DMA_MAPPING_ERROR;
500 	}
501 	return iova + iova_off;
502 }
503 
504 static void __iommu_dma_free_pages(struct page **pages, int count)
505 {
506 	while (count--)
507 		__free_page(pages[count]);
508 	kvfree(pages);
509 }
510 
511 static struct page **__iommu_dma_alloc_pages(struct device *dev,
512 		unsigned int count, unsigned long order_mask, gfp_t gfp)
513 {
514 	struct page **pages;
515 	unsigned int i = 0, nid = dev_to_node(dev);
516 
517 	order_mask &= (2U << MAX_ORDER) - 1;
518 	if (!order_mask)
519 		return NULL;
520 
521 	pages = kvzalloc(count * sizeof(*pages), GFP_KERNEL);
522 	if (!pages)
523 		return NULL;
524 
525 	/* IOMMU can map any pages, so himem can also be used here */
526 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
527 
528 	while (count) {
529 		struct page *page = NULL;
530 		unsigned int order_size;
531 
532 		/*
533 		 * Higher-order allocations are a convenience rather
534 		 * than a necessity, hence using __GFP_NORETRY until
535 		 * falling back to minimum-order allocations.
536 		 */
537 		for (order_mask &= (2U << __fls(count)) - 1;
538 		     order_mask; order_mask &= ~order_size) {
539 			unsigned int order = __fls(order_mask);
540 			gfp_t alloc_flags = gfp;
541 
542 			order_size = 1U << order;
543 			if (order_mask > order_size)
544 				alloc_flags |= __GFP_NORETRY;
545 			page = alloc_pages_node(nid, alloc_flags, order);
546 			if (!page)
547 				continue;
548 			if (!order)
549 				break;
550 			if (!PageCompound(page)) {
551 				split_page(page, order);
552 				break;
553 			} else if (!split_huge_page(page)) {
554 				break;
555 			}
556 			__free_pages(page, order);
557 		}
558 		if (!page) {
559 			__iommu_dma_free_pages(pages, i);
560 			return NULL;
561 		}
562 		count -= order_size;
563 		while (order_size--)
564 			pages[i++] = page++;
565 	}
566 	return pages;
567 }
568 
569 /**
570  * iommu_dma_alloc_remap - Allocate and map a buffer contiguous in IOVA space
571  * @dev: Device to allocate memory for. Must be a real device
572  *	 attached to an iommu_dma_domain
573  * @size: Size of buffer in bytes
574  * @dma_handle: Out argument for allocated DMA handle
575  * @gfp: Allocation flags
576  * @attrs: DMA attributes for this allocation
577  *
578  * If @size is less than PAGE_SIZE, then a full CPU page will be allocated,
579  * but an IOMMU which supports smaller pages might not map the whole thing.
580  *
581  * Return: Mapped virtual address, or NULL on failure.
582  */
583 static void *iommu_dma_alloc_remap(struct device *dev, size_t size,
584 		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
585 {
586 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
587 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
588 	struct iova_domain *iovad = &cookie->iovad;
589 	bool coherent = dev_is_dma_coherent(dev);
590 	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
591 	pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
592 	unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
593 	struct page **pages;
594 	struct sg_table sgt;
595 	dma_addr_t iova;
596 	void *vaddr;
597 
598 	*dma_handle = DMA_MAPPING_ERROR;
599 
600 	if (unlikely(iommu_dma_deferred_attach(dev, domain)))
601 		return NULL;
602 
603 	min_size = alloc_sizes & -alloc_sizes;
604 	if (min_size < PAGE_SIZE) {
605 		min_size = PAGE_SIZE;
606 		alloc_sizes |= PAGE_SIZE;
607 	} else {
608 		size = ALIGN(size, min_size);
609 	}
610 	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
611 		alloc_sizes = min_size;
612 
613 	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
614 	pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT,
615 					gfp);
616 	if (!pages)
617 		return NULL;
618 
619 	size = iova_align(iovad, size);
620 	iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
621 	if (!iova)
622 		goto out_free_pages;
623 
624 	if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL))
625 		goto out_free_iova;
626 
627 	if (!(ioprot & IOMMU_CACHE)) {
628 		struct scatterlist *sg;
629 		int i;
630 
631 		for_each_sg(sgt.sgl, sg, sgt.orig_nents, i)
632 			arch_dma_prep_coherent(sg_page(sg), sg->length);
633 	}
634 
635 	if (iommu_map_sg_atomic(domain, iova, sgt.sgl, sgt.orig_nents, ioprot)
636 			< size)
637 		goto out_free_sg;
638 
639 	vaddr = dma_common_pages_remap(pages, size, prot,
640 			__builtin_return_address(0));
641 	if (!vaddr)
642 		goto out_unmap;
643 
644 	*dma_handle = iova;
645 	sg_free_table(&sgt);
646 	return vaddr;
647 
648 out_unmap:
649 	__iommu_dma_unmap(dev, iova, size);
650 out_free_sg:
651 	sg_free_table(&sgt);
652 out_free_iova:
653 	iommu_dma_free_iova(cookie, iova, size);
654 out_free_pages:
655 	__iommu_dma_free_pages(pages, count);
656 	return NULL;
657 }
658 
659 /**
660  * __iommu_dma_mmap - Map a buffer into provided user VMA
661  * @pages: Array representing buffer from __iommu_dma_alloc()
662  * @size: Size of buffer in bytes
663  * @vma: VMA describing requested userspace mapping
664  *
665  * Maps the pages of the buffer in @pages into @vma. The caller is responsible
666  * for verifying the correct size and protection of @vma beforehand.
667  */
668 static int __iommu_dma_mmap(struct page **pages, size_t size,
669 		struct vm_area_struct *vma)
670 {
671 	return vm_map_pages(vma, pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
672 }
673 
674 static void iommu_dma_sync_single_for_cpu(struct device *dev,
675 		dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
676 {
677 	phys_addr_t phys;
678 
679 	if (dev_is_dma_coherent(dev))
680 		return;
681 
682 	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
683 	arch_sync_dma_for_cpu(phys, size, dir);
684 }
685 
686 static void iommu_dma_sync_single_for_device(struct device *dev,
687 		dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
688 {
689 	phys_addr_t phys;
690 
691 	if (dev_is_dma_coherent(dev))
692 		return;
693 
694 	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
695 	arch_sync_dma_for_device(phys, size, dir);
696 }
697 
698 static void iommu_dma_sync_sg_for_cpu(struct device *dev,
699 		struct scatterlist *sgl, int nelems,
700 		enum dma_data_direction dir)
701 {
702 	struct scatterlist *sg;
703 	int i;
704 
705 	if (dev_is_dma_coherent(dev))
706 		return;
707 
708 	for_each_sg(sgl, sg, nelems, i)
709 		arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir);
710 }
711 
712 static void iommu_dma_sync_sg_for_device(struct device *dev,
713 		struct scatterlist *sgl, int nelems,
714 		enum dma_data_direction dir)
715 {
716 	struct scatterlist *sg;
717 	int i;
718 
719 	if (dev_is_dma_coherent(dev))
720 		return;
721 
722 	for_each_sg(sgl, sg, nelems, i)
723 		arch_sync_dma_for_device(sg_phys(sg), sg->length, dir);
724 }
725 
726 static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
727 		unsigned long offset, size_t size, enum dma_data_direction dir,
728 		unsigned long attrs)
729 {
730 	phys_addr_t phys = page_to_phys(page) + offset;
731 	bool coherent = dev_is_dma_coherent(dev);
732 	int prot = dma_info_to_prot(dir, coherent, attrs);
733 	dma_addr_t dma_handle;
734 
735 	dma_handle = __iommu_dma_map(dev, phys, size, prot, dma_get_mask(dev));
736 	if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
737 	    dma_handle != DMA_MAPPING_ERROR)
738 		arch_sync_dma_for_device(phys, size, dir);
739 	return dma_handle;
740 }
741 
742 static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle,
743 		size_t size, enum dma_data_direction dir, unsigned long attrs)
744 {
745 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
746 		iommu_dma_sync_single_for_cpu(dev, dma_handle, size, dir);
747 	__iommu_dma_unmap(dev, dma_handle, size);
748 }
749 
750 /*
751  * Prepare a successfully-mapped scatterlist to give back to the caller.
752  *
753  * At this point the segments are already laid out by iommu_dma_map_sg() to
754  * avoid individually crossing any boundaries, so we merely need to check a
755  * segment's start address to avoid concatenating across one.
756  */
757 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
758 		dma_addr_t dma_addr)
759 {
760 	struct scatterlist *s, *cur = sg;
761 	unsigned long seg_mask = dma_get_seg_boundary(dev);
762 	unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
763 	int i, count = 0;
764 
765 	for_each_sg(sg, s, nents, i) {
766 		/* Restore this segment's original unaligned fields first */
767 		unsigned int s_iova_off = sg_dma_address(s);
768 		unsigned int s_length = sg_dma_len(s);
769 		unsigned int s_iova_len = s->length;
770 
771 		s->offset += s_iova_off;
772 		s->length = s_length;
773 		sg_dma_address(s) = DMA_MAPPING_ERROR;
774 		sg_dma_len(s) = 0;
775 
776 		/*
777 		 * Now fill in the real DMA data. If...
778 		 * - there is a valid output segment to append to
779 		 * - and this segment starts on an IOVA page boundary
780 		 * - but doesn't fall at a segment boundary
781 		 * - and wouldn't make the resulting output segment too long
782 		 */
783 		if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
784 		    (max_len - cur_len >= s_length)) {
785 			/* ...then concatenate it with the previous one */
786 			cur_len += s_length;
787 		} else {
788 			/* Otherwise start the next output segment */
789 			if (i > 0)
790 				cur = sg_next(cur);
791 			cur_len = s_length;
792 			count++;
793 
794 			sg_dma_address(cur) = dma_addr + s_iova_off;
795 		}
796 
797 		sg_dma_len(cur) = cur_len;
798 		dma_addr += s_iova_len;
799 
800 		if (s_length + s_iova_off < s_iova_len)
801 			cur_len = 0;
802 	}
803 	return count;
804 }
805 
806 /*
807  * If mapping failed, then just restore the original list,
808  * but making sure the DMA fields are invalidated.
809  */
810 static void __invalidate_sg(struct scatterlist *sg, int nents)
811 {
812 	struct scatterlist *s;
813 	int i;
814 
815 	for_each_sg(sg, s, nents, i) {
816 		if (sg_dma_address(s) != DMA_MAPPING_ERROR)
817 			s->offset += sg_dma_address(s);
818 		if (sg_dma_len(s))
819 			s->length = sg_dma_len(s);
820 		sg_dma_address(s) = DMA_MAPPING_ERROR;
821 		sg_dma_len(s) = 0;
822 	}
823 }
824 
825 /*
826  * The DMA API client is passing in a scatterlist which could describe
827  * any old buffer layout, but the IOMMU API requires everything to be
828  * aligned to IOMMU pages. Hence the need for this complicated bit of
829  * impedance-matching, to be able to hand off a suitably-aligned list,
830  * but still preserve the original offsets and sizes for the caller.
831  */
832 static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
833 		int nents, enum dma_data_direction dir, unsigned long attrs)
834 {
835 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
836 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
837 	struct iova_domain *iovad = &cookie->iovad;
838 	struct scatterlist *s, *prev = NULL;
839 	int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs);
840 	dma_addr_t iova;
841 	size_t iova_len = 0;
842 	unsigned long mask = dma_get_seg_boundary(dev);
843 	int i;
844 
845 	if (unlikely(iommu_dma_deferred_attach(dev, domain)))
846 		return 0;
847 
848 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
849 		iommu_dma_sync_sg_for_device(dev, sg, nents, dir);
850 
851 	/*
852 	 * Work out how much IOVA space we need, and align the segments to
853 	 * IOVA granules for the IOMMU driver to handle. With some clever
854 	 * trickery we can modify the list in-place, but reversibly, by
855 	 * stashing the unaligned parts in the as-yet-unused DMA fields.
856 	 */
857 	for_each_sg(sg, s, nents, i) {
858 		size_t s_iova_off = iova_offset(iovad, s->offset);
859 		size_t s_length = s->length;
860 		size_t pad_len = (mask - iova_len + 1) & mask;
861 
862 		sg_dma_address(s) = s_iova_off;
863 		sg_dma_len(s) = s_length;
864 		s->offset -= s_iova_off;
865 		s_length = iova_align(iovad, s_length + s_iova_off);
866 		s->length = s_length;
867 
868 		/*
869 		 * Due to the alignment of our single IOVA allocation, we can
870 		 * depend on these assumptions about the segment boundary mask:
871 		 * - If mask size >= IOVA size, then the IOVA range cannot
872 		 *   possibly fall across a boundary, so we don't care.
873 		 * - If mask size < IOVA size, then the IOVA range must start
874 		 *   exactly on a boundary, therefore we can lay things out
875 		 *   based purely on segment lengths without needing to know
876 		 *   the actual addresses beforehand.
877 		 * - The mask must be a power of 2, so pad_len == 0 if
878 		 *   iova_len == 0, thus we cannot dereference prev the first
879 		 *   time through here (i.e. before it has a meaningful value).
880 		 */
881 		if (pad_len && pad_len < s_length - 1) {
882 			prev->length += pad_len;
883 			iova_len += pad_len;
884 		}
885 
886 		iova_len += s_length;
887 		prev = s;
888 	}
889 
890 	iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
891 	if (!iova)
892 		goto out_restore_sg;
893 
894 	/*
895 	 * We'll leave any physical concatenation to the IOMMU driver's
896 	 * implementation - it knows better than we do.
897 	 */
898 	if (iommu_map_sg_atomic(domain, iova, sg, nents, prot) < iova_len)
899 		goto out_free_iova;
900 
901 	return __finalise_sg(dev, sg, nents, iova);
902 
903 out_free_iova:
904 	iommu_dma_free_iova(cookie, iova, iova_len);
905 out_restore_sg:
906 	__invalidate_sg(sg, nents);
907 	return 0;
908 }
909 
910 static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
911 		int nents, enum dma_data_direction dir, unsigned long attrs)
912 {
913 	dma_addr_t start, end;
914 	struct scatterlist *tmp;
915 	int i;
916 
917 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
918 		iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir);
919 
920 	/*
921 	 * The scatterlist segments are mapped into a single
922 	 * contiguous IOVA allocation, so this is incredibly easy.
923 	 */
924 	start = sg_dma_address(sg);
925 	for_each_sg(sg_next(sg), tmp, nents - 1, i) {
926 		if (sg_dma_len(tmp) == 0)
927 			break;
928 		sg = tmp;
929 	}
930 	end = sg_dma_address(sg) + sg_dma_len(sg);
931 	__iommu_dma_unmap(dev, start, end - start);
932 }
933 
934 static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
935 		size_t size, enum dma_data_direction dir, unsigned long attrs)
936 {
937 	return __iommu_dma_map(dev, phys, size,
938 			dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO,
939 			dma_get_mask(dev));
940 }
941 
942 static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
943 		size_t size, enum dma_data_direction dir, unsigned long attrs)
944 {
945 	__iommu_dma_unmap(dev, handle, size);
946 }
947 
948 static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr)
949 {
950 	size_t alloc_size = PAGE_ALIGN(size);
951 	int count = alloc_size >> PAGE_SHIFT;
952 	struct page *page = NULL, **pages = NULL;
953 
954 	/* Non-coherent atomic allocation? Easy */
955 	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
956 	    dma_free_from_pool(cpu_addr, alloc_size))
957 		return;
958 
959 	if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
960 		/*
961 		 * If it the address is remapped, then it's either non-coherent
962 		 * or highmem CMA, or an iommu_dma_alloc_remap() construction.
963 		 */
964 		pages = dma_common_find_pages(cpu_addr);
965 		if (!pages)
966 			page = vmalloc_to_page(cpu_addr);
967 		dma_common_free_remap(cpu_addr, alloc_size);
968 	} else {
969 		/* Lowmem means a coherent atomic or CMA allocation */
970 		page = virt_to_page(cpu_addr);
971 	}
972 
973 	if (pages)
974 		__iommu_dma_free_pages(pages, count);
975 	if (page)
976 		dma_free_contiguous(dev, page, alloc_size);
977 }
978 
979 static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr,
980 		dma_addr_t handle, unsigned long attrs)
981 {
982 	__iommu_dma_unmap(dev, handle, size);
983 	__iommu_dma_free(dev, size, cpu_addr);
984 }
985 
986 static void *iommu_dma_alloc_pages(struct device *dev, size_t size,
987 		struct page **pagep, gfp_t gfp, unsigned long attrs)
988 {
989 	bool coherent = dev_is_dma_coherent(dev);
990 	size_t alloc_size = PAGE_ALIGN(size);
991 	int node = dev_to_node(dev);
992 	struct page *page = NULL;
993 	void *cpu_addr;
994 
995 	page = dma_alloc_contiguous(dev, alloc_size, gfp);
996 	if (!page)
997 		page = alloc_pages_node(node, gfp, get_order(alloc_size));
998 	if (!page)
999 		return NULL;
1000 
1001 	if (IS_ENABLED(CONFIG_DMA_REMAP) && (!coherent || PageHighMem(page))) {
1002 		pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
1003 
1004 		cpu_addr = dma_common_contiguous_remap(page, alloc_size,
1005 				prot, __builtin_return_address(0));
1006 		if (!cpu_addr)
1007 			goto out_free_pages;
1008 
1009 		if (!coherent)
1010 			arch_dma_prep_coherent(page, size);
1011 	} else {
1012 		cpu_addr = page_address(page);
1013 	}
1014 
1015 	*pagep = page;
1016 	memset(cpu_addr, 0, alloc_size);
1017 	return cpu_addr;
1018 out_free_pages:
1019 	dma_free_contiguous(dev, page, alloc_size);
1020 	return NULL;
1021 }
1022 
1023 static void *iommu_dma_alloc(struct device *dev, size_t size,
1024 		dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1025 {
1026 	bool coherent = dev_is_dma_coherent(dev);
1027 	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
1028 	struct page *page = NULL;
1029 	void *cpu_addr;
1030 
1031 	gfp |= __GFP_ZERO;
1032 
1033 	if (IS_ENABLED(CONFIG_DMA_REMAP) && gfpflags_allow_blocking(gfp) &&
1034 	    !(attrs & DMA_ATTR_FORCE_CONTIGUOUS))
1035 		return iommu_dma_alloc_remap(dev, size, handle, gfp, attrs);
1036 
1037 	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1038 	    !gfpflags_allow_blocking(gfp) && !coherent)
1039 		cpu_addr = dma_alloc_from_pool(PAGE_ALIGN(size), &page, gfp);
1040 	else
1041 		cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs);
1042 	if (!cpu_addr)
1043 		return NULL;
1044 
1045 	*handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot,
1046 			dev->coherent_dma_mask);
1047 	if (*handle == DMA_MAPPING_ERROR) {
1048 		__iommu_dma_free(dev, size, cpu_addr);
1049 		return NULL;
1050 	}
1051 
1052 	return cpu_addr;
1053 }
1054 
1055 static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma,
1056 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
1057 		unsigned long attrs)
1058 {
1059 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1060 	unsigned long pfn, off = vma->vm_pgoff;
1061 	int ret;
1062 
1063 	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
1064 
1065 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
1066 		return ret;
1067 
1068 	if (off >= nr_pages || vma_pages(vma) > nr_pages - off)
1069 		return -ENXIO;
1070 
1071 	if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1072 		struct page **pages = dma_common_find_pages(cpu_addr);
1073 
1074 		if (pages)
1075 			return __iommu_dma_mmap(pages, size, vma);
1076 		pfn = vmalloc_to_pfn(cpu_addr);
1077 	} else {
1078 		pfn = page_to_pfn(virt_to_page(cpu_addr));
1079 	}
1080 
1081 	return remap_pfn_range(vma, vma->vm_start, pfn + off,
1082 			       vma->vm_end - vma->vm_start,
1083 			       vma->vm_page_prot);
1084 }
1085 
1086 static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
1087 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
1088 		unsigned long attrs)
1089 {
1090 	struct page *page;
1091 	int ret;
1092 
1093 	if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1094 		struct page **pages = dma_common_find_pages(cpu_addr);
1095 
1096 		if (pages) {
1097 			return sg_alloc_table_from_pages(sgt, pages,
1098 					PAGE_ALIGN(size) >> PAGE_SHIFT,
1099 					0, size, GFP_KERNEL);
1100 		}
1101 
1102 		page = vmalloc_to_page(cpu_addr);
1103 	} else {
1104 		page = virt_to_page(cpu_addr);
1105 	}
1106 
1107 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
1108 	if (!ret)
1109 		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
1110 	return ret;
1111 }
1112 
1113 static unsigned long iommu_dma_get_merge_boundary(struct device *dev)
1114 {
1115 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1116 
1117 	return (1UL << __ffs(domain->pgsize_bitmap)) - 1;
1118 }
1119 
1120 static const struct dma_map_ops iommu_dma_ops = {
1121 	.alloc			= iommu_dma_alloc,
1122 	.free			= iommu_dma_free,
1123 	.mmap			= iommu_dma_mmap,
1124 	.get_sgtable		= iommu_dma_get_sgtable,
1125 	.map_page		= iommu_dma_map_page,
1126 	.unmap_page		= iommu_dma_unmap_page,
1127 	.map_sg			= iommu_dma_map_sg,
1128 	.unmap_sg		= iommu_dma_unmap_sg,
1129 	.sync_single_for_cpu	= iommu_dma_sync_single_for_cpu,
1130 	.sync_single_for_device	= iommu_dma_sync_single_for_device,
1131 	.sync_sg_for_cpu	= iommu_dma_sync_sg_for_cpu,
1132 	.sync_sg_for_device	= iommu_dma_sync_sg_for_device,
1133 	.map_resource		= iommu_dma_map_resource,
1134 	.unmap_resource		= iommu_dma_unmap_resource,
1135 	.get_merge_boundary	= iommu_dma_get_merge_boundary,
1136 };
1137 
1138 /*
1139  * The IOMMU core code allocates the default DMA domain, which the underlying
1140  * IOMMU driver needs to support via the dma-iommu layer.
1141  */
1142 void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size)
1143 {
1144 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1145 
1146 	if (!domain)
1147 		goto out_err;
1148 
1149 	/*
1150 	 * The IOMMU core code allocates the default DMA domain, which the
1151 	 * underlying IOMMU driver needs to support via the dma-iommu layer.
1152 	 */
1153 	if (domain->type == IOMMU_DOMAIN_DMA) {
1154 		if (iommu_dma_init_domain(domain, dma_base, size, dev))
1155 			goto out_err;
1156 		dev->dma_ops = &iommu_dma_ops;
1157 	}
1158 
1159 	return;
1160 out_err:
1161 	 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
1162 		 dev_name(dev));
1163 }
1164 
1165 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
1166 		phys_addr_t msi_addr, struct iommu_domain *domain)
1167 {
1168 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
1169 	struct iommu_dma_msi_page *msi_page;
1170 	dma_addr_t iova;
1171 	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1172 	size_t size = cookie_msi_granule(cookie);
1173 
1174 	msi_addr &= ~(phys_addr_t)(size - 1);
1175 	list_for_each_entry(msi_page, &cookie->msi_page_list, list)
1176 		if (msi_page->phys == msi_addr)
1177 			return msi_page;
1178 
1179 	msi_page = kzalloc(sizeof(*msi_page), GFP_ATOMIC);
1180 	if (!msi_page)
1181 		return NULL;
1182 
1183 	iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
1184 	if (!iova)
1185 		goto out_free_page;
1186 
1187 	if (iommu_map(domain, iova, msi_addr, size, prot))
1188 		goto out_free_iova;
1189 
1190 	INIT_LIST_HEAD(&msi_page->list);
1191 	msi_page->phys = msi_addr;
1192 	msi_page->iova = iova;
1193 	list_add(&msi_page->list, &cookie->msi_page_list);
1194 	return msi_page;
1195 
1196 out_free_iova:
1197 	iommu_dma_free_iova(cookie, iova, size);
1198 out_free_page:
1199 	kfree(msi_page);
1200 	return NULL;
1201 }
1202 
1203 int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)
1204 {
1205 	struct device *dev = msi_desc_to_dev(desc);
1206 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1207 	struct iommu_dma_cookie *cookie;
1208 	struct iommu_dma_msi_page *msi_page;
1209 	unsigned long flags;
1210 
1211 	if (!domain || !domain->iova_cookie) {
1212 		desc->iommu_cookie = NULL;
1213 		return 0;
1214 	}
1215 
1216 	cookie = domain->iova_cookie;
1217 
1218 	/*
1219 	 * We disable IRQs to rule out a possible inversion against
1220 	 * irq_desc_lock if, say, someone tries to retarget the affinity
1221 	 * of an MSI from within an IPI handler.
1222 	 */
1223 	spin_lock_irqsave(&cookie->msi_lock, flags);
1224 	msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
1225 	spin_unlock_irqrestore(&cookie->msi_lock, flags);
1226 
1227 	msi_desc_set_iommu_cookie(desc, msi_page);
1228 
1229 	if (!msi_page)
1230 		return -ENOMEM;
1231 	return 0;
1232 }
1233 
1234 void iommu_dma_compose_msi_msg(struct msi_desc *desc,
1235 			       struct msi_msg *msg)
1236 {
1237 	struct device *dev = msi_desc_to_dev(desc);
1238 	const struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1239 	const struct iommu_dma_msi_page *msi_page;
1240 
1241 	msi_page = msi_desc_get_iommu_cookie(desc);
1242 
1243 	if (!domain || !domain->iova_cookie || WARN_ON(!msi_page))
1244 		return;
1245 
1246 	msg->address_hi = upper_32_bits(msi_page->iova);
1247 	msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1;
1248 	msg->address_lo += lower_32_bits(msi_page->iova);
1249 }
1250 
1251 static int iommu_dma_init(void)
1252 {
1253 	return iova_cache_get();
1254 }
1255 arch_initcall(iommu_dma_init);
1256