xref: /openbmc/linux/drivers/iommu/dma-iommu.c (revision a16be368)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * A fairly generic DMA-API to IOMMU-API glue layer.
4  *
5  * Copyright (C) 2014-2015 ARM Ltd.
6  *
7  * based in part on arch/arm/mm/dma-mapping.c:
8  * Copyright (C) 2000-2004 Russell King
9  */
10 
11 #include <linux/acpi_iort.h>
12 #include <linux/device.h>
13 #include <linux/dma-contiguous.h>
14 #include <linux/dma-iommu.h>
15 #include <linux/dma-noncoherent.h>
16 #include <linux/gfp.h>
17 #include <linux/huge_mm.h>
18 #include <linux/iommu.h>
19 #include <linux/iova.h>
20 #include <linux/irq.h>
21 #include <linux/mm.h>
22 #include <linux/mutex.h>
23 #include <linux/pci.h>
24 #include <linux/scatterlist.h>
25 #include <linux/vmalloc.h>
26 #include <linux/crash_dump.h>
27 
28 struct iommu_dma_msi_page {
29 	struct list_head	list;
30 	dma_addr_t		iova;
31 	phys_addr_t		phys;
32 };
33 
34 enum iommu_dma_cookie_type {
35 	IOMMU_DMA_IOVA_COOKIE,
36 	IOMMU_DMA_MSI_COOKIE,
37 };
38 
39 struct iommu_dma_cookie {
40 	enum iommu_dma_cookie_type	type;
41 	union {
42 		/* Full allocator for IOMMU_DMA_IOVA_COOKIE */
43 		struct iova_domain	iovad;
44 		/* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
45 		dma_addr_t		msi_iova;
46 	};
47 	struct list_head		msi_page_list;
48 
49 	/* Domain for flush queue callback; NULL if flush queue not in use */
50 	struct iommu_domain		*fq_domain;
51 };
52 
53 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
54 {
55 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
56 		return cookie->iovad.granule;
57 	return PAGE_SIZE;
58 }
59 
60 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
61 {
62 	struct iommu_dma_cookie *cookie;
63 
64 	cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
65 	if (cookie) {
66 		INIT_LIST_HEAD(&cookie->msi_page_list);
67 		cookie->type = type;
68 	}
69 	return cookie;
70 }
71 
72 /**
73  * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
74  * @domain: IOMMU domain to prepare for DMA-API usage
75  *
76  * IOMMU drivers should normally call this from their domain_alloc
77  * callback when domain->type == IOMMU_DOMAIN_DMA.
78  */
79 int iommu_get_dma_cookie(struct iommu_domain *domain)
80 {
81 	if (domain->iova_cookie)
82 		return -EEXIST;
83 
84 	domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
85 	if (!domain->iova_cookie)
86 		return -ENOMEM;
87 
88 	return 0;
89 }
90 EXPORT_SYMBOL(iommu_get_dma_cookie);
91 
92 /**
93  * iommu_get_msi_cookie - Acquire just MSI remapping resources
94  * @domain: IOMMU domain to prepare
95  * @base: Start address of IOVA region for MSI mappings
96  *
97  * Users who manage their own IOVA allocation and do not want DMA API support,
98  * but would still like to take advantage of automatic MSI remapping, can use
99  * this to initialise their own domain appropriately. Users should reserve a
100  * contiguous IOVA region, starting at @base, large enough to accommodate the
101  * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
102  * used by the devices attached to @domain.
103  */
104 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
105 {
106 	struct iommu_dma_cookie *cookie;
107 
108 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
109 		return -EINVAL;
110 
111 	if (domain->iova_cookie)
112 		return -EEXIST;
113 
114 	cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
115 	if (!cookie)
116 		return -ENOMEM;
117 
118 	cookie->msi_iova = base;
119 	domain->iova_cookie = cookie;
120 	return 0;
121 }
122 EXPORT_SYMBOL(iommu_get_msi_cookie);
123 
124 /**
125  * iommu_put_dma_cookie - Release a domain's DMA mapping resources
126  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
127  *          iommu_get_msi_cookie()
128  *
129  * IOMMU drivers should normally call this from their domain_free callback.
130  */
131 void iommu_put_dma_cookie(struct iommu_domain *domain)
132 {
133 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
134 	struct iommu_dma_msi_page *msi, *tmp;
135 
136 	if (!cookie)
137 		return;
138 
139 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule)
140 		put_iova_domain(&cookie->iovad);
141 
142 	list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
143 		list_del(&msi->list);
144 		kfree(msi);
145 	}
146 	kfree(cookie);
147 	domain->iova_cookie = NULL;
148 }
149 EXPORT_SYMBOL(iommu_put_dma_cookie);
150 
151 /**
152  * iommu_dma_get_resv_regions - Reserved region driver helper
153  * @dev: Device from iommu_get_resv_regions()
154  * @list: Reserved region list from iommu_get_resv_regions()
155  *
156  * IOMMU drivers can use this to implement their .get_resv_regions callback
157  * for general non-IOMMU-specific reservations. Currently, this covers GICv3
158  * ITS region reservation on ACPI based ARM platforms that may require HW MSI
159  * reservation.
160  */
161 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
162 {
163 
164 	if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode))
165 		iort_iommu_msi_get_resv_regions(dev, list);
166 
167 }
168 EXPORT_SYMBOL(iommu_dma_get_resv_regions);
169 
170 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
171 		phys_addr_t start, phys_addr_t end)
172 {
173 	struct iova_domain *iovad = &cookie->iovad;
174 	struct iommu_dma_msi_page *msi_page;
175 	int i, num_pages;
176 
177 	start -= iova_offset(iovad, start);
178 	num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
179 
180 	for (i = 0; i < num_pages; i++) {
181 		msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL);
182 		if (!msi_page)
183 			return -ENOMEM;
184 
185 		msi_page->phys = start;
186 		msi_page->iova = start;
187 		INIT_LIST_HEAD(&msi_page->list);
188 		list_add(&msi_page->list, &cookie->msi_page_list);
189 		start += iovad->granule;
190 	}
191 
192 	return 0;
193 }
194 
195 static int iova_reserve_pci_windows(struct pci_dev *dev,
196 		struct iova_domain *iovad)
197 {
198 	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
199 	struct resource_entry *window;
200 	unsigned long lo, hi;
201 	phys_addr_t start = 0, end;
202 
203 	resource_list_for_each_entry(window, &bridge->windows) {
204 		if (resource_type(window->res) != IORESOURCE_MEM)
205 			continue;
206 
207 		lo = iova_pfn(iovad, window->res->start - window->offset);
208 		hi = iova_pfn(iovad, window->res->end - window->offset);
209 		reserve_iova(iovad, lo, hi);
210 	}
211 
212 	/* Get reserved DMA windows from host bridge */
213 	resource_list_for_each_entry(window, &bridge->dma_ranges) {
214 		end = window->res->start - window->offset;
215 resv_iova:
216 		if (end > start) {
217 			lo = iova_pfn(iovad, start);
218 			hi = iova_pfn(iovad, end);
219 			reserve_iova(iovad, lo, hi);
220 		} else {
221 			/* dma_ranges list should be sorted */
222 			dev_err(&dev->dev, "Failed to reserve IOVA\n");
223 			return -EINVAL;
224 		}
225 
226 		start = window->res->end - window->offset + 1;
227 		/* If window is last entry */
228 		if (window->node.next == &bridge->dma_ranges &&
229 		    end != ~(phys_addr_t)0) {
230 			end = ~(phys_addr_t)0;
231 			goto resv_iova;
232 		}
233 	}
234 
235 	return 0;
236 }
237 
238 static int iova_reserve_iommu_regions(struct device *dev,
239 		struct iommu_domain *domain)
240 {
241 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
242 	struct iova_domain *iovad = &cookie->iovad;
243 	struct iommu_resv_region *region;
244 	LIST_HEAD(resv_regions);
245 	int ret = 0;
246 
247 	if (dev_is_pci(dev)) {
248 		ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad);
249 		if (ret)
250 			return ret;
251 	}
252 
253 	iommu_get_resv_regions(dev, &resv_regions);
254 	list_for_each_entry(region, &resv_regions, list) {
255 		unsigned long lo, hi;
256 
257 		/* We ARE the software that manages these! */
258 		if (region->type == IOMMU_RESV_SW_MSI)
259 			continue;
260 
261 		lo = iova_pfn(iovad, region->start);
262 		hi = iova_pfn(iovad, region->start + region->length - 1);
263 		reserve_iova(iovad, lo, hi);
264 
265 		if (region->type == IOMMU_RESV_MSI)
266 			ret = cookie_init_hw_msi_region(cookie, region->start,
267 					region->start + region->length);
268 		if (ret)
269 			break;
270 	}
271 	iommu_put_resv_regions(dev, &resv_regions);
272 
273 	return ret;
274 }
275 
276 static void iommu_dma_flush_iotlb_all(struct iova_domain *iovad)
277 {
278 	struct iommu_dma_cookie *cookie;
279 	struct iommu_domain *domain;
280 
281 	cookie = container_of(iovad, struct iommu_dma_cookie, iovad);
282 	domain = cookie->fq_domain;
283 	/*
284 	 * The IOMMU driver supporting DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE
285 	 * implies that ops->flush_iotlb_all must be non-NULL.
286 	 */
287 	domain->ops->flush_iotlb_all(domain);
288 }
289 
290 /**
291  * iommu_dma_init_domain - Initialise a DMA mapping domain
292  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
293  * @base: IOVA at which the mappable address space starts
294  * @size: Size of IOVA space
295  * @dev: Device the domain is being initialised for
296  *
297  * @base and @size should be exact multiples of IOMMU page granularity to
298  * avoid rounding surprises. If necessary, we reserve the page at address 0
299  * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
300  * any change which could make prior IOVAs invalid will fail.
301  */
302 static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
303 		u64 size, struct device *dev)
304 {
305 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
306 	unsigned long order, base_pfn;
307 	struct iova_domain *iovad;
308 	int attr;
309 
310 	if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
311 		return -EINVAL;
312 
313 	iovad = &cookie->iovad;
314 
315 	/* Use the smallest supported page size for IOVA granularity */
316 	order = __ffs(domain->pgsize_bitmap);
317 	base_pfn = max_t(unsigned long, 1, base >> order);
318 
319 	/* Check the domain allows at least some access to the device... */
320 	if (domain->geometry.force_aperture) {
321 		if (base > domain->geometry.aperture_end ||
322 		    base + size <= domain->geometry.aperture_start) {
323 			pr_warn("specified DMA range outside IOMMU capability\n");
324 			return -EFAULT;
325 		}
326 		/* ...then finally give it a kicking to make sure it fits */
327 		base_pfn = max_t(unsigned long, base_pfn,
328 				domain->geometry.aperture_start >> order);
329 	}
330 
331 	/* start_pfn is always nonzero for an already-initialised domain */
332 	if (iovad->start_pfn) {
333 		if (1UL << order != iovad->granule ||
334 		    base_pfn != iovad->start_pfn) {
335 			pr_warn("Incompatible range for DMA domain\n");
336 			return -EFAULT;
337 		}
338 
339 		return 0;
340 	}
341 
342 	init_iova_domain(iovad, 1UL << order, base_pfn);
343 
344 	if (!cookie->fq_domain && !iommu_domain_get_attr(domain,
345 			DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE, &attr) && attr) {
346 		cookie->fq_domain = domain;
347 		init_iova_flush_queue(iovad, iommu_dma_flush_iotlb_all, NULL);
348 	}
349 
350 	if (!dev)
351 		return 0;
352 
353 	return iova_reserve_iommu_regions(dev, domain);
354 }
355 
356 static int iommu_dma_deferred_attach(struct device *dev,
357 		struct iommu_domain *domain)
358 {
359 	const struct iommu_ops *ops = domain->ops;
360 
361 	if (!is_kdump_kernel())
362 		return 0;
363 
364 	if (unlikely(ops->is_attach_deferred &&
365 			ops->is_attach_deferred(domain, dev)))
366 		return iommu_attach_device(domain, dev);
367 
368 	return 0;
369 }
370 
371 /**
372  * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
373  *                    page flags.
374  * @dir: Direction of DMA transfer
375  * @coherent: Is the DMA master cache-coherent?
376  * @attrs: DMA attributes for the mapping
377  *
378  * Return: corresponding IOMMU API page protection flags
379  */
380 static int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
381 		     unsigned long attrs)
382 {
383 	int prot = coherent ? IOMMU_CACHE : 0;
384 
385 	if (attrs & DMA_ATTR_PRIVILEGED)
386 		prot |= IOMMU_PRIV;
387 
388 	switch (dir) {
389 	case DMA_BIDIRECTIONAL:
390 		return prot | IOMMU_READ | IOMMU_WRITE;
391 	case DMA_TO_DEVICE:
392 		return prot | IOMMU_READ;
393 	case DMA_FROM_DEVICE:
394 		return prot | IOMMU_WRITE;
395 	default:
396 		return 0;
397 	}
398 }
399 
400 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
401 		size_t size, u64 dma_limit, struct device *dev)
402 {
403 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
404 	struct iova_domain *iovad = &cookie->iovad;
405 	unsigned long shift, iova_len, iova = 0;
406 
407 	if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
408 		cookie->msi_iova += size;
409 		return cookie->msi_iova - size;
410 	}
411 
412 	shift = iova_shift(iovad);
413 	iova_len = size >> shift;
414 	/*
415 	 * Freeing non-power-of-two-sized allocations back into the IOVA caches
416 	 * will come back to bite us badly, so we have to waste a bit of space
417 	 * rounding up anything cacheable to make sure that can't happen. The
418 	 * order of the unadjusted size will still match upon freeing.
419 	 */
420 	if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1)))
421 		iova_len = roundup_pow_of_two(iova_len);
422 
423 	dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit);
424 
425 	if (domain->geometry.force_aperture)
426 		dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end);
427 
428 	/* Try to get PCI devices a SAC address */
429 	if (dma_limit > DMA_BIT_MASK(32) && dev_is_pci(dev))
430 		iova = alloc_iova_fast(iovad, iova_len,
431 				       DMA_BIT_MASK(32) >> shift, false);
432 
433 	if (!iova)
434 		iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift,
435 				       true);
436 
437 	return (dma_addr_t)iova << shift;
438 }
439 
440 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
441 		dma_addr_t iova, size_t size)
442 {
443 	struct iova_domain *iovad = &cookie->iovad;
444 
445 	/* The MSI case is only ever cleaning up its most recent allocation */
446 	if (cookie->type == IOMMU_DMA_MSI_COOKIE)
447 		cookie->msi_iova -= size;
448 	else if (cookie->fq_domain)	/* non-strict mode */
449 		queue_iova(iovad, iova_pfn(iovad, iova),
450 				size >> iova_shift(iovad), 0);
451 	else
452 		free_iova_fast(iovad, iova_pfn(iovad, iova),
453 				size >> iova_shift(iovad));
454 }
455 
456 static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr,
457 		size_t size)
458 {
459 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
460 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
461 	struct iova_domain *iovad = &cookie->iovad;
462 	size_t iova_off = iova_offset(iovad, dma_addr);
463 	struct iommu_iotlb_gather iotlb_gather;
464 	size_t unmapped;
465 
466 	dma_addr -= iova_off;
467 	size = iova_align(iovad, size + iova_off);
468 	iommu_iotlb_gather_init(&iotlb_gather);
469 
470 	unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather);
471 	WARN_ON(unmapped != size);
472 
473 	if (!cookie->fq_domain)
474 		iommu_tlb_sync(domain, &iotlb_gather);
475 	iommu_dma_free_iova(cookie, dma_addr, size);
476 }
477 
478 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
479 		size_t size, int prot, u64 dma_mask)
480 {
481 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
482 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
483 	struct iova_domain *iovad = &cookie->iovad;
484 	size_t iova_off = iova_offset(iovad, phys);
485 	dma_addr_t iova;
486 
487 	if (unlikely(iommu_dma_deferred_attach(dev, domain)))
488 		return DMA_MAPPING_ERROR;
489 
490 	size = iova_align(iovad, size + iova_off);
491 
492 	iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev);
493 	if (!iova)
494 		return DMA_MAPPING_ERROR;
495 
496 	if (iommu_map_atomic(domain, iova, phys - iova_off, size, prot)) {
497 		iommu_dma_free_iova(cookie, iova, size);
498 		return DMA_MAPPING_ERROR;
499 	}
500 	return iova + iova_off;
501 }
502 
503 static void __iommu_dma_free_pages(struct page **pages, int count)
504 {
505 	while (count--)
506 		__free_page(pages[count]);
507 	kvfree(pages);
508 }
509 
510 static struct page **__iommu_dma_alloc_pages(struct device *dev,
511 		unsigned int count, unsigned long order_mask, gfp_t gfp)
512 {
513 	struct page **pages;
514 	unsigned int i = 0, nid = dev_to_node(dev);
515 
516 	order_mask &= (2U << MAX_ORDER) - 1;
517 	if (!order_mask)
518 		return NULL;
519 
520 	pages = kvzalloc(count * sizeof(*pages), GFP_KERNEL);
521 	if (!pages)
522 		return NULL;
523 
524 	/* IOMMU can map any pages, so himem can also be used here */
525 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
526 
527 	while (count) {
528 		struct page *page = NULL;
529 		unsigned int order_size;
530 
531 		/*
532 		 * Higher-order allocations are a convenience rather
533 		 * than a necessity, hence using __GFP_NORETRY until
534 		 * falling back to minimum-order allocations.
535 		 */
536 		for (order_mask &= (2U << __fls(count)) - 1;
537 		     order_mask; order_mask &= ~order_size) {
538 			unsigned int order = __fls(order_mask);
539 			gfp_t alloc_flags = gfp;
540 
541 			order_size = 1U << order;
542 			if (order_mask > order_size)
543 				alloc_flags |= __GFP_NORETRY;
544 			page = alloc_pages_node(nid, alloc_flags, order);
545 			if (!page)
546 				continue;
547 			if (!order)
548 				break;
549 			if (!PageCompound(page)) {
550 				split_page(page, order);
551 				break;
552 			} else if (!split_huge_page(page)) {
553 				break;
554 			}
555 			__free_pages(page, order);
556 		}
557 		if (!page) {
558 			__iommu_dma_free_pages(pages, i);
559 			return NULL;
560 		}
561 		count -= order_size;
562 		while (order_size--)
563 			pages[i++] = page++;
564 	}
565 	return pages;
566 }
567 
568 /**
569  * iommu_dma_alloc_remap - Allocate and map a buffer contiguous in IOVA space
570  * @dev: Device to allocate memory for. Must be a real device
571  *	 attached to an iommu_dma_domain
572  * @size: Size of buffer in bytes
573  * @dma_handle: Out argument for allocated DMA handle
574  * @gfp: Allocation flags
575  * @attrs: DMA attributes for this allocation
576  *
577  * If @size is less than PAGE_SIZE, then a full CPU page will be allocated,
578  * but an IOMMU which supports smaller pages might not map the whole thing.
579  *
580  * Return: Mapped virtual address, or NULL on failure.
581  */
582 static void *iommu_dma_alloc_remap(struct device *dev, size_t size,
583 		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
584 {
585 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
586 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
587 	struct iova_domain *iovad = &cookie->iovad;
588 	bool coherent = dev_is_dma_coherent(dev);
589 	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
590 	pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
591 	unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
592 	struct page **pages;
593 	struct sg_table sgt;
594 	dma_addr_t iova;
595 	void *vaddr;
596 
597 	*dma_handle = DMA_MAPPING_ERROR;
598 
599 	if (unlikely(iommu_dma_deferred_attach(dev, domain)))
600 		return NULL;
601 
602 	min_size = alloc_sizes & -alloc_sizes;
603 	if (min_size < PAGE_SIZE) {
604 		min_size = PAGE_SIZE;
605 		alloc_sizes |= PAGE_SIZE;
606 	} else {
607 		size = ALIGN(size, min_size);
608 	}
609 	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
610 		alloc_sizes = min_size;
611 
612 	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
613 	pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT,
614 					gfp);
615 	if (!pages)
616 		return NULL;
617 
618 	size = iova_align(iovad, size);
619 	iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
620 	if (!iova)
621 		goto out_free_pages;
622 
623 	if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL))
624 		goto out_free_iova;
625 
626 	if (!(ioprot & IOMMU_CACHE)) {
627 		struct scatterlist *sg;
628 		int i;
629 
630 		for_each_sg(sgt.sgl, sg, sgt.orig_nents, i)
631 			arch_dma_prep_coherent(sg_page(sg), sg->length);
632 	}
633 
634 	if (iommu_map_sg_atomic(domain, iova, sgt.sgl, sgt.orig_nents, ioprot)
635 			< size)
636 		goto out_free_sg;
637 
638 	vaddr = dma_common_pages_remap(pages, size, prot,
639 			__builtin_return_address(0));
640 	if (!vaddr)
641 		goto out_unmap;
642 
643 	*dma_handle = iova;
644 	sg_free_table(&sgt);
645 	return vaddr;
646 
647 out_unmap:
648 	__iommu_dma_unmap(dev, iova, size);
649 out_free_sg:
650 	sg_free_table(&sgt);
651 out_free_iova:
652 	iommu_dma_free_iova(cookie, iova, size);
653 out_free_pages:
654 	__iommu_dma_free_pages(pages, count);
655 	return NULL;
656 }
657 
658 /**
659  * __iommu_dma_mmap - Map a buffer into provided user VMA
660  * @pages: Array representing buffer from __iommu_dma_alloc()
661  * @size: Size of buffer in bytes
662  * @vma: VMA describing requested userspace mapping
663  *
664  * Maps the pages of the buffer in @pages into @vma. The caller is responsible
665  * for verifying the correct size and protection of @vma beforehand.
666  */
667 static int __iommu_dma_mmap(struct page **pages, size_t size,
668 		struct vm_area_struct *vma)
669 {
670 	return vm_map_pages(vma, pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
671 }
672 
673 static void iommu_dma_sync_single_for_cpu(struct device *dev,
674 		dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
675 {
676 	phys_addr_t phys;
677 
678 	if (dev_is_dma_coherent(dev))
679 		return;
680 
681 	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
682 	arch_sync_dma_for_cpu(phys, size, dir);
683 }
684 
685 static void iommu_dma_sync_single_for_device(struct device *dev,
686 		dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
687 {
688 	phys_addr_t phys;
689 
690 	if (dev_is_dma_coherent(dev))
691 		return;
692 
693 	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
694 	arch_sync_dma_for_device(phys, size, dir);
695 }
696 
697 static void iommu_dma_sync_sg_for_cpu(struct device *dev,
698 		struct scatterlist *sgl, int nelems,
699 		enum dma_data_direction dir)
700 {
701 	struct scatterlist *sg;
702 	int i;
703 
704 	if (dev_is_dma_coherent(dev))
705 		return;
706 
707 	for_each_sg(sgl, sg, nelems, i)
708 		arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir);
709 }
710 
711 static void iommu_dma_sync_sg_for_device(struct device *dev,
712 		struct scatterlist *sgl, int nelems,
713 		enum dma_data_direction dir)
714 {
715 	struct scatterlist *sg;
716 	int i;
717 
718 	if (dev_is_dma_coherent(dev))
719 		return;
720 
721 	for_each_sg(sgl, sg, nelems, i)
722 		arch_sync_dma_for_device(sg_phys(sg), sg->length, dir);
723 }
724 
725 static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
726 		unsigned long offset, size_t size, enum dma_data_direction dir,
727 		unsigned long attrs)
728 {
729 	phys_addr_t phys = page_to_phys(page) + offset;
730 	bool coherent = dev_is_dma_coherent(dev);
731 	int prot = dma_info_to_prot(dir, coherent, attrs);
732 	dma_addr_t dma_handle;
733 
734 	dma_handle = __iommu_dma_map(dev, phys, size, prot, dma_get_mask(dev));
735 	if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
736 	    dma_handle != DMA_MAPPING_ERROR)
737 		arch_sync_dma_for_device(phys, size, dir);
738 	return dma_handle;
739 }
740 
741 static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle,
742 		size_t size, enum dma_data_direction dir, unsigned long attrs)
743 {
744 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
745 		iommu_dma_sync_single_for_cpu(dev, dma_handle, size, dir);
746 	__iommu_dma_unmap(dev, dma_handle, size);
747 }
748 
749 /*
750  * Prepare a successfully-mapped scatterlist to give back to the caller.
751  *
752  * At this point the segments are already laid out by iommu_dma_map_sg() to
753  * avoid individually crossing any boundaries, so we merely need to check a
754  * segment's start address to avoid concatenating across one.
755  */
756 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
757 		dma_addr_t dma_addr)
758 {
759 	struct scatterlist *s, *cur = sg;
760 	unsigned long seg_mask = dma_get_seg_boundary(dev);
761 	unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
762 	int i, count = 0;
763 
764 	for_each_sg(sg, s, nents, i) {
765 		/* Restore this segment's original unaligned fields first */
766 		unsigned int s_iova_off = sg_dma_address(s);
767 		unsigned int s_length = sg_dma_len(s);
768 		unsigned int s_iova_len = s->length;
769 
770 		s->offset += s_iova_off;
771 		s->length = s_length;
772 		sg_dma_address(s) = DMA_MAPPING_ERROR;
773 		sg_dma_len(s) = 0;
774 
775 		/*
776 		 * Now fill in the real DMA data. If...
777 		 * - there is a valid output segment to append to
778 		 * - and this segment starts on an IOVA page boundary
779 		 * - but doesn't fall at a segment boundary
780 		 * - and wouldn't make the resulting output segment too long
781 		 */
782 		if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
783 		    (max_len - cur_len >= s_length)) {
784 			/* ...then concatenate it with the previous one */
785 			cur_len += s_length;
786 		} else {
787 			/* Otherwise start the next output segment */
788 			if (i > 0)
789 				cur = sg_next(cur);
790 			cur_len = s_length;
791 			count++;
792 
793 			sg_dma_address(cur) = dma_addr + s_iova_off;
794 		}
795 
796 		sg_dma_len(cur) = cur_len;
797 		dma_addr += s_iova_len;
798 
799 		if (s_length + s_iova_off < s_iova_len)
800 			cur_len = 0;
801 	}
802 	return count;
803 }
804 
805 /*
806  * If mapping failed, then just restore the original list,
807  * but making sure the DMA fields are invalidated.
808  */
809 static void __invalidate_sg(struct scatterlist *sg, int nents)
810 {
811 	struct scatterlist *s;
812 	int i;
813 
814 	for_each_sg(sg, s, nents, i) {
815 		if (sg_dma_address(s) != DMA_MAPPING_ERROR)
816 			s->offset += sg_dma_address(s);
817 		if (sg_dma_len(s))
818 			s->length = sg_dma_len(s);
819 		sg_dma_address(s) = DMA_MAPPING_ERROR;
820 		sg_dma_len(s) = 0;
821 	}
822 }
823 
824 /*
825  * The DMA API client is passing in a scatterlist which could describe
826  * any old buffer layout, but the IOMMU API requires everything to be
827  * aligned to IOMMU pages. Hence the need for this complicated bit of
828  * impedance-matching, to be able to hand off a suitably-aligned list,
829  * but still preserve the original offsets and sizes for the caller.
830  */
831 static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
832 		int nents, enum dma_data_direction dir, unsigned long attrs)
833 {
834 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
835 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
836 	struct iova_domain *iovad = &cookie->iovad;
837 	struct scatterlist *s, *prev = NULL;
838 	int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs);
839 	dma_addr_t iova;
840 	size_t iova_len = 0;
841 	unsigned long mask = dma_get_seg_boundary(dev);
842 	int i;
843 
844 	if (unlikely(iommu_dma_deferred_attach(dev, domain)))
845 		return 0;
846 
847 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
848 		iommu_dma_sync_sg_for_device(dev, sg, nents, dir);
849 
850 	/*
851 	 * Work out how much IOVA space we need, and align the segments to
852 	 * IOVA granules for the IOMMU driver to handle. With some clever
853 	 * trickery we can modify the list in-place, but reversibly, by
854 	 * stashing the unaligned parts in the as-yet-unused DMA fields.
855 	 */
856 	for_each_sg(sg, s, nents, i) {
857 		size_t s_iova_off = iova_offset(iovad, s->offset);
858 		size_t s_length = s->length;
859 		size_t pad_len = (mask - iova_len + 1) & mask;
860 
861 		sg_dma_address(s) = s_iova_off;
862 		sg_dma_len(s) = s_length;
863 		s->offset -= s_iova_off;
864 		s_length = iova_align(iovad, s_length + s_iova_off);
865 		s->length = s_length;
866 
867 		/*
868 		 * Due to the alignment of our single IOVA allocation, we can
869 		 * depend on these assumptions about the segment boundary mask:
870 		 * - If mask size >= IOVA size, then the IOVA range cannot
871 		 *   possibly fall across a boundary, so we don't care.
872 		 * - If mask size < IOVA size, then the IOVA range must start
873 		 *   exactly on a boundary, therefore we can lay things out
874 		 *   based purely on segment lengths without needing to know
875 		 *   the actual addresses beforehand.
876 		 * - The mask must be a power of 2, so pad_len == 0 if
877 		 *   iova_len == 0, thus we cannot dereference prev the first
878 		 *   time through here (i.e. before it has a meaningful value).
879 		 */
880 		if (pad_len && pad_len < s_length - 1) {
881 			prev->length += pad_len;
882 			iova_len += pad_len;
883 		}
884 
885 		iova_len += s_length;
886 		prev = s;
887 	}
888 
889 	iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
890 	if (!iova)
891 		goto out_restore_sg;
892 
893 	/*
894 	 * We'll leave any physical concatenation to the IOMMU driver's
895 	 * implementation - it knows better than we do.
896 	 */
897 	if (iommu_map_sg_atomic(domain, iova, sg, nents, prot) < iova_len)
898 		goto out_free_iova;
899 
900 	return __finalise_sg(dev, sg, nents, iova);
901 
902 out_free_iova:
903 	iommu_dma_free_iova(cookie, iova, iova_len);
904 out_restore_sg:
905 	__invalidate_sg(sg, nents);
906 	return 0;
907 }
908 
909 static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
910 		int nents, enum dma_data_direction dir, unsigned long attrs)
911 {
912 	dma_addr_t start, end;
913 	struct scatterlist *tmp;
914 	int i;
915 
916 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
917 		iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir);
918 
919 	/*
920 	 * The scatterlist segments are mapped into a single
921 	 * contiguous IOVA allocation, so this is incredibly easy.
922 	 */
923 	start = sg_dma_address(sg);
924 	for_each_sg(sg_next(sg), tmp, nents - 1, i) {
925 		if (sg_dma_len(tmp) == 0)
926 			break;
927 		sg = tmp;
928 	}
929 	end = sg_dma_address(sg) + sg_dma_len(sg);
930 	__iommu_dma_unmap(dev, start, end - start);
931 }
932 
933 static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
934 		size_t size, enum dma_data_direction dir, unsigned long attrs)
935 {
936 	return __iommu_dma_map(dev, phys, size,
937 			dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO,
938 			dma_get_mask(dev));
939 }
940 
941 static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
942 		size_t size, enum dma_data_direction dir, unsigned long attrs)
943 {
944 	__iommu_dma_unmap(dev, handle, size);
945 }
946 
947 static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr)
948 {
949 	size_t alloc_size = PAGE_ALIGN(size);
950 	int count = alloc_size >> PAGE_SHIFT;
951 	struct page *page = NULL, **pages = NULL;
952 
953 	/* Non-coherent atomic allocation? Easy */
954 	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
955 	    dma_free_from_pool(dev, cpu_addr, alloc_size))
956 		return;
957 
958 	if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
959 		/*
960 		 * If it the address is remapped, then it's either non-coherent
961 		 * or highmem CMA, or an iommu_dma_alloc_remap() construction.
962 		 */
963 		pages = dma_common_find_pages(cpu_addr);
964 		if (!pages)
965 			page = vmalloc_to_page(cpu_addr);
966 		dma_common_free_remap(cpu_addr, alloc_size);
967 	} else {
968 		/* Lowmem means a coherent atomic or CMA allocation */
969 		page = virt_to_page(cpu_addr);
970 	}
971 
972 	if (pages)
973 		__iommu_dma_free_pages(pages, count);
974 	if (page)
975 		dma_free_contiguous(dev, page, alloc_size);
976 }
977 
978 static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr,
979 		dma_addr_t handle, unsigned long attrs)
980 {
981 	__iommu_dma_unmap(dev, handle, size);
982 	__iommu_dma_free(dev, size, cpu_addr);
983 }
984 
985 static void *iommu_dma_alloc_pages(struct device *dev, size_t size,
986 		struct page **pagep, gfp_t gfp, unsigned long attrs)
987 {
988 	bool coherent = dev_is_dma_coherent(dev);
989 	size_t alloc_size = PAGE_ALIGN(size);
990 	int node = dev_to_node(dev);
991 	struct page *page = NULL;
992 	void *cpu_addr;
993 
994 	page = dma_alloc_contiguous(dev, alloc_size, gfp);
995 	if (!page)
996 		page = alloc_pages_node(node, gfp, get_order(alloc_size));
997 	if (!page)
998 		return NULL;
999 
1000 	if (IS_ENABLED(CONFIG_DMA_REMAP) && (!coherent || PageHighMem(page))) {
1001 		pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
1002 
1003 		cpu_addr = dma_common_contiguous_remap(page, alloc_size,
1004 				prot, __builtin_return_address(0));
1005 		if (!cpu_addr)
1006 			goto out_free_pages;
1007 
1008 		if (!coherent)
1009 			arch_dma_prep_coherent(page, size);
1010 	} else {
1011 		cpu_addr = page_address(page);
1012 	}
1013 
1014 	*pagep = page;
1015 	memset(cpu_addr, 0, alloc_size);
1016 	return cpu_addr;
1017 out_free_pages:
1018 	dma_free_contiguous(dev, page, alloc_size);
1019 	return NULL;
1020 }
1021 
1022 static void *iommu_dma_alloc(struct device *dev, size_t size,
1023 		dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1024 {
1025 	bool coherent = dev_is_dma_coherent(dev);
1026 	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
1027 	struct page *page = NULL;
1028 	void *cpu_addr;
1029 
1030 	gfp |= __GFP_ZERO;
1031 
1032 	if (IS_ENABLED(CONFIG_DMA_REMAP) && gfpflags_allow_blocking(gfp) &&
1033 	    !(attrs & DMA_ATTR_FORCE_CONTIGUOUS))
1034 		return iommu_dma_alloc_remap(dev, size, handle, gfp, attrs);
1035 
1036 	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1037 	    !gfpflags_allow_blocking(gfp) && !coherent)
1038 		cpu_addr = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &page,
1039 					       gfp);
1040 	else
1041 		cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs);
1042 	if (!cpu_addr)
1043 		return NULL;
1044 
1045 	*handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot,
1046 			dev->coherent_dma_mask);
1047 	if (*handle == DMA_MAPPING_ERROR) {
1048 		__iommu_dma_free(dev, size, cpu_addr);
1049 		return NULL;
1050 	}
1051 
1052 	return cpu_addr;
1053 }
1054 
1055 static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma,
1056 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
1057 		unsigned long attrs)
1058 {
1059 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1060 	unsigned long pfn, off = vma->vm_pgoff;
1061 	int ret;
1062 
1063 	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
1064 
1065 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
1066 		return ret;
1067 
1068 	if (off >= nr_pages || vma_pages(vma) > nr_pages - off)
1069 		return -ENXIO;
1070 
1071 	if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1072 		struct page **pages = dma_common_find_pages(cpu_addr);
1073 
1074 		if (pages)
1075 			return __iommu_dma_mmap(pages, size, vma);
1076 		pfn = vmalloc_to_pfn(cpu_addr);
1077 	} else {
1078 		pfn = page_to_pfn(virt_to_page(cpu_addr));
1079 	}
1080 
1081 	return remap_pfn_range(vma, vma->vm_start, pfn + off,
1082 			       vma->vm_end - vma->vm_start,
1083 			       vma->vm_page_prot);
1084 }
1085 
1086 static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
1087 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
1088 		unsigned long attrs)
1089 {
1090 	struct page *page;
1091 	int ret;
1092 
1093 	if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1094 		struct page **pages = dma_common_find_pages(cpu_addr);
1095 
1096 		if (pages) {
1097 			return sg_alloc_table_from_pages(sgt, pages,
1098 					PAGE_ALIGN(size) >> PAGE_SHIFT,
1099 					0, size, GFP_KERNEL);
1100 		}
1101 
1102 		page = vmalloc_to_page(cpu_addr);
1103 	} else {
1104 		page = virt_to_page(cpu_addr);
1105 	}
1106 
1107 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
1108 	if (!ret)
1109 		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
1110 	return ret;
1111 }
1112 
1113 static unsigned long iommu_dma_get_merge_boundary(struct device *dev)
1114 {
1115 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1116 
1117 	return (1UL << __ffs(domain->pgsize_bitmap)) - 1;
1118 }
1119 
1120 static const struct dma_map_ops iommu_dma_ops = {
1121 	.alloc			= iommu_dma_alloc,
1122 	.free			= iommu_dma_free,
1123 	.mmap			= iommu_dma_mmap,
1124 	.get_sgtable		= iommu_dma_get_sgtable,
1125 	.map_page		= iommu_dma_map_page,
1126 	.unmap_page		= iommu_dma_unmap_page,
1127 	.map_sg			= iommu_dma_map_sg,
1128 	.unmap_sg		= iommu_dma_unmap_sg,
1129 	.sync_single_for_cpu	= iommu_dma_sync_single_for_cpu,
1130 	.sync_single_for_device	= iommu_dma_sync_single_for_device,
1131 	.sync_sg_for_cpu	= iommu_dma_sync_sg_for_cpu,
1132 	.sync_sg_for_device	= iommu_dma_sync_sg_for_device,
1133 	.map_resource		= iommu_dma_map_resource,
1134 	.unmap_resource		= iommu_dma_unmap_resource,
1135 	.get_merge_boundary	= iommu_dma_get_merge_boundary,
1136 };
1137 
1138 /*
1139  * The IOMMU core code allocates the default DMA domain, which the underlying
1140  * IOMMU driver needs to support via the dma-iommu layer.
1141  */
1142 void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size)
1143 {
1144 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1145 
1146 	if (!domain)
1147 		goto out_err;
1148 
1149 	/*
1150 	 * The IOMMU core code allocates the default DMA domain, which the
1151 	 * underlying IOMMU driver needs to support via the dma-iommu layer.
1152 	 */
1153 	if (domain->type == IOMMU_DOMAIN_DMA) {
1154 		if (iommu_dma_init_domain(domain, dma_base, size, dev))
1155 			goto out_err;
1156 		dev->dma_ops = &iommu_dma_ops;
1157 	}
1158 
1159 	return;
1160 out_err:
1161 	 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
1162 		 dev_name(dev));
1163 }
1164 
1165 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
1166 		phys_addr_t msi_addr, struct iommu_domain *domain)
1167 {
1168 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
1169 	struct iommu_dma_msi_page *msi_page;
1170 	dma_addr_t iova;
1171 	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1172 	size_t size = cookie_msi_granule(cookie);
1173 
1174 	msi_addr &= ~(phys_addr_t)(size - 1);
1175 	list_for_each_entry(msi_page, &cookie->msi_page_list, list)
1176 		if (msi_page->phys == msi_addr)
1177 			return msi_page;
1178 
1179 	msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL);
1180 	if (!msi_page)
1181 		return NULL;
1182 
1183 	iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
1184 	if (!iova)
1185 		goto out_free_page;
1186 
1187 	if (iommu_map(domain, iova, msi_addr, size, prot))
1188 		goto out_free_iova;
1189 
1190 	INIT_LIST_HEAD(&msi_page->list);
1191 	msi_page->phys = msi_addr;
1192 	msi_page->iova = iova;
1193 	list_add(&msi_page->list, &cookie->msi_page_list);
1194 	return msi_page;
1195 
1196 out_free_iova:
1197 	iommu_dma_free_iova(cookie, iova, size);
1198 out_free_page:
1199 	kfree(msi_page);
1200 	return NULL;
1201 }
1202 
1203 int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)
1204 {
1205 	struct device *dev = msi_desc_to_dev(desc);
1206 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1207 	struct iommu_dma_msi_page *msi_page;
1208 	static DEFINE_MUTEX(msi_prepare_lock); /* see below */
1209 
1210 	if (!domain || !domain->iova_cookie) {
1211 		desc->iommu_cookie = NULL;
1212 		return 0;
1213 	}
1214 
1215 	/*
1216 	 * In fact the whole prepare operation should already be serialised by
1217 	 * irq_domain_mutex further up the callchain, but that's pretty subtle
1218 	 * on its own, so consider this locking as failsafe documentation...
1219 	 */
1220 	mutex_lock(&msi_prepare_lock);
1221 	msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
1222 	mutex_unlock(&msi_prepare_lock);
1223 
1224 	msi_desc_set_iommu_cookie(desc, msi_page);
1225 
1226 	if (!msi_page)
1227 		return -ENOMEM;
1228 	return 0;
1229 }
1230 
1231 void iommu_dma_compose_msi_msg(struct msi_desc *desc,
1232 			       struct msi_msg *msg)
1233 {
1234 	struct device *dev = msi_desc_to_dev(desc);
1235 	const struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1236 	const struct iommu_dma_msi_page *msi_page;
1237 
1238 	msi_page = msi_desc_get_iommu_cookie(desc);
1239 
1240 	if (!domain || !domain->iova_cookie || WARN_ON(!msi_page))
1241 		return;
1242 
1243 	msg->address_hi = upper_32_bits(msi_page->iova);
1244 	msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1;
1245 	msg->address_lo += lower_32_bits(msi_page->iova);
1246 }
1247 
1248 static int iommu_dma_init(void)
1249 {
1250 	return iova_cache_get();
1251 }
1252 arch_initcall(iommu_dma_init);
1253