xref: /openbmc/linux/drivers/iommu/dma-iommu.c (revision c4c3c32d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * A fairly generic DMA-API to IOMMU-API glue layer.
4  *
5  * Copyright (C) 2014-2015 ARM Ltd.
6  *
7  * based in part on arch/arm/mm/dma-mapping.c:
8  * Copyright (C) 2000-2004 Russell King
9  */
10 
11 #include <linux/acpi_iort.h>
12 #include <linux/atomic.h>
13 #include <linux/crash_dump.h>
14 #include <linux/device.h>
15 #include <linux/dma-direct.h>
16 #include <linux/dma-map-ops.h>
17 #include <linux/gfp.h>
18 #include <linux/huge_mm.h>
19 #include <linux/iommu.h>
20 #include <linux/iova.h>
21 #include <linux/irq.h>
22 #include <linux/list_sort.h>
23 #include <linux/memremap.h>
24 #include <linux/mm.h>
25 #include <linux/mutex.h>
26 #include <linux/of_iommu.h>
27 #include <linux/pci.h>
28 #include <linux/scatterlist.h>
29 #include <linux/spinlock.h>
30 #include <linux/swiotlb.h>
31 #include <linux/vmalloc.h>
32 
33 #include "dma-iommu.h"
34 
35 struct iommu_dma_msi_page {
36 	struct list_head	list;
37 	dma_addr_t		iova;
38 	phys_addr_t		phys;
39 };
40 
41 enum iommu_dma_cookie_type {
42 	IOMMU_DMA_IOVA_COOKIE,
43 	IOMMU_DMA_MSI_COOKIE,
44 };
45 
46 struct iommu_dma_cookie {
47 	enum iommu_dma_cookie_type	type;
48 	union {
49 		/* Full allocator for IOMMU_DMA_IOVA_COOKIE */
50 		struct {
51 			struct iova_domain	iovad;
52 
53 			struct iova_fq __percpu *fq;	/* Flush queue */
54 			/* Number of TLB flushes that have been started */
55 			atomic64_t		fq_flush_start_cnt;
56 			/* Number of TLB flushes that have been finished */
57 			atomic64_t		fq_flush_finish_cnt;
58 			/* Timer to regularily empty the flush queues */
59 			struct timer_list	fq_timer;
60 			/* 1 when timer is active, 0 when not */
61 			atomic_t		fq_timer_on;
62 		};
63 		/* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
64 		dma_addr_t		msi_iova;
65 	};
66 	struct list_head		msi_page_list;
67 
68 	/* Domain for flush queue callback; NULL if flush queue not in use */
69 	struct iommu_domain		*fq_domain;
70 	struct mutex			mutex;
71 };
72 
73 static DEFINE_STATIC_KEY_FALSE(iommu_deferred_attach_enabled);
74 bool iommu_dma_forcedac __read_mostly;
75 
76 static int __init iommu_dma_forcedac_setup(char *str)
77 {
78 	int ret = kstrtobool(str, &iommu_dma_forcedac);
79 
80 	if (!ret && iommu_dma_forcedac)
81 		pr_info("Forcing DAC for PCI devices\n");
82 	return ret;
83 }
84 early_param("iommu.forcedac", iommu_dma_forcedac_setup);
85 
86 /* Number of entries per flush queue */
87 #define IOVA_FQ_SIZE	256
88 
89 /* Timeout (in ms) after which entries are flushed from the queue */
90 #define IOVA_FQ_TIMEOUT	10
91 
92 /* Flush queue entry for deferred flushing */
93 struct iova_fq_entry {
94 	unsigned long iova_pfn;
95 	unsigned long pages;
96 	struct list_head freelist;
97 	u64 counter; /* Flush counter when this entry was added */
98 };
99 
100 /* Per-CPU flush queue structure */
101 struct iova_fq {
102 	struct iova_fq_entry entries[IOVA_FQ_SIZE];
103 	unsigned int head, tail;
104 	spinlock_t lock;
105 };
106 
107 #define fq_ring_for_each(i, fq) \
108 	for ((i) = (fq)->head; (i) != (fq)->tail; (i) = ((i) + 1) % IOVA_FQ_SIZE)
109 
110 static inline bool fq_full(struct iova_fq *fq)
111 {
112 	assert_spin_locked(&fq->lock);
113 	return (((fq->tail + 1) % IOVA_FQ_SIZE) == fq->head);
114 }
115 
116 static inline unsigned int fq_ring_add(struct iova_fq *fq)
117 {
118 	unsigned int idx = fq->tail;
119 
120 	assert_spin_locked(&fq->lock);
121 
122 	fq->tail = (idx + 1) % IOVA_FQ_SIZE;
123 
124 	return idx;
125 }
126 
127 static void fq_ring_free(struct iommu_dma_cookie *cookie, struct iova_fq *fq)
128 {
129 	u64 counter = atomic64_read(&cookie->fq_flush_finish_cnt);
130 	unsigned int idx;
131 
132 	assert_spin_locked(&fq->lock);
133 
134 	fq_ring_for_each(idx, fq) {
135 
136 		if (fq->entries[idx].counter >= counter)
137 			break;
138 
139 		put_pages_list(&fq->entries[idx].freelist);
140 		free_iova_fast(&cookie->iovad,
141 			       fq->entries[idx].iova_pfn,
142 			       fq->entries[idx].pages);
143 
144 		fq->head = (fq->head + 1) % IOVA_FQ_SIZE;
145 	}
146 }
147 
148 static void fq_flush_iotlb(struct iommu_dma_cookie *cookie)
149 {
150 	atomic64_inc(&cookie->fq_flush_start_cnt);
151 	cookie->fq_domain->ops->flush_iotlb_all(cookie->fq_domain);
152 	atomic64_inc(&cookie->fq_flush_finish_cnt);
153 }
154 
155 static void fq_flush_timeout(struct timer_list *t)
156 {
157 	struct iommu_dma_cookie *cookie = from_timer(cookie, t, fq_timer);
158 	int cpu;
159 
160 	atomic_set(&cookie->fq_timer_on, 0);
161 	fq_flush_iotlb(cookie);
162 
163 	for_each_possible_cpu(cpu) {
164 		unsigned long flags;
165 		struct iova_fq *fq;
166 
167 		fq = per_cpu_ptr(cookie->fq, cpu);
168 		spin_lock_irqsave(&fq->lock, flags);
169 		fq_ring_free(cookie, fq);
170 		spin_unlock_irqrestore(&fq->lock, flags);
171 	}
172 }
173 
174 static void queue_iova(struct iommu_dma_cookie *cookie,
175 		unsigned long pfn, unsigned long pages,
176 		struct list_head *freelist)
177 {
178 	struct iova_fq *fq;
179 	unsigned long flags;
180 	unsigned int idx;
181 
182 	/*
183 	 * Order against the IOMMU driver's pagetable update from unmapping
184 	 * @pte, to guarantee that fq_flush_iotlb() observes that if called
185 	 * from a different CPU before we release the lock below. Full barrier
186 	 * so it also pairs with iommu_dma_init_fq() to avoid seeing partially
187 	 * written fq state here.
188 	 */
189 	smp_mb();
190 
191 	fq = raw_cpu_ptr(cookie->fq);
192 	spin_lock_irqsave(&fq->lock, flags);
193 
194 	/*
195 	 * First remove all entries from the flush queue that have already been
196 	 * flushed out on another CPU. This makes the fq_full() check below less
197 	 * likely to be true.
198 	 */
199 	fq_ring_free(cookie, fq);
200 
201 	if (fq_full(fq)) {
202 		fq_flush_iotlb(cookie);
203 		fq_ring_free(cookie, fq);
204 	}
205 
206 	idx = fq_ring_add(fq);
207 
208 	fq->entries[idx].iova_pfn = pfn;
209 	fq->entries[idx].pages    = pages;
210 	fq->entries[idx].counter  = atomic64_read(&cookie->fq_flush_start_cnt);
211 	list_splice(freelist, &fq->entries[idx].freelist);
212 
213 	spin_unlock_irqrestore(&fq->lock, flags);
214 
215 	/* Avoid false sharing as much as possible. */
216 	if (!atomic_read(&cookie->fq_timer_on) &&
217 	    !atomic_xchg(&cookie->fq_timer_on, 1))
218 		mod_timer(&cookie->fq_timer,
219 			  jiffies + msecs_to_jiffies(IOVA_FQ_TIMEOUT));
220 }
221 
222 static void iommu_dma_free_fq(struct iommu_dma_cookie *cookie)
223 {
224 	int cpu, idx;
225 
226 	if (!cookie->fq)
227 		return;
228 
229 	del_timer_sync(&cookie->fq_timer);
230 	/* The IOVAs will be torn down separately, so just free our queued pages */
231 	for_each_possible_cpu(cpu) {
232 		struct iova_fq *fq = per_cpu_ptr(cookie->fq, cpu);
233 
234 		fq_ring_for_each(idx, fq)
235 			put_pages_list(&fq->entries[idx].freelist);
236 	}
237 
238 	free_percpu(cookie->fq);
239 }
240 
241 /* sysfs updates are serialised by the mutex of the group owning @domain */
242 int iommu_dma_init_fq(struct iommu_domain *domain)
243 {
244 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
245 	struct iova_fq __percpu *queue;
246 	int i, cpu;
247 
248 	if (cookie->fq_domain)
249 		return 0;
250 
251 	atomic64_set(&cookie->fq_flush_start_cnt,  0);
252 	atomic64_set(&cookie->fq_flush_finish_cnt, 0);
253 
254 	queue = alloc_percpu(struct iova_fq);
255 	if (!queue) {
256 		pr_warn("iova flush queue initialization failed\n");
257 		return -ENOMEM;
258 	}
259 
260 	for_each_possible_cpu(cpu) {
261 		struct iova_fq *fq = per_cpu_ptr(queue, cpu);
262 
263 		fq->head = 0;
264 		fq->tail = 0;
265 
266 		spin_lock_init(&fq->lock);
267 
268 		for (i = 0; i < IOVA_FQ_SIZE; i++)
269 			INIT_LIST_HEAD(&fq->entries[i].freelist);
270 	}
271 
272 	cookie->fq = queue;
273 
274 	timer_setup(&cookie->fq_timer, fq_flush_timeout, 0);
275 	atomic_set(&cookie->fq_timer_on, 0);
276 	/*
277 	 * Prevent incomplete fq state being observable. Pairs with path from
278 	 * __iommu_dma_unmap() through iommu_dma_free_iova() to queue_iova()
279 	 */
280 	smp_wmb();
281 	WRITE_ONCE(cookie->fq_domain, domain);
282 	return 0;
283 }
284 
285 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
286 {
287 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
288 		return cookie->iovad.granule;
289 	return PAGE_SIZE;
290 }
291 
292 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
293 {
294 	struct iommu_dma_cookie *cookie;
295 
296 	cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
297 	if (cookie) {
298 		INIT_LIST_HEAD(&cookie->msi_page_list);
299 		cookie->type = type;
300 	}
301 	return cookie;
302 }
303 
304 /**
305  * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
306  * @domain: IOMMU domain to prepare for DMA-API usage
307  */
308 int iommu_get_dma_cookie(struct iommu_domain *domain)
309 {
310 	if (domain->iova_cookie)
311 		return -EEXIST;
312 
313 	domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
314 	if (!domain->iova_cookie)
315 		return -ENOMEM;
316 
317 	mutex_init(&domain->iova_cookie->mutex);
318 	return 0;
319 }
320 
321 /**
322  * iommu_get_msi_cookie - Acquire just MSI remapping resources
323  * @domain: IOMMU domain to prepare
324  * @base: Start address of IOVA region for MSI mappings
325  *
326  * Users who manage their own IOVA allocation and do not want DMA API support,
327  * but would still like to take advantage of automatic MSI remapping, can use
328  * this to initialise their own domain appropriately. Users should reserve a
329  * contiguous IOVA region, starting at @base, large enough to accommodate the
330  * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
331  * used by the devices attached to @domain.
332  */
333 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
334 {
335 	struct iommu_dma_cookie *cookie;
336 
337 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
338 		return -EINVAL;
339 
340 	if (domain->iova_cookie)
341 		return -EEXIST;
342 
343 	cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
344 	if (!cookie)
345 		return -ENOMEM;
346 
347 	cookie->msi_iova = base;
348 	domain->iova_cookie = cookie;
349 	return 0;
350 }
351 EXPORT_SYMBOL(iommu_get_msi_cookie);
352 
353 /**
354  * iommu_put_dma_cookie - Release a domain's DMA mapping resources
355  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
356  *          iommu_get_msi_cookie()
357  */
358 void iommu_put_dma_cookie(struct iommu_domain *domain)
359 {
360 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
361 	struct iommu_dma_msi_page *msi, *tmp;
362 
363 	if (!cookie)
364 		return;
365 
366 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule) {
367 		iommu_dma_free_fq(cookie);
368 		put_iova_domain(&cookie->iovad);
369 	}
370 
371 	list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
372 		list_del(&msi->list);
373 		kfree(msi);
374 	}
375 	kfree(cookie);
376 	domain->iova_cookie = NULL;
377 }
378 
379 /**
380  * iommu_dma_get_resv_regions - Reserved region driver helper
381  * @dev: Device from iommu_get_resv_regions()
382  * @list: Reserved region list from iommu_get_resv_regions()
383  *
384  * IOMMU drivers can use this to implement their .get_resv_regions callback
385  * for general non-IOMMU-specific reservations. Currently, this covers GICv3
386  * ITS region reservation on ACPI based ARM platforms that may require HW MSI
387  * reservation.
388  */
389 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
390 {
391 
392 	if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode))
393 		iort_iommu_get_resv_regions(dev, list);
394 
395 	if (dev->of_node)
396 		of_iommu_get_resv_regions(dev, list);
397 }
398 EXPORT_SYMBOL(iommu_dma_get_resv_regions);
399 
400 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
401 		phys_addr_t start, phys_addr_t end)
402 {
403 	struct iova_domain *iovad = &cookie->iovad;
404 	struct iommu_dma_msi_page *msi_page;
405 	int i, num_pages;
406 
407 	start -= iova_offset(iovad, start);
408 	num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
409 
410 	for (i = 0; i < num_pages; i++) {
411 		msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL);
412 		if (!msi_page)
413 			return -ENOMEM;
414 
415 		msi_page->phys = start;
416 		msi_page->iova = start;
417 		INIT_LIST_HEAD(&msi_page->list);
418 		list_add(&msi_page->list, &cookie->msi_page_list);
419 		start += iovad->granule;
420 	}
421 
422 	return 0;
423 }
424 
425 static int iommu_dma_ranges_sort(void *priv, const struct list_head *a,
426 		const struct list_head *b)
427 {
428 	struct resource_entry *res_a = list_entry(a, typeof(*res_a), node);
429 	struct resource_entry *res_b = list_entry(b, typeof(*res_b), node);
430 
431 	return res_a->res->start > res_b->res->start;
432 }
433 
434 static int iova_reserve_pci_windows(struct pci_dev *dev,
435 		struct iova_domain *iovad)
436 {
437 	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
438 	struct resource_entry *window;
439 	unsigned long lo, hi;
440 	phys_addr_t start = 0, end;
441 
442 	resource_list_for_each_entry(window, &bridge->windows) {
443 		if (resource_type(window->res) != IORESOURCE_MEM)
444 			continue;
445 
446 		lo = iova_pfn(iovad, window->res->start - window->offset);
447 		hi = iova_pfn(iovad, window->res->end - window->offset);
448 		reserve_iova(iovad, lo, hi);
449 	}
450 
451 	/* Get reserved DMA windows from host bridge */
452 	list_sort(NULL, &bridge->dma_ranges, iommu_dma_ranges_sort);
453 	resource_list_for_each_entry(window, &bridge->dma_ranges) {
454 		end = window->res->start - window->offset;
455 resv_iova:
456 		if (end > start) {
457 			lo = iova_pfn(iovad, start);
458 			hi = iova_pfn(iovad, end);
459 			reserve_iova(iovad, lo, hi);
460 		} else if (end < start) {
461 			/* DMA ranges should be non-overlapping */
462 			dev_err(&dev->dev,
463 				"Failed to reserve IOVA [%pa-%pa]\n",
464 				&start, &end);
465 			return -EINVAL;
466 		}
467 
468 		start = window->res->end - window->offset + 1;
469 		/* If window is last entry */
470 		if (window->node.next == &bridge->dma_ranges &&
471 		    end != ~(phys_addr_t)0) {
472 			end = ~(phys_addr_t)0;
473 			goto resv_iova;
474 		}
475 	}
476 
477 	return 0;
478 }
479 
480 static int iova_reserve_iommu_regions(struct device *dev,
481 		struct iommu_domain *domain)
482 {
483 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
484 	struct iova_domain *iovad = &cookie->iovad;
485 	struct iommu_resv_region *region;
486 	LIST_HEAD(resv_regions);
487 	int ret = 0;
488 
489 	if (dev_is_pci(dev)) {
490 		ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad);
491 		if (ret)
492 			return ret;
493 	}
494 
495 	iommu_get_resv_regions(dev, &resv_regions);
496 	list_for_each_entry(region, &resv_regions, list) {
497 		unsigned long lo, hi;
498 
499 		/* We ARE the software that manages these! */
500 		if (region->type == IOMMU_RESV_SW_MSI)
501 			continue;
502 
503 		lo = iova_pfn(iovad, region->start);
504 		hi = iova_pfn(iovad, region->start + region->length - 1);
505 		reserve_iova(iovad, lo, hi);
506 
507 		if (region->type == IOMMU_RESV_MSI)
508 			ret = cookie_init_hw_msi_region(cookie, region->start,
509 					region->start + region->length);
510 		if (ret)
511 			break;
512 	}
513 	iommu_put_resv_regions(dev, &resv_regions);
514 
515 	return ret;
516 }
517 
518 static bool dev_is_untrusted(struct device *dev)
519 {
520 	return dev_is_pci(dev) && to_pci_dev(dev)->untrusted;
521 }
522 
523 static bool dev_use_swiotlb(struct device *dev, size_t size,
524 			    enum dma_data_direction dir)
525 {
526 	return IS_ENABLED(CONFIG_SWIOTLB) &&
527 		(dev_is_untrusted(dev) ||
528 		 dma_kmalloc_needs_bounce(dev, size, dir));
529 }
530 
531 static bool dev_use_sg_swiotlb(struct device *dev, struct scatterlist *sg,
532 			       int nents, enum dma_data_direction dir)
533 {
534 	struct scatterlist *s;
535 	int i;
536 
537 	if (!IS_ENABLED(CONFIG_SWIOTLB))
538 		return false;
539 
540 	if (dev_is_untrusted(dev))
541 		return true;
542 
543 	/*
544 	 * If kmalloc() buffers are not DMA-safe for this device and
545 	 * direction, check the individual lengths in the sg list. If any
546 	 * element is deemed unsafe, use the swiotlb for bouncing.
547 	 */
548 	if (!dma_kmalloc_safe(dev, dir)) {
549 		for_each_sg(sg, s, nents, i)
550 			if (!dma_kmalloc_size_aligned(s->length))
551 				return true;
552 	}
553 
554 	return false;
555 }
556 
557 /**
558  * iommu_dma_init_domain - Initialise a DMA mapping domain
559  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
560  * @base: IOVA at which the mappable address space starts
561  * @limit: Last address of the IOVA space
562  * @dev: Device the domain is being initialised for
563  *
564  * @base and @limit + 1 should be exact multiples of IOMMU page granularity to
565  * avoid rounding surprises. If necessary, we reserve the page at address 0
566  * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
567  * any change which could make prior IOVAs invalid will fail.
568  */
569 static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
570 				 dma_addr_t limit, struct device *dev)
571 {
572 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
573 	unsigned long order, base_pfn;
574 	struct iova_domain *iovad;
575 	int ret;
576 
577 	if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
578 		return -EINVAL;
579 
580 	iovad = &cookie->iovad;
581 
582 	/* Use the smallest supported page size for IOVA granularity */
583 	order = __ffs(domain->pgsize_bitmap);
584 	base_pfn = max_t(unsigned long, 1, base >> order);
585 
586 	/* Check the domain allows at least some access to the device... */
587 	if (domain->geometry.force_aperture) {
588 		if (base > domain->geometry.aperture_end ||
589 		    limit < domain->geometry.aperture_start) {
590 			pr_warn("specified DMA range outside IOMMU capability\n");
591 			return -EFAULT;
592 		}
593 		/* ...then finally give it a kicking to make sure it fits */
594 		base_pfn = max_t(unsigned long, base_pfn,
595 				domain->geometry.aperture_start >> order);
596 	}
597 
598 	/* start_pfn is always nonzero for an already-initialised domain */
599 	mutex_lock(&cookie->mutex);
600 	if (iovad->start_pfn) {
601 		if (1UL << order != iovad->granule ||
602 		    base_pfn != iovad->start_pfn) {
603 			pr_warn("Incompatible range for DMA domain\n");
604 			ret = -EFAULT;
605 			goto done_unlock;
606 		}
607 
608 		ret = 0;
609 		goto done_unlock;
610 	}
611 
612 	init_iova_domain(iovad, 1UL << order, base_pfn);
613 	ret = iova_domain_init_rcaches(iovad);
614 	if (ret)
615 		goto done_unlock;
616 
617 	/* If the FQ fails we can simply fall back to strict mode */
618 	if (domain->type == IOMMU_DOMAIN_DMA_FQ &&
619 	    (!device_iommu_capable(dev, IOMMU_CAP_DEFERRED_FLUSH) || iommu_dma_init_fq(domain)))
620 		domain->type = IOMMU_DOMAIN_DMA;
621 
622 	ret = iova_reserve_iommu_regions(dev, domain);
623 
624 done_unlock:
625 	mutex_unlock(&cookie->mutex);
626 	return ret;
627 }
628 
629 /**
630  * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
631  *                    page flags.
632  * @dir: Direction of DMA transfer
633  * @coherent: Is the DMA master cache-coherent?
634  * @attrs: DMA attributes for the mapping
635  *
636  * Return: corresponding IOMMU API page protection flags
637  */
638 static int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
639 		     unsigned long attrs)
640 {
641 	int prot = coherent ? IOMMU_CACHE : 0;
642 
643 	if (attrs & DMA_ATTR_PRIVILEGED)
644 		prot |= IOMMU_PRIV;
645 
646 	switch (dir) {
647 	case DMA_BIDIRECTIONAL:
648 		return prot | IOMMU_READ | IOMMU_WRITE;
649 	case DMA_TO_DEVICE:
650 		return prot | IOMMU_READ;
651 	case DMA_FROM_DEVICE:
652 		return prot | IOMMU_WRITE;
653 	default:
654 		return 0;
655 	}
656 }
657 
658 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
659 		size_t size, u64 dma_limit, struct device *dev)
660 {
661 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
662 	struct iova_domain *iovad = &cookie->iovad;
663 	unsigned long shift, iova_len, iova = 0;
664 
665 	if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
666 		cookie->msi_iova += size;
667 		return cookie->msi_iova - size;
668 	}
669 
670 	shift = iova_shift(iovad);
671 	iova_len = size >> shift;
672 
673 	dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit);
674 
675 	if (domain->geometry.force_aperture)
676 		dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end);
677 
678 	/* Try to get PCI devices a SAC address */
679 	if (dma_limit > DMA_BIT_MASK(32) && !iommu_dma_forcedac && dev_is_pci(dev))
680 		iova = alloc_iova_fast(iovad, iova_len,
681 				       DMA_BIT_MASK(32) >> shift, false);
682 
683 	if (!iova)
684 		iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift,
685 				       true);
686 
687 	return (dma_addr_t)iova << shift;
688 }
689 
690 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
691 		dma_addr_t iova, size_t size, struct iommu_iotlb_gather *gather)
692 {
693 	struct iova_domain *iovad = &cookie->iovad;
694 
695 	/* The MSI case is only ever cleaning up its most recent allocation */
696 	if (cookie->type == IOMMU_DMA_MSI_COOKIE)
697 		cookie->msi_iova -= size;
698 	else if (gather && gather->queued)
699 		queue_iova(cookie, iova_pfn(iovad, iova),
700 				size >> iova_shift(iovad),
701 				&gather->freelist);
702 	else
703 		free_iova_fast(iovad, iova_pfn(iovad, iova),
704 				size >> iova_shift(iovad));
705 }
706 
707 static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr,
708 		size_t size)
709 {
710 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
711 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
712 	struct iova_domain *iovad = &cookie->iovad;
713 	size_t iova_off = iova_offset(iovad, dma_addr);
714 	struct iommu_iotlb_gather iotlb_gather;
715 	size_t unmapped;
716 
717 	dma_addr -= iova_off;
718 	size = iova_align(iovad, size + iova_off);
719 	iommu_iotlb_gather_init(&iotlb_gather);
720 	iotlb_gather.queued = READ_ONCE(cookie->fq_domain);
721 
722 	unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather);
723 	WARN_ON(unmapped != size);
724 
725 	if (!iotlb_gather.queued)
726 		iommu_iotlb_sync(domain, &iotlb_gather);
727 	iommu_dma_free_iova(cookie, dma_addr, size, &iotlb_gather);
728 }
729 
730 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
731 		size_t size, int prot, u64 dma_mask)
732 {
733 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
734 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
735 	struct iova_domain *iovad = &cookie->iovad;
736 	size_t iova_off = iova_offset(iovad, phys);
737 	dma_addr_t iova;
738 
739 	if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
740 	    iommu_deferred_attach(dev, domain))
741 		return DMA_MAPPING_ERROR;
742 
743 	size = iova_align(iovad, size + iova_off);
744 
745 	iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev);
746 	if (!iova)
747 		return DMA_MAPPING_ERROR;
748 
749 	if (iommu_map(domain, iova, phys - iova_off, size, prot, GFP_ATOMIC)) {
750 		iommu_dma_free_iova(cookie, iova, size, NULL);
751 		return DMA_MAPPING_ERROR;
752 	}
753 	return iova + iova_off;
754 }
755 
756 static void __iommu_dma_free_pages(struct page **pages, int count)
757 {
758 	while (count--)
759 		__free_page(pages[count]);
760 	kvfree(pages);
761 }
762 
763 static struct page **__iommu_dma_alloc_pages(struct device *dev,
764 		unsigned int count, unsigned long order_mask, gfp_t gfp)
765 {
766 	struct page **pages;
767 	unsigned int i = 0, nid = dev_to_node(dev);
768 
769 	order_mask &= GENMASK(MAX_ORDER, 0);
770 	if (!order_mask)
771 		return NULL;
772 
773 	pages = kvcalloc(count, sizeof(*pages), GFP_KERNEL);
774 	if (!pages)
775 		return NULL;
776 
777 	/* IOMMU can map any pages, so himem can also be used here */
778 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
779 
780 	while (count) {
781 		struct page *page = NULL;
782 		unsigned int order_size;
783 
784 		/*
785 		 * Higher-order allocations are a convenience rather
786 		 * than a necessity, hence using __GFP_NORETRY until
787 		 * falling back to minimum-order allocations.
788 		 */
789 		for (order_mask &= GENMASK(__fls(count), 0);
790 		     order_mask; order_mask &= ~order_size) {
791 			unsigned int order = __fls(order_mask);
792 			gfp_t alloc_flags = gfp;
793 
794 			order_size = 1U << order;
795 			if (order_mask > order_size)
796 				alloc_flags |= __GFP_NORETRY;
797 			page = alloc_pages_node(nid, alloc_flags, order);
798 			if (!page)
799 				continue;
800 			if (order)
801 				split_page(page, order);
802 			break;
803 		}
804 		if (!page) {
805 			__iommu_dma_free_pages(pages, i);
806 			return NULL;
807 		}
808 		count -= order_size;
809 		while (order_size--)
810 			pages[i++] = page++;
811 	}
812 	return pages;
813 }
814 
815 /*
816  * If size is less than PAGE_SIZE, then a full CPU page will be allocated,
817  * but an IOMMU which supports smaller pages might not map the whole thing.
818  */
819 static struct page **__iommu_dma_alloc_noncontiguous(struct device *dev,
820 		size_t size, struct sg_table *sgt, gfp_t gfp, pgprot_t prot,
821 		unsigned long attrs)
822 {
823 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
824 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
825 	struct iova_domain *iovad = &cookie->iovad;
826 	bool coherent = dev_is_dma_coherent(dev);
827 	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
828 	unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
829 	struct page **pages;
830 	dma_addr_t iova;
831 	ssize_t ret;
832 
833 	if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
834 	    iommu_deferred_attach(dev, domain))
835 		return NULL;
836 
837 	min_size = alloc_sizes & -alloc_sizes;
838 	if (min_size < PAGE_SIZE) {
839 		min_size = PAGE_SIZE;
840 		alloc_sizes |= PAGE_SIZE;
841 	} else {
842 		size = ALIGN(size, min_size);
843 	}
844 	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
845 		alloc_sizes = min_size;
846 
847 	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
848 	pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT,
849 					gfp);
850 	if (!pages)
851 		return NULL;
852 
853 	size = iova_align(iovad, size);
854 	iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
855 	if (!iova)
856 		goto out_free_pages;
857 
858 	/*
859 	 * Remove the zone/policy flags from the GFP - these are applied to the
860 	 * __iommu_dma_alloc_pages() but are not used for the supporting
861 	 * internal allocations that follow.
862 	 */
863 	gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM | __GFP_COMP);
864 
865 	if (sg_alloc_table_from_pages(sgt, pages, count, 0, size, gfp))
866 		goto out_free_iova;
867 
868 	if (!(ioprot & IOMMU_CACHE)) {
869 		struct scatterlist *sg;
870 		int i;
871 
872 		for_each_sg(sgt->sgl, sg, sgt->orig_nents, i)
873 			arch_dma_prep_coherent(sg_page(sg), sg->length);
874 	}
875 
876 	ret = iommu_map_sg(domain, iova, sgt->sgl, sgt->orig_nents, ioprot,
877 			   gfp);
878 	if (ret < 0 || ret < size)
879 		goto out_free_sg;
880 
881 	sgt->sgl->dma_address = iova;
882 	sgt->sgl->dma_length = size;
883 	return pages;
884 
885 out_free_sg:
886 	sg_free_table(sgt);
887 out_free_iova:
888 	iommu_dma_free_iova(cookie, iova, size, NULL);
889 out_free_pages:
890 	__iommu_dma_free_pages(pages, count);
891 	return NULL;
892 }
893 
894 static void *iommu_dma_alloc_remap(struct device *dev, size_t size,
895 		dma_addr_t *dma_handle, gfp_t gfp, pgprot_t prot,
896 		unsigned long attrs)
897 {
898 	struct page **pages;
899 	struct sg_table sgt;
900 	void *vaddr;
901 
902 	pages = __iommu_dma_alloc_noncontiguous(dev, size, &sgt, gfp, prot,
903 						attrs);
904 	if (!pages)
905 		return NULL;
906 	*dma_handle = sgt.sgl->dma_address;
907 	sg_free_table(&sgt);
908 	vaddr = dma_common_pages_remap(pages, size, prot,
909 			__builtin_return_address(0));
910 	if (!vaddr)
911 		goto out_unmap;
912 	return vaddr;
913 
914 out_unmap:
915 	__iommu_dma_unmap(dev, *dma_handle, size);
916 	__iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
917 	return NULL;
918 }
919 
920 static struct sg_table *iommu_dma_alloc_noncontiguous(struct device *dev,
921 		size_t size, enum dma_data_direction dir, gfp_t gfp,
922 		unsigned long attrs)
923 {
924 	struct dma_sgt_handle *sh;
925 
926 	sh = kmalloc(sizeof(*sh), gfp);
927 	if (!sh)
928 		return NULL;
929 
930 	sh->pages = __iommu_dma_alloc_noncontiguous(dev, size, &sh->sgt, gfp,
931 						    PAGE_KERNEL, attrs);
932 	if (!sh->pages) {
933 		kfree(sh);
934 		return NULL;
935 	}
936 	return &sh->sgt;
937 }
938 
939 static void iommu_dma_free_noncontiguous(struct device *dev, size_t size,
940 		struct sg_table *sgt, enum dma_data_direction dir)
941 {
942 	struct dma_sgt_handle *sh = sgt_handle(sgt);
943 
944 	__iommu_dma_unmap(dev, sgt->sgl->dma_address, size);
945 	__iommu_dma_free_pages(sh->pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
946 	sg_free_table(&sh->sgt);
947 	kfree(sh);
948 }
949 
950 static void iommu_dma_sync_single_for_cpu(struct device *dev,
951 		dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
952 {
953 	phys_addr_t phys;
954 
955 	if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev, size, dir))
956 		return;
957 
958 	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
959 	if (!dev_is_dma_coherent(dev))
960 		arch_sync_dma_for_cpu(phys, size, dir);
961 
962 	if (is_swiotlb_buffer(dev, phys))
963 		swiotlb_sync_single_for_cpu(dev, phys, size, dir);
964 }
965 
966 static void iommu_dma_sync_single_for_device(struct device *dev,
967 		dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
968 {
969 	phys_addr_t phys;
970 
971 	if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev, size, dir))
972 		return;
973 
974 	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
975 	if (is_swiotlb_buffer(dev, phys))
976 		swiotlb_sync_single_for_device(dev, phys, size, dir);
977 
978 	if (!dev_is_dma_coherent(dev))
979 		arch_sync_dma_for_device(phys, size, dir);
980 }
981 
982 static void iommu_dma_sync_sg_for_cpu(struct device *dev,
983 		struct scatterlist *sgl, int nelems,
984 		enum dma_data_direction dir)
985 {
986 	struct scatterlist *sg;
987 	int i;
988 
989 	if (sg_dma_is_swiotlb(sgl))
990 		for_each_sg(sgl, sg, nelems, i)
991 			iommu_dma_sync_single_for_cpu(dev, sg_dma_address(sg),
992 						      sg->length, dir);
993 	else if (!dev_is_dma_coherent(dev))
994 		for_each_sg(sgl, sg, nelems, i)
995 			arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir);
996 }
997 
998 static void iommu_dma_sync_sg_for_device(struct device *dev,
999 		struct scatterlist *sgl, int nelems,
1000 		enum dma_data_direction dir)
1001 {
1002 	struct scatterlist *sg;
1003 	int i;
1004 
1005 	if (sg_dma_is_swiotlb(sgl))
1006 		for_each_sg(sgl, sg, nelems, i)
1007 			iommu_dma_sync_single_for_device(dev,
1008 							 sg_dma_address(sg),
1009 							 sg->length, dir);
1010 	else if (!dev_is_dma_coherent(dev))
1011 		for_each_sg(sgl, sg, nelems, i)
1012 			arch_sync_dma_for_device(sg_phys(sg), sg->length, dir);
1013 }
1014 
1015 static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
1016 		unsigned long offset, size_t size, enum dma_data_direction dir,
1017 		unsigned long attrs)
1018 {
1019 	phys_addr_t phys = page_to_phys(page) + offset;
1020 	bool coherent = dev_is_dma_coherent(dev);
1021 	int prot = dma_info_to_prot(dir, coherent, attrs);
1022 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1023 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
1024 	struct iova_domain *iovad = &cookie->iovad;
1025 	dma_addr_t iova, dma_mask = dma_get_mask(dev);
1026 
1027 	/*
1028 	 * If both the physical buffer start address and size are
1029 	 * page aligned, we don't need to use a bounce page.
1030 	 */
1031 	if (dev_use_swiotlb(dev, size, dir) &&
1032 	    iova_offset(iovad, phys | size)) {
1033 		void *padding_start;
1034 		size_t padding_size, aligned_size;
1035 
1036 		if (!is_swiotlb_active(dev)) {
1037 			dev_warn_once(dev, "DMA bounce buffers are inactive, unable to map unaligned transaction.\n");
1038 			return DMA_MAPPING_ERROR;
1039 		}
1040 
1041 		aligned_size = iova_align(iovad, size);
1042 		phys = swiotlb_tbl_map_single(dev, phys, size, aligned_size,
1043 					      iova_mask(iovad), dir, attrs);
1044 
1045 		if (phys == DMA_MAPPING_ERROR)
1046 			return DMA_MAPPING_ERROR;
1047 
1048 		/* Cleanup the padding area. */
1049 		padding_start = phys_to_virt(phys);
1050 		padding_size = aligned_size;
1051 
1052 		if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
1053 		    (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) {
1054 			padding_start += size;
1055 			padding_size -= size;
1056 		}
1057 
1058 		memset(padding_start, 0, padding_size);
1059 	}
1060 
1061 	if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1062 		arch_sync_dma_for_device(phys, size, dir);
1063 
1064 	iova = __iommu_dma_map(dev, phys, size, prot, dma_mask);
1065 	if (iova == DMA_MAPPING_ERROR && is_swiotlb_buffer(dev, phys))
1066 		swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
1067 	return iova;
1068 }
1069 
1070 static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle,
1071 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1072 {
1073 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1074 	phys_addr_t phys;
1075 
1076 	phys = iommu_iova_to_phys(domain, dma_handle);
1077 	if (WARN_ON(!phys))
1078 		return;
1079 
1080 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && !dev_is_dma_coherent(dev))
1081 		arch_sync_dma_for_cpu(phys, size, dir);
1082 
1083 	__iommu_dma_unmap(dev, dma_handle, size);
1084 
1085 	if (unlikely(is_swiotlb_buffer(dev, phys)))
1086 		swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
1087 }
1088 
1089 /*
1090  * Prepare a successfully-mapped scatterlist to give back to the caller.
1091  *
1092  * At this point the segments are already laid out by iommu_dma_map_sg() to
1093  * avoid individually crossing any boundaries, so we merely need to check a
1094  * segment's start address to avoid concatenating across one.
1095  */
1096 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
1097 		dma_addr_t dma_addr)
1098 {
1099 	struct scatterlist *s, *cur = sg;
1100 	unsigned long seg_mask = dma_get_seg_boundary(dev);
1101 	unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
1102 	int i, count = 0;
1103 
1104 	for_each_sg(sg, s, nents, i) {
1105 		/* Restore this segment's original unaligned fields first */
1106 		dma_addr_t s_dma_addr = sg_dma_address(s);
1107 		unsigned int s_iova_off = sg_dma_address(s);
1108 		unsigned int s_length = sg_dma_len(s);
1109 		unsigned int s_iova_len = s->length;
1110 
1111 		sg_dma_address(s) = DMA_MAPPING_ERROR;
1112 		sg_dma_len(s) = 0;
1113 
1114 		if (sg_dma_is_bus_address(s)) {
1115 			if (i > 0)
1116 				cur = sg_next(cur);
1117 
1118 			sg_dma_unmark_bus_address(s);
1119 			sg_dma_address(cur) = s_dma_addr;
1120 			sg_dma_len(cur) = s_length;
1121 			sg_dma_mark_bus_address(cur);
1122 			count++;
1123 			cur_len = 0;
1124 			continue;
1125 		}
1126 
1127 		s->offset += s_iova_off;
1128 		s->length = s_length;
1129 
1130 		/*
1131 		 * Now fill in the real DMA data. If...
1132 		 * - there is a valid output segment to append to
1133 		 * - and this segment starts on an IOVA page boundary
1134 		 * - but doesn't fall at a segment boundary
1135 		 * - and wouldn't make the resulting output segment too long
1136 		 */
1137 		if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
1138 		    (max_len - cur_len >= s_length)) {
1139 			/* ...then concatenate it with the previous one */
1140 			cur_len += s_length;
1141 		} else {
1142 			/* Otherwise start the next output segment */
1143 			if (i > 0)
1144 				cur = sg_next(cur);
1145 			cur_len = s_length;
1146 			count++;
1147 
1148 			sg_dma_address(cur) = dma_addr + s_iova_off;
1149 		}
1150 
1151 		sg_dma_len(cur) = cur_len;
1152 		dma_addr += s_iova_len;
1153 
1154 		if (s_length + s_iova_off < s_iova_len)
1155 			cur_len = 0;
1156 	}
1157 	return count;
1158 }
1159 
1160 /*
1161  * If mapping failed, then just restore the original list,
1162  * but making sure the DMA fields are invalidated.
1163  */
1164 static void __invalidate_sg(struct scatterlist *sg, int nents)
1165 {
1166 	struct scatterlist *s;
1167 	int i;
1168 
1169 	for_each_sg(sg, s, nents, i) {
1170 		if (sg_dma_is_bus_address(s)) {
1171 			sg_dma_unmark_bus_address(s);
1172 		} else {
1173 			if (sg_dma_address(s) != DMA_MAPPING_ERROR)
1174 				s->offset += sg_dma_address(s);
1175 			if (sg_dma_len(s))
1176 				s->length = sg_dma_len(s);
1177 		}
1178 		sg_dma_address(s) = DMA_MAPPING_ERROR;
1179 		sg_dma_len(s) = 0;
1180 	}
1181 }
1182 
1183 static void iommu_dma_unmap_sg_swiotlb(struct device *dev, struct scatterlist *sg,
1184 		int nents, enum dma_data_direction dir, unsigned long attrs)
1185 {
1186 	struct scatterlist *s;
1187 	int i;
1188 
1189 	for_each_sg(sg, s, nents, i)
1190 		iommu_dma_unmap_page(dev, sg_dma_address(s),
1191 				sg_dma_len(s), dir, attrs);
1192 }
1193 
1194 static int iommu_dma_map_sg_swiotlb(struct device *dev, struct scatterlist *sg,
1195 		int nents, enum dma_data_direction dir, unsigned long attrs)
1196 {
1197 	struct scatterlist *s;
1198 	int i;
1199 
1200 	sg_dma_mark_swiotlb(sg);
1201 
1202 	for_each_sg(sg, s, nents, i) {
1203 		sg_dma_address(s) = iommu_dma_map_page(dev, sg_page(s),
1204 				s->offset, s->length, dir, attrs);
1205 		if (sg_dma_address(s) == DMA_MAPPING_ERROR)
1206 			goto out_unmap;
1207 		sg_dma_len(s) = s->length;
1208 	}
1209 
1210 	return nents;
1211 
1212 out_unmap:
1213 	iommu_dma_unmap_sg_swiotlb(dev, sg, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
1214 	return -EIO;
1215 }
1216 
1217 /*
1218  * The DMA API client is passing in a scatterlist which could describe
1219  * any old buffer layout, but the IOMMU API requires everything to be
1220  * aligned to IOMMU pages. Hence the need for this complicated bit of
1221  * impedance-matching, to be able to hand off a suitably-aligned list,
1222  * but still preserve the original offsets and sizes for the caller.
1223  */
1224 static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
1225 		int nents, enum dma_data_direction dir, unsigned long attrs)
1226 {
1227 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1228 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
1229 	struct iova_domain *iovad = &cookie->iovad;
1230 	struct scatterlist *s, *prev = NULL;
1231 	int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs);
1232 	struct pci_p2pdma_map_state p2pdma_state = {};
1233 	enum pci_p2pdma_map_type map;
1234 	dma_addr_t iova;
1235 	size_t iova_len = 0;
1236 	unsigned long mask = dma_get_seg_boundary(dev);
1237 	ssize_t ret;
1238 	int i;
1239 
1240 	if (static_branch_unlikely(&iommu_deferred_attach_enabled)) {
1241 		ret = iommu_deferred_attach(dev, domain);
1242 		if (ret)
1243 			goto out;
1244 	}
1245 
1246 	if (dev_use_sg_swiotlb(dev, sg, nents, dir))
1247 		return iommu_dma_map_sg_swiotlb(dev, sg, nents, dir, attrs);
1248 
1249 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1250 		iommu_dma_sync_sg_for_device(dev, sg, nents, dir);
1251 
1252 	/*
1253 	 * Work out how much IOVA space we need, and align the segments to
1254 	 * IOVA granules for the IOMMU driver to handle. With some clever
1255 	 * trickery we can modify the list in-place, but reversibly, by
1256 	 * stashing the unaligned parts in the as-yet-unused DMA fields.
1257 	 */
1258 	for_each_sg(sg, s, nents, i) {
1259 		size_t s_iova_off = iova_offset(iovad, s->offset);
1260 		size_t s_length = s->length;
1261 		size_t pad_len = (mask - iova_len + 1) & mask;
1262 
1263 		if (is_pci_p2pdma_page(sg_page(s))) {
1264 			map = pci_p2pdma_map_segment(&p2pdma_state, dev, s);
1265 			switch (map) {
1266 			case PCI_P2PDMA_MAP_BUS_ADDR:
1267 				/*
1268 				 * iommu_map_sg() will skip this segment as
1269 				 * it is marked as a bus address,
1270 				 * __finalise_sg() will copy the dma address
1271 				 * into the output segment.
1272 				 */
1273 				continue;
1274 			case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
1275 				/*
1276 				 * Mapping through host bridge should be
1277 				 * mapped with regular IOVAs, thus we
1278 				 * do nothing here and continue below.
1279 				 */
1280 				break;
1281 			default:
1282 				ret = -EREMOTEIO;
1283 				goto out_restore_sg;
1284 			}
1285 		}
1286 
1287 		sg_dma_address(s) = s_iova_off;
1288 		sg_dma_len(s) = s_length;
1289 		s->offset -= s_iova_off;
1290 		s_length = iova_align(iovad, s_length + s_iova_off);
1291 		s->length = s_length;
1292 
1293 		/*
1294 		 * Due to the alignment of our single IOVA allocation, we can
1295 		 * depend on these assumptions about the segment boundary mask:
1296 		 * - If mask size >= IOVA size, then the IOVA range cannot
1297 		 *   possibly fall across a boundary, so we don't care.
1298 		 * - If mask size < IOVA size, then the IOVA range must start
1299 		 *   exactly on a boundary, therefore we can lay things out
1300 		 *   based purely on segment lengths without needing to know
1301 		 *   the actual addresses beforehand.
1302 		 * - The mask must be a power of 2, so pad_len == 0 if
1303 		 *   iova_len == 0, thus we cannot dereference prev the first
1304 		 *   time through here (i.e. before it has a meaningful value).
1305 		 */
1306 		if (pad_len && pad_len < s_length - 1) {
1307 			prev->length += pad_len;
1308 			iova_len += pad_len;
1309 		}
1310 
1311 		iova_len += s_length;
1312 		prev = s;
1313 	}
1314 
1315 	if (!iova_len)
1316 		return __finalise_sg(dev, sg, nents, 0);
1317 
1318 	iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
1319 	if (!iova) {
1320 		ret = -ENOMEM;
1321 		goto out_restore_sg;
1322 	}
1323 
1324 	/*
1325 	 * We'll leave any physical concatenation to the IOMMU driver's
1326 	 * implementation - it knows better than we do.
1327 	 */
1328 	ret = iommu_map_sg(domain, iova, sg, nents, prot, GFP_ATOMIC);
1329 	if (ret < 0 || ret < iova_len)
1330 		goto out_free_iova;
1331 
1332 	return __finalise_sg(dev, sg, nents, iova);
1333 
1334 out_free_iova:
1335 	iommu_dma_free_iova(cookie, iova, iova_len, NULL);
1336 out_restore_sg:
1337 	__invalidate_sg(sg, nents);
1338 out:
1339 	if (ret != -ENOMEM && ret != -EREMOTEIO)
1340 		return -EINVAL;
1341 	return ret;
1342 }
1343 
1344 static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
1345 		int nents, enum dma_data_direction dir, unsigned long attrs)
1346 {
1347 	dma_addr_t end = 0, start;
1348 	struct scatterlist *tmp;
1349 	int i;
1350 
1351 	if (sg_dma_is_swiotlb(sg)) {
1352 		iommu_dma_unmap_sg_swiotlb(dev, sg, nents, dir, attrs);
1353 		return;
1354 	}
1355 
1356 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1357 		iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir);
1358 
1359 	/*
1360 	 * The scatterlist segments are mapped into a single
1361 	 * contiguous IOVA allocation, the start and end points
1362 	 * just have to be determined.
1363 	 */
1364 	for_each_sg(sg, tmp, nents, i) {
1365 		if (sg_dma_is_bus_address(tmp)) {
1366 			sg_dma_unmark_bus_address(tmp);
1367 			continue;
1368 		}
1369 
1370 		if (sg_dma_len(tmp) == 0)
1371 			break;
1372 
1373 		start = sg_dma_address(tmp);
1374 		break;
1375 	}
1376 
1377 	nents -= i;
1378 	for_each_sg(tmp, tmp, nents, i) {
1379 		if (sg_dma_is_bus_address(tmp)) {
1380 			sg_dma_unmark_bus_address(tmp);
1381 			continue;
1382 		}
1383 
1384 		if (sg_dma_len(tmp) == 0)
1385 			break;
1386 
1387 		end = sg_dma_address(tmp) + sg_dma_len(tmp);
1388 	}
1389 
1390 	if (end)
1391 		__iommu_dma_unmap(dev, start, end - start);
1392 }
1393 
1394 static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
1395 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1396 {
1397 	return __iommu_dma_map(dev, phys, size,
1398 			dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO,
1399 			dma_get_mask(dev));
1400 }
1401 
1402 static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
1403 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1404 {
1405 	__iommu_dma_unmap(dev, handle, size);
1406 }
1407 
1408 static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr)
1409 {
1410 	size_t alloc_size = PAGE_ALIGN(size);
1411 	int count = alloc_size >> PAGE_SHIFT;
1412 	struct page *page = NULL, **pages = NULL;
1413 
1414 	/* Non-coherent atomic allocation? Easy */
1415 	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1416 	    dma_free_from_pool(dev, cpu_addr, alloc_size))
1417 		return;
1418 
1419 	if (is_vmalloc_addr(cpu_addr)) {
1420 		/*
1421 		 * If it the address is remapped, then it's either non-coherent
1422 		 * or highmem CMA, or an iommu_dma_alloc_remap() construction.
1423 		 */
1424 		pages = dma_common_find_pages(cpu_addr);
1425 		if (!pages)
1426 			page = vmalloc_to_page(cpu_addr);
1427 		dma_common_free_remap(cpu_addr, alloc_size);
1428 	} else {
1429 		/* Lowmem means a coherent atomic or CMA allocation */
1430 		page = virt_to_page(cpu_addr);
1431 	}
1432 
1433 	if (pages)
1434 		__iommu_dma_free_pages(pages, count);
1435 	if (page)
1436 		dma_free_contiguous(dev, page, alloc_size);
1437 }
1438 
1439 static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr,
1440 		dma_addr_t handle, unsigned long attrs)
1441 {
1442 	__iommu_dma_unmap(dev, handle, size);
1443 	__iommu_dma_free(dev, size, cpu_addr);
1444 }
1445 
1446 static void *iommu_dma_alloc_pages(struct device *dev, size_t size,
1447 		struct page **pagep, gfp_t gfp, unsigned long attrs)
1448 {
1449 	bool coherent = dev_is_dma_coherent(dev);
1450 	size_t alloc_size = PAGE_ALIGN(size);
1451 	int node = dev_to_node(dev);
1452 	struct page *page = NULL;
1453 	void *cpu_addr;
1454 
1455 	page = dma_alloc_contiguous(dev, alloc_size, gfp);
1456 	if (!page)
1457 		page = alloc_pages_node(node, gfp, get_order(alloc_size));
1458 	if (!page)
1459 		return NULL;
1460 
1461 	if (!coherent || PageHighMem(page)) {
1462 		pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
1463 
1464 		cpu_addr = dma_common_contiguous_remap(page, alloc_size,
1465 				prot, __builtin_return_address(0));
1466 		if (!cpu_addr)
1467 			goto out_free_pages;
1468 
1469 		if (!coherent)
1470 			arch_dma_prep_coherent(page, size);
1471 	} else {
1472 		cpu_addr = page_address(page);
1473 	}
1474 
1475 	*pagep = page;
1476 	memset(cpu_addr, 0, alloc_size);
1477 	return cpu_addr;
1478 out_free_pages:
1479 	dma_free_contiguous(dev, page, alloc_size);
1480 	return NULL;
1481 }
1482 
1483 static void *iommu_dma_alloc(struct device *dev, size_t size,
1484 		dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1485 {
1486 	bool coherent = dev_is_dma_coherent(dev);
1487 	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
1488 	struct page *page = NULL;
1489 	void *cpu_addr;
1490 
1491 	gfp |= __GFP_ZERO;
1492 
1493 	if (gfpflags_allow_blocking(gfp) &&
1494 	    !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) {
1495 		return iommu_dma_alloc_remap(dev, size, handle, gfp,
1496 				dma_pgprot(dev, PAGE_KERNEL, attrs), attrs);
1497 	}
1498 
1499 	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1500 	    !gfpflags_allow_blocking(gfp) && !coherent)
1501 		page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr,
1502 					       gfp, NULL);
1503 	else
1504 		cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs);
1505 	if (!cpu_addr)
1506 		return NULL;
1507 
1508 	*handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot,
1509 			dev->coherent_dma_mask);
1510 	if (*handle == DMA_MAPPING_ERROR) {
1511 		__iommu_dma_free(dev, size, cpu_addr);
1512 		return NULL;
1513 	}
1514 
1515 	return cpu_addr;
1516 }
1517 
1518 static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma,
1519 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
1520 		unsigned long attrs)
1521 {
1522 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1523 	unsigned long pfn, off = vma->vm_pgoff;
1524 	int ret;
1525 
1526 	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
1527 
1528 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
1529 		return ret;
1530 
1531 	if (off >= nr_pages || vma_pages(vma) > nr_pages - off)
1532 		return -ENXIO;
1533 
1534 	if (is_vmalloc_addr(cpu_addr)) {
1535 		struct page **pages = dma_common_find_pages(cpu_addr);
1536 
1537 		if (pages)
1538 			return vm_map_pages(vma, pages, nr_pages);
1539 		pfn = vmalloc_to_pfn(cpu_addr);
1540 	} else {
1541 		pfn = page_to_pfn(virt_to_page(cpu_addr));
1542 	}
1543 
1544 	return remap_pfn_range(vma, vma->vm_start, pfn + off,
1545 			       vma->vm_end - vma->vm_start,
1546 			       vma->vm_page_prot);
1547 }
1548 
1549 static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
1550 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
1551 		unsigned long attrs)
1552 {
1553 	struct page *page;
1554 	int ret;
1555 
1556 	if (is_vmalloc_addr(cpu_addr)) {
1557 		struct page **pages = dma_common_find_pages(cpu_addr);
1558 
1559 		if (pages) {
1560 			return sg_alloc_table_from_pages(sgt, pages,
1561 					PAGE_ALIGN(size) >> PAGE_SHIFT,
1562 					0, size, GFP_KERNEL);
1563 		}
1564 
1565 		page = vmalloc_to_page(cpu_addr);
1566 	} else {
1567 		page = virt_to_page(cpu_addr);
1568 	}
1569 
1570 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
1571 	if (!ret)
1572 		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
1573 	return ret;
1574 }
1575 
1576 static unsigned long iommu_dma_get_merge_boundary(struct device *dev)
1577 {
1578 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1579 
1580 	return (1UL << __ffs(domain->pgsize_bitmap)) - 1;
1581 }
1582 
1583 static size_t iommu_dma_opt_mapping_size(void)
1584 {
1585 	return iova_rcache_range();
1586 }
1587 
1588 static const struct dma_map_ops iommu_dma_ops = {
1589 	.flags			= DMA_F_PCI_P2PDMA_SUPPORTED,
1590 	.alloc			= iommu_dma_alloc,
1591 	.free			= iommu_dma_free,
1592 	.alloc_pages		= dma_common_alloc_pages,
1593 	.free_pages		= dma_common_free_pages,
1594 	.alloc_noncontiguous	= iommu_dma_alloc_noncontiguous,
1595 	.free_noncontiguous	= iommu_dma_free_noncontiguous,
1596 	.mmap			= iommu_dma_mmap,
1597 	.get_sgtable		= iommu_dma_get_sgtable,
1598 	.map_page		= iommu_dma_map_page,
1599 	.unmap_page		= iommu_dma_unmap_page,
1600 	.map_sg			= iommu_dma_map_sg,
1601 	.unmap_sg		= iommu_dma_unmap_sg,
1602 	.sync_single_for_cpu	= iommu_dma_sync_single_for_cpu,
1603 	.sync_single_for_device	= iommu_dma_sync_single_for_device,
1604 	.sync_sg_for_cpu	= iommu_dma_sync_sg_for_cpu,
1605 	.sync_sg_for_device	= iommu_dma_sync_sg_for_device,
1606 	.map_resource		= iommu_dma_map_resource,
1607 	.unmap_resource		= iommu_dma_unmap_resource,
1608 	.get_merge_boundary	= iommu_dma_get_merge_boundary,
1609 	.opt_mapping_size	= iommu_dma_opt_mapping_size,
1610 };
1611 
1612 /*
1613  * The IOMMU core code allocates the default DMA domain, which the underlying
1614  * IOMMU driver needs to support via the dma-iommu layer.
1615  */
1616 void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 dma_limit)
1617 {
1618 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1619 
1620 	if (!domain)
1621 		goto out_err;
1622 
1623 	/*
1624 	 * The IOMMU core code allocates the default DMA domain, which the
1625 	 * underlying IOMMU driver needs to support via the dma-iommu layer.
1626 	 */
1627 	if (iommu_is_dma_domain(domain)) {
1628 		if (iommu_dma_init_domain(domain, dma_base, dma_limit, dev))
1629 			goto out_err;
1630 		dev->dma_ops = &iommu_dma_ops;
1631 	}
1632 
1633 	return;
1634 out_err:
1635 	 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
1636 		 dev_name(dev));
1637 }
1638 EXPORT_SYMBOL_GPL(iommu_setup_dma_ops);
1639 
1640 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
1641 		phys_addr_t msi_addr, struct iommu_domain *domain)
1642 {
1643 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
1644 	struct iommu_dma_msi_page *msi_page;
1645 	dma_addr_t iova;
1646 	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1647 	size_t size = cookie_msi_granule(cookie);
1648 
1649 	msi_addr &= ~(phys_addr_t)(size - 1);
1650 	list_for_each_entry(msi_page, &cookie->msi_page_list, list)
1651 		if (msi_page->phys == msi_addr)
1652 			return msi_page;
1653 
1654 	msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL);
1655 	if (!msi_page)
1656 		return NULL;
1657 
1658 	iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
1659 	if (!iova)
1660 		goto out_free_page;
1661 
1662 	if (iommu_map(domain, iova, msi_addr, size, prot, GFP_KERNEL))
1663 		goto out_free_iova;
1664 
1665 	INIT_LIST_HEAD(&msi_page->list);
1666 	msi_page->phys = msi_addr;
1667 	msi_page->iova = iova;
1668 	list_add(&msi_page->list, &cookie->msi_page_list);
1669 	return msi_page;
1670 
1671 out_free_iova:
1672 	iommu_dma_free_iova(cookie, iova, size, NULL);
1673 out_free_page:
1674 	kfree(msi_page);
1675 	return NULL;
1676 }
1677 
1678 /**
1679  * iommu_dma_prepare_msi() - Map the MSI page in the IOMMU domain
1680  * @desc: MSI descriptor, will store the MSI page
1681  * @msi_addr: MSI target address to be mapped
1682  *
1683  * Return: 0 on success or negative error code if the mapping failed.
1684  */
1685 int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)
1686 {
1687 	struct device *dev = msi_desc_to_dev(desc);
1688 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1689 	struct iommu_dma_msi_page *msi_page;
1690 	static DEFINE_MUTEX(msi_prepare_lock); /* see below */
1691 
1692 	if (!domain || !domain->iova_cookie) {
1693 		desc->iommu_cookie = NULL;
1694 		return 0;
1695 	}
1696 
1697 	/*
1698 	 * In fact the whole prepare operation should already be serialised by
1699 	 * irq_domain_mutex further up the callchain, but that's pretty subtle
1700 	 * on its own, so consider this locking as failsafe documentation...
1701 	 */
1702 	mutex_lock(&msi_prepare_lock);
1703 	msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
1704 	mutex_unlock(&msi_prepare_lock);
1705 
1706 	msi_desc_set_iommu_cookie(desc, msi_page);
1707 
1708 	if (!msi_page)
1709 		return -ENOMEM;
1710 	return 0;
1711 }
1712 
1713 /**
1714  * iommu_dma_compose_msi_msg() - Apply translation to an MSI message
1715  * @desc: MSI descriptor prepared by iommu_dma_prepare_msi()
1716  * @msg: MSI message containing target physical address
1717  */
1718 void iommu_dma_compose_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
1719 {
1720 	struct device *dev = msi_desc_to_dev(desc);
1721 	const struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1722 	const struct iommu_dma_msi_page *msi_page;
1723 
1724 	msi_page = msi_desc_get_iommu_cookie(desc);
1725 
1726 	if (!domain || !domain->iova_cookie || WARN_ON(!msi_page))
1727 		return;
1728 
1729 	msg->address_hi = upper_32_bits(msi_page->iova);
1730 	msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1;
1731 	msg->address_lo += lower_32_bits(msi_page->iova);
1732 }
1733 
1734 static int iommu_dma_init(void)
1735 {
1736 	if (is_kdump_kernel())
1737 		static_branch_enable(&iommu_deferred_attach_enabled);
1738 
1739 	return iova_cache_get();
1740 }
1741 arch_initcall(iommu_dma_init);
1742