1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * A fairly generic DMA-API to IOMMU-API glue layer. 4 * 5 * Copyright (C) 2014-2015 ARM Ltd. 6 * 7 * based in part on arch/arm/mm/dma-mapping.c: 8 * Copyright (C) 2000-2004 Russell King 9 */ 10 11 #include <linux/acpi_iort.h> 12 #include <linux/atomic.h> 13 #include <linux/crash_dump.h> 14 #include <linux/device.h> 15 #include <linux/dma-direct.h> 16 #include <linux/dma-map-ops.h> 17 #include <linux/gfp.h> 18 #include <linux/huge_mm.h> 19 #include <linux/iommu.h> 20 #include <linux/iova.h> 21 #include <linux/irq.h> 22 #include <linux/list_sort.h> 23 #include <linux/memremap.h> 24 #include <linux/mm.h> 25 #include <linux/mutex.h> 26 #include <linux/of_iommu.h> 27 #include <linux/pci.h> 28 #include <linux/scatterlist.h> 29 #include <linux/spinlock.h> 30 #include <linux/swiotlb.h> 31 #include <linux/vmalloc.h> 32 33 #include "dma-iommu.h" 34 35 struct iommu_dma_msi_page { 36 struct list_head list; 37 dma_addr_t iova; 38 phys_addr_t phys; 39 }; 40 41 enum iommu_dma_cookie_type { 42 IOMMU_DMA_IOVA_COOKIE, 43 IOMMU_DMA_MSI_COOKIE, 44 }; 45 46 struct iommu_dma_cookie { 47 enum iommu_dma_cookie_type type; 48 union { 49 /* Full allocator for IOMMU_DMA_IOVA_COOKIE */ 50 struct { 51 struct iova_domain iovad; 52 53 struct iova_fq __percpu *fq; /* Flush queue */ 54 /* Number of TLB flushes that have been started */ 55 atomic64_t fq_flush_start_cnt; 56 /* Number of TLB flushes that have been finished */ 57 atomic64_t fq_flush_finish_cnt; 58 /* Timer to regularily empty the flush queues */ 59 struct timer_list fq_timer; 60 /* 1 when timer is active, 0 when not */ 61 atomic_t fq_timer_on; 62 }; 63 /* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */ 64 dma_addr_t msi_iova; 65 }; 66 struct list_head msi_page_list; 67 68 /* Domain for flush queue callback; NULL if flush queue not in use */ 69 struct iommu_domain *fq_domain; 70 struct mutex mutex; 71 }; 72 73 static DEFINE_STATIC_KEY_FALSE(iommu_deferred_attach_enabled); 74 bool iommu_dma_forcedac __read_mostly; 75 76 static int __init iommu_dma_forcedac_setup(char *str) 77 { 78 int ret = kstrtobool(str, &iommu_dma_forcedac); 79 80 if (!ret && iommu_dma_forcedac) 81 pr_info("Forcing DAC for PCI devices\n"); 82 return ret; 83 } 84 early_param("iommu.forcedac", iommu_dma_forcedac_setup); 85 86 /* Number of entries per flush queue */ 87 #define IOVA_FQ_SIZE 256 88 89 /* Timeout (in ms) after which entries are flushed from the queue */ 90 #define IOVA_FQ_TIMEOUT 10 91 92 /* Flush queue entry for deferred flushing */ 93 struct iova_fq_entry { 94 unsigned long iova_pfn; 95 unsigned long pages; 96 struct list_head freelist; 97 u64 counter; /* Flush counter when this entry was added */ 98 }; 99 100 /* Per-CPU flush queue structure */ 101 struct iova_fq { 102 struct iova_fq_entry entries[IOVA_FQ_SIZE]; 103 unsigned int head, tail; 104 spinlock_t lock; 105 }; 106 107 #define fq_ring_for_each(i, fq) \ 108 for ((i) = (fq)->head; (i) != (fq)->tail; (i) = ((i) + 1) % IOVA_FQ_SIZE) 109 110 static inline bool fq_full(struct iova_fq *fq) 111 { 112 assert_spin_locked(&fq->lock); 113 return (((fq->tail + 1) % IOVA_FQ_SIZE) == fq->head); 114 } 115 116 static inline unsigned int fq_ring_add(struct iova_fq *fq) 117 { 118 unsigned int idx = fq->tail; 119 120 assert_spin_locked(&fq->lock); 121 122 fq->tail = (idx + 1) % IOVA_FQ_SIZE; 123 124 return idx; 125 } 126 127 static void fq_ring_free(struct iommu_dma_cookie *cookie, struct iova_fq *fq) 128 { 129 u64 counter = atomic64_read(&cookie->fq_flush_finish_cnt); 130 unsigned int idx; 131 132 assert_spin_locked(&fq->lock); 133 134 fq_ring_for_each(idx, fq) { 135 136 if (fq->entries[idx].counter >= counter) 137 break; 138 139 put_pages_list(&fq->entries[idx].freelist); 140 free_iova_fast(&cookie->iovad, 141 fq->entries[idx].iova_pfn, 142 fq->entries[idx].pages); 143 144 fq->head = (fq->head + 1) % IOVA_FQ_SIZE; 145 } 146 } 147 148 static void fq_flush_iotlb(struct iommu_dma_cookie *cookie) 149 { 150 atomic64_inc(&cookie->fq_flush_start_cnt); 151 cookie->fq_domain->ops->flush_iotlb_all(cookie->fq_domain); 152 atomic64_inc(&cookie->fq_flush_finish_cnt); 153 } 154 155 static void fq_flush_timeout(struct timer_list *t) 156 { 157 struct iommu_dma_cookie *cookie = from_timer(cookie, t, fq_timer); 158 int cpu; 159 160 atomic_set(&cookie->fq_timer_on, 0); 161 fq_flush_iotlb(cookie); 162 163 for_each_possible_cpu(cpu) { 164 unsigned long flags; 165 struct iova_fq *fq; 166 167 fq = per_cpu_ptr(cookie->fq, cpu); 168 spin_lock_irqsave(&fq->lock, flags); 169 fq_ring_free(cookie, fq); 170 spin_unlock_irqrestore(&fq->lock, flags); 171 } 172 } 173 174 static void queue_iova(struct iommu_dma_cookie *cookie, 175 unsigned long pfn, unsigned long pages, 176 struct list_head *freelist) 177 { 178 struct iova_fq *fq; 179 unsigned long flags; 180 unsigned int idx; 181 182 /* 183 * Order against the IOMMU driver's pagetable update from unmapping 184 * @pte, to guarantee that fq_flush_iotlb() observes that if called 185 * from a different CPU before we release the lock below. Full barrier 186 * so it also pairs with iommu_dma_init_fq() to avoid seeing partially 187 * written fq state here. 188 */ 189 smp_mb(); 190 191 fq = raw_cpu_ptr(cookie->fq); 192 spin_lock_irqsave(&fq->lock, flags); 193 194 /* 195 * First remove all entries from the flush queue that have already been 196 * flushed out on another CPU. This makes the fq_full() check below less 197 * likely to be true. 198 */ 199 fq_ring_free(cookie, fq); 200 201 if (fq_full(fq)) { 202 fq_flush_iotlb(cookie); 203 fq_ring_free(cookie, fq); 204 } 205 206 idx = fq_ring_add(fq); 207 208 fq->entries[idx].iova_pfn = pfn; 209 fq->entries[idx].pages = pages; 210 fq->entries[idx].counter = atomic64_read(&cookie->fq_flush_start_cnt); 211 list_splice(freelist, &fq->entries[idx].freelist); 212 213 spin_unlock_irqrestore(&fq->lock, flags); 214 215 /* Avoid false sharing as much as possible. */ 216 if (!atomic_read(&cookie->fq_timer_on) && 217 !atomic_xchg(&cookie->fq_timer_on, 1)) 218 mod_timer(&cookie->fq_timer, 219 jiffies + msecs_to_jiffies(IOVA_FQ_TIMEOUT)); 220 } 221 222 static void iommu_dma_free_fq(struct iommu_dma_cookie *cookie) 223 { 224 int cpu, idx; 225 226 if (!cookie->fq) 227 return; 228 229 del_timer_sync(&cookie->fq_timer); 230 /* The IOVAs will be torn down separately, so just free our queued pages */ 231 for_each_possible_cpu(cpu) { 232 struct iova_fq *fq = per_cpu_ptr(cookie->fq, cpu); 233 234 fq_ring_for_each(idx, fq) 235 put_pages_list(&fq->entries[idx].freelist); 236 } 237 238 free_percpu(cookie->fq); 239 } 240 241 /* sysfs updates are serialised by the mutex of the group owning @domain */ 242 int iommu_dma_init_fq(struct iommu_domain *domain) 243 { 244 struct iommu_dma_cookie *cookie = domain->iova_cookie; 245 struct iova_fq __percpu *queue; 246 int i, cpu; 247 248 if (cookie->fq_domain) 249 return 0; 250 251 atomic64_set(&cookie->fq_flush_start_cnt, 0); 252 atomic64_set(&cookie->fq_flush_finish_cnt, 0); 253 254 queue = alloc_percpu(struct iova_fq); 255 if (!queue) { 256 pr_warn("iova flush queue initialization failed\n"); 257 return -ENOMEM; 258 } 259 260 for_each_possible_cpu(cpu) { 261 struct iova_fq *fq = per_cpu_ptr(queue, cpu); 262 263 fq->head = 0; 264 fq->tail = 0; 265 266 spin_lock_init(&fq->lock); 267 268 for (i = 0; i < IOVA_FQ_SIZE; i++) 269 INIT_LIST_HEAD(&fq->entries[i].freelist); 270 } 271 272 cookie->fq = queue; 273 274 timer_setup(&cookie->fq_timer, fq_flush_timeout, 0); 275 atomic_set(&cookie->fq_timer_on, 0); 276 /* 277 * Prevent incomplete fq state being observable. Pairs with path from 278 * __iommu_dma_unmap() through iommu_dma_free_iova() to queue_iova() 279 */ 280 smp_wmb(); 281 WRITE_ONCE(cookie->fq_domain, domain); 282 return 0; 283 } 284 285 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie) 286 { 287 if (cookie->type == IOMMU_DMA_IOVA_COOKIE) 288 return cookie->iovad.granule; 289 return PAGE_SIZE; 290 } 291 292 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type) 293 { 294 struct iommu_dma_cookie *cookie; 295 296 cookie = kzalloc(sizeof(*cookie), GFP_KERNEL); 297 if (cookie) { 298 INIT_LIST_HEAD(&cookie->msi_page_list); 299 cookie->type = type; 300 } 301 return cookie; 302 } 303 304 /** 305 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain 306 * @domain: IOMMU domain to prepare for DMA-API usage 307 */ 308 int iommu_get_dma_cookie(struct iommu_domain *domain) 309 { 310 if (domain->iova_cookie) 311 return -EEXIST; 312 313 domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE); 314 if (!domain->iova_cookie) 315 return -ENOMEM; 316 317 mutex_init(&domain->iova_cookie->mutex); 318 return 0; 319 } 320 321 /** 322 * iommu_get_msi_cookie - Acquire just MSI remapping resources 323 * @domain: IOMMU domain to prepare 324 * @base: Start address of IOVA region for MSI mappings 325 * 326 * Users who manage their own IOVA allocation and do not want DMA API support, 327 * but would still like to take advantage of automatic MSI remapping, can use 328 * this to initialise their own domain appropriately. Users should reserve a 329 * contiguous IOVA region, starting at @base, large enough to accommodate the 330 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address 331 * used by the devices attached to @domain. 332 */ 333 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base) 334 { 335 struct iommu_dma_cookie *cookie; 336 337 if (domain->type != IOMMU_DOMAIN_UNMANAGED) 338 return -EINVAL; 339 340 if (domain->iova_cookie) 341 return -EEXIST; 342 343 cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE); 344 if (!cookie) 345 return -ENOMEM; 346 347 cookie->msi_iova = base; 348 domain->iova_cookie = cookie; 349 return 0; 350 } 351 EXPORT_SYMBOL(iommu_get_msi_cookie); 352 353 /** 354 * iommu_put_dma_cookie - Release a domain's DMA mapping resources 355 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or 356 * iommu_get_msi_cookie() 357 */ 358 void iommu_put_dma_cookie(struct iommu_domain *domain) 359 { 360 struct iommu_dma_cookie *cookie = domain->iova_cookie; 361 struct iommu_dma_msi_page *msi, *tmp; 362 363 if (!cookie) 364 return; 365 366 if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule) { 367 iommu_dma_free_fq(cookie); 368 put_iova_domain(&cookie->iovad); 369 } 370 371 list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) { 372 list_del(&msi->list); 373 kfree(msi); 374 } 375 kfree(cookie); 376 domain->iova_cookie = NULL; 377 } 378 379 /** 380 * iommu_dma_get_resv_regions - Reserved region driver helper 381 * @dev: Device from iommu_get_resv_regions() 382 * @list: Reserved region list from iommu_get_resv_regions() 383 * 384 * IOMMU drivers can use this to implement their .get_resv_regions callback 385 * for general non-IOMMU-specific reservations. Currently, this covers GICv3 386 * ITS region reservation on ACPI based ARM platforms that may require HW MSI 387 * reservation. 388 */ 389 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list) 390 { 391 392 if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode)) 393 iort_iommu_get_resv_regions(dev, list); 394 395 if (dev->of_node) 396 of_iommu_get_resv_regions(dev, list); 397 } 398 EXPORT_SYMBOL(iommu_dma_get_resv_regions); 399 400 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie, 401 phys_addr_t start, phys_addr_t end) 402 { 403 struct iova_domain *iovad = &cookie->iovad; 404 struct iommu_dma_msi_page *msi_page; 405 int i, num_pages; 406 407 start -= iova_offset(iovad, start); 408 num_pages = iova_align(iovad, end - start) >> iova_shift(iovad); 409 410 for (i = 0; i < num_pages; i++) { 411 msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL); 412 if (!msi_page) 413 return -ENOMEM; 414 415 msi_page->phys = start; 416 msi_page->iova = start; 417 INIT_LIST_HEAD(&msi_page->list); 418 list_add(&msi_page->list, &cookie->msi_page_list); 419 start += iovad->granule; 420 } 421 422 return 0; 423 } 424 425 static int iommu_dma_ranges_sort(void *priv, const struct list_head *a, 426 const struct list_head *b) 427 { 428 struct resource_entry *res_a = list_entry(a, typeof(*res_a), node); 429 struct resource_entry *res_b = list_entry(b, typeof(*res_b), node); 430 431 return res_a->res->start > res_b->res->start; 432 } 433 434 static int iova_reserve_pci_windows(struct pci_dev *dev, 435 struct iova_domain *iovad) 436 { 437 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus); 438 struct resource_entry *window; 439 unsigned long lo, hi; 440 phys_addr_t start = 0, end; 441 442 resource_list_for_each_entry(window, &bridge->windows) { 443 if (resource_type(window->res) != IORESOURCE_MEM) 444 continue; 445 446 lo = iova_pfn(iovad, window->res->start - window->offset); 447 hi = iova_pfn(iovad, window->res->end - window->offset); 448 reserve_iova(iovad, lo, hi); 449 } 450 451 /* Get reserved DMA windows from host bridge */ 452 list_sort(NULL, &bridge->dma_ranges, iommu_dma_ranges_sort); 453 resource_list_for_each_entry(window, &bridge->dma_ranges) { 454 end = window->res->start - window->offset; 455 resv_iova: 456 if (end > start) { 457 lo = iova_pfn(iovad, start); 458 hi = iova_pfn(iovad, end); 459 reserve_iova(iovad, lo, hi); 460 } else if (end < start) { 461 /* DMA ranges should be non-overlapping */ 462 dev_err(&dev->dev, 463 "Failed to reserve IOVA [%pa-%pa]\n", 464 &start, &end); 465 return -EINVAL; 466 } 467 468 start = window->res->end - window->offset + 1; 469 /* If window is last entry */ 470 if (window->node.next == &bridge->dma_ranges && 471 end != ~(phys_addr_t)0) { 472 end = ~(phys_addr_t)0; 473 goto resv_iova; 474 } 475 } 476 477 return 0; 478 } 479 480 static int iova_reserve_iommu_regions(struct device *dev, 481 struct iommu_domain *domain) 482 { 483 struct iommu_dma_cookie *cookie = domain->iova_cookie; 484 struct iova_domain *iovad = &cookie->iovad; 485 struct iommu_resv_region *region; 486 LIST_HEAD(resv_regions); 487 int ret = 0; 488 489 if (dev_is_pci(dev)) { 490 ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad); 491 if (ret) 492 return ret; 493 } 494 495 iommu_get_resv_regions(dev, &resv_regions); 496 list_for_each_entry(region, &resv_regions, list) { 497 unsigned long lo, hi; 498 499 /* We ARE the software that manages these! */ 500 if (region->type == IOMMU_RESV_SW_MSI) 501 continue; 502 503 lo = iova_pfn(iovad, region->start); 504 hi = iova_pfn(iovad, region->start + region->length - 1); 505 reserve_iova(iovad, lo, hi); 506 507 if (region->type == IOMMU_RESV_MSI) 508 ret = cookie_init_hw_msi_region(cookie, region->start, 509 region->start + region->length); 510 if (ret) 511 break; 512 } 513 iommu_put_resv_regions(dev, &resv_regions); 514 515 return ret; 516 } 517 518 static bool dev_is_untrusted(struct device *dev) 519 { 520 return dev_is_pci(dev) && to_pci_dev(dev)->untrusted; 521 } 522 523 static bool dev_use_swiotlb(struct device *dev) 524 { 525 return IS_ENABLED(CONFIG_SWIOTLB) && dev_is_untrusted(dev); 526 } 527 528 /** 529 * iommu_dma_init_domain - Initialise a DMA mapping domain 530 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() 531 * @base: IOVA at which the mappable address space starts 532 * @limit: Last address of the IOVA space 533 * @dev: Device the domain is being initialised for 534 * 535 * @base and @limit + 1 should be exact multiples of IOMMU page granularity to 536 * avoid rounding surprises. If necessary, we reserve the page at address 0 537 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but 538 * any change which could make prior IOVAs invalid will fail. 539 */ 540 static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base, 541 dma_addr_t limit, struct device *dev) 542 { 543 struct iommu_dma_cookie *cookie = domain->iova_cookie; 544 unsigned long order, base_pfn; 545 struct iova_domain *iovad; 546 int ret; 547 548 if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE) 549 return -EINVAL; 550 551 iovad = &cookie->iovad; 552 553 /* Use the smallest supported page size for IOVA granularity */ 554 order = __ffs(domain->pgsize_bitmap); 555 base_pfn = max_t(unsigned long, 1, base >> order); 556 557 /* Check the domain allows at least some access to the device... */ 558 if (domain->geometry.force_aperture) { 559 if (base > domain->geometry.aperture_end || 560 limit < domain->geometry.aperture_start) { 561 pr_warn("specified DMA range outside IOMMU capability\n"); 562 return -EFAULT; 563 } 564 /* ...then finally give it a kicking to make sure it fits */ 565 base_pfn = max_t(unsigned long, base_pfn, 566 domain->geometry.aperture_start >> order); 567 } 568 569 /* start_pfn is always nonzero for an already-initialised domain */ 570 mutex_lock(&cookie->mutex); 571 if (iovad->start_pfn) { 572 if (1UL << order != iovad->granule || 573 base_pfn != iovad->start_pfn) { 574 pr_warn("Incompatible range for DMA domain\n"); 575 ret = -EFAULT; 576 goto done_unlock; 577 } 578 579 ret = 0; 580 goto done_unlock; 581 } 582 583 init_iova_domain(iovad, 1UL << order, base_pfn); 584 ret = iova_domain_init_rcaches(iovad); 585 if (ret) 586 goto done_unlock; 587 588 /* If the FQ fails we can simply fall back to strict mode */ 589 if (domain->type == IOMMU_DOMAIN_DMA_FQ && iommu_dma_init_fq(domain)) 590 domain->type = IOMMU_DOMAIN_DMA; 591 592 ret = iova_reserve_iommu_regions(dev, domain); 593 594 done_unlock: 595 mutex_unlock(&cookie->mutex); 596 return ret; 597 } 598 599 /** 600 * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API 601 * page flags. 602 * @dir: Direction of DMA transfer 603 * @coherent: Is the DMA master cache-coherent? 604 * @attrs: DMA attributes for the mapping 605 * 606 * Return: corresponding IOMMU API page protection flags 607 */ 608 static int dma_info_to_prot(enum dma_data_direction dir, bool coherent, 609 unsigned long attrs) 610 { 611 int prot = coherent ? IOMMU_CACHE : 0; 612 613 if (attrs & DMA_ATTR_PRIVILEGED) 614 prot |= IOMMU_PRIV; 615 616 switch (dir) { 617 case DMA_BIDIRECTIONAL: 618 return prot | IOMMU_READ | IOMMU_WRITE; 619 case DMA_TO_DEVICE: 620 return prot | IOMMU_READ; 621 case DMA_FROM_DEVICE: 622 return prot | IOMMU_WRITE; 623 default: 624 return 0; 625 } 626 } 627 628 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain, 629 size_t size, u64 dma_limit, struct device *dev) 630 { 631 struct iommu_dma_cookie *cookie = domain->iova_cookie; 632 struct iova_domain *iovad = &cookie->iovad; 633 unsigned long shift, iova_len, iova = 0; 634 635 if (cookie->type == IOMMU_DMA_MSI_COOKIE) { 636 cookie->msi_iova += size; 637 return cookie->msi_iova - size; 638 } 639 640 shift = iova_shift(iovad); 641 iova_len = size >> shift; 642 643 dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit); 644 645 if (domain->geometry.force_aperture) 646 dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end); 647 648 /* Try to get PCI devices a SAC address */ 649 if (dma_limit > DMA_BIT_MASK(32) && !iommu_dma_forcedac && dev_is_pci(dev)) 650 iova = alloc_iova_fast(iovad, iova_len, 651 DMA_BIT_MASK(32) >> shift, false); 652 653 if (!iova) 654 iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift, 655 true); 656 657 return (dma_addr_t)iova << shift; 658 } 659 660 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie, 661 dma_addr_t iova, size_t size, struct iommu_iotlb_gather *gather) 662 { 663 struct iova_domain *iovad = &cookie->iovad; 664 665 /* The MSI case is only ever cleaning up its most recent allocation */ 666 if (cookie->type == IOMMU_DMA_MSI_COOKIE) 667 cookie->msi_iova -= size; 668 else if (gather && gather->queued) 669 queue_iova(cookie, iova_pfn(iovad, iova), 670 size >> iova_shift(iovad), 671 &gather->freelist); 672 else 673 free_iova_fast(iovad, iova_pfn(iovad, iova), 674 size >> iova_shift(iovad)); 675 } 676 677 static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr, 678 size_t size) 679 { 680 struct iommu_domain *domain = iommu_get_dma_domain(dev); 681 struct iommu_dma_cookie *cookie = domain->iova_cookie; 682 struct iova_domain *iovad = &cookie->iovad; 683 size_t iova_off = iova_offset(iovad, dma_addr); 684 struct iommu_iotlb_gather iotlb_gather; 685 size_t unmapped; 686 687 dma_addr -= iova_off; 688 size = iova_align(iovad, size + iova_off); 689 iommu_iotlb_gather_init(&iotlb_gather); 690 iotlb_gather.queued = READ_ONCE(cookie->fq_domain); 691 692 unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather); 693 WARN_ON(unmapped != size); 694 695 if (!iotlb_gather.queued) 696 iommu_iotlb_sync(domain, &iotlb_gather); 697 iommu_dma_free_iova(cookie, dma_addr, size, &iotlb_gather); 698 } 699 700 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys, 701 size_t size, int prot, u64 dma_mask) 702 { 703 struct iommu_domain *domain = iommu_get_dma_domain(dev); 704 struct iommu_dma_cookie *cookie = domain->iova_cookie; 705 struct iova_domain *iovad = &cookie->iovad; 706 size_t iova_off = iova_offset(iovad, phys); 707 dma_addr_t iova; 708 709 if (static_branch_unlikely(&iommu_deferred_attach_enabled) && 710 iommu_deferred_attach(dev, domain)) 711 return DMA_MAPPING_ERROR; 712 713 size = iova_align(iovad, size + iova_off); 714 715 iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev); 716 if (!iova) 717 return DMA_MAPPING_ERROR; 718 719 if (iommu_map(domain, iova, phys - iova_off, size, prot, GFP_ATOMIC)) { 720 iommu_dma_free_iova(cookie, iova, size, NULL); 721 return DMA_MAPPING_ERROR; 722 } 723 return iova + iova_off; 724 } 725 726 static void __iommu_dma_free_pages(struct page **pages, int count) 727 { 728 while (count--) 729 __free_page(pages[count]); 730 kvfree(pages); 731 } 732 733 static struct page **__iommu_dma_alloc_pages(struct device *dev, 734 unsigned int count, unsigned long order_mask, gfp_t gfp) 735 { 736 struct page **pages; 737 unsigned int i = 0, nid = dev_to_node(dev); 738 739 order_mask &= (2U << MAX_ORDER) - 1; 740 if (!order_mask) 741 return NULL; 742 743 pages = kvcalloc(count, sizeof(*pages), GFP_KERNEL); 744 if (!pages) 745 return NULL; 746 747 /* IOMMU can map any pages, so himem can also be used here */ 748 gfp |= __GFP_NOWARN | __GFP_HIGHMEM; 749 750 while (count) { 751 struct page *page = NULL; 752 unsigned int order_size; 753 754 /* 755 * Higher-order allocations are a convenience rather 756 * than a necessity, hence using __GFP_NORETRY until 757 * falling back to minimum-order allocations. 758 */ 759 for (order_mask &= (2U << __fls(count)) - 1; 760 order_mask; order_mask &= ~order_size) { 761 unsigned int order = __fls(order_mask); 762 gfp_t alloc_flags = gfp; 763 764 order_size = 1U << order; 765 if (order_mask > order_size) 766 alloc_flags |= __GFP_NORETRY; 767 page = alloc_pages_node(nid, alloc_flags, order); 768 if (!page) 769 continue; 770 if (order) 771 split_page(page, order); 772 break; 773 } 774 if (!page) { 775 __iommu_dma_free_pages(pages, i); 776 return NULL; 777 } 778 count -= order_size; 779 while (order_size--) 780 pages[i++] = page++; 781 } 782 return pages; 783 } 784 785 /* 786 * If size is less than PAGE_SIZE, then a full CPU page will be allocated, 787 * but an IOMMU which supports smaller pages might not map the whole thing. 788 */ 789 static struct page **__iommu_dma_alloc_noncontiguous(struct device *dev, 790 size_t size, struct sg_table *sgt, gfp_t gfp, pgprot_t prot, 791 unsigned long attrs) 792 { 793 struct iommu_domain *domain = iommu_get_dma_domain(dev); 794 struct iommu_dma_cookie *cookie = domain->iova_cookie; 795 struct iova_domain *iovad = &cookie->iovad; 796 bool coherent = dev_is_dma_coherent(dev); 797 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs); 798 unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap; 799 struct page **pages; 800 dma_addr_t iova; 801 ssize_t ret; 802 803 if (static_branch_unlikely(&iommu_deferred_attach_enabled) && 804 iommu_deferred_attach(dev, domain)) 805 return NULL; 806 807 min_size = alloc_sizes & -alloc_sizes; 808 if (min_size < PAGE_SIZE) { 809 min_size = PAGE_SIZE; 810 alloc_sizes |= PAGE_SIZE; 811 } else { 812 size = ALIGN(size, min_size); 813 } 814 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES) 815 alloc_sizes = min_size; 816 817 count = PAGE_ALIGN(size) >> PAGE_SHIFT; 818 pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT, 819 gfp); 820 if (!pages) 821 return NULL; 822 823 size = iova_align(iovad, size); 824 iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev); 825 if (!iova) 826 goto out_free_pages; 827 828 /* 829 * Remove the zone/policy flags from the GFP - these are applied to the 830 * __iommu_dma_alloc_pages() but are not used for the supporting 831 * internal allocations that follow. 832 */ 833 gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM | __GFP_COMP); 834 835 if (sg_alloc_table_from_pages(sgt, pages, count, 0, size, gfp)) 836 goto out_free_iova; 837 838 if (!(ioprot & IOMMU_CACHE)) { 839 struct scatterlist *sg; 840 int i; 841 842 for_each_sg(sgt->sgl, sg, sgt->orig_nents, i) 843 arch_dma_prep_coherent(sg_page(sg), sg->length); 844 } 845 846 ret = iommu_map_sg(domain, iova, sgt->sgl, sgt->orig_nents, ioprot, 847 gfp); 848 if (ret < 0 || ret < size) 849 goto out_free_sg; 850 851 sgt->sgl->dma_address = iova; 852 sgt->sgl->dma_length = size; 853 return pages; 854 855 out_free_sg: 856 sg_free_table(sgt); 857 out_free_iova: 858 iommu_dma_free_iova(cookie, iova, size, NULL); 859 out_free_pages: 860 __iommu_dma_free_pages(pages, count); 861 return NULL; 862 } 863 864 static void *iommu_dma_alloc_remap(struct device *dev, size_t size, 865 dma_addr_t *dma_handle, gfp_t gfp, pgprot_t prot, 866 unsigned long attrs) 867 { 868 struct page **pages; 869 struct sg_table sgt; 870 void *vaddr; 871 872 pages = __iommu_dma_alloc_noncontiguous(dev, size, &sgt, gfp, prot, 873 attrs); 874 if (!pages) 875 return NULL; 876 *dma_handle = sgt.sgl->dma_address; 877 sg_free_table(&sgt); 878 vaddr = dma_common_pages_remap(pages, size, prot, 879 __builtin_return_address(0)); 880 if (!vaddr) 881 goto out_unmap; 882 return vaddr; 883 884 out_unmap: 885 __iommu_dma_unmap(dev, *dma_handle, size); 886 __iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT); 887 return NULL; 888 } 889 890 static struct sg_table *iommu_dma_alloc_noncontiguous(struct device *dev, 891 size_t size, enum dma_data_direction dir, gfp_t gfp, 892 unsigned long attrs) 893 { 894 struct dma_sgt_handle *sh; 895 896 sh = kmalloc(sizeof(*sh), gfp); 897 if (!sh) 898 return NULL; 899 900 sh->pages = __iommu_dma_alloc_noncontiguous(dev, size, &sh->sgt, gfp, 901 PAGE_KERNEL, attrs); 902 if (!sh->pages) { 903 kfree(sh); 904 return NULL; 905 } 906 return &sh->sgt; 907 } 908 909 static void iommu_dma_free_noncontiguous(struct device *dev, size_t size, 910 struct sg_table *sgt, enum dma_data_direction dir) 911 { 912 struct dma_sgt_handle *sh = sgt_handle(sgt); 913 914 __iommu_dma_unmap(dev, sgt->sgl->dma_address, size); 915 __iommu_dma_free_pages(sh->pages, PAGE_ALIGN(size) >> PAGE_SHIFT); 916 sg_free_table(&sh->sgt); 917 kfree(sh); 918 } 919 920 static void iommu_dma_sync_single_for_cpu(struct device *dev, 921 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir) 922 { 923 phys_addr_t phys; 924 925 if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev)) 926 return; 927 928 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle); 929 if (!dev_is_dma_coherent(dev)) 930 arch_sync_dma_for_cpu(phys, size, dir); 931 932 if (is_swiotlb_buffer(dev, phys)) 933 swiotlb_sync_single_for_cpu(dev, phys, size, dir); 934 } 935 936 static void iommu_dma_sync_single_for_device(struct device *dev, 937 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir) 938 { 939 phys_addr_t phys; 940 941 if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev)) 942 return; 943 944 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle); 945 if (is_swiotlb_buffer(dev, phys)) 946 swiotlb_sync_single_for_device(dev, phys, size, dir); 947 948 if (!dev_is_dma_coherent(dev)) 949 arch_sync_dma_for_device(phys, size, dir); 950 } 951 952 static void iommu_dma_sync_sg_for_cpu(struct device *dev, 953 struct scatterlist *sgl, int nelems, 954 enum dma_data_direction dir) 955 { 956 struct scatterlist *sg; 957 int i; 958 959 if (dev_use_swiotlb(dev)) 960 for_each_sg(sgl, sg, nelems, i) 961 iommu_dma_sync_single_for_cpu(dev, sg_dma_address(sg), 962 sg->length, dir); 963 else if (!dev_is_dma_coherent(dev)) 964 for_each_sg(sgl, sg, nelems, i) 965 arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir); 966 } 967 968 static void iommu_dma_sync_sg_for_device(struct device *dev, 969 struct scatterlist *sgl, int nelems, 970 enum dma_data_direction dir) 971 { 972 struct scatterlist *sg; 973 int i; 974 975 if (dev_use_swiotlb(dev)) 976 for_each_sg(sgl, sg, nelems, i) 977 iommu_dma_sync_single_for_device(dev, 978 sg_dma_address(sg), 979 sg->length, dir); 980 else if (!dev_is_dma_coherent(dev)) 981 for_each_sg(sgl, sg, nelems, i) 982 arch_sync_dma_for_device(sg_phys(sg), sg->length, dir); 983 } 984 985 static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page, 986 unsigned long offset, size_t size, enum dma_data_direction dir, 987 unsigned long attrs) 988 { 989 phys_addr_t phys = page_to_phys(page) + offset; 990 bool coherent = dev_is_dma_coherent(dev); 991 int prot = dma_info_to_prot(dir, coherent, attrs); 992 struct iommu_domain *domain = iommu_get_dma_domain(dev); 993 struct iommu_dma_cookie *cookie = domain->iova_cookie; 994 struct iova_domain *iovad = &cookie->iovad; 995 dma_addr_t iova, dma_mask = dma_get_mask(dev); 996 997 /* 998 * If both the physical buffer start address and size are 999 * page aligned, we don't need to use a bounce page. 1000 */ 1001 if (dev_use_swiotlb(dev) && iova_offset(iovad, phys | size)) { 1002 void *padding_start; 1003 size_t padding_size, aligned_size; 1004 1005 if (!is_swiotlb_active(dev)) { 1006 dev_warn_once(dev, "DMA bounce buffers are inactive, unable to map unaligned transaction.\n"); 1007 return DMA_MAPPING_ERROR; 1008 } 1009 1010 aligned_size = iova_align(iovad, size); 1011 phys = swiotlb_tbl_map_single(dev, phys, size, aligned_size, 1012 iova_mask(iovad), dir, attrs); 1013 1014 if (phys == DMA_MAPPING_ERROR) 1015 return DMA_MAPPING_ERROR; 1016 1017 /* Cleanup the padding area. */ 1018 padding_start = phys_to_virt(phys); 1019 padding_size = aligned_size; 1020 1021 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && 1022 (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) { 1023 padding_start += size; 1024 padding_size -= size; 1025 } 1026 1027 memset(padding_start, 0, padding_size); 1028 } 1029 1030 if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 1031 arch_sync_dma_for_device(phys, size, dir); 1032 1033 iova = __iommu_dma_map(dev, phys, size, prot, dma_mask); 1034 if (iova == DMA_MAPPING_ERROR && is_swiotlb_buffer(dev, phys)) 1035 swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs); 1036 return iova; 1037 } 1038 1039 static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle, 1040 size_t size, enum dma_data_direction dir, unsigned long attrs) 1041 { 1042 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1043 phys_addr_t phys; 1044 1045 phys = iommu_iova_to_phys(domain, dma_handle); 1046 if (WARN_ON(!phys)) 1047 return; 1048 1049 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && !dev_is_dma_coherent(dev)) 1050 arch_sync_dma_for_cpu(phys, size, dir); 1051 1052 __iommu_dma_unmap(dev, dma_handle, size); 1053 1054 if (unlikely(is_swiotlb_buffer(dev, phys))) 1055 swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs); 1056 } 1057 1058 /* 1059 * Prepare a successfully-mapped scatterlist to give back to the caller. 1060 * 1061 * At this point the segments are already laid out by iommu_dma_map_sg() to 1062 * avoid individually crossing any boundaries, so we merely need to check a 1063 * segment's start address to avoid concatenating across one. 1064 */ 1065 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents, 1066 dma_addr_t dma_addr) 1067 { 1068 struct scatterlist *s, *cur = sg; 1069 unsigned long seg_mask = dma_get_seg_boundary(dev); 1070 unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev); 1071 int i, count = 0; 1072 1073 for_each_sg(sg, s, nents, i) { 1074 /* Restore this segment's original unaligned fields first */ 1075 dma_addr_t s_dma_addr = sg_dma_address(s); 1076 unsigned int s_iova_off = sg_dma_address(s); 1077 unsigned int s_length = sg_dma_len(s); 1078 unsigned int s_iova_len = s->length; 1079 1080 sg_dma_address(s) = DMA_MAPPING_ERROR; 1081 sg_dma_len(s) = 0; 1082 1083 if (sg_is_dma_bus_address(s)) { 1084 if (i > 0) 1085 cur = sg_next(cur); 1086 1087 sg_dma_unmark_bus_address(s); 1088 sg_dma_address(cur) = s_dma_addr; 1089 sg_dma_len(cur) = s_length; 1090 sg_dma_mark_bus_address(cur); 1091 count++; 1092 cur_len = 0; 1093 continue; 1094 } 1095 1096 s->offset += s_iova_off; 1097 s->length = s_length; 1098 1099 /* 1100 * Now fill in the real DMA data. If... 1101 * - there is a valid output segment to append to 1102 * - and this segment starts on an IOVA page boundary 1103 * - but doesn't fall at a segment boundary 1104 * - and wouldn't make the resulting output segment too long 1105 */ 1106 if (cur_len && !s_iova_off && (dma_addr & seg_mask) && 1107 (max_len - cur_len >= s_length)) { 1108 /* ...then concatenate it with the previous one */ 1109 cur_len += s_length; 1110 } else { 1111 /* Otherwise start the next output segment */ 1112 if (i > 0) 1113 cur = sg_next(cur); 1114 cur_len = s_length; 1115 count++; 1116 1117 sg_dma_address(cur) = dma_addr + s_iova_off; 1118 } 1119 1120 sg_dma_len(cur) = cur_len; 1121 dma_addr += s_iova_len; 1122 1123 if (s_length + s_iova_off < s_iova_len) 1124 cur_len = 0; 1125 } 1126 return count; 1127 } 1128 1129 /* 1130 * If mapping failed, then just restore the original list, 1131 * but making sure the DMA fields are invalidated. 1132 */ 1133 static void __invalidate_sg(struct scatterlist *sg, int nents) 1134 { 1135 struct scatterlist *s; 1136 int i; 1137 1138 for_each_sg(sg, s, nents, i) { 1139 if (sg_is_dma_bus_address(s)) { 1140 sg_dma_unmark_bus_address(s); 1141 } else { 1142 if (sg_dma_address(s) != DMA_MAPPING_ERROR) 1143 s->offset += sg_dma_address(s); 1144 if (sg_dma_len(s)) 1145 s->length = sg_dma_len(s); 1146 } 1147 sg_dma_address(s) = DMA_MAPPING_ERROR; 1148 sg_dma_len(s) = 0; 1149 } 1150 } 1151 1152 static void iommu_dma_unmap_sg_swiotlb(struct device *dev, struct scatterlist *sg, 1153 int nents, enum dma_data_direction dir, unsigned long attrs) 1154 { 1155 struct scatterlist *s; 1156 int i; 1157 1158 for_each_sg(sg, s, nents, i) 1159 iommu_dma_unmap_page(dev, sg_dma_address(s), 1160 sg_dma_len(s), dir, attrs); 1161 } 1162 1163 static int iommu_dma_map_sg_swiotlb(struct device *dev, struct scatterlist *sg, 1164 int nents, enum dma_data_direction dir, unsigned long attrs) 1165 { 1166 struct scatterlist *s; 1167 int i; 1168 1169 for_each_sg(sg, s, nents, i) { 1170 sg_dma_address(s) = iommu_dma_map_page(dev, sg_page(s), 1171 s->offset, s->length, dir, attrs); 1172 if (sg_dma_address(s) == DMA_MAPPING_ERROR) 1173 goto out_unmap; 1174 sg_dma_len(s) = s->length; 1175 } 1176 1177 return nents; 1178 1179 out_unmap: 1180 iommu_dma_unmap_sg_swiotlb(dev, sg, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC); 1181 return -EIO; 1182 } 1183 1184 /* 1185 * The DMA API client is passing in a scatterlist which could describe 1186 * any old buffer layout, but the IOMMU API requires everything to be 1187 * aligned to IOMMU pages. Hence the need for this complicated bit of 1188 * impedance-matching, to be able to hand off a suitably-aligned list, 1189 * but still preserve the original offsets and sizes for the caller. 1190 */ 1191 static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg, 1192 int nents, enum dma_data_direction dir, unsigned long attrs) 1193 { 1194 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1195 struct iommu_dma_cookie *cookie = domain->iova_cookie; 1196 struct iova_domain *iovad = &cookie->iovad; 1197 struct scatterlist *s, *prev = NULL; 1198 int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs); 1199 struct pci_p2pdma_map_state p2pdma_state = {}; 1200 enum pci_p2pdma_map_type map; 1201 dma_addr_t iova; 1202 size_t iova_len = 0; 1203 unsigned long mask = dma_get_seg_boundary(dev); 1204 ssize_t ret; 1205 int i; 1206 1207 if (static_branch_unlikely(&iommu_deferred_attach_enabled)) { 1208 ret = iommu_deferred_attach(dev, domain); 1209 if (ret) 1210 goto out; 1211 } 1212 1213 if (dev_use_swiotlb(dev)) 1214 return iommu_dma_map_sg_swiotlb(dev, sg, nents, dir, attrs); 1215 1216 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 1217 iommu_dma_sync_sg_for_device(dev, sg, nents, dir); 1218 1219 /* 1220 * Work out how much IOVA space we need, and align the segments to 1221 * IOVA granules for the IOMMU driver to handle. With some clever 1222 * trickery we can modify the list in-place, but reversibly, by 1223 * stashing the unaligned parts in the as-yet-unused DMA fields. 1224 */ 1225 for_each_sg(sg, s, nents, i) { 1226 size_t s_iova_off = iova_offset(iovad, s->offset); 1227 size_t s_length = s->length; 1228 size_t pad_len = (mask - iova_len + 1) & mask; 1229 1230 if (is_pci_p2pdma_page(sg_page(s))) { 1231 map = pci_p2pdma_map_segment(&p2pdma_state, dev, s); 1232 switch (map) { 1233 case PCI_P2PDMA_MAP_BUS_ADDR: 1234 /* 1235 * iommu_map_sg() will skip this segment as 1236 * it is marked as a bus address, 1237 * __finalise_sg() will copy the dma address 1238 * into the output segment. 1239 */ 1240 continue; 1241 case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE: 1242 /* 1243 * Mapping through host bridge should be 1244 * mapped with regular IOVAs, thus we 1245 * do nothing here and continue below. 1246 */ 1247 break; 1248 default: 1249 ret = -EREMOTEIO; 1250 goto out_restore_sg; 1251 } 1252 } 1253 1254 sg_dma_address(s) = s_iova_off; 1255 sg_dma_len(s) = s_length; 1256 s->offset -= s_iova_off; 1257 s_length = iova_align(iovad, s_length + s_iova_off); 1258 s->length = s_length; 1259 1260 /* 1261 * Due to the alignment of our single IOVA allocation, we can 1262 * depend on these assumptions about the segment boundary mask: 1263 * - If mask size >= IOVA size, then the IOVA range cannot 1264 * possibly fall across a boundary, so we don't care. 1265 * - If mask size < IOVA size, then the IOVA range must start 1266 * exactly on a boundary, therefore we can lay things out 1267 * based purely on segment lengths without needing to know 1268 * the actual addresses beforehand. 1269 * - The mask must be a power of 2, so pad_len == 0 if 1270 * iova_len == 0, thus we cannot dereference prev the first 1271 * time through here (i.e. before it has a meaningful value). 1272 */ 1273 if (pad_len && pad_len < s_length - 1) { 1274 prev->length += pad_len; 1275 iova_len += pad_len; 1276 } 1277 1278 iova_len += s_length; 1279 prev = s; 1280 } 1281 1282 if (!iova_len) 1283 return __finalise_sg(dev, sg, nents, 0); 1284 1285 iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev); 1286 if (!iova) { 1287 ret = -ENOMEM; 1288 goto out_restore_sg; 1289 } 1290 1291 /* 1292 * We'll leave any physical concatenation to the IOMMU driver's 1293 * implementation - it knows better than we do. 1294 */ 1295 ret = iommu_map_sg(domain, iova, sg, nents, prot, GFP_ATOMIC); 1296 if (ret < 0 || ret < iova_len) 1297 goto out_free_iova; 1298 1299 return __finalise_sg(dev, sg, nents, iova); 1300 1301 out_free_iova: 1302 iommu_dma_free_iova(cookie, iova, iova_len, NULL); 1303 out_restore_sg: 1304 __invalidate_sg(sg, nents); 1305 out: 1306 if (ret != -ENOMEM && ret != -EREMOTEIO) 1307 return -EINVAL; 1308 return ret; 1309 } 1310 1311 static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, 1312 int nents, enum dma_data_direction dir, unsigned long attrs) 1313 { 1314 dma_addr_t end = 0, start; 1315 struct scatterlist *tmp; 1316 int i; 1317 1318 if (dev_use_swiotlb(dev)) { 1319 iommu_dma_unmap_sg_swiotlb(dev, sg, nents, dir, attrs); 1320 return; 1321 } 1322 1323 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 1324 iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir); 1325 1326 /* 1327 * The scatterlist segments are mapped into a single 1328 * contiguous IOVA allocation, the start and end points 1329 * just have to be determined. 1330 */ 1331 for_each_sg(sg, tmp, nents, i) { 1332 if (sg_is_dma_bus_address(tmp)) { 1333 sg_dma_unmark_bus_address(tmp); 1334 continue; 1335 } 1336 1337 if (sg_dma_len(tmp) == 0) 1338 break; 1339 1340 start = sg_dma_address(tmp); 1341 break; 1342 } 1343 1344 nents -= i; 1345 for_each_sg(tmp, tmp, nents, i) { 1346 if (sg_is_dma_bus_address(tmp)) { 1347 sg_dma_unmark_bus_address(tmp); 1348 continue; 1349 } 1350 1351 if (sg_dma_len(tmp) == 0) 1352 break; 1353 1354 end = sg_dma_address(tmp) + sg_dma_len(tmp); 1355 } 1356 1357 if (end) 1358 __iommu_dma_unmap(dev, start, end - start); 1359 } 1360 1361 static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys, 1362 size_t size, enum dma_data_direction dir, unsigned long attrs) 1363 { 1364 return __iommu_dma_map(dev, phys, size, 1365 dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO, 1366 dma_get_mask(dev)); 1367 } 1368 1369 static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle, 1370 size_t size, enum dma_data_direction dir, unsigned long attrs) 1371 { 1372 __iommu_dma_unmap(dev, handle, size); 1373 } 1374 1375 static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr) 1376 { 1377 size_t alloc_size = PAGE_ALIGN(size); 1378 int count = alloc_size >> PAGE_SHIFT; 1379 struct page *page = NULL, **pages = NULL; 1380 1381 /* Non-coherent atomic allocation? Easy */ 1382 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && 1383 dma_free_from_pool(dev, cpu_addr, alloc_size)) 1384 return; 1385 1386 if (is_vmalloc_addr(cpu_addr)) { 1387 /* 1388 * If it the address is remapped, then it's either non-coherent 1389 * or highmem CMA, or an iommu_dma_alloc_remap() construction. 1390 */ 1391 pages = dma_common_find_pages(cpu_addr); 1392 if (!pages) 1393 page = vmalloc_to_page(cpu_addr); 1394 dma_common_free_remap(cpu_addr, alloc_size); 1395 } else { 1396 /* Lowmem means a coherent atomic or CMA allocation */ 1397 page = virt_to_page(cpu_addr); 1398 } 1399 1400 if (pages) 1401 __iommu_dma_free_pages(pages, count); 1402 if (page) 1403 dma_free_contiguous(dev, page, alloc_size); 1404 } 1405 1406 static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr, 1407 dma_addr_t handle, unsigned long attrs) 1408 { 1409 __iommu_dma_unmap(dev, handle, size); 1410 __iommu_dma_free(dev, size, cpu_addr); 1411 } 1412 1413 static void *iommu_dma_alloc_pages(struct device *dev, size_t size, 1414 struct page **pagep, gfp_t gfp, unsigned long attrs) 1415 { 1416 bool coherent = dev_is_dma_coherent(dev); 1417 size_t alloc_size = PAGE_ALIGN(size); 1418 int node = dev_to_node(dev); 1419 struct page *page = NULL; 1420 void *cpu_addr; 1421 1422 page = dma_alloc_contiguous(dev, alloc_size, gfp); 1423 if (!page) 1424 page = alloc_pages_node(node, gfp, get_order(alloc_size)); 1425 if (!page) 1426 return NULL; 1427 1428 if (!coherent || PageHighMem(page)) { 1429 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs); 1430 1431 cpu_addr = dma_common_contiguous_remap(page, alloc_size, 1432 prot, __builtin_return_address(0)); 1433 if (!cpu_addr) 1434 goto out_free_pages; 1435 1436 if (!coherent) 1437 arch_dma_prep_coherent(page, size); 1438 } else { 1439 cpu_addr = page_address(page); 1440 } 1441 1442 *pagep = page; 1443 memset(cpu_addr, 0, alloc_size); 1444 return cpu_addr; 1445 out_free_pages: 1446 dma_free_contiguous(dev, page, alloc_size); 1447 return NULL; 1448 } 1449 1450 static void *iommu_dma_alloc(struct device *dev, size_t size, 1451 dma_addr_t *handle, gfp_t gfp, unsigned long attrs) 1452 { 1453 bool coherent = dev_is_dma_coherent(dev); 1454 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs); 1455 struct page *page = NULL; 1456 void *cpu_addr; 1457 1458 gfp |= __GFP_ZERO; 1459 1460 if (gfpflags_allow_blocking(gfp) && 1461 !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) { 1462 return iommu_dma_alloc_remap(dev, size, handle, gfp, 1463 dma_pgprot(dev, PAGE_KERNEL, attrs), attrs); 1464 } 1465 1466 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && 1467 !gfpflags_allow_blocking(gfp) && !coherent) 1468 page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr, 1469 gfp, NULL); 1470 else 1471 cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs); 1472 if (!cpu_addr) 1473 return NULL; 1474 1475 *handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot, 1476 dev->coherent_dma_mask); 1477 if (*handle == DMA_MAPPING_ERROR) { 1478 __iommu_dma_free(dev, size, cpu_addr); 1479 return NULL; 1480 } 1481 1482 return cpu_addr; 1483 } 1484 1485 static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma, 1486 void *cpu_addr, dma_addr_t dma_addr, size_t size, 1487 unsigned long attrs) 1488 { 1489 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 1490 unsigned long pfn, off = vma->vm_pgoff; 1491 int ret; 1492 1493 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs); 1494 1495 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) 1496 return ret; 1497 1498 if (off >= nr_pages || vma_pages(vma) > nr_pages - off) 1499 return -ENXIO; 1500 1501 if (is_vmalloc_addr(cpu_addr)) { 1502 struct page **pages = dma_common_find_pages(cpu_addr); 1503 1504 if (pages) 1505 return vm_map_pages(vma, pages, nr_pages); 1506 pfn = vmalloc_to_pfn(cpu_addr); 1507 } else { 1508 pfn = page_to_pfn(virt_to_page(cpu_addr)); 1509 } 1510 1511 return remap_pfn_range(vma, vma->vm_start, pfn + off, 1512 vma->vm_end - vma->vm_start, 1513 vma->vm_page_prot); 1514 } 1515 1516 static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt, 1517 void *cpu_addr, dma_addr_t dma_addr, size_t size, 1518 unsigned long attrs) 1519 { 1520 struct page *page; 1521 int ret; 1522 1523 if (is_vmalloc_addr(cpu_addr)) { 1524 struct page **pages = dma_common_find_pages(cpu_addr); 1525 1526 if (pages) { 1527 return sg_alloc_table_from_pages(sgt, pages, 1528 PAGE_ALIGN(size) >> PAGE_SHIFT, 1529 0, size, GFP_KERNEL); 1530 } 1531 1532 page = vmalloc_to_page(cpu_addr); 1533 } else { 1534 page = virt_to_page(cpu_addr); 1535 } 1536 1537 ret = sg_alloc_table(sgt, 1, GFP_KERNEL); 1538 if (!ret) 1539 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); 1540 return ret; 1541 } 1542 1543 static unsigned long iommu_dma_get_merge_boundary(struct device *dev) 1544 { 1545 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1546 1547 return (1UL << __ffs(domain->pgsize_bitmap)) - 1; 1548 } 1549 1550 static size_t iommu_dma_opt_mapping_size(void) 1551 { 1552 return iova_rcache_range(); 1553 } 1554 1555 static const struct dma_map_ops iommu_dma_ops = { 1556 .flags = DMA_F_PCI_P2PDMA_SUPPORTED, 1557 .alloc = iommu_dma_alloc, 1558 .free = iommu_dma_free, 1559 .alloc_pages = dma_common_alloc_pages, 1560 .free_pages = dma_common_free_pages, 1561 .alloc_noncontiguous = iommu_dma_alloc_noncontiguous, 1562 .free_noncontiguous = iommu_dma_free_noncontiguous, 1563 .mmap = iommu_dma_mmap, 1564 .get_sgtable = iommu_dma_get_sgtable, 1565 .map_page = iommu_dma_map_page, 1566 .unmap_page = iommu_dma_unmap_page, 1567 .map_sg = iommu_dma_map_sg, 1568 .unmap_sg = iommu_dma_unmap_sg, 1569 .sync_single_for_cpu = iommu_dma_sync_single_for_cpu, 1570 .sync_single_for_device = iommu_dma_sync_single_for_device, 1571 .sync_sg_for_cpu = iommu_dma_sync_sg_for_cpu, 1572 .sync_sg_for_device = iommu_dma_sync_sg_for_device, 1573 .map_resource = iommu_dma_map_resource, 1574 .unmap_resource = iommu_dma_unmap_resource, 1575 .get_merge_boundary = iommu_dma_get_merge_boundary, 1576 .opt_mapping_size = iommu_dma_opt_mapping_size, 1577 }; 1578 1579 /* 1580 * The IOMMU core code allocates the default DMA domain, which the underlying 1581 * IOMMU driver needs to support via the dma-iommu layer. 1582 */ 1583 void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 dma_limit) 1584 { 1585 struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 1586 1587 if (!domain) 1588 goto out_err; 1589 1590 /* 1591 * The IOMMU core code allocates the default DMA domain, which the 1592 * underlying IOMMU driver needs to support via the dma-iommu layer. 1593 */ 1594 if (iommu_is_dma_domain(domain)) { 1595 if (iommu_dma_init_domain(domain, dma_base, dma_limit, dev)) 1596 goto out_err; 1597 dev->dma_ops = &iommu_dma_ops; 1598 } 1599 1600 return; 1601 out_err: 1602 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n", 1603 dev_name(dev)); 1604 } 1605 EXPORT_SYMBOL_GPL(iommu_setup_dma_ops); 1606 1607 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev, 1608 phys_addr_t msi_addr, struct iommu_domain *domain) 1609 { 1610 struct iommu_dma_cookie *cookie = domain->iova_cookie; 1611 struct iommu_dma_msi_page *msi_page; 1612 dma_addr_t iova; 1613 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO; 1614 size_t size = cookie_msi_granule(cookie); 1615 1616 msi_addr &= ~(phys_addr_t)(size - 1); 1617 list_for_each_entry(msi_page, &cookie->msi_page_list, list) 1618 if (msi_page->phys == msi_addr) 1619 return msi_page; 1620 1621 msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL); 1622 if (!msi_page) 1623 return NULL; 1624 1625 iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev); 1626 if (!iova) 1627 goto out_free_page; 1628 1629 if (iommu_map(domain, iova, msi_addr, size, prot, GFP_KERNEL)) 1630 goto out_free_iova; 1631 1632 INIT_LIST_HEAD(&msi_page->list); 1633 msi_page->phys = msi_addr; 1634 msi_page->iova = iova; 1635 list_add(&msi_page->list, &cookie->msi_page_list); 1636 return msi_page; 1637 1638 out_free_iova: 1639 iommu_dma_free_iova(cookie, iova, size, NULL); 1640 out_free_page: 1641 kfree(msi_page); 1642 return NULL; 1643 } 1644 1645 /** 1646 * iommu_dma_prepare_msi() - Map the MSI page in the IOMMU domain 1647 * @desc: MSI descriptor, will store the MSI page 1648 * @msi_addr: MSI target address to be mapped 1649 * 1650 * Return: 0 on success or negative error code if the mapping failed. 1651 */ 1652 int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr) 1653 { 1654 struct device *dev = msi_desc_to_dev(desc); 1655 struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 1656 struct iommu_dma_msi_page *msi_page; 1657 static DEFINE_MUTEX(msi_prepare_lock); /* see below */ 1658 1659 if (!domain || !domain->iova_cookie) { 1660 desc->iommu_cookie = NULL; 1661 return 0; 1662 } 1663 1664 /* 1665 * In fact the whole prepare operation should already be serialised by 1666 * irq_domain_mutex further up the callchain, but that's pretty subtle 1667 * on its own, so consider this locking as failsafe documentation... 1668 */ 1669 mutex_lock(&msi_prepare_lock); 1670 msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain); 1671 mutex_unlock(&msi_prepare_lock); 1672 1673 msi_desc_set_iommu_cookie(desc, msi_page); 1674 1675 if (!msi_page) 1676 return -ENOMEM; 1677 return 0; 1678 } 1679 1680 /** 1681 * iommu_dma_compose_msi_msg() - Apply translation to an MSI message 1682 * @desc: MSI descriptor prepared by iommu_dma_prepare_msi() 1683 * @msg: MSI message containing target physical address 1684 */ 1685 void iommu_dma_compose_msi_msg(struct msi_desc *desc, struct msi_msg *msg) 1686 { 1687 struct device *dev = msi_desc_to_dev(desc); 1688 const struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 1689 const struct iommu_dma_msi_page *msi_page; 1690 1691 msi_page = msi_desc_get_iommu_cookie(desc); 1692 1693 if (!domain || !domain->iova_cookie || WARN_ON(!msi_page)) 1694 return; 1695 1696 msg->address_hi = upper_32_bits(msi_page->iova); 1697 msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1; 1698 msg->address_lo += lower_32_bits(msi_page->iova); 1699 } 1700 1701 static int iommu_dma_init(void) 1702 { 1703 if (is_kdump_kernel()) 1704 static_branch_enable(&iommu_deferred_attach_enabled); 1705 1706 return iova_cache_get(); 1707 } 1708 arch_initcall(iommu_dma_init); 1709