1 /* 2 * A fairly generic DMA-API to IOMMU-API glue layer. 3 * 4 * Copyright (C) 2014-2015 ARM Ltd. 5 * 6 * based in part on arch/arm/mm/dma-mapping.c: 7 * Copyright (C) 2000-2004 Russell King 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program. If not, see <http://www.gnu.org/licenses/>. 20 */ 21 22 #include <linux/device.h> 23 #include <linux/dma-iommu.h> 24 #include <linux/gfp.h> 25 #include <linux/huge_mm.h> 26 #include <linux/iommu.h> 27 #include <linux/iova.h> 28 #include <linux/mm.h> 29 #include <linux/scatterlist.h> 30 #include <linux/vmalloc.h> 31 32 int iommu_dma_init(void) 33 { 34 return iova_cache_get(); 35 } 36 37 /** 38 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain 39 * @domain: IOMMU domain to prepare for DMA-API usage 40 * 41 * IOMMU drivers should normally call this from their domain_alloc 42 * callback when domain->type == IOMMU_DOMAIN_DMA. 43 */ 44 int iommu_get_dma_cookie(struct iommu_domain *domain) 45 { 46 struct iova_domain *iovad; 47 48 if (domain->iova_cookie) 49 return -EEXIST; 50 51 iovad = kzalloc(sizeof(*iovad), GFP_KERNEL); 52 domain->iova_cookie = iovad; 53 54 return iovad ? 0 : -ENOMEM; 55 } 56 EXPORT_SYMBOL(iommu_get_dma_cookie); 57 58 /** 59 * iommu_put_dma_cookie - Release a domain's DMA mapping resources 60 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() 61 * 62 * IOMMU drivers should normally call this from their domain_free callback. 63 */ 64 void iommu_put_dma_cookie(struct iommu_domain *domain) 65 { 66 struct iova_domain *iovad = domain->iova_cookie; 67 68 if (!iovad) 69 return; 70 71 if (iovad->granule) 72 put_iova_domain(iovad); 73 kfree(iovad); 74 domain->iova_cookie = NULL; 75 } 76 EXPORT_SYMBOL(iommu_put_dma_cookie); 77 78 /** 79 * iommu_dma_init_domain - Initialise a DMA mapping domain 80 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() 81 * @base: IOVA at which the mappable address space starts 82 * @size: Size of IOVA space 83 * 84 * @base and @size should be exact multiples of IOMMU page granularity to 85 * avoid rounding surprises. If necessary, we reserve the page at address 0 86 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but 87 * any change which could make prior IOVAs invalid will fail. 88 */ 89 int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base, u64 size) 90 { 91 struct iova_domain *iovad = domain->iova_cookie; 92 unsigned long order, base_pfn, end_pfn; 93 94 if (!iovad) 95 return -ENODEV; 96 97 /* Use the smallest supported page size for IOVA granularity */ 98 order = __ffs(domain->pgsize_bitmap); 99 base_pfn = max_t(unsigned long, 1, base >> order); 100 end_pfn = (base + size - 1) >> order; 101 102 /* Check the domain allows at least some access to the device... */ 103 if (domain->geometry.force_aperture) { 104 if (base > domain->geometry.aperture_end || 105 base + size <= domain->geometry.aperture_start) { 106 pr_warn("specified DMA range outside IOMMU capability\n"); 107 return -EFAULT; 108 } 109 /* ...then finally give it a kicking to make sure it fits */ 110 base_pfn = max_t(unsigned long, base_pfn, 111 domain->geometry.aperture_start >> order); 112 end_pfn = min_t(unsigned long, end_pfn, 113 domain->geometry.aperture_end >> order); 114 } 115 116 /* All we can safely do with an existing domain is enlarge it */ 117 if (iovad->start_pfn) { 118 if (1UL << order != iovad->granule || 119 base_pfn != iovad->start_pfn || 120 end_pfn < iovad->dma_32bit_pfn) { 121 pr_warn("Incompatible range for DMA domain\n"); 122 return -EFAULT; 123 } 124 iovad->dma_32bit_pfn = end_pfn; 125 } else { 126 init_iova_domain(iovad, 1UL << order, base_pfn, end_pfn); 127 } 128 return 0; 129 } 130 EXPORT_SYMBOL(iommu_dma_init_domain); 131 132 /** 133 * dma_direction_to_prot - Translate DMA API directions to IOMMU API page flags 134 * @dir: Direction of DMA transfer 135 * @coherent: Is the DMA master cache-coherent? 136 * 137 * Return: corresponding IOMMU API page protection flags 138 */ 139 int dma_direction_to_prot(enum dma_data_direction dir, bool coherent) 140 { 141 int prot = coherent ? IOMMU_CACHE : 0; 142 143 switch (dir) { 144 case DMA_BIDIRECTIONAL: 145 return prot | IOMMU_READ | IOMMU_WRITE; 146 case DMA_TO_DEVICE: 147 return prot | IOMMU_READ; 148 case DMA_FROM_DEVICE: 149 return prot | IOMMU_WRITE; 150 default: 151 return 0; 152 } 153 } 154 155 static struct iova *__alloc_iova(struct iommu_domain *domain, size_t size, 156 dma_addr_t dma_limit) 157 { 158 struct iova_domain *iovad = domain->iova_cookie; 159 unsigned long shift = iova_shift(iovad); 160 unsigned long length = iova_align(iovad, size) >> shift; 161 162 if (domain->geometry.force_aperture) 163 dma_limit = min(dma_limit, domain->geometry.aperture_end); 164 /* 165 * Enforce size-alignment to be safe - there could perhaps be an 166 * attribute to control this per-device, or at least per-domain... 167 */ 168 return alloc_iova(iovad, length, dma_limit >> shift, true); 169 } 170 171 /* The IOVA allocator knows what we mapped, so just unmap whatever that was */ 172 static void __iommu_dma_unmap(struct iommu_domain *domain, dma_addr_t dma_addr) 173 { 174 struct iova_domain *iovad = domain->iova_cookie; 175 unsigned long shift = iova_shift(iovad); 176 unsigned long pfn = dma_addr >> shift; 177 struct iova *iova = find_iova(iovad, pfn); 178 size_t size; 179 180 if (WARN_ON(!iova)) 181 return; 182 183 size = iova_size(iova) << shift; 184 size -= iommu_unmap(domain, pfn << shift, size); 185 /* ...and if we can't, then something is horribly, horribly wrong */ 186 WARN_ON(size > 0); 187 __free_iova(iovad, iova); 188 } 189 190 static void __iommu_dma_free_pages(struct page **pages, int count) 191 { 192 while (count--) 193 __free_page(pages[count]); 194 kvfree(pages); 195 } 196 197 static struct page **__iommu_dma_alloc_pages(unsigned int count, 198 unsigned long order_mask, gfp_t gfp) 199 { 200 struct page **pages; 201 unsigned int i = 0, array_size = count * sizeof(*pages); 202 203 order_mask &= (2U << MAX_ORDER) - 1; 204 if (!order_mask) 205 return NULL; 206 207 if (array_size <= PAGE_SIZE) 208 pages = kzalloc(array_size, GFP_KERNEL); 209 else 210 pages = vzalloc(array_size); 211 if (!pages) 212 return NULL; 213 214 /* IOMMU can map any pages, so himem can also be used here */ 215 gfp |= __GFP_NOWARN | __GFP_HIGHMEM; 216 217 while (count) { 218 struct page *page = NULL; 219 unsigned int order_size; 220 221 /* 222 * Higher-order allocations are a convenience rather 223 * than a necessity, hence using __GFP_NORETRY until 224 * falling back to minimum-order allocations. 225 */ 226 for (order_mask &= (2U << __fls(count)) - 1; 227 order_mask; order_mask &= ~order_size) { 228 unsigned int order = __fls(order_mask); 229 230 order_size = 1U << order; 231 page = alloc_pages((order_mask - order_size) ? 232 gfp | __GFP_NORETRY : gfp, order); 233 if (!page) 234 continue; 235 if (!order) 236 break; 237 if (!PageCompound(page)) { 238 split_page(page, order); 239 break; 240 } else if (!split_huge_page(page)) { 241 break; 242 } 243 __free_pages(page, order); 244 } 245 if (!page) { 246 __iommu_dma_free_pages(pages, i); 247 return NULL; 248 } 249 count -= order_size; 250 while (order_size--) 251 pages[i++] = page++; 252 } 253 return pages; 254 } 255 256 /** 257 * iommu_dma_free - Free a buffer allocated by iommu_dma_alloc() 258 * @dev: Device which owns this buffer 259 * @pages: Array of buffer pages as returned by iommu_dma_alloc() 260 * @size: Size of buffer in bytes 261 * @handle: DMA address of buffer 262 * 263 * Frees both the pages associated with the buffer, and the array 264 * describing them 265 */ 266 void iommu_dma_free(struct device *dev, struct page **pages, size_t size, 267 dma_addr_t *handle) 268 { 269 __iommu_dma_unmap(iommu_get_domain_for_dev(dev), *handle); 270 __iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT); 271 *handle = DMA_ERROR_CODE; 272 } 273 274 /** 275 * iommu_dma_alloc - Allocate and map a buffer contiguous in IOVA space 276 * @dev: Device to allocate memory for. Must be a real device 277 * attached to an iommu_dma_domain 278 * @size: Size of buffer in bytes 279 * @gfp: Allocation flags 280 * @attrs: DMA attributes for this allocation 281 * @prot: IOMMU mapping flags 282 * @handle: Out argument for allocated DMA handle 283 * @flush_page: Arch callback which must ensure PAGE_SIZE bytes from the 284 * given VA/PA are visible to the given non-coherent device. 285 * 286 * If @size is less than PAGE_SIZE, then a full CPU page will be allocated, 287 * but an IOMMU which supports smaller pages might not map the whole thing. 288 * 289 * Return: Array of struct page pointers describing the buffer, 290 * or NULL on failure. 291 */ 292 struct page **iommu_dma_alloc(struct device *dev, size_t size, gfp_t gfp, 293 unsigned long attrs, int prot, dma_addr_t *handle, 294 void (*flush_page)(struct device *, const void *, phys_addr_t)) 295 { 296 struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 297 struct iova_domain *iovad = domain->iova_cookie; 298 struct iova *iova; 299 struct page **pages; 300 struct sg_table sgt; 301 dma_addr_t dma_addr; 302 unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap; 303 304 *handle = DMA_ERROR_CODE; 305 306 min_size = alloc_sizes & -alloc_sizes; 307 if (min_size < PAGE_SIZE) { 308 min_size = PAGE_SIZE; 309 alloc_sizes |= PAGE_SIZE; 310 } else { 311 size = ALIGN(size, min_size); 312 } 313 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES) 314 alloc_sizes = min_size; 315 316 count = PAGE_ALIGN(size) >> PAGE_SHIFT; 317 pages = __iommu_dma_alloc_pages(count, alloc_sizes >> PAGE_SHIFT, gfp); 318 if (!pages) 319 return NULL; 320 321 iova = __alloc_iova(domain, size, dev->coherent_dma_mask); 322 if (!iova) 323 goto out_free_pages; 324 325 size = iova_align(iovad, size); 326 if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL)) 327 goto out_free_iova; 328 329 if (!(prot & IOMMU_CACHE)) { 330 struct sg_mapping_iter miter; 331 /* 332 * The CPU-centric flushing implied by SG_MITER_TO_SG isn't 333 * sufficient here, so skip it by using the "wrong" direction. 334 */ 335 sg_miter_start(&miter, sgt.sgl, sgt.orig_nents, SG_MITER_FROM_SG); 336 while (sg_miter_next(&miter)) 337 flush_page(dev, miter.addr, page_to_phys(miter.page)); 338 sg_miter_stop(&miter); 339 } 340 341 dma_addr = iova_dma_addr(iovad, iova); 342 if (iommu_map_sg(domain, dma_addr, sgt.sgl, sgt.orig_nents, prot) 343 < size) 344 goto out_free_sg; 345 346 *handle = dma_addr; 347 sg_free_table(&sgt); 348 return pages; 349 350 out_free_sg: 351 sg_free_table(&sgt); 352 out_free_iova: 353 __free_iova(iovad, iova); 354 out_free_pages: 355 __iommu_dma_free_pages(pages, count); 356 return NULL; 357 } 358 359 /** 360 * iommu_dma_mmap - Map a buffer into provided user VMA 361 * @pages: Array representing buffer from iommu_dma_alloc() 362 * @size: Size of buffer in bytes 363 * @vma: VMA describing requested userspace mapping 364 * 365 * Maps the pages of the buffer in @pages into @vma. The caller is responsible 366 * for verifying the correct size and protection of @vma beforehand. 367 */ 368 369 int iommu_dma_mmap(struct page **pages, size_t size, struct vm_area_struct *vma) 370 { 371 unsigned long uaddr = vma->vm_start; 372 unsigned int i, count = PAGE_ALIGN(size) >> PAGE_SHIFT; 373 int ret = -ENXIO; 374 375 for (i = vma->vm_pgoff; i < count && uaddr < vma->vm_end; i++) { 376 ret = vm_insert_page(vma, uaddr, pages[i]); 377 if (ret) 378 break; 379 uaddr += PAGE_SIZE; 380 } 381 return ret; 382 } 383 384 dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page, 385 unsigned long offset, size_t size, int prot) 386 { 387 dma_addr_t dma_addr; 388 struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 389 struct iova_domain *iovad = domain->iova_cookie; 390 phys_addr_t phys = page_to_phys(page) + offset; 391 size_t iova_off = iova_offset(iovad, phys); 392 size_t len = iova_align(iovad, size + iova_off); 393 struct iova *iova = __alloc_iova(domain, len, dma_get_mask(dev)); 394 395 if (!iova) 396 return DMA_ERROR_CODE; 397 398 dma_addr = iova_dma_addr(iovad, iova); 399 if (iommu_map(domain, dma_addr, phys - iova_off, len, prot)) { 400 __free_iova(iovad, iova); 401 return DMA_ERROR_CODE; 402 } 403 return dma_addr + iova_off; 404 } 405 406 void iommu_dma_unmap_page(struct device *dev, dma_addr_t handle, size_t size, 407 enum dma_data_direction dir, unsigned long attrs) 408 { 409 __iommu_dma_unmap(iommu_get_domain_for_dev(dev), handle); 410 } 411 412 /* 413 * Prepare a successfully-mapped scatterlist to give back to the caller. 414 * 415 * At this point the segments are already laid out by iommu_dma_map_sg() to 416 * avoid individually crossing any boundaries, so we merely need to check a 417 * segment's start address to avoid concatenating across one. 418 */ 419 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents, 420 dma_addr_t dma_addr) 421 { 422 struct scatterlist *s, *cur = sg; 423 unsigned long seg_mask = dma_get_seg_boundary(dev); 424 unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev); 425 int i, count = 0; 426 427 for_each_sg(sg, s, nents, i) { 428 /* Restore this segment's original unaligned fields first */ 429 unsigned int s_iova_off = sg_dma_address(s); 430 unsigned int s_length = sg_dma_len(s); 431 unsigned int s_iova_len = s->length; 432 433 s->offset += s_iova_off; 434 s->length = s_length; 435 sg_dma_address(s) = DMA_ERROR_CODE; 436 sg_dma_len(s) = 0; 437 438 /* 439 * Now fill in the real DMA data. If... 440 * - there is a valid output segment to append to 441 * - and this segment starts on an IOVA page boundary 442 * - but doesn't fall at a segment boundary 443 * - and wouldn't make the resulting output segment too long 444 */ 445 if (cur_len && !s_iova_off && (dma_addr & seg_mask) && 446 (cur_len + s_length <= max_len)) { 447 /* ...then concatenate it with the previous one */ 448 cur_len += s_length; 449 } else { 450 /* Otherwise start the next output segment */ 451 if (i > 0) 452 cur = sg_next(cur); 453 cur_len = s_length; 454 count++; 455 456 sg_dma_address(cur) = dma_addr + s_iova_off; 457 } 458 459 sg_dma_len(cur) = cur_len; 460 dma_addr += s_iova_len; 461 462 if (s_length + s_iova_off < s_iova_len) 463 cur_len = 0; 464 } 465 return count; 466 } 467 468 /* 469 * If mapping failed, then just restore the original list, 470 * but making sure the DMA fields are invalidated. 471 */ 472 static void __invalidate_sg(struct scatterlist *sg, int nents) 473 { 474 struct scatterlist *s; 475 int i; 476 477 for_each_sg(sg, s, nents, i) { 478 if (sg_dma_address(s) != DMA_ERROR_CODE) 479 s->offset += sg_dma_address(s); 480 if (sg_dma_len(s)) 481 s->length = sg_dma_len(s); 482 sg_dma_address(s) = DMA_ERROR_CODE; 483 sg_dma_len(s) = 0; 484 } 485 } 486 487 /* 488 * The DMA API client is passing in a scatterlist which could describe 489 * any old buffer layout, but the IOMMU API requires everything to be 490 * aligned to IOMMU pages. Hence the need for this complicated bit of 491 * impedance-matching, to be able to hand off a suitably-aligned list, 492 * but still preserve the original offsets and sizes for the caller. 493 */ 494 int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg, 495 int nents, int prot) 496 { 497 struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 498 struct iova_domain *iovad = domain->iova_cookie; 499 struct iova *iova; 500 struct scatterlist *s, *prev = NULL; 501 dma_addr_t dma_addr; 502 size_t iova_len = 0; 503 unsigned long mask = dma_get_seg_boundary(dev); 504 int i; 505 506 /* 507 * Work out how much IOVA space we need, and align the segments to 508 * IOVA granules for the IOMMU driver to handle. With some clever 509 * trickery we can modify the list in-place, but reversibly, by 510 * stashing the unaligned parts in the as-yet-unused DMA fields. 511 */ 512 for_each_sg(sg, s, nents, i) { 513 size_t s_iova_off = iova_offset(iovad, s->offset); 514 size_t s_length = s->length; 515 size_t pad_len = (mask - iova_len + 1) & mask; 516 517 sg_dma_address(s) = s_iova_off; 518 sg_dma_len(s) = s_length; 519 s->offset -= s_iova_off; 520 s_length = iova_align(iovad, s_length + s_iova_off); 521 s->length = s_length; 522 523 /* 524 * Due to the alignment of our single IOVA allocation, we can 525 * depend on these assumptions about the segment boundary mask: 526 * - If mask size >= IOVA size, then the IOVA range cannot 527 * possibly fall across a boundary, so we don't care. 528 * - If mask size < IOVA size, then the IOVA range must start 529 * exactly on a boundary, therefore we can lay things out 530 * based purely on segment lengths without needing to know 531 * the actual addresses beforehand. 532 * - The mask must be a power of 2, so pad_len == 0 if 533 * iova_len == 0, thus we cannot dereference prev the first 534 * time through here (i.e. before it has a meaningful value). 535 */ 536 if (pad_len && pad_len < s_length - 1) { 537 prev->length += pad_len; 538 iova_len += pad_len; 539 } 540 541 iova_len += s_length; 542 prev = s; 543 } 544 545 iova = __alloc_iova(domain, iova_len, dma_get_mask(dev)); 546 if (!iova) 547 goto out_restore_sg; 548 549 /* 550 * We'll leave any physical concatenation to the IOMMU driver's 551 * implementation - it knows better than we do. 552 */ 553 dma_addr = iova_dma_addr(iovad, iova); 554 if (iommu_map_sg(domain, dma_addr, sg, nents, prot) < iova_len) 555 goto out_free_iova; 556 557 return __finalise_sg(dev, sg, nents, dma_addr); 558 559 out_free_iova: 560 __free_iova(iovad, iova); 561 out_restore_sg: 562 __invalidate_sg(sg, nents); 563 return 0; 564 } 565 566 void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 567 enum dma_data_direction dir, unsigned long attrs) 568 { 569 /* 570 * The scatterlist segments are mapped into a single 571 * contiguous IOVA allocation, so this is incredibly easy. 572 */ 573 __iommu_dma_unmap(iommu_get_domain_for_dev(dev), sg_dma_address(sg)); 574 } 575 576 int iommu_dma_supported(struct device *dev, u64 mask) 577 { 578 /* 579 * 'Special' IOMMUs which don't have the same addressing capability 580 * as the CPU will have to wait until we have some way to query that 581 * before they'll be able to use this framework. 582 */ 583 return 1; 584 } 585 586 int iommu_dma_mapping_error(struct device *dev, dma_addr_t dma_addr) 587 { 588 return dma_addr == DMA_ERROR_CODE; 589 } 590