xref: /openbmc/linux/drivers/iommu/dma-iommu.c (revision 9cfc5c90)
1 /*
2  * A fairly generic DMA-API to IOMMU-API glue layer.
3  *
4  * Copyright (C) 2014-2015 ARM Ltd.
5  *
6  * based in part on arch/arm/mm/dma-mapping.c:
7  * Copyright (C) 2000-2004 Russell King
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #include <linux/device.h>
23 #include <linux/dma-iommu.h>
24 #include <linux/huge_mm.h>
25 #include <linux/iommu.h>
26 #include <linux/iova.h>
27 #include <linux/mm.h>
28 
29 int iommu_dma_init(void)
30 {
31 	return iova_cache_get();
32 }
33 
34 /**
35  * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
36  * @domain: IOMMU domain to prepare for DMA-API usage
37  *
38  * IOMMU drivers should normally call this from their domain_alloc
39  * callback when domain->type == IOMMU_DOMAIN_DMA.
40  */
41 int iommu_get_dma_cookie(struct iommu_domain *domain)
42 {
43 	struct iova_domain *iovad;
44 
45 	if (domain->iova_cookie)
46 		return -EEXIST;
47 
48 	iovad = kzalloc(sizeof(*iovad), GFP_KERNEL);
49 	domain->iova_cookie = iovad;
50 
51 	return iovad ? 0 : -ENOMEM;
52 }
53 EXPORT_SYMBOL(iommu_get_dma_cookie);
54 
55 /**
56  * iommu_put_dma_cookie - Release a domain's DMA mapping resources
57  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
58  *
59  * IOMMU drivers should normally call this from their domain_free callback.
60  */
61 void iommu_put_dma_cookie(struct iommu_domain *domain)
62 {
63 	struct iova_domain *iovad = domain->iova_cookie;
64 
65 	if (!iovad)
66 		return;
67 
68 	put_iova_domain(iovad);
69 	kfree(iovad);
70 	domain->iova_cookie = NULL;
71 }
72 EXPORT_SYMBOL(iommu_put_dma_cookie);
73 
74 /**
75  * iommu_dma_init_domain - Initialise a DMA mapping domain
76  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
77  * @base: IOVA at which the mappable address space starts
78  * @size: Size of IOVA space
79  *
80  * @base and @size should be exact multiples of IOMMU page granularity to
81  * avoid rounding surprises. If necessary, we reserve the page at address 0
82  * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
83  * any change which could make prior IOVAs invalid will fail.
84  */
85 int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base, u64 size)
86 {
87 	struct iova_domain *iovad = domain->iova_cookie;
88 	unsigned long order, base_pfn, end_pfn;
89 
90 	if (!iovad)
91 		return -ENODEV;
92 
93 	/* Use the smallest supported page size for IOVA granularity */
94 	order = __ffs(domain->ops->pgsize_bitmap);
95 	base_pfn = max_t(unsigned long, 1, base >> order);
96 	end_pfn = (base + size - 1) >> order;
97 
98 	/* Check the domain allows at least some access to the device... */
99 	if (domain->geometry.force_aperture) {
100 		if (base > domain->geometry.aperture_end ||
101 		    base + size <= domain->geometry.aperture_start) {
102 			pr_warn("specified DMA range outside IOMMU capability\n");
103 			return -EFAULT;
104 		}
105 		/* ...then finally give it a kicking to make sure it fits */
106 		base_pfn = max_t(unsigned long, base_pfn,
107 				domain->geometry.aperture_start >> order);
108 		end_pfn = min_t(unsigned long, end_pfn,
109 				domain->geometry.aperture_end >> order);
110 	}
111 
112 	/* All we can safely do with an existing domain is enlarge it */
113 	if (iovad->start_pfn) {
114 		if (1UL << order != iovad->granule ||
115 		    base_pfn != iovad->start_pfn ||
116 		    end_pfn < iovad->dma_32bit_pfn) {
117 			pr_warn("Incompatible range for DMA domain\n");
118 			return -EFAULT;
119 		}
120 		iovad->dma_32bit_pfn = end_pfn;
121 	} else {
122 		init_iova_domain(iovad, 1UL << order, base_pfn, end_pfn);
123 	}
124 	return 0;
125 }
126 EXPORT_SYMBOL(iommu_dma_init_domain);
127 
128 /**
129  * dma_direction_to_prot - Translate DMA API directions to IOMMU API page flags
130  * @dir: Direction of DMA transfer
131  * @coherent: Is the DMA master cache-coherent?
132  *
133  * Return: corresponding IOMMU API page protection flags
134  */
135 int dma_direction_to_prot(enum dma_data_direction dir, bool coherent)
136 {
137 	int prot = coherent ? IOMMU_CACHE : 0;
138 
139 	switch (dir) {
140 	case DMA_BIDIRECTIONAL:
141 		return prot | IOMMU_READ | IOMMU_WRITE;
142 	case DMA_TO_DEVICE:
143 		return prot | IOMMU_READ;
144 	case DMA_FROM_DEVICE:
145 		return prot | IOMMU_WRITE;
146 	default:
147 		return 0;
148 	}
149 }
150 
151 static struct iova *__alloc_iova(struct iova_domain *iovad, size_t size,
152 		dma_addr_t dma_limit)
153 {
154 	unsigned long shift = iova_shift(iovad);
155 	unsigned long length = iova_align(iovad, size) >> shift;
156 
157 	/*
158 	 * Enforce size-alignment to be safe - there could perhaps be an
159 	 * attribute to control this per-device, or at least per-domain...
160 	 */
161 	return alloc_iova(iovad, length, dma_limit >> shift, true);
162 }
163 
164 /* The IOVA allocator knows what we mapped, so just unmap whatever that was */
165 static void __iommu_dma_unmap(struct iommu_domain *domain, dma_addr_t dma_addr)
166 {
167 	struct iova_domain *iovad = domain->iova_cookie;
168 	unsigned long shift = iova_shift(iovad);
169 	unsigned long pfn = dma_addr >> shift;
170 	struct iova *iova = find_iova(iovad, pfn);
171 	size_t size;
172 
173 	if (WARN_ON(!iova))
174 		return;
175 
176 	size = iova_size(iova) << shift;
177 	size -= iommu_unmap(domain, pfn << shift, size);
178 	/* ...and if we can't, then something is horribly, horribly wrong */
179 	WARN_ON(size > 0);
180 	__free_iova(iovad, iova);
181 }
182 
183 static void __iommu_dma_free_pages(struct page **pages, int count)
184 {
185 	while (count--)
186 		__free_page(pages[count]);
187 	kvfree(pages);
188 }
189 
190 static struct page **__iommu_dma_alloc_pages(unsigned int count, gfp_t gfp)
191 {
192 	struct page **pages;
193 	unsigned int i = 0, array_size = count * sizeof(*pages);
194 
195 	if (array_size <= PAGE_SIZE)
196 		pages = kzalloc(array_size, GFP_KERNEL);
197 	else
198 		pages = vzalloc(array_size);
199 	if (!pages)
200 		return NULL;
201 
202 	/* IOMMU can map any pages, so himem can also be used here */
203 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
204 
205 	while (count) {
206 		struct page *page = NULL;
207 		int j, order = __fls(count);
208 
209 		/*
210 		 * Higher-order allocations are a convenience rather
211 		 * than a necessity, hence using __GFP_NORETRY until
212 		 * falling back to single-page allocations.
213 		 */
214 		for (order = min(order, MAX_ORDER); order > 0; order--) {
215 			page = alloc_pages(gfp | __GFP_NORETRY, order);
216 			if (!page)
217 				continue;
218 			if (PageCompound(page)) {
219 				if (!split_huge_page(page))
220 					break;
221 				__free_pages(page, order);
222 			} else {
223 				split_page(page, order);
224 				break;
225 			}
226 		}
227 		if (!page)
228 			page = alloc_page(gfp);
229 		if (!page) {
230 			__iommu_dma_free_pages(pages, i);
231 			return NULL;
232 		}
233 		j = 1 << order;
234 		count -= j;
235 		while (j--)
236 			pages[i++] = page++;
237 	}
238 	return pages;
239 }
240 
241 /**
242  * iommu_dma_free - Free a buffer allocated by iommu_dma_alloc()
243  * @dev: Device which owns this buffer
244  * @pages: Array of buffer pages as returned by iommu_dma_alloc()
245  * @size: Size of buffer in bytes
246  * @handle: DMA address of buffer
247  *
248  * Frees both the pages associated with the buffer, and the array
249  * describing them
250  */
251 void iommu_dma_free(struct device *dev, struct page **pages, size_t size,
252 		dma_addr_t *handle)
253 {
254 	__iommu_dma_unmap(iommu_get_domain_for_dev(dev), *handle);
255 	__iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
256 	*handle = DMA_ERROR_CODE;
257 }
258 
259 /**
260  * iommu_dma_alloc - Allocate and map a buffer contiguous in IOVA space
261  * @dev: Device to allocate memory for. Must be a real device
262  *	 attached to an iommu_dma_domain
263  * @size: Size of buffer in bytes
264  * @gfp: Allocation flags
265  * @prot: IOMMU mapping flags
266  * @handle: Out argument for allocated DMA handle
267  * @flush_page: Arch callback which must ensure PAGE_SIZE bytes from the
268  *		given VA/PA are visible to the given non-coherent device.
269  *
270  * If @size is less than PAGE_SIZE, then a full CPU page will be allocated,
271  * but an IOMMU which supports smaller pages might not map the whole thing.
272  *
273  * Return: Array of struct page pointers describing the buffer,
274  *	   or NULL on failure.
275  */
276 struct page **iommu_dma_alloc(struct device *dev, size_t size,
277 		gfp_t gfp, int prot, dma_addr_t *handle,
278 		void (*flush_page)(struct device *, const void *, phys_addr_t))
279 {
280 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
281 	struct iova_domain *iovad = domain->iova_cookie;
282 	struct iova *iova;
283 	struct page **pages;
284 	struct sg_table sgt;
285 	dma_addr_t dma_addr;
286 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
287 
288 	*handle = DMA_ERROR_CODE;
289 
290 	pages = __iommu_dma_alloc_pages(count, gfp);
291 	if (!pages)
292 		return NULL;
293 
294 	iova = __alloc_iova(iovad, size, dev->coherent_dma_mask);
295 	if (!iova)
296 		goto out_free_pages;
297 
298 	size = iova_align(iovad, size);
299 	if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL))
300 		goto out_free_iova;
301 
302 	if (!(prot & IOMMU_CACHE)) {
303 		struct sg_mapping_iter miter;
304 		/*
305 		 * The CPU-centric flushing implied by SG_MITER_TO_SG isn't
306 		 * sufficient here, so skip it by using the "wrong" direction.
307 		 */
308 		sg_miter_start(&miter, sgt.sgl, sgt.orig_nents, SG_MITER_FROM_SG);
309 		while (sg_miter_next(&miter))
310 			flush_page(dev, miter.addr, page_to_phys(miter.page));
311 		sg_miter_stop(&miter);
312 	}
313 
314 	dma_addr = iova_dma_addr(iovad, iova);
315 	if (iommu_map_sg(domain, dma_addr, sgt.sgl, sgt.orig_nents, prot)
316 			< size)
317 		goto out_free_sg;
318 
319 	*handle = dma_addr;
320 	sg_free_table(&sgt);
321 	return pages;
322 
323 out_free_sg:
324 	sg_free_table(&sgt);
325 out_free_iova:
326 	__free_iova(iovad, iova);
327 out_free_pages:
328 	__iommu_dma_free_pages(pages, count);
329 	return NULL;
330 }
331 
332 /**
333  * iommu_dma_mmap - Map a buffer into provided user VMA
334  * @pages: Array representing buffer from iommu_dma_alloc()
335  * @size: Size of buffer in bytes
336  * @vma: VMA describing requested userspace mapping
337  *
338  * Maps the pages of the buffer in @pages into @vma. The caller is responsible
339  * for verifying the correct size and protection of @vma beforehand.
340  */
341 
342 int iommu_dma_mmap(struct page **pages, size_t size, struct vm_area_struct *vma)
343 {
344 	unsigned long uaddr = vma->vm_start;
345 	unsigned int i, count = PAGE_ALIGN(size) >> PAGE_SHIFT;
346 	int ret = -ENXIO;
347 
348 	for (i = vma->vm_pgoff; i < count && uaddr < vma->vm_end; i++) {
349 		ret = vm_insert_page(vma, uaddr, pages[i]);
350 		if (ret)
351 			break;
352 		uaddr += PAGE_SIZE;
353 	}
354 	return ret;
355 }
356 
357 dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
358 		unsigned long offset, size_t size, int prot)
359 {
360 	dma_addr_t dma_addr;
361 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
362 	struct iova_domain *iovad = domain->iova_cookie;
363 	phys_addr_t phys = page_to_phys(page) + offset;
364 	size_t iova_off = iova_offset(iovad, phys);
365 	size_t len = iova_align(iovad, size + iova_off);
366 	struct iova *iova = __alloc_iova(iovad, len, dma_get_mask(dev));
367 
368 	if (!iova)
369 		return DMA_ERROR_CODE;
370 
371 	dma_addr = iova_dma_addr(iovad, iova);
372 	if (iommu_map(domain, dma_addr, phys - iova_off, len, prot)) {
373 		__free_iova(iovad, iova);
374 		return DMA_ERROR_CODE;
375 	}
376 	return dma_addr + iova_off;
377 }
378 
379 void iommu_dma_unmap_page(struct device *dev, dma_addr_t handle, size_t size,
380 		enum dma_data_direction dir, struct dma_attrs *attrs)
381 {
382 	__iommu_dma_unmap(iommu_get_domain_for_dev(dev), handle);
383 }
384 
385 /*
386  * Prepare a successfully-mapped scatterlist to give back to the caller.
387  * Handling IOVA concatenation can come later, if needed
388  */
389 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
390 		dma_addr_t dma_addr)
391 {
392 	struct scatterlist *s;
393 	int i;
394 
395 	for_each_sg(sg, s, nents, i) {
396 		/* Un-swizzling the fields here, hence the naming mismatch */
397 		unsigned int s_offset = sg_dma_address(s);
398 		unsigned int s_length = sg_dma_len(s);
399 		unsigned int s_dma_len = s->length;
400 
401 		s->offset = s_offset;
402 		s->length = s_length;
403 		sg_dma_address(s) = dma_addr + s_offset;
404 		dma_addr += s_dma_len;
405 	}
406 	return i;
407 }
408 
409 /*
410  * If mapping failed, then just restore the original list,
411  * but making sure the DMA fields are invalidated.
412  */
413 static void __invalidate_sg(struct scatterlist *sg, int nents)
414 {
415 	struct scatterlist *s;
416 	int i;
417 
418 	for_each_sg(sg, s, nents, i) {
419 		if (sg_dma_address(s) != DMA_ERROR_CODE)
420 			s->offset = sg_dma_address(s);
421 		if (sg_dma_len(s))
422 			s->length = sg_dma_len(s);
423 		sg_dma_address(s) = DMA_ERROR_CODE;
424 		sg_dma_len(s) = 0;
425 	}
426 }
427 
428 /*
429  * The DMA API client is passing in a scatterlist which could describe
430  * any old buffer layout, but the IOMMU API requires everything to be
431  * aligned to IOMMU pages. Hence the need for this complicated bit of
432  * impedance-matching, to be able to hand off a suitably-aligned list,
433  * but still preserve the original offsets and sizes for the caller.
434  */
435 int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
436 		int nents, int prot)
437 {
438 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
439 	struct iova_domain *iovad = domain->iova_cookie;
440 	struct iova *iova;
441 	struct scatterlist *s, *prev = NULL;
442 	dma_addr_t dma_addr;
443 	size_t iova_len = 0;
444 	int i;
445 
446 	/*
447 	 * Work out how much IOVA space we need, and align the segments to
448 	 * IOVA granules for the IOMMU driver to handle. With some clever
449 	 * trickery we can modify the list in-place, but reversibly, by
450 	 * hiding the original data in the as-yet-unused DMA fields.
451 	 */
452 	for_each_sg(sg, s, nents, i) {
453 		size_t s_offset = iova_offset(iovad, s->offset);
454 		size_t s_length = s->length;
455 
456 		sg_dma_address(s) = s->offset;
457 		sg_dma_len(s) = s_length;
458 		s->offset -= s_offset;
459 		s_length = iova_align(iovad, s_length + s_offset);
460 		s->length = s_length;
461 
462 		/*
463 		 * The simple way to avoid the rare case of a segment
464 		 * crossing the boundary mask is to pad the previous one
465 		 * to end at a naturally-aligned IOVA for this one's size,
466 		 * at the cost of potentially over-allocating a little.
467 		 */
468 		if (prev) {
469 			size_t pad_len = roundup_pow_of_two(s_length);
470 
471 			pad_len = (pad_len - iova_len) & (pad_len - 1);
472 			prev->length += pad_len;
473 			iova_len += pad_len;
474 		}
475 
476 		iova_len += s_length;
477 		prev = s;
478 	}
479 
480 	iova = __alloc_iova(iovad, iova_len, dma_get_mask(dev));
481 	if (!iova)
482 		goto out_restore_sg;
483 
484 	/*
485 	 * We'll leave any physical concatenation to the IOMMU driver's
486 	 * implementation - it knows better than we do.
487 	 */
488 	dma_addr = iova_dma_addr(iovad, iova);
489 	if (iommu_map_sg(domain, dma_addr, sg, nents, prot) < iova_len)
490 		goto out_free_iova;
491 
492 	return __finalise_sg(dev, sg, nents, dma_addr);
493 
494 out_free_iova:
495 	__free_iova(iovad, iova);
496 out_restore_sg:
497 	__invalidate_sg(sg, nents);
498 	return 0;
499 }
500 
501 void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
502 		enum dma_data_direction dir, struct dma_attrs *attrs)
503 {
504 	/*
505 	 * The scatterlist segments are mapped into a single
506 	 * contiguous IOVA allocation, so this is incredibly easy.
507 	 */
508 	__iommu_dma_unmap(iommu_get_domain_for_dev(dev), sg_dma_address(sg));
509 }
510 
511 int iommu_dma_supported(struct device *dev, u64 mask)
512 {
513 	/*
514 	 * 'Special' IOMMUs which don't have the same addressing capability
515 	 * as the CPU will have to wait until we have some way to query that
516 	 * before they'll be able to use this framework.
517 	 */
518 	return 1;
519 }
520 
521 int iommu_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
522 {
523 	return dma_addr == DMA_ERROR_CODE;
524 }
525