xref: /openbmc/linux/drivers/iommu/dma-iommu.c (revision b802fb99)
1 /*
2  * A fairly generic DMA-API to IOMMU-API glue layer.
3  *
4  * Copyright (C) 2014-2015 ARM Ltd.
5  *
6  * based in part on arch/arm/mm/dma-mapping.c:
7  * Copyright (C) 2000-2004 Russell King
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #include <linux/device.h>
23 #include <linux/dma-iommu.h>
24 #include <linux/gfp.h>
25 #include <linux/huge_mm.h>
26 #include <linux/iommu.h>
27 #include <linux/iova.h>
28 #include <linux/mm.h>
29 #include <linux/scatterlist.h>
30 #include <linux/vmalloc.h>
31 
32 int iommu_dma_init(void)
33 {
34 	return iova_cache_get();
35 }
36 
37 /**
38  * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
39  * @domain: IOMMU domain to prepare for DMA-API usage
40  *
41  * IOMMU drivers should normally call this from their domain_alloc
42  * callback when domain->type == IOMMU_DOMAIN_DMA.
43  */
44 int iommu_get_dma_cookie(struct iommu_domain *domain)
45 {
46 	struct iova_domain *iovad;
47 
48 	if (domain->iova_cookie)
49 		return -EEXIST;
50 
51 	iovad = kzalloc(sizeof(*iovad), GFP_KERNEL);
52 	domain->iova_cookie = iovad;
53 
54 	return iovad ? 0 : -ENOMEM;
55 }
56 EXPORT_SYMBOL(iommu_get_dma_cookie);
57 
58 /**
59  * iommu_put_dma_cookie - Release a domain's DMA mapping resources
60  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
61  *
62  * IOMMU drivers should normally call this from their domain_free callback.
63  */
64 void iommu_put_dma_cookie(struct iommu_domain *domain)
65 {
66 	struct iova_domain *iovad = domain->iova_cookie;
67 
68 	if (!iovad)
69 		return;
70 
71 	put_iova_domain(iovad);
72 	kfree(iovad);
73 	domain->iova_cookie = NULL;
74 }
75 EXPORT_SYMBOL(iommu_put_dma_cookie);
76 
77 /**
78  * iommu_dma_init_domain - Initialise a DMA mapping domain
79  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
80  * @base: IOVA at which the mappable address space starts
81  * @size: Size of IOVA space
82  *
83  * @base and @size should be exact multiples of IOMMU page granularity to
84  * avoid rounding surprises. If necessary, we reserve the page at address 0
85  * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
86  * any change which could make prior IOVAs invalid will fail.
87  */
88 int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base, u64 size)
89 {
90 	struct iova_domain *iovad = domain->iova_cookie;
91 	unsigned long order, base_pfn, end_pfn;
92 
93 	if (!iovad)
94 		return -ENODEV;
95 
96 	/* Use the smallest supported page size for IOVA granularity */
97 	order = __ffs(domain->ops->pgsize_bitmap);
98 	base_pfn = max_t(unsigned long, 1, base >> order);
99 	end_pfn = (base + size - 1) >> order;
100 
101 	/* Check the domain allows at least some access to the device... */
102 	if (domain->geometry.force_aperture) {
103 		if (base > domain->geometry.aperture_end ||
104 		    base + size <= domain->geometry.aperture_start) {
105 			pr_warn("specified DMA range outside IOMMU capability\n");
106 			return -EFAULT;
107 		}
108 		/* ...then finally give it a kicking to make sure it fits */
109 		base_pfn = max_t(unsigned long, base_pfn,
110 				domain->geometry.aperture_start >> order);
111 		end_pfn = min_t(unsigned long, end_pfn,
112 				domain->geometry.aperture_end >> order);
113 	}
114 
115 	/* All we can safely do with an existing domain is enlarge it */
116 	if (iovad->start_pfn) {
117 		if (1UL << order != iovad->granule ||
118 		    base_pfn != iovad->start_pfn ||
119 		    end_pfn < iovad->dma_32bit_pfn) {
120 			pr_warn("Incompatible range for DMA domain\n");
121 			return -EFAULT;
122 		}
123 		iovad->dma_32bit_pfn = end_pfn;
124 	} else {
125 		init_iova_domain(iovad, 1UL << order, base_pfn, end_pfn);
126 	}
127 	return 0;
128 }
129 EXPORT_SYMBOL(iommu_dma_init_domain);
130 
131 /**
132  * dma_direction_to_prot - Translate DMA API directions to IOMMU API page flags
133  * @dir: Direction of DMA transfer
134  * @coherent: Is the DMA master cache-coherent?
135  *
136  * Return: corresponding IOMMU API page protection flags
137  */
138 int dma_direction_to_prot(enum dma_data_direction dir, bool coherent)
139 {
140 	int prot = coherent ? IOMMU_CACHE : 0;
141 
142 	switch (dir) {
143 	case DMA_BIDIRECTIONAL:
144 		return prot | IOMMU_READ | IOMMU_WRITE;
145 	case DMA_TO_DEVICE:
146 		return prot | IOMMU_READ;
147 	case DMA_FROM_DEVICE:
148 		return prot | IOMMU_WRITE;
149 	default:
150 		return 0;
151 	}
152 }
153 
154 static struct iova *__alloc_iova(struct iova_domain *iovad, size_t size,
155 		dma_addr_t dma_limit)
156 {
157 	unsigned long shift = iova_shift(iovad);
158 	unsigned long length = iova_align(iovad, size) >> shift;
159 
160 	/*
161 	 * Enforce size-alignment to be safe - there could perhaps be an
162 	 * attribute to control this per-device, or at least per-domain...
163 	 */
164 	return alloc_iova(iovad, length, dma_limit >> shift, true);
165 }
166 
167 /* The IOVA allocator knows what we mapped, so just unmap whatever that was */
168 static void __iommu_dma_unmap(struct iommu_domain *domain, dma_addr_t dma_addr)
169 {
170 	struct iova_domain *iovad = domain->iova_cookie;
171 	unsigned long shift = iova_shift(iovad);
172 	unsigned long pfn = dma_addr >> shift;
173 	struct iova *iova = find_iova(iovad, pfn);
174 	size_t size;
175 
176 	if (WARN_ON(!iova))
177 		return;
178 
179 	size = iova_size(iova) << shift;
180 	size -= iommu_unmap(domain, pfn << shift, size);
181 	/* ...and if we can't, then something is horribly, horribly wrong */
182 	WARN_ON(size > 0);
183 	__free_iova(iovad, iova);
184 }
185 
186 static void __iommu_dma_free_pages(struct page **pages, int count)
187 {
188 	while (count--)
189 		__free_page(pages[count]);
190 	kvfree(pages);
191 }
192 
193 static struct page **__iommu_dma_alloc_pages(unsigned int count, gfp_t gfp)
194 {
195 	struct page **pages;
196 	unsigned int i = 0, array_size = count * sizeof(*pages);
197 	unsigned int order = MAX_ORDER;
198 
199 	if (array_size <= PAGE_SIZE)
200 		pages = kzalloc(array_size, GFP_KERNEL);
201 	else
202 		pages = vzalloc(array_size);
203 	if (!pages)
204 		return NULL;
205 
206 	/* IOMMU can map any pages, so himem can also be used here */
207 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
208 
209 	while (count) {
210 		struct page *page = NULL;
211 		int j;
212 
213 		/*
214 		 * Higher-order allocations are a convenience rather
215 		 * than a necessity, hence using __GFP_NORETRY until
216 		 * falling back to single-page allocations.
217 		 */
218 		for (order = min_t(unsigned int, order, __fls(count));
219 		     order > 0; order--) {
220 			page = alloc_pages(gfp | __GFP_NORETRY, order);
221 			if (!page)
222 				continue;
223 			if (PageCompound(page)) {
224 				if (!split_huge_page(page))
225 					break;
226 				__free_pages(page, order);
227 			} else {
228 				split_page(page, order);
229 				break;
230 			}
231 		}
232 		if (!page)
233 			page = alloc_page(gfp);
234 		if (!page) {
235 			__iommu_dma_free_pages(pages, i);
236 			return NULL;
237 		}
238 		j = 1 << order;
239 		count -= j;
240 		while (j--)
241 			pages[i++] = page++;
242 	}
243 	return pages;
244 }
245 
246 /**
247  * iommu_dma_free - Free a buffer allocated by iommu_dma_alloc()
248  * @dev: Device which owns this buffer
249  * @pages: Array of buffer pages as returned by iommu_dma_alloc()
250  * @size: Size of buffer in bytes
251  * @handle: DMA address of buffer
252  *
253  * Frees both the pages associated with the buffer, and the array
254  * describing them
255  */
256 void iommu_dma_free(struct device *dev, struct page **pages, size_t size,
257 		dma_addr_t *handle)
258 {
259 	__iommu_dma_unmap(iommu_get_domain_for_dev(dev), *handle);
260 	__iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
261 	*handle = DMA_ERROR_CODE;
262 }
263 
264 /**
265  * iommu_dma_alloc - Allocate and map a buffer contiguous in IOVA space
266  * @dev: Device to allocate memory for. Must be a real device
267  *	 attached to an iommu_dma_domain
268  * @size: Size of buffer in bytes
269  * @gfp: Allocation flags
270  * @prot: IOMMU mapping flags
271  * @handle: Out argument for allocated DMA handle
272  * @flush_page: Arch callback which must ensure PAGE_SIZE bytes from the
273  *		given VA/PA are visible to the given non-coherent device.
274  *
275  * If @size is less than PAGE_SIZE, then a full CPU page will be allocated,
276  * but an IOMMU which supports smaller pages might not map the whole thing.
277  *
278  * Return: Array of struct page pointers describing the buffer,
279  *	   or NULL on failure.
280  */
281 struct page **iommu_dma_alloc(struct device *dev, size_t size,
282 		gfp_t gfp, int prot, dma_addr_t *handle,
283 		void (*flush_page)(struct device *, const void *, phys_addr_t))
284 {
285 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
286 	struct iova_domain *iovad = domain->iova_cookie;
287 	struct iova *iova;
288 	struct page **pages;
289 	struct sg_table sgt;
290 	dma_addr_t dma_addr;
291 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
292 
293 	*handle = DMA_ERROR_CODE;
294 
295 	pages = __iommu_dma_alloc_pages(count, gfp);
296 	if (!pages)
297 		return NULL;
298 
299 	iova = __alloc_iova(iovad, size, dev->coherent_dma_mask);
300 	if (!iova)
301 		goto out_free_pages;
302 
303 	size = iova_align(iovad, size);
304 	if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL))
305 		goto out_free_iova;
306 
307 	if (!(prot & IOMMU_CACHE)) {
308 		struct sg_mapping_iter miter;
309 		/*
310 		 * The CPU-centric flushing implied by SG_MITER_TO_SG isn't
311 		 * sufficient here, so skip it by using the "wrong" direction.
312 		 */
313 		sg_miter_start(&miter, sgt.sgl, sgt.orig_nents, SG_MITER_FROM_SG);
314 		while (sg_miter_next(&miter))
315 			flush_page(dev, miter.addr, page_to_phys(miter.page));
316 		sg_miter_stop(&miter);
317 	}
318 
319 	dma_addr = iova_dma_addr(iovad, iova);
320 	if (iommu_map_sg(domain, dma_addr, sgt.sgl, sgt.orig_nents, prot)
321 			< size)
322 		goto out_free_sg;
323 
324 	*handle = dma_addr;
325 	sg_free_table(&sgt);
326 	return pages;
327 
328 out_free_sg:
329 	sg_free_table(&sgt);
330 out_free_iova:
331 	__free_iova(iovad, iova);
332 out_free_pages:
333 	__iommu_dma_free_pages(pages, count);
334 	return NULL;
335 }
336 
337 /**
338  * iommu_dma_mmap - Map a buffer into provided user VMA
339  * @pages: Array representing buffer from iommu_dma_alloc()
340  * @size: Size of buffer in bytes
341  * @vma: VMA describing requested userspace mapping
342  *
343  * Maps the pages of the buffer in @pages into @vma. The caller is responsible
344  * for verifying the correct size and protection of @vma beforehand.
345  */
346 
347 int iommu_dma_mmap(struct page **pages, size_t size, struct vm_area_struct *vma)
348 {
349 	unsigned long uaddr = vma->vm_start;
350 	unsigned int i, count = PAGE_ALIGN(size) >> PAGE_SHIFT;
351 	int ret = -ENXIO;
352 
353 	for (i = vma->vm_pgoff; i < count && uaddr < vma->vm_end; i++) {
354 		ret = vm_insert_page(vma, uaddr, pages[i]);
355 		if (ret)
356 			break;
357 		uaddr += PAGE_SIZE;
358 	}
359 	return ret;
360 }
361 
362 dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
363 		unsigned long offset, size_t size, int prot)
364 {
365 	dma_addr_t dma_addr;
366 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
367 	struct iova_domain *iovad = domain->iova_cookie;
368 	phys_addr_t phys = page_to_phys(page) + offset;
369 	size_t iova_off = iova_offset(iovad, phys);
370 	size_t len = iova_align(iovad, size + iova_off);
371 	struct iova *iova = __alloc_iova(iovad, len, dma_get_mask(dev));
372 
373 	if (!iova)
374 		return DMA_ERROR_CODE;
375 
376 	dma_addr = iova_dma_addr(iovad, iova);
377 	if (iommu_map(domain, dma_addr, phys - iova_off, len, prot)) {
378 		__free_iova(iovad, iova);
379 		return DMA_ERROR_CODE;
380 	}
381 	return dma_addr + iova_off;
382 }
383 
384 void iommu_dma_unmap_page(struct device *dev, dma_addr_t handle, size_t size,
385 		enum dma_data_direction dir, struct dma_attrs *attrs)
386 {
387 	__iommu_dma_unmap(iommu_get_domain_for_dev(dev), handle);
388 }
389 
390 /*
391  * Prepare a successfully-mapped scatterlist to give back to the caller.
392  * Handling IOVA concatenation can come later, if needed
393  */
394 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
395 		dma_addr_t dma_addr)
396 {
397 	struct scatterlist *s;
398 	int i;
399 
400 	for_each_sg(sg, s, nents, i) {
401 		/* Un-swizzling the fields here, hence the naming mismatch */
402 		unsigned int s_offset = sg_dma_address(s);
403 		unsigned int s_length = sg_dma_len(s);
404 		unsigned int s_dma_len = s->length;
405 
406 		s->offset = s_offset;
407 		s->length = s_length;
408 		sg_dma_address(s) = dma_addr + s_offset;
409 		dma_addr += s_dma_len;
410 	}
411 	return i;
412 }
413 
414 /*
415  * If mapping failed, then just restore the original list,
416  * but making sure the DMA fields are invalidated.
417  */
418 static void __invalidate_sg(struct scatterlist *sg, int nents)
419 {
420 	struct scatterlist *s;
421 	int i;
422 
423 	for_each_sg(sg, s, nents, i) {
424 		if (sg_dma_address(s) != DMA_ERROR_CODE)
425 			s->offset = sg_dma_address(s);
426 		if (sg_dma_len(s))
427 			s->length = sg_dma_len(s);
428 		sg_dma_address(s) = DMA_ERROR_CODE;
429 		sg_dma_len(s) = 0;
430 	}
431 }
432 
433 /*
434  * The DMA API client is passing in a scatterlist which could describe
435  * any old buffer layout, but the IOMMU API requires everything to be
436  * aligned to IOMMU pages. Hence the need for this complicated bit of
437  * impedance-matching, to be able to hand off a suitably-aligned list,
438  * but still preserve the original offsets and sizes for the caller.
439  */
440 int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
441 		int nents, int prot)
442 {
443 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
444 	struct iova_domain *iovad = domain->iova_cookie;
445 	struct iova *iova;
446 	struct scatterlist *s, *prev = NULL;
447 	dma_addr_t dma_addr;
448 	size_t iova_len = 0;
449 	int i;
450 
451 	/*
452 	 * Work out how much IOVA space we need, and align the segments to
453 	 * IOVA granules for the IOMMU driver to handle. With some clever
454 	 * trickery we can modify the list in-place, but reversibly, by
455 	 * hiding the original data in the as-yet-unused DMA fields.
456 	 */
457 	for_each_sg(sg, s, nents, i) {
458 		size_t s_offset = iova_offset(iovad, s->offset);
459 		size_t s_length = s->length;
460 
461 		sg_dma_address(s) = s_offset;
462 		sg_dma_len(s) = s_length;
463 		s->offset -= s_offset;
464 		s_length = iova_align(iovad, s_length + s_offset);
465 		s->length = s_length;
466 
467 		/*
468 		 * The simple way to avoid the rare case of a segment
469 		 * crossing the boundary mask is to pad the previous one
470 		 * to end at a naturally-aligned IOVA for this one's size,
471 		 * at the cost of potentially over-allocating a little.
472 		 */
473 		if (prev) {
474 			size_t pad_len = roundup_pow_of_two(s_length);
475 
476 			pad_len = (pad_len - iova_len) & (pad_len - 1);
477 			prev->length += pad_len;
478 			iova_len += pad_len;
479 		}
480 
481 		iova_len += s_length;
482 		prev = s;
483 	}
484 
485 	iova = __alloc_iova(iovad, iova_len, dma_get_mask(dev));
486 	if (!iova)
487 		goto out_restore_sg;
488 
489 	/*
490 	 * We'll leave any physical concatenation to the IOMMU driver's
491 	 * implementation - it knows better than we do.
492 	 */
493 	dma_addr = iova_dma_addr(iovad, iova);
494 	if (iommu_map_sg(domain, dma_addr, sg, nents, prot) < iova_len)
495 		goto out_free_iova;
496 
497 	return __finalise_sg(dev, sg, nents, dma_addr);
498 
499 out_free_iova:
500 	__free_iova(iovad, iova);
501 out_restore_sg:
502 	__invalidate_sg(sg, nents);
503 	return 0;
504 }
505 
506 void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
507 		enum dma_data_direction dir, struct dma_attrs *attrs)
508 {
509 	/*
510 	 * The scatterlist segments are mapped into a single
511 	 * contiguous IOVA allocation, so this is incredibly easy.
512 	 */
513 	__iommu_dma_unmap(iommu_get_domain_for_dev(dev), sg_dma_address(sg));
514 }
515 
516 int iommu_dma_supported(struct device *dev, u64 mask)
517 {
518 	/*
519 	 * 'Special' IOMMUs which don't have the same addressing capability
520 	 * as the CPU will have to wait until we have some way to query that
521 	 * before they'll be able to use this framework.
522 	 */
523 	return 1;
524 }
525 
526 int iommu_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
527 {
528 	return dma_addr == DMA_ERROR_CODE;
529 }
530