1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * A fairly generic DMA-API to IOMMU-API glue layer. 4 * 5 * Copyright (C) 2014-2015 ARM Ltd. 6 * 7 * based in part on arch/arm/mm/dma-mapping.c: 8 * Copyright (C) 2000-2004 Russell King 9 */ 10 11 #include <linux/acpi_iort.h> 12 #include <linux/device.h> 13 #include <linux/dma-map-ops.h> 14 #include <linux/dma-iommu.h> 15 #include <linux/gfp.h> 16 #include <linux/huge_mm.h> 17 #include <linux/iommu.h> 18 #include <linux/iova.h> 19 #include <linux/irq.h> 20 #include <linux/mm.h> 21 #include <linux/mutex.h> 22 #include <linux/pci.h> 23 #include <linux/swiotlb.h> 24 #include <linux/scatterlist.h> 25 #include <linux/vmalloc.h> 26 #include <linux/crash_dump.h> 27 #include <linux/dma-direct.h> 28 29 struct iommu_dma_msi_page { 30 struct list_head list; 31 dma_addr_t iova; 32 phys_addr_t phys; 33 }; 34 35 enum iommu_dma_cookie_type { 36 IOMMU_DMA_IOVA_COOKIE, 37 IOMMU_DMA_MSI_COOKIE, 38 }; 39 40 struct iommu_dma_cookie { 41 enum iommu_dma_cookie_type type; 42 union { 43 /* Full allocator for IOMMU_DMA_IOVA_COOKIE */ 44 struct iova_domain iovad; 45 /* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */ 46 dma_addr_t msi_iova; 47 }; 48 struct list_head msi_page_list; 49 50 /* Domain for flush queue callback; NULL if flush queue not in use */ 51 struct iommu_domain *fq_domain; 52 }; 53 54 static DEFINE_STATIC_KEY_FALSE(iommu_deferred_attach_enabled); 55 bool iommu_dma_forcedac __read_mostly; 56 57 static int __init iommu_dma_forcedac_setup(char *str) 58 { 59 int ret = kstrtobool(str, &iommu_dma_forcedac); 60 61 if (!ret && iommu_dma_forcedac) 62 pr_info("Forcing DAC for PCI devices\n"); 63 return ret; 64 } 65 early_param("iommu.forcedac", iommu_dma_forcedac_setup); 66 67 static void iommu_dma_entry_dtor(unsigned long data) 68 { 69 struct page *freelist = (struct page *)data; 70 71 while (freelist) { 72 unsigned long p = (unsigned long)page_address(freelist); 73 74 freelist = freelist->freelist; 75 free_page(p); 76 } 77 } 78 79 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie) 80 { 81 if (cookie->type == IOMMU_DMA_IOVA_COOKIE) 82 return cookie->iovad.granule; 83 return PAGE_SIZE; 84 } 85 86 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type) 87 { 88 struct iommu_dma_cookie *cookie; 89 90 cookie = kzalloc(sizeof(*cookie), GFP_KERNEL); 91 if (cookie) { 92 INIT_LIST_HEAD(&cookie->msi_page_list); 93 cookie->type = type; 94 } 95 return cookie; 96 } 97 98 /** 99 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain 100 * @domain: IOMMU domain to prepare for DMA-API usage 101 * 102 * IOMMU drivers should normally call this from their domain_alloc 103 * callback when domain->type == IOMMU_DOMAIN_DMA. 104 */ 105 int iommu_get_dma_cookie(struct iommu_domain *domain) 106 { 107 if (domain->iova_cookie) 108 return -EEXIST; 109 110 domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE); 111 if (!domain->iova_cookie) 112 return -ENOMEM; 113 114 return 0; 115 } 116 EXPORT_SYMBOL(iommu_get_dma_cookie); 117 118 /** 119 * iommu_get_msi_cookie - Acquire just MSI remapping resources 120 * @domain: IOMMU domain to prepare 121 * @base: Start address of IOVA region for MSI mappings 122 * 123 * Users who manage their own IOVA allocation and do not want DMA API support, 124 * but would still like to take advantage of automatic MSI remapping, can use 125 * this to initialise their own domain appropriately. Users should reserve a 126 * contiguous IOVA region, starting at @base, large enough to accommodate the 127 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address 128 * used by the devices attached to @domain. 129 */ 130 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base) 131 { 132 struct iommu_dma_cookie *cookie; 133 134 if (domain->type != IOMMU_DOMAIN_UNMANAGED) 135 return -EINVAL; 136 137 if (domain->iova_cookie) 138 return -EEXIST; 139 140 cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE); 141 if (!cookie) 142 return -ENOMEM; 143 144 cookie->msi_iova = base; 145 domain->iova_cookie = cookie; 146 return 0; 147 } 148 EXPORT_SYMBOL(iommu_get_msi_cookie); 149 150 /** 151 * iommu_put_dma_cookie - Release a domain's DMA mapping resources 152 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or 153 * iommu_get_msi_cookie() 154 * 155 * IOMMU drivers should normally call this from their domain_free callback. 156 */ 157 void iommu_put_dma_cookie(struct iommu_domain *domain) 158 { 159 struct iommu_dma_cookie *cookie = domain->iova_cookie; 160 struct iommu_dma_msi_page *msi, *tmp; 161 162 if (!cookie) 163 return; 164 165 if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule) 166 put_iova_domain(&cookie->iovad); 167 168 list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) { 169 list_del(&msi->list); 170 kfree(msi); 171 } 172 kfree(cookie); 173 domain->iova_cookie = NULL; 174 } 175 EXPORT_SYMBOL(iommu_put_dma_cookie); 176 177 /** 178 * iommu_dma_get_resv_regions - Reserved region driver helper 179 * @dev: Device from iommu_get_resv_regions() 180 * @list: Reserved region list from iommu_get_resv_regions() 181 * 182 * IOMMU drivers can use this to implement their .get_resv_regions callback 183 * for general non-IOMMU-specific reservations. Currently, this covers GICv3 184 * ITS region reservation on ACPI based ARM platforms that may require HW MSI 185 * reservation. 186 */ 187 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list) 188 { 189 190 if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode)) 191 iort_iommu_msi_get_resv_regions(dev, list); 192 193 } 194 EXPORT_SYMBOL(iommu_dma_get_resv_regions); 195 196 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie, 197 phys_addr_t start, phys_addr_t end) 198 { 199 struct iova_domain *iovad = &cookie->iovad; 200 struct iommu_dma_msi_page *msi_page; 201 int i, num_pages; 202 203 start -= iova_offset(iovad, start); 204 num_pages = iova_align(iovad, end - start) >> iova_shift(iovad); 205 206 for (i = 0; i < num_pages; i++) { 207 msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL); 208 if (!msi_page) 209 return -ENOMEM; 210 211 msi_page->phys = start; 212 msi_page->iova = start; 213 INIT_LIST_HEAD(&msi_page->list); 214 list_add(&msi_page->list, &cookie->msi_page_list); 215 start += iovad->granule; 216 } 217 218 return 0; 219 } 220 221 static int iova_reserve_pci_windows(struct pci_dev *dev, 222 struct iova_domain *iovad) 223 { 224 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus); 225 struct resource_entry *window; 226 unsigned long lo, hi; 227 phys_addr_t start = 0, end; 228 229 resource_list_for_each_entry(window, &bridge->windows) { 230 if (resource_type(window->res) != IORESOURCE_MEM) 231 continue; 232 233 lo = iova_pfn(iovad, window->res->start - window->offset); 234 hi = iova_pfn(iovad, window->res->end - window->offset); 235 reserve_iova(iovad, lo, hi); 236 } 237 238 /* Get reserved DMA windows from host bridge */ 239 resource_list_for_each_entry(window, &bridge->dma_ranges) { 240 end = window->res->start - window->offset; 241 resv_iova: 242 if (end > start) { 243 lo = iova_pfn(iovad, start); 244 hi = iova_pfn(iovad, end); 245 reserve_iova(iovad, lo, hi); 246 } else if (end < start) { 247 /* dma_ranges list should be sorted */ 248 dev_err(&dev->dev, 249 "Failed to reserve IOVA [%pa-%pa]\n", 250 &start, &end); 251 return -EINVAL; 252 } 253 254 start = window->res->end - window->offset + 1; 255 /* If window is last entry */ 256 if (window->node.next == &bridge->dma_ranges && 257 end != ~(phys_addr_t)0) { 258 end = ~(phys_addr_t)0; 259 goto resv_iova; 260 } 261 } 262 263 return 0; 264 } 265 266 static int iova_reserve_iommu_regions(struct device *dev, 267 struct iommu_domain *domain) 268 { 269 struct iommu_dma_cookie *cookie = domain->iova_cookie; 270 struct iova_domain *iovad = &cookie->iovad; 271 struct iommu_resv_region *region; 272 LIST_HEAD(resv_regions); 273 int ret = 0; 274 275 if (dev_is_pci(dev)) { 276 ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad); 277 if (ret) 278 return ret; 279 } 280 281 iommu_get_resv_regions(dev, &resv_regions); 282 list_for_each_entry(region, &resv_regions, list) { 283 unsigned long lo, hi; 284 285 /* We ARE the software that manages these! */ 286 if (region->type == IOMMU_RESV_SW_MSI) 287 continue; 288 289 lo = iova_pfn(iovad, region->start); 290 hi = iova_pfn(iovad, region->start + region->length - 1); 291 reserve_iova(iovad, lo, hi); 292 293 if (region->type == IOMMU_RESV_MSI) 294 ret = cookie_init_hw_msi_region(cookie, region->start, 295 region->start + region->length); 296 if (ret) 297 break; 298 } 299 iommu_put_resv_regions(dev, &resv_regions); 300 301 return ret; 302 } 303 304 static void iommu_dma_flush_iotlb_all(struct iova_domain *iovad) 305 { 306 struct iommu_dma_cookie *cookie; 307 struct iommu_domain *domain; 308 309 cookie = container_of(iovad, struct iommu_dma_cookie, iovad); 310 domain = cookie->fq_domain; 311 312 domain->ops->flush_iotlb_all(domain); 313 } 314 315 static bool dev_is_untrusted(struct device *dev) 316 { 317 return dev_is_pci(dev) && to_pci_dev(dev)->untrusted; 318 } 319 320 /** 321 * iommu_dma_init_domain - Initialise a DMA mapping domain 322 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() 323 * @base: IOVA at which the mappable address space starts 324 * @limit: Last address of the IOVA space 325 * @dev: Device the domain is being initialised for 326 * 327 * @base and @limit + 1 should be exact multiples of IOMMU page granularity to 328 * avoid rounding surprises. If necessary, we reserve the page at address 0 329 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but 330 * any change which could make prior IOVAs invalid will fail. 331 */ 332 static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base, 333 dma_addr_t limit, struct device *dev) 334 { 335 struct iommu_dma_cookie *cookie = domain->iova_cookie; 336 unsigned long order, base_pfn; 337 struct iova_domain *iovad; 338 339 if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE) 340 return -EINVAL; 341 342 iovad = &cookie->iovad; 343 344 /* Use the smallest supported page size for IOVA granularity */ 345 order = __ffs(domain->pgsize_bitmap); 346 base_pfn = max_t(unsigned long, 1, base >> order); 347 348 /* Check the domain allows at least some access to the device... */ 349 if (domain->geometry.force_aperture) { 350 if (base > domain->geometry.aperture_end || 351 limit < domain->geometry.aperture_start) { 352 pr_warn("specified DMA range outside IOMMU capability\n"); 353 return -EFAULT; 354 } 355 /* ...then finally give it a kicking to make sure it fits */ 356 base_pfn = max_t(unsigned long, base_pfn, 357 domain->geometry.aperture_start >> order); 358 } 359 360 /* start_pfn is always nonzero for an already-initialised domain */ 361 if (iovad->start_pfn) { 362 if (1UL << order != iovad->granule || 363 base_pfn != iovad->start_pfn) { 364 pr_warn("Incompatible range for DMA domain\n"); 365 return -EFAULT; 366 } 367 368 return 0; 369 } 370 371 init_iova_domain(iovad, 1UL << order, base_pfn); 372 373 if (!cookie->fq_domain && (!dev || !dev_is_untrusted(dev)) && 374 domain->ops->flush_iotlb_all && !iommu_get_dma_strict(domain)) { 375 if (init_iova_flush_queue(iovad, iommu_dma_flush_iotlb_all, 376 iommu_dma_entry_dtor)) 377 pr_warn("iova flush queue initialization failed\n"); 378 else 379 cookie->fq_domain = domain; 380 } 381 382 if (!dev) 383 return 0; 384 385 return iova_reserve_iommu_regions(dev, domain); 386 } 387 388 /** 389 * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API 390 * page flags. 391 * @dir: Direction of DMA transfer 392 * @coherent: Is the DMA master cache-coherent? 393 * @attrs: DMA attributes for the mapping 394 * 395 * Return: corresponding IOMMU API page protection flags 396 */ 397 static int dma_info_to_prot(enum dma_data_direction dir, bool coherent, 398 unsigned long attrs) 399 { 400 int prot = coherent ? IOMMU_CACHE : 0; 401 402 if (attrs & DMA_ATTR_PRIVILEGED) 403 prot |= IOMMU_PRIV; 404 405 switch (dir) { 406 case DMA_BIDIRECTIONAL: 407 return prot | IOMMU_READ | IOMMU_WRITE; 408 case DMA_TO_DEVICE: 409 return prot | IOMMU_READ; 410 case DMA_FROM_DEVICE: 411 return prot | IOMMU_WRITE; 412 default: 413 return 0; 414 } 415 } 416 417 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain, 418 size_t size, u64 dma_limit, struct device *dev) 419 { 420 struct iommu_dma_cookie *cookie = domain->iova_cookie; 421 struct iova_domain *iovad = &cookie->iovad; 422 unsigned long shift, iova_len, iova = 0; 423 424 if (cookie->type == IOMMU_DMA_MSI_COOKIE) { 425 cookie->msi_iova += size; 426 return cookie->msi_iova - size; 427 } 428 429 shift = iova_shift(iovad); 430 iova_len = size >> shift; 431 /* 432 * Freeing non-power-of-two-sized allocations back into the IOVA caches 433 * will come back to bite us badly, so we have to waste a bit of space 434 * rounding up anything cacheable to make sure that can't happen. The 435 * order of the unadjusted size will still match upon freeing. 436 */ 437 if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1))) 438 iova_len = roundup_pow_of_two(iova_len); 439 440 dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit); 441 442 if (domain->geometry.force_aperture) 443 dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end); 444 445 /* Try to get PCI devices a SAC address */ 446 if (dma_limit > DMA_BIT_MASK(32) && !iommu_dma_forcedac && dev_is_pci(dev)) 447 iova = alloc_iova_fast(iovad, iova_len, 448 DMA_BIT_MASK(32) >> shift, false); 449 450 if (!iova) 451 iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift, 452 true); 453 454 return (dma_addr_t)iova << shift; 455 } 456 457 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie, 458 dma_addr_t iova, size_t size, struct page *freelist) 459 { 460 struct iova_domain *iovad = &cookie->iovad; 461 462 /* The MSI case is only ever cleaning up its most recent allocation */ 463 if (cookie->type == IOMMU_DMA_MSI_COOKIE) 464 cookie->msi_iova -= size; 465 else if (cookie->fq_domain) /* non-strict mode */ 466 queue_iova(iovad, iova_pfn(iovad, iova), 467 size >> iova_shift(iovad), 468 (unsigned long)freelist); 469 else 470 free_iova_fast(iovad, iova_pfn(iovad, iova), 471 size >> iova_shift(iovad)); 472 } 473 474 static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr, 475 size_t size) 476 { 477 struct iommu_domain *domain = iommu_get_dma_domain(dev); 478 struct iommu_dma_cookie *cookie = domain->iova_cookie; 479 struct iova_domain *iovad = &cookie->iovad; 480 size_t iova_off = iova_offset(iovad, dma_addr); 481 struct iommu_iotlb_gather iotlb_gather; 482 size_t unmapped; 483 484 dma_addr -= iova_off; 485 size = iova_align(iovad, size + iova_off); 486 iommu_iotlb_gather_init(&iotlb_gather); 487 488 unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather); 489 WARN_ON(unmapped != size); 490 491 if (!cookie->fq_domain) 492 iommu_iotlb_sync(domain, &iotlb_gather); 493 iommu_dma_free_iova(cookie, dma_addr, size, iotlb_gather.freelist); 494 } 495 496 static void __iommu_dma_unmap_swiotlb(struct device *dev, dma_addr_t dma_addr, 497 size_t size, enum dma_data_direction dir, 498 unsigned long attrs) 499 { 500 struct iommu_domain *domain = iommu_get_dma_domain(dev); 501 phys_addr_t phys; 502 503 phys = iommu_iova_to_phys(domain, dma_addr); 504 if (WARN_ON(!phys)) 505 return; 506 507 __iommu_dma_unmap(dev, dma_addr, size); 508 509 if (unlikely(is_swiotlb_buffer(phys))) 510 swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs); 511 } 512 513 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys, 514 size_t size, int prot, u64 dma_mask) 515 { 516 struct iommu_domain *domain = iommu_get_dma_domain(dev); 517 struct iommu_dma_cookie *cookie = domain->iova_cookie; 518 struct iova_domain *iovad = &cookie->iovad; 519 size_t iova_off = iova_offset(iovad, phys); 520 dma_addr_t iova; 521 522 if (static_branch_unlikely(&iommu_deferred_attach_enabled) && 523 iommu_deferred_attach(dev, domain)) 524 return DMA_MAPPING_ERROR; 525 526 size = iova_align(iovad, size + iova_off); 527 528 iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev); 529 if (!iova) 530 return DMA_MAPPING_ERROR; 531 532 if (iommu_map_atomic(domain, iova, phys - iova_off, size, prot)) { 533 iommu_dma_free_iova(cookie, iova, size, NULL); 534 return DMA_MAPPING_ERROR; 535 } 536 return iova + iova_off; 537 } 538 539 static dma_addr_t __iommu_dma_map_swiotlb(struct device *dev, phys_addr_t phys, 540 size_t org_size, dma_addr_t dma_mask, bool coherent, 541 enum dma_data_direction dir, unsigned long attrs) 542 { 543 int prot = dma_info_to_prot(dir, coherent, attrs); 544 struct iommu_domain *domain = iommu_get_dma_domain(dev); 545 struct iommu_dma_cookie *cookie = domain->iova_cookie; 546 struct iova_domain *iovad = &cookie->iovad; 547 size_t aligned_size = org_size; 548 void *padding_start; 549 size_t padding_size; 550 dma_addr_t iova; 551 552 /* 553 * If both the physical buffer start address and size are 554 * page aligned, we don't need to use a bounce page. 555 */ 556 if (IS_ENABLED(CONFIG_SWIOTLB) && dev_is_untrusted(dev) && 557 iova_offset(iovad, phys | org_size)) { 558 aligned_size = iova_align(iovad, org_size); 559 phys = swiotlb_tbl_map_single(dev, phys, org_size, 560 aligned_size, dir, attrs); 561 562 if (phys == DMA_MAPPING_ERROR) 563 return DMA_MAPPING_ERROR; 564 565 /* Cleanup the padding area. */ 566 padding_start = phys_to_virt(phys); 567 padding_size = aligned_size; 568 569 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && 570 (dir == DMA_TO_DEVICE || 571 dir == DMA_BIDIRECTIONAL)) { 572 padding_start += org_size; 573 padding_size -= org_size; 574 } 575 576 memset(padding_start, 0, padding_size); 577 } 578 579 iova = __iommu_dma_map(dev, phys, aligned_size, prot, dma_mask); 580 if (iova == DMA_MAPPING_ERROR && is_swiotlb_buffer(phys)) 581 swiotlb_tbl_unmap_single(dev, phys, org_size, dir, attrs); 582 return iova; 583 } 584 585 static void __iommu_dma_free_pages(struct page **pages, int count) 586 { 587 while (count--) 588 __free_page(pages[count]); 589 kvfree(pages); 590 } 591 592 static struct page **__iommu_dma_alloc_pages(struct device *dev, 593 unsigned int count, unsigned long order_mask, gfp_t gfp) 594 { 595 struct page **pages; 596 unsigned int i = 0, nid = dev_to_node(dev); 597 598 order_mask &= (2U << MAX_ORDER) - 1; 599 if (!order_mask) 600 return NULL; 601 602 pages = kvzalloc(count * sizeof(*pages), GFP_KERNEL); 603 if (!pages) 604 return NULL; 605 606 /* IOMMU can map any pages, so himem can also be used here */ 607 gfp |= __GFP_NOWARN | __GFP_HIGHMEM; 608 609 /* It makes no sense to muck about with huge pages */ 610 gfp &= ~__GFP_COMP; 611 612 while (count) { 613 struct page *page = NULL; 614 unsigned int order_size; 615 616 /* 617 * Higher-order allocations are a convenience rather 618 * than a necessity, hence using __GFP_NORETRY until 619 * falling back to minimum-order allocations. 620 */ 621 for (order_mask &= (2U << __fls(count)) - 1; 622 order_mask; order_mask &= ~order_size) { 623 unsigned int order = __fls(order_mask); 624 gfp_t alloc_flags = gfp; 625 626 order_size = 1U << order; 627 if (order_mask > order_size) 628 alloc_flags |= __GFP_NORETRY; 629 page = alloc_pages_node(nid, alloc_flags, order); 630 if (!page) 631 continue; 632 if (order) 633 split_page(page, order); 634 break; 635 } 636 if (!page) { 637 __iommu_dma_free_pages(pages, i); 638 return NULL; 639 } 640 count -= order_size; 641 while (order_size--) 642 pages[i++] = page++; 643 } 644 return pages; 645 } 646 647 /* 648 * If size is less than PAGE_SIZE, then a full CPU page will be allocated, 649 * but an IOMMU which supports smaller pages might not map the whole thing. 650 */ 651 static struct page **__iommu_dma_alloc_noncontiguous(struct device *dev, 652 size_t size, struct sg_table *sgt, gfp_t gfp, pgprot_t prot, 653 unsigned long attrs) 654 { 655 struct iommu_domain *domain = iommu_get_dma_domain(dev); 656 struct iommu_dma_cookie *cookie = domain->iova_cookie; 657 struct iova_domain *iovad = &cookie->iovad; 658 bool coherent = dev_is_dma_coherent(dev); 659 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs); 660 unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap; 661 struct page **pages; 662 dma_addr_t iova; 663 664 if (static_branch_unlikely(&iommu_deferred_attach_enabled) && 665 iommu_deferred_attach(dev, domain)) 666 return NULL; 667 668 min_size = alloc_sizes & -alloc_sizes; 669 if (min_size < PAGE_SIZE) { 670 min_size = PAGE_SIZE; 671 alloc_sizes |= PAGE_SIZE; 672 } else { 673 size = ALIGN(size, min_size); 674 } 675 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES) 676 alloc_sizes = min_size; 677 678 count = PAGE_ALIGN(size) >> PAGE_SHIFT; 679 pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT, 680 gfp); 681 if (!pages) 682 return NULL; 683 684 size = iova_align(iovad, size); 685 iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev); 686 if (!iova) 687 goto out_free_pages; 688 689 if (sg_alloc_table_from_pages(sgt, pages, count, 0, size, GFP_KERNEL)) 690 goto out_free_iova; 691 692 if (!(ioprot & IOMMU_CACHE)) { 693 struct scatterlist *sg; 694 int i; 695 696 for_each_sg(sgt->sgl, sg, sgt->orig_nents, i) 697 arch_dma_prep_coherent(sg_page(sg), sg->length); 698 } 699 700 if (iommu_map_sg_atomic(domain, iova, sgt->sgl, sgt->orig_nents, ioprot) 701 < size) 702 goto out_free_sg; 703 704 sgt->sgl->dma_address = iova; 705 sgt->sgl->dma_length = size; 706 return pages; 707 708 out_free_sg: 709 sg_free_table(sgt); 710 out_free_iova: 711 iommu_dma_free_iova(cookie, iova, size, NULL); 712 out_free_pages: 713 __iommu_dma_free_pages(pages, count); 714 return NULL; 715 } 716 717 static void *iommu_dma_alloc_remap(struct device *dev, size_t size, 718 dma_addr_t *dma_handle, gfp_t gfp, pgprot_t prot, 719 unsigned long attrs) 720 { 721 struct page **pages; 722 struct sg_table sgt; 723 void *vaddr; 724 725 pages = __iommu_dma_alloc_noncontiguous(dev, size, &sgt, gfp, prot, 726 attrs); 727 if (!pages) 728 return NULL; 729 *dma_handle = sgt.sgl->dma_address; 730 sg_free_table(&sgt); 731 vaddr = dma_common_pages_remap(pages, size, prot, 732 __builtin_return_address(0)); 733 if (!vaddr) 734 goto out_unmap; 735 return vaddr; 736 737 out_unmap: 738 __iommu_dma_unmap(dev, *dma_handle, size); 739 __iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT); 740 return NULL; 741 } 742 743 #ifdef CONFIG_DMA_REMAP 744 static struct sg_table *iommu_dma_alloc_noncontiguous(struct device *dev, 745 size_t size, enum dma_data_direction dir, gfp_t gfp, 746 unsigned long attrs) 747 { 748 struct dma_sgt_handle *sh; 749 750 sh = kmalloc(sizeof(*sh), gfp); 751 if (!sh) 752 return NULL; 753 754 sh->pages = __iommu_dma_alloc_noncontiguous(dev, size, &sh->sgt, gfp, 755 PAGE_KERNEL, attrs); 756 if (!sh->pages) { 757 kfree(sh); 758 return NULL; 759 } 760 return &sh->sgt; 761 } 762 763 static void iommu_dma_free_noncontiguous(struct device *dev, size_t size, 764 struct sg_table *sgt, enum dma_data_direction dir) 765 { 766 struct dma_sgt_handle *sh = sgt_handle(sgt); 767 768 __iommu_dma_unmap(dev, sgt->sgl->dma_address, size); 769 __iommu_dma_free_pages(sh->pages, PAGE_ALIGN(size) >> PAGE_SHIFT); 770 sg_free_table(&sh->sgt); 771 kfree(sh); 772 } 773 #endif /* CONFIG_DMA_REMAP */ 774 775 static void iommu_dma_sync_single_for_cpu(struct device *dev, 776 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir) 777 { 778 phys_addr_t phys; 779 780 if (dev_is_dma_coherent(dev) && !dev_is_untrusted(dev)) 781 return; 782 783 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle); 784 if (!dev_is_dma_coherent(dev)) 785 arch_sync_dma_for_cpu(phys, size, dir); 786 787 if (is_swiotlb_buffer(phys)) 788 swiotlb_sync_single_for_cpu(dev, phys, size, dir); 789 } 790 791 static void iommu_dma_sync_single_for_device(struct device *dev, 792 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir) 793 { 794 phys_addr_t phys; 795 796 if (dev_is_dma_coherent(dev) && !dev_is_untrusted(dev)) 797 return; 798 799 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle); 800 if (is_swiotlb_buffer(phys)) 801 swiotlb_sync_single_for_device(dev, phys, size, dir); 802 803 if (!dev_is_dma_coherent(dev)) 804 arch_sync_dma_for_device(phys, size, dir); 805 } 806 807 static void iommu_dma_sync_sg_for_cpu(struct device *dev, 808 struct scatterlist *sgl, int nelems, 809 enum dma_data_direction dir) 810 { 811 struct scatterlist *sg; 812 int i; 813 814 if (dev_is_dma_coherent(dev) && !dev_is_untrusted(dev)) 815 return; 816 817 for_each_sg(sgl, sg, nelems, i) { 818 if (!dev_is_dma_coherent(dev)) 819 arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir); 820 821 if (is_swiotlb_buffer(sg_phys(sg))) 822 swiotlb_sync_single_for_cpu(dev, sg_phys(sg), 823 sg->length, dir); 824 } 825 } 826 827 static void iommu_dma_sync_sg_for_device(struct device *dev, 828 struct scatterlist *sgl, int nelems, 829 enum dma_data_direction dir) 830 { 831 struct scatterlist *sg; 832 int i; 833 834 if (dev_is_dma_coherent(dev) && !dev_is_untrusted(dev)) 835 return; 836 837 for_each_sg(sgl, sg, nelems, i) { 838 if (is_swiotlb_buffer(sg_phys(sg))) 839 swiotlb_sync_single_for_device(dev, sg_phys(sg), 840 sg->length, dir); 841 842 if (!dev_is_dma_coherent(dev)) 843 arch_sync_dma_for_device(sg_phys(sg), sg->length, dir); 844 } 845 } 846 847 static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page, 848 unsigned long offset, size_t size, enum dma_data_direction dir, 849 unsigned long attrs) 850 { 851 phys_addr_t phys = page_to_phys(page) + offset; 852 bool coherent = dev_is_dma_coherent(dev); 853 dma_addr_t dma_handle; 854 855 dma_handle = __iommu_dma_map_swiotlb(dev, phys, size, dma_get_mask(dev), 856 coherent, dir, attrs); 857 if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC) && 858 dma_handle != DMA_MAPPING_ERROR) 859 arch_sync_dma_for_device(phys, size, dir); 860 return dma_handle; 861 } 862 863 static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle, 864 size_t size, enum dma_data_direction dir, unsigned long attrs) 865 { 866 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 867 iommu_dma_sync_single_for_cpu(dev, dma_handle, size, dir); 868 __iommu_dma_unmap_swiotlb(dev, dma_handle, size, dir, attrs); 869 } 870 871 /* 872 * Prepare a successfully-mapped scatterlist to give back to the caller. 873 * 874 * At this point the segments are already laid out by iommu_dma_map_sg() to 875 * avoid individually crossing any boundaries, so we merely need to check a 876 * segment's start address to avoid concatenating across one. 877 */ 878 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents, 879 dma_addr_t dma_addr) 880 { 881 struct scatterlist *s, *cur = sg; 882 unsigned long seg_mask = dma_get_seg_boundary(dev); 883 unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev); 884 int i, count = 0; 885 886 for_each_sg(sg, s, nents, i) { 887 /* Restore this segment's original unaligned fields first */ 888 unsigned int s_iova_off = sg_dma_address(s); 889 unsigned int s_length = sg_dma_len(s); 890 unsigned int s_iova_len = s->length; 891 892 s->offset += s_iova_off; 893 s->length = s_length; 894 sg_dma_address(s) = DMA_MAPPING_ERROR; 895 sg_dma_len(s) = 0; 896 897 /* 898 * Now fill in the real DMA data. If... 899 * - there is a valid output segment to append to 900 * - and this segment starts on an IOVA page boundary 901 * - but doesn't fall at a segment boundary 902 * - and wouldn't make the resulting output segment too long 903 */ 904 if (cur_len && !s_iova_off && (dma_addr & seg_mask) && 905 (max_len - cur_len >= s_length)) { 906 /* ...then concatenate it with the previous one */ 907 cur_len += s_length; 908 } else { 909 /* Otherwise start the next output segment */ 910 if (i > 0) 911 cur = sg_next(cur); 912 cur_len = s_length; 913 count++; 914 915 sg_dma_address(cur) = dma_addr + s_iova_off; 916 } 917 918 sg_dma_len(cur) = cur_len; 919 dma_addr += s_iova_len; 920 921 if (s_length + s_iova_off < s_iova_len) 922 cur_len = 0; 923 } 924 return count; 925 } 926 927 /* 928 * If mapping failed, then just restore the original list, 929 * but making sure the DMA fields are invalidated. 930 */ 931 static void __invalidate_sg(struct scatterlist *sg, int nents) 932 { 933 struct scatterlist *s; 934 int i; 935 936 for_each_sg(sg, s, nents, i) { 937 if (sg_dma_address(s) != DMA_MAPPING_ERROR) 938 s->offset += sg_dma_address(s); 939 if (sg_dma_len(s)) 940 s->length = sg_dma_len(s); 941 sg_dma_address(s) = DMA_MAPPING_ERROR; 942 sg_dma_len(s) = 0; 943 } 944 } 945 946 static void iommu_dma_unmap_sg_swiotlb(struct device *dev, struct scatterlist *sg, 947 int nents, enum dma_data_direction dir, unsigned long attrs) 948 { 949 struct scatterlist *s; 950 int i; 951 952 for_each_sg(sg, s, nents, i) 953 __iommu_dma_unmap_swiotlb(dev, sg_dma_address(s), 954 sg_dma_len(s), dir, attrs); 955 } 956 957 static int iommu_dma_map_sg_swiotlb(struct device *dev, struct scatterlist *sg, 958 int nents, enum dma_data_direction dir, unsigned long attrs) 959 { 960 struct scatterlist *s; 961 int i; 962 963 for_each_sg(sg, s, nents, i) { 964 sg_dma_address(s) = __iommu_dma_map_swiotlb(dev, sg_phys(s), 965 s->length, dma_get_mask(dev), 966 dev_is_dma_coherent(dev), dir, attrs); 967 if (sg_dma_address(s) == DMA_MAPPING_ERROR) 968 goto out_unmap; 969 sg_dma_len(s) = s->length; 970 } 971 972 return nents; 973 974 out_unmap: 975 iommu_dma_unmap_sg_swiotlb(dev, sg, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC); 976 return 0; 977 } 978 979 /* 980 * The DMA API client is passing in a scatterlist which could describe 981 * any old buffer layout, but the IOMMU API requires everything to be 982 * aligned to IOMMU pages. Hence the need for this complicated bit of 983 * impedance-matching, to be able to hand off a suitably-aligned list, 984 * but still preserve the original offsets and sizes for the caller. 985 */ 986 static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg, 987 int nents, enum dma_data_direction dir, unsigned long attrs) 988 { 989 struct iommu_domain *domain = iommu_get_dma_domain(dev); 990 struct iommu_dma_cookie *cookie = domain->iova_cookie; 991 struct iova_domain *iovad = &cookie->iovad; 992 struct scatterlist *s, *prev = NULL; 993 int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs); 994 dma_addr_t iova; 995 size_t iova_len = 0; 996 unsigned long mask = dma_get_seg_boundary(dev); 997 int i; 998 999 if (static_branch_unlikely(&iommu_deferred_attach_enabled) && 1000 iommu_deferred_attach(dev, domain)) 1001 return 0; 1002 1003 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 1004 iommu_dma_sync_sg_for_device(dev, sg, nents, dir); 1005 1006 if (dev_is_untrusted(dev)) 1007 return iommu_dma_map_sg_swiotlb(dev, sg, nents, dir, attrs); 1008 1009 /* 1010 * Work out how much IOVA space we need, and align the segments to 1011 * IOVA granules for the IOMMU driver to handle. With some clever 1012 * trickery we can modify the list in-place, but reversibly, by 1013 * stashing the unaligned parts in the as-yet-unused DMA fields. 1014 */ 1015 for_each_sg(sg, s, nents, i) { 1016 size_t s_iova_off = iova_offset(iovad, s->offset); 1017 size_t s_length = s->length; 1018 size_t pad_len = (mask - iova_len + 1) & mask; 1019 1020 sg_dma_address(s) = s_iova_off; 1021 sg_dma_len(s) = s_length; 1022 s->offset -= s_iova_off; 1023 s_length = iova_align(iovad, s_length + s_iova_off); 1024 s->length = s_length; 1025 1026 /* 1027 * Due to the alignment of our single IOVA allocation, we can 1028 * depend on these assumptions about the segment boundary mask: 1029 * - If mask size >= IOVA size, then the IOVA range cannot 1030 * possibly fall across a boundary, so we don't care. 1031 * - If mask size < IOVA size, then the IOVA range must start 1032 * exactly on a boundary, therefore we can lay things out 1033 * based purely on segment lengths without needing to know 1034 * the actual addresses beforehand. 1035 * - The mask must be a power of 2, so pad_len == 0 if 1036 * iova_len == 0, thus we cannot dereference prev the first 1037 * time through here (i.e. before it has a meaningful value). 1038 */ 1039 if (pad_len && pad_len < s_length - 1) { 1040 prev->length += pad_len; 1041 iova_len += pad_len; 1042 } 1043 1044 iova_len += s_length; 1045 prev = s; 1046 } 1047 1048 iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev); 1049 if (!iova) 1050 goto out_restore_sg; 1051 1052 /* 1053 * We'll leave any physical concatenation to the IOMMU driver's 1054 * implementation - it knows better than we do. 1055 */ 1056 if (iommu_map_sg_atomic(domain, iova, sg, nents, prot) < iova_len) 1057 goto out_free_iova; 1058 1059 return __finalise_sg(dev, sg, nents, iova); 1060 1061 out_free_iova: 1062 iommu_dma_free_iova(cookie, iova, iova_len, NULL); 1063 out_restore_sg: 1064 __invalidate_sg(sg, nents); 1065 return 0; 1066 } 1067 1068 static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, 1069 int nents, enum dma_data_direction dir, unsigned long attrs) 1070 { 1071 dma_addr_t start, end; 1072 struct scatterlist *tmp; 1073 int i; 1074 1075 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 1076 iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir); 1077 1078 if (dev_is_untrusted(dev)) { 1079 iommu_dma_unmap_sg_swiotlb(dev, sg, nents, dir, attrs); 1080 return; 1081 } 1082 1083 /* 1084 * The scatterlist segments are mapped into a single 1085 * contiguous IOVA allocation, so this is incredibly easy. 1086 */ 1087 start = sg_dma_address(sg); 1088 for_each_sg(sg_next(sg), tmp, nents - 1, i) { 1089 if (sg_dma_len(tmp) == 0) 1090 break; 1091 sg = tmp; 1092 } 1093 end = sg_dma_address(sg) + sg_dma_len(sg); 1094 __iommu_dma_unmap(dev, start, end - start); 1095 } 1096 1097 static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys, 1098 size_t size, enum dma_data_direction dir, unsigned long attrs) 1099 { 1100 return __iommu_dma_map(dev, phys, size, 1101 dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO, 1102 dma_get_mask(dev)); 1103 } 1104 1105 static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle, 1106 size_t size, enum dma_data_direction dir, unsigned long attrs) 1107 { 1108 __iommu_dma_unmap(dev, handle, size); 1109 } 1110 1111 static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr) 1112 { 1113 size_t alloc_size = PAGE_ALIGN(size); 1114 int count = alloc_size >> PAGE_SHIFT; 1115 struct page *page = NULL, **pages = NULL; 1116 1117 /* Non-coherent atomic allocation? Easy */ 1118 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && 1119 dma_free_from_pool(dev, cpu_addr, alloc_size)) 1120 return; 1121 1122 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) { 1123 /* 1124 * If it the address is remapped, then it's either non-coherent 1125 * or highmem CMA, or an iommu_dma_alloc_remap() construction. 1126 */ 1127 pages = dma_common_find_pages(cpu_addr); 1128 if (!pages) 1129 page = vmalloc_to_page(cpu_addr); 1130 dma_common_free_remap(cpu_addr, alloc_size); 1131 } else { 1132 /* Lowmem means a coherent atomic or CMA allocation */ 1133 page = virt_to_page(cpu_addr); 1134 } 1135 1136 if (pages) 1137 __iommu_dma_free_pages(pages, count); 1138 if (page) 1139 dma_free_contiguous(dev, page, alloc_size); 1140 } 1141 1142 static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr, 1143 dma_addr_t handle, unsigned long attrs) 1144 { 1145 __iommu_dma_unmap(dev, handle, size); 1146 __iommu_dma_free(dev, size, cpu_addr); 1147 } 1148 1149 static void *iommu_dma_alloc_pages(struct device *dev, size_t size, 1150 struct page **pagep, gfp_t gfp, unsigned long attrs) 1151 { 1152 bool coherent = dev_is_dma_coherent(dev); 1153 size_t alloc_size = PAGE_ALIGN(size); 1154 int node = dev_to_node(dev); 1155 struct page *page = NULL; 1156 void *cpu_addr; 1157 1158 page = dma_alloc_contiguous(dev, alloc_size, gfp); 1159 if (!page) 1160 page = alloc_pages_node(node, gfp, get_order(alloc_size)); 1161 if (!page) 1162 return NULL; 1163 1164 if (IS_ENABLED(CONFIG_DMA_REMAP) && (!coherent || PageHighMem(page))) { 1165 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs); 1166 1167 cpu_addr = dma_common_contiguous_remap(page, alloc_size, 1168 prot, __builtin_return_address(0)); 1169 if (!cpu_addr) 1170 goto out_free_pages; 1171 1172 if (!coherent) 1173 arch_dma_prep_coherent(page, size); 1174 } else { 1175 cpu_addr = page_address(page); 1176 } 1177 1178 *pagep = page; 1179 memset(cpu_addr, 0, alloc_size); 1180 return cpu_addr; 1181 out_free_pages: 1182 dma_free_contiguous(dev, page, alloc_size); 1183 return NULL; 1184 } 1185 1186 static void *iommu_dma_alloc(struct device *dev, size_t size, 1187 dma_addr_t *handle, gfp_t gfp, unsigned long attrs) 1188 { 1189 bool coherent = dev_is_dma_coherent(dev); 1190 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs); 1191 struct page *page = NULL; 1192 void *cpu_addr; 1193 1194 gfp |= __GFP_ZERO; 1195 1196 if (IS_ENABLED(CONFIG_DMA_REMAP) && gfpflags_allow_blocking(gfp) && 1197 !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) { 1198 return iommu_dma_alloc_remap(dev, size, handle, gfp, 1199 dma_pgprot(dev, PAGE_KERNEL, attrs), attrs); 1200 } 1201 1202 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && 1203 !gfpflags_allow_blocking(gfp) && !coherent) 1204 page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr, 1205 gfp, NULL); 1206 else 1207 cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs); 1208 if (!cpu_addr) 1209 return NULL; 1210 1211 *handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot, 1212 dev->coherent_dma_mask); 1213 if (*handle == DMA_MAPPING_ERROR) { 1214 __iommu_dma_free(dev, size, cpu_addr); 1215 return NULL; 1216 } 1217 1218 return cpu_addr; 1219 } 1220 1221 static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma, 1222 void *cpu_addr, dma_addr_t dma_addr, size_t size, 1223 unsigned long attrs) 1224 { 1225 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 1226 unsigned long pfn, off = vma->vm_pgoff; 1227 int ret; 1228 1229 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs); 1230 1231 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) 1232 return ret; 1233 1234 if (off >= nr_pages || vma_pages(vma) > nr_pages - off) 1235 return -ENXIO; 1236 1237 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) { 1238 struct page **pages = dma_common_find_pages(cpu_addr); 1239 1240 if (pages) 1241 return vm_map_pages(vma, pages, nr_pages); 1242 pfn = vmalloc_to_pfn(cpu_addr); 1243 } else { 1244 pfn = page_to_pfn(virt_to_page(cpu_addr)); 1245 } 1246 1247 return remap_pfn_range(vma, vma->vm_start, pfn + off, 1248 vma->vm_end - vma->vm_start, 1249 vma->vm_page_prot); 1250 } 1251 1252 static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt, 1253 void *cpu_addr, dma_addr_t dma_addr, size_t size, 1254 unsigned long attrs) 1255 { 1256 struct page *page; 1257 int ret; 1258 1259 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) { 1260 struct page **pages = dma_common_find_pages(cpu_addr); 1261 1262 if (pages) { 1263 return sg_alloc_table_from_pages(sgt, pages, 1264 PAGE_ALIGN(size) >> PAGE_SHIFT, 1265 0, size, GFP_KERNEL); 1266 } 1267 1268 page = vmalloc_to_page(cpu_addr); 1269 } else { 1270 page = virt_to_page(cpu_addr); 1271 } 1272 1273 ret = sg_alloc_table(sgt, 1, GFP_KERNEL); 1274 if (!ret) 1275 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); 1276 return ret; 1277 } 1278 1279 static unsigned long iommu_dma_get_merge_boundary(struct device *dev) 1280 { 1281 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1282 1283 return (1UL << __ffs(domain->pgsize_bitmap)) - 1; 1284 } 1285 1286 static const struct dma_map_ops iommu_dma_ops = { 1287 .alloc = iommu_dma_alloc, 1288 .free = iommu_dma_free, 1289 .alloc_pages = dma_common_alloc_pages, 1290 .free_pages = dma_common_free_pages, 1291 #ifdef CONFIG_DMA_REMAP 1292 .alloc_noncontiguous = iommu_dma_alloc_noncontiguous, 1293 .free_noncontiguous = iommu_dma_free_noncontiguous, 1294 #endif 1295 .mmap = iommu_dma_mmap, 1296 .get_sgtable = iommu_dma_get_sgtable, 1297 .map_page = iommu_dma_map_page, 1298 .unmap_page = iommu_dma_unmap_page, 1299 .map_sg = iommu_dma_map_sg, 1300 .unmap_sg = iommu_dma_unmap_sg, 1301 .sync_single_for_cpu = iommu_dma_sync_single_for_cpu, 1302 .sync_single_for_device = iommu_dma_sync_single_for_device, 1303 .sync_sg_for_cpu = iommu_dma_sync_sg_for_cpu, 1304 .sync_sg_for_device = iommu_dma_sync_sg_for_device, 1305 .map_resource = iommu_dma_map_resource, 1306 .unmap_resource = iommu_dma_unmap_resource, 1307 .get_merge_boundary = iommu_dma_get_merge_boundary, 1308 }; 1309 1310 /* 1311 * The IOMMU core code allocates the default DMA domain, which the underlying 1312 * IOMMU driver needs to support via the dma-iommu layer. 1313 */ 1314 void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 dma_limit) 1315 { 1316 struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 1317 1318 if (!domain) 1319 goto out_err; 1320 1321 /* 1322 * The IOMMU core code allocates the default DMA domain, which the 1323 * underlying IOMMU driver needs to support via the dma-iommu layer. 1324 */ 1325 if (domain->type == IOMMU_DOMAIN_DMA) { 1326 if (iommu_dma_init_domain(domain, dma_base, dma_limit, dev)) 1327 goto out_err; 1328 dev->dma_ops = &iommu_dma_ops; 1329 } 1330 1331 return; 1332 out_err: 1333 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n", 1334 dev_name(dev)); 1335 } 1336 EXPORT_SYMBOL_GPL(iommu_setup_dma_ops); 1337 1338 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev, 1339 phys_addr_t msi_addr, struct iommu_domain *domain) 1340 { 1341 struct iommu_dma_cookie *cookie = domain->iova_cookie; 1342 struct iommu_dma_msi_page *msi_page; 1343 dma_addr_t iova; 1344 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO; 1345 size_t size = cookie_msi_granule(cookie); 1346 1347 msi_addr &= ~(phys_addr_t)(size - 1); 1348 list_for_each_entry(msi_page, &cookie->msi_page_list, list) 1349 if (msi_page->phys == msi_addr) 1350 return msi_page; 1351 1352 msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL); 1353 if (!msi_page) 1354 return NULL; 1355 1356 iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev); 1357 if (!iova) 1358 goto out_free_page; 1359 1360 if (iommu_map(domain, iova, msi_addr, size, prot)) 1361 goto out_free_iova; 1362 1363 INIT_LIST_HEAD(&msi_page->list); 1364 msi_page->phys = msi_addr; 1365 msi_page->iova = iova; 1366 list_add(&msi_page->list, &cookie->msi_page_list); 1367 return msi_page; 1368 1369 out_free_iova: 1370 iommu_dma_free_iova(cookie, iova, size, NULL); 1371 out_free_page: 1372 kfree(msi_page); 1373 return NULL; 1374 } 1375 1376 int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr) 1377 { 1378 struct device *dev = msi_desc_to_dev(desc); 1379 struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 1380 struct iommu_dma_msi_page *msi_page; 1381 static DEFINE_MUTEX(msi_prepare_lock); /* see below */ 1382 1383 if (!domain || !domain->iova_cookie) { 1384 desc->iommu_cookie = NULL; 1385 return 0; 1386 } 1387 1388 /* 1389 * In fact the whole prepare operation should already be serialised by 1390 * irq_domain_mutex further up the callchain, but that's pretty subtle 1391 * on its own, so consider this locking as failsafe documentation... 1392 */ 1393 mutex_lock(&msi_prepare_lock); 1394 msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain); 1395 mutex_unlock(&msi_prepare_lock); 1396 1397 msi_desc_set_iommu_cookie(desc, msi_page); 1398 1399 if (!msi_page) 1400 return -ENOMEM; 1401 return 0; 1402 } 1403 1404 void iommu_dma_compose_msi_msg(struct msi_desc *desc, 1405 struct msi_msg *msg) 1406 { 1407 struct device *dev = msi_desc_to_dev(desc); 1408 const struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 1409 const struct iommu_dma_msi_page *msi_page; 1410 1411 msi_page = msi_desc_get_iommu_cookie(desc); 1412 1413 if (!domain || !domain->iova_cookie || WARN_ON(!msi_page)) 1414 return; 1415 1416 msg->address_hi = upper_32_bits(msi_page->iova); 1417 msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1; 1418 msg->address_lo += lower_32_bits(msi_page->iova); 1419 } 1420 1421 static int iommu_dma_init(void) 1422 { 1423 if (is_kdump_kernel()) 1424 static_branch_enable(&iommu_deferred_attach_enabled); 1425 1426 return iova_cache_get(); 1427 } 1428 arch_initcall(iommu_dma_init); 1429