xref: /openbmc/linux/drivers/iommu/dma-iommu.c (revision b664e06d)
1 /*
2  * A fairly generic DMA-API to IOMMU-API glue layer.
3  *
4  * Copyright (C) 2014-2015 ARM Ltd.
5  *
6  * based in part on arch/arm/mm/dma-mapping.c:
7  * Copyright (C) 2000-2004 Russell King
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #include <linux/acpi_iort.h>
23 #include <linux/device.h>
24 #include <linux/dma-iommu.h>
25 #include <linux/gfp.h>
26 #include <linux/huge_mm.h>
27 #include <linux/iommu.h>
28 #include <linux/iova.h>
29 #include <linux/irq.h>
30 #include <linux/mm.h>
31 #include <linux/pci.h>
32 #include <linux/scatterlist.h>
33 #include <linux/vmalloc.h>
34 
35 struct iommu_dma_msi_page {
36 	struct list_head	list;
37 	dma_addr_t		iova;
38 	phys_addr_t		phys;
39 };
40 
41 enum iommu_dma_cookie_type {
42 	IOMMU_DMA_IOVA_COOKIE,
43 	IOMMU_DMA_MSI_COOKIE,
44 };
45 
46 struct iommu_dma_cookie {
47 	enum iommu_dma_cookie_type	type;
48 	union {
49 		/* Full allocator for IOMMU_DMA_IOVA_COOKIE */
50 		struct iova_domain	iovad;
51 		/* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
52 		dma_addr_t		msi_iova;
53 	};
54 	struct list_head		msi_page_list;
55 	spinlock_t			msi_lock;
56 
57 	/* Domain for flush queue callback; NULL if flush queue not in use */
58 	struct iommu_domain		*fq_domain;
59 };
60 
61 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
62 {
63 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
64 		return cookie->iovad.granule;
65 	return PAGE_SIZE;
66 }
67 
68 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
69 {
70 	struct iommu_dma_cookie *cookie;
71 
72 	cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
73 	if (cookie) {
74 		spin_lock_init(&cookie->msi_lock);
75 		INIT_LIST_HEAD(&cookie->msi_page_list);
76 		cookie->type = type;
77 	}
78 	return cookie;
79 }
80 
81 int iommu_dma_init(void)
82 {
83 	return iova_cache_get();
84 }
85 
86 /**
87  * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
88  * @domain: IOMMU domain to prepare for DMA-API usage
89  *
90  * IOMMU drivers should normally call this from their domain_alloc
91  * callback when domain->type == IOMMU_DOMAIN_DMA.
92  */
93 int iommu_get_dma_cookie(struct iommu_domain *domain)
94 {
95 	if (domain->iova_cookie)
96 		return -EEXIST;
97 
98 	domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
99 	if (!domain->iova_cookie)
100 		return -ENOMEM;
101 
102 	return 0;
103 }
104 EXPORT_SYMBOL(iommu_get_dma_cookie);
105 
106 /**
107  * iommu_get_msi_cookie - Acquire just MSI remapping resources
108  * @domain: IOMMU domain to prepare
109  * @base: Start address of IOVA region for MSI mappings
110  *
111  * Users who manage their own IOVA allocation and do not want DMA API support,
112  * but would still like to take advantage of automatic MSI remapping, can use
113  * this to initialise their own domain appropriately. Users should reserve a
114  * contiguous IOVA region, starting at @base, large enough to accommodate the
115  * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
116  * used by the devices attached to @domain.
117  */
118 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
119 {
120 	struct iommu_dma_cookie *cookie;
121 
122 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
123 		return -EINVAL;
124 
125 	if (domain->iova_cookie)
126 		return -EEXIST;
127 
128 	cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
129 	if (!cookie)
130 		return -ENOMEM;
131 
132 	cookie->msi_iova = base;
133 	domain->iova_cookie = cookie;
134 	return 0;
135 }
136 EXPORT_SYMBOL(iommu_get_msi_cookie);
137 
138 /**
139  * iommu_put_dma_cookie - Release a domain's DMA mapping resources
140  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
141  *          iommu_get_msi_cookie()
142  *
143  * IOMMU drivers should normally call this from their domain_free callback.
144  */
145 void iommu_put_dma_cookie(struct iommu_domain *domain)
146 {
147 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
148 	struct iommu_dma_msi_page *msi, *tmp;
149 
150 	if (!cookie)
151 		return;
152 
153 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule)
154 		put_iova_domain(&cookie->iovad);
155 
156 	list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
157 		list_del(&msi->list);
158 		kfree(msi);
159 	}
160 	kfree(cookie);
161 	domain->iova_cookie = NULL;
162 }
163 EXPORT_SYMBOL(iommu_put_dma_cookie);
164 
165 /**
166  * iommu_dma_get_resv_regions - Reserved region driver helper
167  * @dev: Device from iommu_get_resv_regions()
168  * @list: Reserved region list from iommu_get_resv_regions()
169  *
170  * IOMMU drivers can use this to implement their .get_resv_regions callback
171  * for general non-IOMMU-specific reservations. Currently, this covers GICv3
172  * ITS region reservation on ACPI based ARM platforms that may require HW MSI
173  * reservation.
174  */
175 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
176 {
177 
178 	if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode))
179 		iort_iommu_msi_get_resv_regions(dev, list);
180 
181 }
182 EXPORT_SYMBOL(iommu_dma_get_resv_regions);
183 
184 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
185 		phys_addr_t start, phys_addr_t end)
186 {
187 	struct iova_domain *iovad = &cookie->iovad;
188 	struct iommu_dma_msi_page *msi_page;
189 	int i, num_pages;
190 
191 	start -= iova_offset(iovad, start);
192 	num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
193 
194 	msi_page = kcalloc(num_pages, sizeof(*msi_page), GFP_KERNEL);
195 	if (!msi_page)
196 		return -ENOMEM;
197 
198 	for (i = 0; i < num_pages; i++) {
199 		msi_page[i].phys = start;
200 		msi_page[i].iova = start;
201 		INIT_LIST_HEAD(&msi_page[i].list);
202 		list_add(&msi_page[i].list, &cookie->msi_page_list);
203 		start += iovad->granule;
204 	}
205 
206 	return 0;
207 }
208 
209 static int iova_reserve_pci_windows(struct pci_dev *dev,
210 		struct iova_domain *iovad)
211 {
212 	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
213 	struct resource_entry *window;
214 	unsigned long lo, hi;
215 	phys_addr_t start = 0, end;
216 
217 	resource_list_for_each_entry(window, &bridge->windows) {
218 		if (resource_type(window->res) != IORESOURCE_MEM)
219 			continue;
220 
221 		lo = iova_pfn(iovad, window->res->start - window->offset);
222 		hi = iova_pfn(iovad, window->res->end - window->offset);
223 		reserve_iova(iovad, lo, hi);
224 	}
225 
226 	/* Get reserved DMA windows from host bridge */
227 	resource_list_for_each_entry(window, &bridge->dma_ranges) {
228 		end = window->res->start - window->offset;
229 resv_iova:
230 		if (end > start) {
231 			lo = iova_pfn(iovad, start);
232 			hi = iova_pfn(iovad, end);
233 			reserve_iova(iovad, lo, hi);
234 		} else {
235 			/* dma_ranges list should be sorted */
236 			dev_err(&dev->dev, "Failed to reserve IOVA\n");
237 			return -EINVAL;
238 		}
239 
240 		start = window->res->end - window->offset + 1;
241 		/* If window is last entry */
242 		if (window->node.next == &bridge->dma_ranges &&
243 		    end != ~(dma_addr_t)0) {
244 			end = ~(dma_addr_t)0;
245 			goto resv_iova;
246 		}
247 	}
248 
249 	return 0;
250 }
251 
252 static int iova_reserve_iommu_regions(struct device *dev,
253 		struct iommu_domain *domain)
254 {
255 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
256 	struct iova_domain *iovad = &cookie->iovad;
257 	struct iommu_resv_region *region;
258 	LIST_HEAD(resv_regions);
259 	int ret = 0;
260 
261 	if (dev_is_pci(dev)) {
262 		ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad);
263 		if (ret)
264 			return ret;
265 	}
266 
267 	iommu_get_resv_regions(dev, &resv_regions);
268 	list_for_each_entry(region, &resv_regions, list) {
269 		unsigned long lo, hi;
270 
271 		/* We ARE the software that manages these! */
272 		if (region->type == IOMMU_RESV_SW_MSI)
273 			continue;
274 
275 		lo = iova_pfn(iovad, region->start);
276 		hi = iova_pfn(iovad, region->start + region->length - 1);
277 		reserve_iova(iovad, lo, hi);
278 
279 		if (region->type == IOMMU_RESV_MSI)
280 			ret = cookie_init_hw_msi_region(cookie, region->start,
281 					region->start + region->length);
282 		if (ret)
283 			break;
284 	}
285 	iommu_put_resv_regions(dev, &resv_regions);
286 
287 	return ret;
288 }
289 
290 static void iommu_dma_flush_iotlb_all(struct iova_domain *iovad)
291 {
292 	struct iommu_dma_cookie *cookie;
293 	struct iommu_domain *domain;
294 
295 	cookie = container_of(iovad, struct iommu_dma_cookie, iovad);
296 	domain = cookie->fq_domain;
297 	/*
298 	 * The IOMMU driver supporting DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE
299 	 * implies that ops->flush_iotlb_all must be non-NULL.
300 	 */
301 	domain->ops->flush_iotlb_all(domain);
302 }
303 
304 /**
305  * iommu_dma_init_domain - Initialise a DMA mapping domain
306  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
307  * @base: IOVA at which the mappable address space starts
308  * @size: Size of IOVA space
309  * @dev: Device the domain is being initialised for
310  *
311  * @base and @size should be exact multiples of IOMMU page granularity to
312  * avoid rounding surprises. If necessary, we reserve the page at address 0
313  * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
314  * any change which could make prior IOVAs invalid will fail.
315  */
316 int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
317 		u64 size, struct device *dev)
318 {
319 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
320 	struct iova_domain *iovad = &cookie->iovad;
321 	unsigned long order, base_pfn;
322 	int attr;
323 
324 	if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
325 		return -EINVAL;
326 
327 	/* Use the smallest supported page size for IOVA granularity */
328 	order = __ffs(domain->pgsize_bitmap);
329 	base_pfn = max_t(unsigned long, 1, base >> order);
330 
331 	/* Check the domain allows at least some access to the device... */
332 	if (domain->geometry.force_aperture) {
333 		if (base > domain->geometry.aperture_end ||
334 		    base + size <= domain->geometry.aperture_start) {
335 			pr_warn("specified DMA range outside IOMMU capability\n");
336 			return -EFAULT;
337 		}
338 		/* ...then finally give it a kicking to make sure it fits */
339 		base_pfn = max_t(unsigned long, base_pfn,
340 				domain->geometry.aperture_start >> order);
341 	}
342 
343 	/* start_pfn is always nonzero for an already-initialised domain */
344 	if (iovad->start_pfn) {
345 		if (1UL << order != iovad->granule ||
346 		    base_pfn != iovad->start_pfn) {
347 			pr_warn("Incompatible range for DMA domain\n");
348 			return -EFAULT;
349 		}
350 
351 		return 0;
352 	}
353 
354 	init_iova_domain(iovad, 1UL << order, base_pfn);
355 
356 	if (!cookie->fq_domain && !iommu_domain_get_attr(domain,
357 			DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE, &attr) && attr) {
358 		cookie->fq_domain = domain;
359 		init_iova_flush_queue(iovad, iommu_dma_flush_iotlb_all, NULL);
360 	}
361 
362 	if (!dev)
363 		return 0;
364 
365 	return iova_reserve_iommu_regions(dev, domain);
366 }
367 EXPORT_SYMBOL(iommu_dma_init_domain);
368 
369 /**
370  * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
371  *                    page flags.
372  * @dir: Direction of DMA transfer
373  * @coherent: Is the DMA master cache-coherent?
374  * @attrs: DMA attributes for the mapping
375  *
376  * Return: corresponding IOMMU API page protection flags
377  */
378 int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
379 		     unsigned long attrs)
380 {
381 	int prot = coherent ? IOMMU_CACHE : 0;
382 
383 	if (attrs & DMA_ATTR_PRIVILEGED)
384 		prot |= IOMMU_PRIV;
385 
386 	switch (dir) {
387 	case DMA_BIDIRECTIONAL:
388 		return prot | IOMMU_READ | IOMMU_WRITE;
389 	case DMA_TO_DEVICE:
390 		return prot | IOMMU_READ;
391 	case DMA_FROM_DEVICE:
392 		return prot | IOMMU_WRITE;
393 	default:
394 		return 0;
395 	}
396 }
397 
398 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
399 		size_t size, dma_addr_t dma_limit, struct device *dev)
400 {
401 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
402 	struct iova_domain *iovad = &cookie->iovad;
403 	unsigned long shift, iova_len, iova = 0;
404 
405 	if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
406 		cookie->msi_iova += size;
407 		return cookie->msi_iova - size;
408 	}
409 
410 	shift = iova_shift(iovad);
411 	iova_len = size >> shift;
412 	/*
413 	 * Freeing non-power-of-two-sized allocations back into the IOVA caches
414 	 * will come back to bite us badly, so we have to waste a bit of space
415 	 * rounding up anything cacheable to make sure that can't happen. The
416 	 * order of the unadjusted size will still match upon freeing.
417 	 */
418 	if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1)))
419 		iova_len = roundup_pow_of_two(iova_len);
420 
421 	if (dev->bus_dma_mask)
422 		dma_limit &= dev->bus_dma_mask;
423 
424 	if (domain->geometry.force_aperture)
425 		dma_limit = min(dma_limit, domain->geometry.aperture_end);
426 
427 	/* Try to get PCI devices a SAC address */
428 	if (dma_limit > DMA_BIT_MASK(32) && dev_is_pci(dev))
429 		iova = alloc_iova_fast(iovad, iova_len,
430 				       DMA_BIT_MASK(32) >> shift, false);
431 
432 	if (!iova)
433 		iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift,
434 				       true);
435 
436 	return (dma_addr_t)iova << shift;
437 }
438 
439 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
440 		dma_addr_t iova, size_t size)
441 {
442 	struct iova_domain *iovad = &cookie->iovad;
443 
444 	/* The MSI case is only ever cleaning up its most recent allocation */
445 	if (cookie->type == IOMMU_DMA_MSI_COOKIE)
446 		cookie->msi_iova -= size;
447 	else if (cookie->fq_domain)	/* non-strict mode */
448 		queue_iova(iovad, iova_pfn(iovad, iova),
449 				size >> iova_shift(iovad), 0);
450 	else
451 		free_iova_fast(iovad, iova_pfn(iovad, iova),
452 				size >> iova_shift(iovad));
453 }
454 
455 static void __iommu_dma_unmap(struct iommu_domain *domain, dma_addr_t dma_addr,
456 		size_t size)
457 {
458 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
459 	struct iova_domain *iovad = &cookie->iovad;
460 	size_t iova_off = iova_offset(iovad, dma_addr);
461 
462 	dma_addr -= iova_off;
463 	size = iova_align(iovad, size + iova_off);
464 
465 	WARN_ON(iommu_unmap_fast(domain, dma_addr, size) != size);
466 	if (!cookie->fq_domain)
467 		iommu_tlb_sync(domain);
468 	iommu_dma_free_iova(cookie, dma_addr, size);
469 }
470 
471 static void __iommu_dma_free_pages(struct page **pages, int count)
472 {
473 	while (count--)
474 		__free_page(pages[count]);
475 	kvfree(pages);
476 }
477 
478 static struct page **__iommu_dma_alloc_pages(struct device *dev,
479 		unsigned int count, unsigned long order_mask, gfp_t gfp)
480 {
481 	struct page **pages;
482 	unsigned int i = 0, nid = dev_to_node(dev);
483 
484 	order_mask &= (2U << MAX_ORDER) - 1;
485 	if (!order_mask)
486 		return NULL;
487 
488 	pages = kvzalloc(count * sizeof(*pages), GFP_KERNEL);
489 	if (!pages)
490 		return NULL;
491 
492 	/* IOMMU can map any pages, so himem can also be used here */
493 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
494 
495 	while (count) {
496 		struct page *page = NULL;
497 		unsigned int order_size;
498 
499 		/*
500 		 * Higher-order allocations are a convenience rather
501 		 * than a necessity, hence using __GFP_NORETRY until
502 		 * falling back to minimum-order allocations.
503 		 */
504 		for (order_mask &= (2U << __fls(count)) - 1;
505 		     order_mask; order_mask &= ~order_size) {
506 			unsigned int order = __fls(order_mask);
507 			gfp_t alloc_flags = gfp;
508 
509 			order_size = 1U << order;
510 			if (order_mask > order_size)
511 				alloc_flags |= __GFP_NORETRY;
512 			page = alloc_pages_node(nid, alloc_flags, order);
513 			if (!page)
514 				continue;
515 			if (!order)
516 				break;
517 			if (!PageCompound(page)) {
518 				split_page(page, order);
519 				break;
520 			} else if (!split_huge_page(page)) {
521 				break;
522 			}
523 			__free_pages(page, order);
524 		}
525 		if (!page) {
526 			__iommu_dma_free_pages(pages, i);
527 			return NULL;
528 		}
529 		count -= order_size;
530 		while (order_size--)
531 			pages[i++] = page++;
532 	}
533 	return pages;
534 }
535 
536 /**
537  * iommu_dma_free - Free a buffer allocated by iommu_dma_alloc()
538  * @dev: Device which owns this buffer
539  * @pages: Array of buffer pages as returned by iommu_dma_alloc()
540  * @size: Size of buffer in bytes
541  * @handle: DMA address of buffer
542  *
543  * Frees both the pages associated with the buffer, and the array
544  * describing them
545  */
546 void iommu_dma_free(struct device *dev, struct page **pages, size_t size,
547 		dma_addr_t *handle)
548 {
549 	__iommu_dma_unmap(iommu_get_dma_domain(dev), *handle, size);
550 	__iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
551 	*handle = DMA_MAPPING_ERROR;
552 }
553 
554 /**
555  * iommu_dma_alloc - Allocate and map a buffer contiguous in IOVA space
556  * @dev: Device to allocate memory for. Must be a real device
557  *	 attached to an iommu_dma_domain
558  * @size: Size of buffer in bytes
559  * @gfp: Allocation flags
560  * @attrs: DMA attributes for this allocation
561  * @prot: IOMMU mapping flags
562  * @handle: Out argument for allocated DMA handle
563  * @flush_page: Arch callback which must ensure PAGE_SIZE bytes from the
564  *		given VA/PA are visible to the given non-coherent device.
565  *
566  * If @size is less than PAGE_SIZE, then a full CPU page will be allocated,
567  * but an IOMMU which supports smaller pages might not map the whole thing.
568  *
569  * Return: Array of struct page pointers describing the buffer,
570  *	   or NULL on failure.
571  */
572 struct page **iommu_dma_alloc(struct device *dev, size_t size, gfp_t gfp,
573 		unsigned long attrs, int prot, dma_addr_t *handle,
574 		void (*flush_page)(struct device *, const void *, phys_addr_t))
575 {
576 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
577 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
578 	struct iova_domain *iovad = &cookie->iovad;
579 	struct page **pages;
580 	struct sg_table sgt;
581 	dma_addr_t iova;
582 	unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
583 
584 	*handle = DMA_MAPPING_ERROR;
585 
586 	min_size = alloc_sizes & -alloc_sizes;
587 	if (min_size < PAGE_SIZE) {
588 		min_size = PAGE_SIZE;
589 		alloc_sizes |= PAGE_SIZE;
590 	} else {
591 		size = ALIGN(size, min_size);
592 	}
593 	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
594 		alloc_sizes = min_size;
595 
596 	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
597 	pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT,
598 					gfp);
599 	if (!pages)
600 		return NULL;
601 
602 	size = iova_align(iovad, size);
603 	iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
604 	if (!iova)
605 		goto out_free_pages;
606 
607 	if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL))
608 		goto out_free_iova;
609 
610 	if (!(prot & IOMMU_CACHE)) {
611 		struct sg_mapping_iter miter;
612 		/*
613 		 * The CPU-centric flushing implied by SG_MITER_TO_SG isn't
614 		 * sufficient here, so skip it by using the "wrong" direction.
615 		 */
616 		sg_miter_start(&miter, sgt.sgl, sgt.orig_nents, SG_MITER_FROM_SG);
617 		while (sg_miter_next(&miter))
618 			flush_page(dev, miter.addr, page_to_phys(miter.page));
619 		sg_miter_stop(&miter);
620 	}
621 
622 	if (iommu_map_sg(domain, iova, sgt.sgl, sgt.orig_nents, prot)
623 			< size)
624 		goto out_free_sg;
625 
626 	*handle = iova;
627 	sg_free_table(&sgt);
628 	return pages;
629 
630 out_free_sg:
631 	sg_free_table(&sgt);
632 out_free_iova:
633 	iommu_dma_free_iova(cookie, iova, size);
634 out_free_pages:
635 	__iommu_dma_free_pages(pages, count);
636 	return NULL;
637 }
638 
639 /**
640  * iommu_dma_mmap - Map a buffer into provided user VMA
641  * @pages: Array representing buffer from iommu_dma_alloc()
642  * @size: Size of buffer in bytes
643  * @vma: VMA describing requested userspace mapping
644  *
645  * Maps the pages of the buffer in @pages into @vma. The caller is responsible
646  * for verifying the correct size and protection of @vma beforehand.
647  */
648 
649 int iommu_dma_mmap(struct page **pages, size_t size, struct vm_area_struct *vma)
650 {
651 	return vm_map_pages(vma, pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
652 }
653 
654 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
655 		size_t size, int prot, struct iommu_domain *domain)
656 {
657 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
658 	size_t iova_off = 0;
659 	dma_addr_t iova;
660 
661 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE) {
662 		iova_off = iova_offset(&cookie->iovad, phys);
663 		size = iova_align(&cookie->iovad, size + iova_off);
664 	}
665 
666 	iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
667 	if (!iova)
668 		return DMA_MAPPING_ERROR;
669 
670 	if (iommu_map(domain, iova, phys - iova_off, size, prot)) {
671 		iommu_dma_free_iova(cookie, iova, size);
672 		return DMA_MAPPING_ERROR;
673 	}
674 	return iova + iova_off;
675 }
676 
677 dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
678 		unsigned long offset, size_t size, int prot)
679 {
680 	return __iommu_dma_map(dev, page_to_phys(page) + offset, size, prot,
681 			iommu_get_dma_domain(dev));
682 }
683 
684 void iommu_dma_unmap_page(struct device *dev, dma_addr_t handle, size_t size,
685 		enum dma_data_direction dir, unsigned long attrs)
686 {
687 	__iommu_dma_unmap(iommu_get_dma_domain(dev), handle, size);
688 }
689 
690 /*
691  * Prepare a successfully-mapped scatterlist to give back to the caller.
692  *
693  * At this point the segments are already laid out by iommu_dma_map_sg() to
694  * avoid individually crossing any boundaries, so we merely need to check a
695  * segment's start address to avoid concatenating across one.
696  */
697 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
698 		dma_addr_t dma_addr)
699 {
700 	struct scatterlist *s, *cur = sg;
701 	unsigned long seg_mask = dma_get_seg_boundary(dev);
702 	unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
703 	int i, count = 0;
704 
705 	for_each_sg(sg, s, nents, i) {
706 		/* Restore this segment's original unaligned fields first */
707 		unsigned int s_iova_off = sg_dma_address(s);
708 		unsigned int s_length = sg_dma_len(s);
709 		unsigned int s_iova_len = s->length;
710 
711 		s->offset += s_iova_off;
712 		s->length = s_length;
713 		sg_dma_address(s) = DMA_MAPPING_ERROR;
714 		sg_dma_len(s) = 0;
715 
716 		/*
717 		 * Now fill in the real DMA data. If...
718 		 * - there is a valid output segment to append to
719 		 * - and this segment starts on an IOVA page boundary
720 		 * - but doesn't fall at a segment boundary
721 		 * - and wouldn't make the resulting output segment too long
722 		 */
723 		if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
724 		    (cur_len + s_length <= max_len)) {
725 			/* ...then concatenate it with the previous one */
726 			cur_len += s_length;
727 		} else {
728 			/* Otherwise start the next output segment */
729 			if (i > 0)
730 				cur = sg_next(cur);
731 			cur_len = s_length;
732 			count++;
733 
734 			sg_dma_address(cur) = dma_addr + s_iova_off;
735 		}
736 
737 		sg_dma_len(cur) = cur_len;
738 		dma_addr += s_iova_len;
739 
740 		if (s_length + s_iova_off < s_iova_len)
741 			cur_len = 0;
742 	}
743 	return count;
744 }
745 
746 /*
747  * If mapping failed, then just restore the original list,
748  * but making sure the DMA fields are invalidated.
749  */
750 static void __invalidate_sg(struct scatterlist *sg, int nents)
751 {
752 	struct scatterlist *s;
753 	int i;
754 
755 	for_each_sg(sg, s, nents, i) {
756 		if (sg_dma_address(s) != DMA_MAPPING_ERROR)
757 			s->offset += sg_dma_address(s);
758 		if (sg_dma_len(s))
759 			s->length = sg_dma_len(s);
760 		sg_dma_address(s) = DMA_MAPPING_ERROR;
761 		sg_dma_len(s) = 0;
762 	}
763 }
764 
765 /*
766  * The DMA API client is passing in a scatterlist which could describe
767  * any old buffer layout, but the IOMMU API requires everything to be
768  * aligned to IOMMU pages. Hence the need for this complicated bit of
769  * impedance-matching, to be able to hand off a suitably-aligned list,
770  * but still preserve the original offsets and sizes for the caller.
771  */
772 int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
773 		int nents, int prot)
774 {
775 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
776 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
777 	struct iova_domain *iovad = &cookie->iovad;
778 	struct scatterlist *s, *prev = NULL;
779 	dma_addr_t iova;
780 	size_t iova_len = 0;
781 	unsigned long mask = dma_get_seg_boundary(dev);
782 	int i;
783 
784 	/*
785 	 * Work out how much IOVA space we need, and align the segments to
786 	 * IOVA granules for the IOMMU driver to handle. With some clever
787 	 * trickery we can modify the list in-place, but reversibly, by
788 	 * stashing the unaligned parts in the as-yet-unused DMA fields.
789 	 */
790 	for_each_sg(sg, s, nents, i) {
791 		size_t s_iova_off = iova_offset(iovad, s->offset);
792 		size_t s_length = s->length;
793 		size_t pad_len = (mask - iova_len + 1) & mask;
794 
795 		sg_dma_address(s) = s_iova_off;
796 		sg_dma_len(s) = s_length;
797 		s->offset -= s_iova_off;
798 		s_length = iova_align(iovad, s_length + s_iova_off);
799 		s->length = s_length;
800 
801 		/*
802 		 * Due to the alignment of our single IOVA allocation, we can
803 		 * depend on these assumptions about the segment boundary mask:
804 		 * - If mask size >= IOVA size, then the IOVA range cannot
805 		 *   possibly fall across a boundary, so we don't care.
806 		 * - If mask size < IOVA size, then the IOVA range must start
807 		 *   exactly on a boundary, therefore we can lay things out
808 		 *   based purely on segment lengths without needing to know
809 		 *   the actual addresses beforehand.
810 		 * - The mask must be a power of 2, so pad_len == 0 if
811 		 *   iova_len == 0, thus we cannot dereference prev the first
812 		 *   time through here (i.e. before it has a meaningful value).
813 		 */
814 		if (pad_len && pad_len < s_length - 1) {
815 			prev->length += pad_len;
816 			iova_len += pad_len;
817 		}
818 
819 		iova_len += s_length;
820 		prev = s;
821 	}
822 
823 	iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
824 	if (!iova)
825 		goto out_restore_sg;
826 
827 	/*
828 	 * We'll leave any physical concatenation to the IOMMU driver's
829 	 * implementation - it knows better than we do.
830 	 */
831 	if (iommu_map_sg(domain, iova, sg, nents, prot) < iova_len)
832 		goto out_free_iova;
833 
834 	return __finalise_sg(dev, sg, nents, iova);
835 
836 out_free_iova:
837 	iommu_dma_free_iova(cookie, iova, iova_len);
838 out_restore_sg:
839 	__invalidate_sg(sg, nents);
840 	return 0;
841 }
842 
843 void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
844 		enum dma_data_direction dir, unsigned long attrs)
845 {
846 	dma_addr_t start, end;
847 	struct scatterlist *tmp;
848 	int i;
849 	/*
850 	 * The scatterlist segments are mapped into a single
851 	 * contiguous IOVA allocation, so this is incredibly easy.
852 	 */
853 	start = sg_dma_address(sg);
854 	for_each_sg(sg_next(sg), tmp, nents - 1, i) {
855 		if (sg_dma_len(tmp) == 0)
856 			break;
857 		sg = tmp;
858 	}
859 	end = sg_dma_address(sg) + sg_dma_len(sg);
860 	__iommu_dma_unmap(iommu_get_dma_domain(dev), start, end - start);
861 }
862 
863 dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
864 		size_t size, enum dma_data_direction dir, unsigned long attrs)
865 {
866 	return __iommu_dma_map(dev, phys, size,
867 			dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO,
868 			iommu_get_dma_domain(dev));
869 }
870 
871 void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
872 		size_t size, enum dma_data_direction dir, unsigned long attrs)
873 {
874 	__iommu_dma_unmap(iommu_get_dma_domain(dev), handle, size);
875 }
876 
877 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
878 		phys_addr_t msi_addr, struct iommu_domain *domain)
879 {
880 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
881 	struct iommu_dma_msi_page *msi_page;
882 	dma_addr_t iova;
883 	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
884 	size_t size = cookie_msi_granule(cookie);
885 
886 	msi_addr &= ~(phys_addr_t)(size - 1);
887 	list_for_each_entry(msi_page, &cookie->msi_page_list, list)
888 		if (msi_page->phys == msi_addr)
889 			return msi_page;
890 
891 	msi_page = kzalloc(sizeof(*msi_page), GFP_ATOMIC);
892 	if (!msi_page)
893 		return NULL;
894 
895 	iova = __iommu_dma_map(dev, msi_addr, size, prot, domain);
896 	if (iova == DMA_MAPPING_ERROR)
897 		goto out_free_page;
898 
899 	INIT_LIST_HEAD(&msi_page->list);
900 	msi_page->phys = msi_addr;
901 	msi_page->iova = iova;
902 	list_add(&msi_page->list, &cookie->msi_page_list);
903 	return msi_page;
904 
905 out_free_page:
906 	kfree(msi_page);
907 	return NULL;
908 }
909 
910 int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)
911 {
912 	struct device *dev = msi_desc_to_dev(desc);
913 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
914 	struct iommu_dma_cookie *cookie;
915 	struct iommu_dma_msi_page *msi_page;
916 	unsigned long flags;
917 
918 	if (!domain || !domain->iova_cookie) {
919 		desc->iommu_cookie = NULL;
920 		return 0;
921 	}
922 
923 	cookie = domain->iova_cookie;
924 
925 	/*
926 	 * We disable IRQs to rule out a possible inversion against
927 	 * irq_desc_lock if, say, someone tries to retarget the affinity
928 	 * of an MSI from within an IPI handler.
929 	 */
930 	spin_lock_irqsave(&cookie->msi_lock, flags);
931 	msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
932 	spin_unlock_irqrestore(&cookie->msi_lock, flags);
933 
934 	msi_desc_set_iommu_cookie(desc, msi_page);
935 
936 	if (!msi_page)
937 		return -ENOMEM;
938 	return 0;
939 }
940 
941 void iommu_dma_compose_msi_msg(struct msi_desc *desc,
942 			       struct msi_msg *msg)
943 {
944 	struct device *dev = msi_desc_to_dev(desc);
945 	const struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
946 	const struct iommu_dma_msi_page *msi_page;
947 
948 	msi_page = msi_desc_get_iommu_cookie(desc);
949 
950 	if (!domain || !domain->iova_cookie || WARN_ON(!msi_page))
951 		return;
952 
953 	msg->address_hi = upper_32_bits(msi_page->iova);
954 	msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1;
955 	msg->address_lo += lower_32_bits(msi_page->iova);
956 }
957