xref: /openbmc/linux/drivers/iommu/dma-iommu.c (revision 8dd3cdea)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * A fairly generic DMA-API to IOMMU-API glue layer.
4  *
5  * Copyright (C) 2014-2015 ARM Ltd.
6  *
7  * based in part on arch/arm/mm/dma-mapping.c:
8  * Copyright (C) 2000-2004 Russell King
9  */
10 
11 #include <linux/acpi_iort.h>
12 #include <linux/atomic.h>
13 #include <linux/crash_dump.h>
14 #include <linux/device.h>
15 #include <linux/dma-direct.h>
16 #include <linux/dma-iommu.h>
17 #include <linux/dma-map-ops.h>
18 #include <linux/gfp.h>
19 #include <linux/huge_mm.h>
20 #include <linux/iommu.h>
21 #include <linux/iova.h>
22 #include <linux/irq.h>
23 #include <linux/mm.h>
24 #include <linux/mutex.h>
25 #include <linux/pci.h>
26 #include <linux/scatterlist.h>
27 #include <linux/spinlock.h>
28 #include <linux/swiotlb.h>
29 #include <linux/vmalloc.h>
30 
31 struct iommu_dma_msi_page {
32 	struct list_head	list;
33 	dma_addr_t		iova;
34 	phys_addr_t		phys;
35 };
36 
37 enum iommu_dma_cookie_type {
38 	IOMMU_DMA_IOVA_COOKIE,
39 	IOMMU_DMA_MSI_COOKIE,
40 };
41 
42 struct iommu_dma_cookie {
43 	enum iommu_dma_cookie_type	type;
44 	union {
45 		/* Full allocator for IOMMU_DMA_IOVA_COOKIE */
46 		struct {
47 			struct iova_domain	iovad;
48 
49 			struct iova_fq __percpu *fq;	/* Flush queue */
50 			/* Number of TLB flushes that have been started */
51 			atomic64_t		fq_flush_start_cnt;
52 			/* Number of TLB flushes that have been finished */
53 			atomic64_t		fq_flush_finish_cnt;
54 			/* Timer to regularily empty the flush queues */
55 			struct timer_list	fq_timer;
56 			/* 1 when timer is active, 0 when not */
57 			atomic_t		fq_timer_on;
58 		};
59 		/* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
60 		dma_addr_t		msi_iova;
61 	};
62 	struct list_head		msi_page_list;
63 
64 	/* Domain for flush queue callback; NULL if flush queue not in use */
65 	struct iommu_domain		*fq_domain;
66 };
67 
68 static DEFINE_STATIC_KEY_FALSE(iommu_deferred_attach_enabled);
69 bool iommu_dma_forcedac __read_mostly;
70 
71 static int __init iommu_dma_forcedac_setup(char *str)
72 {
73 	int ret = kstrtobool(str, &iommu_dma_forcedac);
74 
75 	if (!ret && iommu_dma_forcedac)
76 		pr_info("Forcing DAC for PCI devices\n");
77 	return ret;
78 }
79 early_param("iommu.forcedac", iommu_dma_forcedac_setup);
80 
81 /* Number of entries per flush queue */
82 #define IOVA_FQ_SIZE	256
83 
84 /* Timeout (in ms) after which entries are flushed from the queue */
85 #define IOVA_FQ_TIMEOUT	10
86 
87 /* Flush queue entry for deferred flushing */
88 struct iova_fq_entry {
89 	unsigned long iova_pfn;
90 	unsigned long pages;
91 	struct list_head freelist;
92 	u64 counter; /* Flush counter when this entry was added */
93 };
94 
95 /* Per-CPU flush queue structure */
96 struct iova_fq {
97 	struct iova_fq_entry entries[IOVA_FQ_SIZE];
98 	unsigned int head, tail;
99 	spinlock_t lock;
100 };
101 
102 #define fq_ring_for_each(i, fq) \
103 	for ((i) = (fq)->head; (i) != (fq)->tail; (i) = ((i) + 1) % IOVA_FQ_SIZE)
104 
105 static inline bool fq_full(struct iova_fq *fq)
106 {
107 	assert_spin_locked(&fq->lock);
108 	return (((fq->tail + 1) % IOVA_FQ_SIZE) == fq->head);
109 }
110 
111 static inline unsigned int fq_ring_add(struct iova_fq *fq)
112 {
113 	unsigned int idx = fq->tail;
114 
115 	assert_spin_locked(&fq->lock);
116 
117 	fq->tail = (idx + 1) % IOVA_FQ_SIZE;
118 
119 	return idx;
120 }
121 
122 static void fq_ring_free(struct iommu_dma_cookie *cookie, struct iova_fq *fq)
123 {
124 	u64 counter = atomic64_read(&cookie->fq_flush_finish_cnt);
125 	unsigned int idx;
126 
127 	assert_spin_locked(&fq->lock);
128 
129 	fq_ring_for_each(idx, fq) {
130 
131 		if (fq->entries[idx].counter >= counter)
132 			break;
133 
134 		put_pages_list(&fq->entries[idx].freelist);
135 		free_iova_fast(&cookie->iovad,
136 			       fq->entries[idx].iova_pfn,
137 			       fq->entries[idx].pages);
138 
139 		fq->head = (fq->head + 1) % IOVA_FQ_SIZE;
140 	}
141 }
142 
143 static void fq_flush_iotlb(struct iommu_dma_cookie *cookie)
144 {
145 	atomic64_inc(&cookie->fq_flush_start_cnt);
146 	cookie->fq_domain->ops->flush_iotlb_all(cookie->fq_domain);
147 	atomic64_inc(&cookie->fq_flush_finish_cnt);
148 }
149 
150 static void fq_flush_timeout(struct timer_list *t)
151 {
152 	struct iommu_dma_cookie *cookie = from_timer(cookie, t, fq_timer);
153 	int cpu;
154 
155 	atomic_set(&cookie->fq_timer_on, 0);
156 	fq_flush_iotlb(cookie);
157 
158 	for_each_possible_cpu(cpu) {
159 		unsigned long flags;
160 		struct iova_fq *fq;
161 
162 		fq = per_cpu_ptr(cookie->fq, cpu);
163 		spin_lock_irqsave(&fq->lock, flags);
164 		fq_ring_free(cookie, fq);
165 		spin_unlock_irqrestore(&fq->lock, flags);
166 	}
167 }
168 
169 static void queue_iova(struct iommu_dma_cookie *cookie,
170 		unsigned long pfn, unsigned long pages,
171 		struct list_head *freelist)
172 {
173 	struct iova_fq *fq;
174 	unsigned long flags;
175 	unsigned int idx;
176 
177 	/*
178 	 * Order against the IOMMU driver's pagetable update from unmapping
179 	 * @pte, to guarantee that fq_flush_iotlb() observes that if called
180 	 * from a different CPU before we release the lock below. Full barrier
181 	 * so it also pairs with iommu_dma_init_fq() to avoid seeing partially
182 	 * written fq state here.
183 	 */
184 	smp_mb();
185 
186 	fq = raw_cpu_ptr(cookie->fq);
187 	spin_lock_irqsave(&fq->lock, flags);
188 
189 	/*
190 	 * First remove all entries from the flush queue that have already been
191 	 * flushed out on another CPU. This makes the fq_full() check below less
192 	 * likely to be true.
193 	 */
194 	fq_ring_free(cookie, fq);
195 
196 	if (fq_full(fq)) {
197 		fq_flush_iotlb(cookie);
198 		fq_ring_free(cookie, fq);
199 	}
200 
201 	idx = fq_ring_add(fq);
202 
203 	fq->entries[idx].iova_pfn = pfn;
204 	fq->entries[idx].pages    = pages;
205 	fq->entries[idx].counter  = atomic64_read(&cookie->fq_flush_start_cnt);
206 	list_splice(freelist, &fq->entries[idx].freelist);
207 
208 	spin_unlock_irqrestore(&fq->lock, flags);
209 
210 	/* Avoid false sharing as much as possible. */
211 	if (!atomic_read(&cookie->fq_timer_on) &&
212 	    !atomic_xchg(&cookie->fq_timer_on, 1))
213 		mod_timer(&cookie->fq_timer,
214 			  jiffies + msecs_to_jiffies(IOVA_FQ_TIMEOUT));
215 }
216 
217 static void iommu_dma_free_fq(struct iommu_dma_cookie *cookie)
218 {
219 	int cpu, idx;
220 
221 	if (!cookie->fq)
222 		return;
223 
224 	del_timer_sync(&cookie->fq_timer);
225 	/* The IOVAs will be torn down separately, so just free our queued pages */
226 	for_each_possible_cpu(cpu) {
227 		struct iova_fq *fq = per_cpu_ptr(cookie->fq, cpu);
228 
229 		fq_ring_for_each(idx, fq)
230 			put_pages_list(&fq->entries[idx].freelist);
231 	}
232 
233 	free_percpu(cookie->fq);
234 }
235 
236 /* sysfs updates are serialised by the mutex of the group owning @domain */
237 int iommu_dma_init_fq(struct iommu_domain *domain)
238 {
239 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
240 	struct iova_fq __percpu *queue;
241 	int i, cpu;
242 
243 	if (cookie->fq_domain)
244 		return 0;
245 
246 	atomic64_set(&cookie->fq_flush_start_cnt,  0);
247 	atomic64_set(&cookie->fq_flush_finish_cnt, 0);
248 
249 	queue = alloc_percpu(struct iova_fq);
250 	if (!queue) {
251 		pr_warn("iova flush queue initialization failed\n");
252 		return -ENOMEM;
253 	}
254 
255 	for_each_possible_cpu(cpu) {
256 		struct iova_fq *fq = per_cpu_ptr(queue, cpu);
257 
258 		fq->head = 0;
259 		fq->tail = 0;
260 
261 		spin_lock_init(&fq->lock);
262 
263 		for (i = 0; i < IOVA_FQ_SIZE; i++)
264 			INIT_LIST_HEAD(&fq->entries[i].freelist);
265 	}
266 
267 	cookie->fq = queue;
268 
269 	timer_setup(&cookie->fq_timer, fq_flush_timeout, 0);
270 	atomic_set(&cookie->fq_timer_on, 0);
271 	/*
272 	 * Prevent incomplete fq state being observable. Pairs with path from
273 	 * __iommu_dma_unmap() through iommu_dma_free_iova() to queue_iova()
274 	 */
275 	smp_wmb();
276 	WRITE_ONCE(cookie->fq_domain, domain);
277 	return 0;
278 }
279 
280 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
281 {
282 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
283 		return cookie->iovad.granule;
284 	return PAGE_SIZE;
285 }
286 
287 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
288 {
289 	struct iommu_dma_cookie *cookie;
290 
291 	cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
292 	if (cookie) {
293 		INIT_LIST_HEAD(&cookie->msi_page_list);
294 		cookie->type = type;
295 	}
296 	return cookie;
297 }
298 
299 /**
300  * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
301  * @domain: IOMMU domain to prepare for DMA-API usage
302  */
303 int iommu_get_dma_cookie(struct iommu_domain *domain)
304 {
305 	if (domain->iova_cookie)
306 		return -EEXIST;
307 
308 	domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
309 	if (!domain->iova_cookie)
310 		return -ENOMEM;
311 
312 	return 0;
313 }
314 
315 /**
316  * iommu_get_msi_cookie - Acquire just MSI remapping resources
317  * @domain: IOMMU domain to prepare
318  * @base: Start address of IOVA region for MSI mappings
319  *
320  * Users who manage their own IOVA allocation and do not want DMA API support,
321  * but would still like to take advantage of automatic MSI remapping, can use
322  * this to initialise their own domain appropriately. Users should reserve a
323  * contiguous IOVA region, starting at @base, large enough to accommodate the
324  * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
325  * used by the devices attached to @domain.
326  */
327 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
328 {
329 	struct iommu_dma_cookie *cookie;
330 
331 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
332 		return -EINVAL;
333 
334 	if (domain->iova_cookie)
335 		return -EEXIST;
336 
337 	cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
338 	if (!cookie)
339 		return -ENOMEM;
340 
341 	cookie->msi_iova = base;
342 	domain->iova_cookie = cookie;
343 	return 0;
344 }
345 EXPORT_SYMBOL(iommu_get_msi_cookie);
346 
347 /**
348  * iommu_put_dma_cookie - Release a domain's DMA mapping resources
349  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
350  *          iommu_get_msi_cookie()
351  */
352 void iommu_put_dma_cookie(struct iommu_domain *domain)
353 {
354 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
355 	struct iommu_dma_msi_page *msi, *tmp;
356 
357 	if (!cookie)
358 		return;
359 
360 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule) {
361 		iommu_dma_free_fq(cookie);
362 		put_iova_domain(&cookie->iovad);
363 	}
364 
365 	list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
366 		list_del(&msi->list);
367 		kfree(msi);
368 	}
369 	kfree(cookie);
370 	domain->iova_cookie = NULL;
371 }
372 
373 /**
374  * iommu_dma_get_resv_regions - Reserved region driver helper
375  * @dev: Device from iommu_get_resv_regions()
376  * @list: Reserved region list from iommu_get_resv_regions()
377  *
378  * IOMMU drivers can use this to implement their .get_resv_regions callback
379  * for general non-IOMMU-specific reservations. Currently, this covers GICv3
380  * ITS region reservation on ACPI based ARM platforms that may require HW MSI
381  * reservation.
382  */
383 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
384 {
385 
386 	if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode))
387 		iort_iommu_msi_get_resv_regions(dev, list);
388 
389 }
390 EXPORT_SYMBOL(iommu_dma_get_resv_regions);
391 
392 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
393 		phys_addr_t start, phys_addr_t end)
394 {
395 	struct iova_domain *iovad = &cookie->iovad;
396 	struct iommu_dma_msi_page *msi_page;
397 	int i, num_pages;
398 
399 	start -= iova_offset(iovad, start);
400 	num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
401 
402 	for (i = 0; i < num_pages; i++) {
403 		msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL);
404 		if (!msi_page)
405 			return -ENOMEM;
406 
407 		msi_page->phys = start;
408 		msi_page->iova = start;
409 		INIT_LIST_HEAD(&msi_page->list);
410 		list_add(&msi_page->list, &cookie->msi_page_list);
411 		start += iovad->granule;
412 	}
413 
414 	return 0;
415 }
416 
417 static int iova_reserve_pci_windows(struct pci_dev *dev,
418 		struct iova_domain *iovad)
419 {
420 	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
421 	struct resource_entry *window;
422 	unsigned long lo, hi;
423 	phys_addr_t start = 0, end;
424 
425 	resource_list_for_each_entry(window, &bridge->windows) {
426 		if (resource_type(window->res) != IORESOURCE_MEM)
427 			continue;
428 
429 		lo = iova_pfn(iovad, window->res->start - window->offset);
430 		hi = iova_pfn(iovad, window->res->end - window->offset);
431 		reserve_iova(iovad, lo, hi);
432 	}
433 
434 	/* Get reserved DMA windows from host bridge */
435 	resource_list_for_each_entry(window, &bridge->dma_ranges) {
436 		end = window->res->start - window->offset;
437 resv_iova:
438 		if (end > start) {
439 			lo = iova_pfn(iovad, start);
440 			hi = iova_pfn(iovad, end);
441 			reserve_iova(iovad, lo, hi);
442 		} else if (end < start) {
443 			/* dma_ranges list should be sorted */
444 			dev_err(&dev->dev,
445 				"Failed to reserve IOVA [%pa-%pa]\n",
446 				&start, &end);
447 			return -EINVAL;
448 		}
449 
450 		start = window->res->end - window->offset + 1;
451 		/* If window is last entry */
452 		if (window->node.next == &bridge->dma_ranges &&
453 		    end != ~(phys_addr_t)0) {
454 			end = ~(phys_addr_t)0;
455 			goto resv_iova;
456 		}
457 	}
458 
459 	return 0;
460 }
461 
462 static int iova_reserve_iommu_regions(struct device *dev,
463 		struct iommu_domain *domain)
464 {
465 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
466 	struct iova_domain *iovad = &cookie->iovad;
467 	struct iommu_resv_region *region;
468 	LIST_HEAD(resv_regions);
469 	int ret = 0;
470 
471 	if (dev_is_pci(dev)) {
472 		ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad);
473 		if (ret)
474 			return ret;
475 	}
476 
477 	iommu_get_resv_regions(dev, &resv_regions);
478 	list_for_each_entry(region, &resv_regions, list) {
479 		unsigned long lo, hi;
480 
481 		/* We ARE the software that manages these! */
482 		if (region->type == IOMMU_RESV_SW_MSI)
483 			continue;
484 
485 		lo = iova_pfn(iovad, region->start);
486 		hi = iova_pfn(iovad, region->start + region->length - 1);
487 		reserve_iova(iovad, lo, hi);
488 
489 		if (region->type == IOMMU_RESV_MSI)
490 			ret = cookie_init_hw_msi_region(cookie, region->start,
491 					region->start + region->length);
492 		if (ret)
493 			break;
494 	}
495 	iommu_put_resv_regions(dev, &resv_regions);
496 
497 	return ret;
498 }
499 
500 static bool dev_is_untrusted(struct device *dev)
501 {
502 	return dev_is_pci(dev) && to_pci_dev(dev)->untrusted;
503 }
504 
505 static bool dev_use_swiotlb(struct device *dev)
506 {
507 	return IS_ENABLED(CONFIG_SWIOTLB) && dev_is_untrusted(dev);
508 }
509 
510 /**
511  * iommu_dma_init_domain - Initialise a DMA mapping domain
512  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
513  * @base: IOVA at which the mappable address space starts
514  * @limit: Last address of the IOVA space
515  * @dev: Device the domain is being initialised for
516  *
517  * @base and @limit + 1 should be exact multiples of IOMMU page granularity to
518  * avoid rounding surprises. If necessary, we reserve the page at address 0
519  * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
520  * any change which could make prior IOVAs invalid will fail.
521  */
522 static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
523 				 dma_addr_t limit, struct device *dev)
524 {
525 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
526 	unsigned long order, base_pfn;
527 	struct iova_domain *iovad;
528 	int ret;
529 
530 	if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
531 		return -EINVAL;
532 
533 	iovad = &cookie->iovad;
534 
535 	/* Use the smallest supported page size for IOVA granularity */
536 	order = __ffs(domain->pgsize_bitmap);
537 	base_pfn = max_t(unsigned long, 1, base >> order);
538 
539 	/* Check the domain allows at least some access to the device... */
540 	if (domain->geometry.force_aperture) {
541 		if (base > domain->geometry.aperture_end ||
542 		    limit < domain->geometry.aperture_start) {
543 			pr_warn("specified DMA range outside IOMMU capability\n");
544 			return -EFAULT;
545 		}
546 		/* ...then finally give it a kicking to make sure it fits */
547 		base_pfn = max_t(unsigned long, base_pfn,
548 				domain->geometry.aperture_start >> order);
549 	}
550 
551 	/* start_pfn is always nonzero for an already-initialised domain */
552 	if (iovad->start_pfn) {
553 		if (1UL << order != iovad->granule ||
554 		    base_pfn != iovad->start_pfn) {
555 			pr_warn("Incompatible range for DMA domain\n");
556 			return -EFAULT;
557 		}
558 
559 		return 0;
560 	}
561 
562 	init_iova_domain(iovad, 1UL << order, base_pfn);
563 	ret = iova_domain_init_rcaches(iovad);
564 	if (ret)
565 		return ret;
566 
567 	/* If the FQ fails we can simply fall back to strict mode */
568 	if (domain->type == IOMMU_DOMAIN_DMA_FQ && iommu_dma_init_fq(domain))
569 		domain->type = IOMMU_DOMAIN_DMA;
570 
571 	return iova_reserve_iommu_regions(dev, domain);
572 }
573 
574 /**
575  * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
576  *                    page flags.
577  * @dir: Direction of DMA transfer
578  * @coherent: Is the DMA master cache-coherent?
579  * @attrs: DMA attributes for the mapping
580  *
581  * Return: corresponding IOMMU API page protection flags
582  */
583 static int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
584 		     unsigned long attrs)
585 {
586 	int prot = coherent ? IOMMU_CACHE : 0;
587 
588 	if (attrs & DMA_ATTR_PRIVILEGED)
589 		prot |= IOMMU_PRIV;
590 
591 	switch (dir) {
592 	case DMA_BIDIRECTIONAL:
593 		return prot | IOMMU_READ | IOMMU_WRITE;
594 	case DMA_TO_DEVICE:
595 		return prot | IOMMU_READ;
596 	case DMA_FROM_DEVICE:
597 		return prot | IOMMU_WRITE;
598 	default:
599 		return 0;
600 	}
601 }
602 
603 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
604 		size_t size, u64 dma_limit, struct device *dev)
605 {
606 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
607 	struct iova_domain *iovad = &cookie->iovad;
608 	unsigned long shift, iova_len, iova = 0;
609 
610 	if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
611 		cookie->msi_iova += size;
612 		return cookie->msi_iova - size;
613 	}
614 
615 	shift = iova_shift(iovad);
616 	iova_len = size >> shift;
617 
618 	dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit);
619 
620 	if (domain->geometry.force_aperture)
621 		dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end);
622 
623 	/* Try to get PCI devices a SAC address */
624 	if (dma_limit > DMA_BIT_MASK(32) && !iommu_dma_forcedac && dev_is_pci(dev))
625 		iova = alloc_iova_fast(iovad, iova_len,
626 				       DMA_BIT_MASK(32) >> shift, false);
627 
628 	if (!iova)
629 		iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift,
630 				       true);
631 
632 	return (dma_addr_t)iova << shift;
633 }
634 
635 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
636 		dma_addr_t iova, size_t size, struct iommu_iotlb_gather *gather)
637 {
638 	struct iova_domain *iovad = &cookie->iovad;
639 
640 	/* The MSI case is only ever cleaning up its most recent allocation */
641 	if (cookie->type == IOMMU_DMA_MSI_COOKIE)
642 		cookie->msi_iova -= size;
643 	else if (gather && gather->queued)
644 		queue_iova(cookie, iova_pfn(iovad, iova),
645 				size >> iova_shift(iovad),
646 				&gather->freelist);
647 	else
648 		free_iova_fast(iovad, iova_pfn(iovad, iova),
649 				size >> iova_shift(iovad));
650 }
651 
652 static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr,
653 		size_t size)
654 {
655 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
656 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
657 	struct iova_domain *iovad = &cookie->iovad;
658 	size_t iova_off = iova_offset(iovad, dma_addr);
659 	struct iommu_iotlb_gather iotlb_gather;
660 	size_t unmapped;
661 
662 	dma_addr -= iova_off;
663 	size = iova_align(iovad, size + iova_off);
664 	iommu_iotlb_gather_init(&iotlb_gather);
665 	iotlb_gather.queued = READ_ONCE(cookie->fq_domain);
666 
667 	unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather);
668 	WARN_ON(unmapped != size);
669 
670 	if (!iotlb_gather.queued)
671 		iommu_iotlb_sync(domain, &iotlb_gather);
672 	iommu_dma_free_iova(cookie, dma_addr, size, &iotlb_gather);
673 }
674 
675 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
676 		size_t size, int prot, u64 dma_mask)
677 {
678 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
679 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
680 	struct iova_domain *iovad = &cookie->iovad;
681 	size_t iova_off = iova_offset(iovad, phys);
682 	dma_addr_t iova;
683 
684 	if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
685 	    iommu_deferred_attach(dev, domain))
686 		return DMA_MAPPING_ERROR;
687 
688 	size = iova_align(iovad, size + iova_off);
689 
690 	iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev);
691 	if (!iova)
692 		return DMA_MAPPING_ERROR;
693 
694 	if (iommu_map_atomic(domain, iova, phys - iova_off, size, prot)) {
695 		iommu_dma_free_iova(cookie, iova, size, NULL);
696 		return DMA_MAPPING_ERROR;
697 	}
698 	return iova + iova_off;
699 }
700 
701 static void __iommu_dma_free_pages(struct page **pages, int count)
702 {
703 	while (count--)
704 		__free_page(pages[count]);
705 	kvfree(pages);
706 }
707 
708 static struct page **__iommu_dma_alloc_pages(struct device *dev,
709 		unsigned int count, unsigned long order_mask, gfp_t gfp)
710 {
711 	struct page **pages;
712 	unsigned int i = 0, nid = dev_to_node(dev);
713 
714 	order_mask &= (2U << MAX_ORDER) - 1;
715 	if (!order_mask)
716 		return NULL;
717 
718 	pages = kvcalloc(count, sizeof(*pages), GFP_KERNEL);
719 	if (!pages)
720 		return NULL;
721 
722 	/* IOMMU can map any pages, so himem can also be used here */
723 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
724 
725 	/* It makes no sense to muck about with huge pages */
726 	gfp &= ~__GFP_COMP;
727 
728 	while (count) {
729 		struct page *page = NULL;
730 		unsigned int order_size;
731 
732 		/*
733 		 * Higher-order allocations are a convenience rather
734 		 * than a necessity, hence using __GFP_NORETRY until
735 		 * falling back to minimum-order allocations.
736 		 */
737 		for (order_mask &= (2U << __fls(count)) - 1;
738 		     order_mask; order_mask &= ~order_size) {
739 			unsigned int order = __fls(order_mask);
740 			gfp_t alloc_flags = gfp;
741 
742 			order_size = 1U << order;
743 			if (order_mask > order_size)
744 				alloc_flags |= __GFP_NORETRY;
745 			page = alloc_pages_node(nid, alloc_flags, order);
746 			if (!page)
747 				continue;
748 			if (order)
749 				split_page(page, order);
750 			break;
751 		}
752 		if (!page) {
753 			__iommu_dma_free_pages(pages, i);
754 			return NULL;
755 		}
756 		count -= order_size;
757 		while (order_size--)
758 			pages[i++] = page++;
759 	}
760 	return pages;
761 }
762 
763 /*
764  * If size is less than PAGE_SIZE, then a full CPU page will be allocated,
765  * but an IOMMU which supports smaller pages might not map the whole thing.
766  */
767 static struct page **__iommu_dma_alloc_noncontiguous(struct device *dev,
768 		size_t size, struct sg_table *sgt, gfp_t gfp, pgprot_t prot,
769 		unsigned long attrs)
770 {
771 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
772 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
773 	struct iova_domain *iovad = &cookie->iovad;
774 	bool coherent = dev_is_dma_coherent(dev);
775 	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
776 	unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
777 	struct page **pages;
778 	dma_addr_t iova;
779 
780 	if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
781 	    iommu_deferred_attach(dev, domain))
782 		return NULL;
783 
784 	min_size = alloc_sizes & -alloc_sizes;
785 	if (min_size < PAGE_SIZE) {
786 		min_size = PAGE_SIZE;
787 		alloc_sizes |= PAGE_SIZE;
788 	} else {
789 		size = ALIGN(size, min_size);
790 	}
791 	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
792 		alloc_sizes = min_size;
793 
794 	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
795 	pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT,
796 					gfp);
797 	if (!pages)
798 		return NULL;
799 
800 	size = iova_align(iovad, size);
801 	iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
802 	if (!iova)
803 		goto out_free_pages;
804 
805 	if (sg_alloc_table_from_pages(sgt, pages, count, 0, size, GFP_KERNEL))
806 		goto out_free_iova;
807 
808 	if (!(ioprot & IOMMU_CACHE)) {
809 		struct scatterlist *sg;
810 		int i;
811 
812 		for_each_sg(sgt->sgl, sg, sgt->orig_nents, i)
813 			arch_dma_prep_coherent(sg_page(sg), sg->length);
814 	}
815 
816 	if (iommu_map_sg_atomic(domain, iova, sgt->sgl, sgt->orig_nents, ioprot)
817 			< size)
818 		goto out_free_sg;
819 
820 	sgt->sgl->dma_address = iova;
821 	sgt->sgl->dma_length = size;
822 	return pages;
823 
824 out_free_sg:
825 	sg_free_table(sgt);
826 out_free_iova:
827 	iommu_dma_free_iova(cookie, iova, size, NULL);
828 out_free_pages:
829 	__iommu_dma_free_pages(pages, count);
830 	return NULL;
831 }
832 
833 static void *iommu_dma_alloc_remap(struct device *dev, size_t size,
834 		dma_addr_t *dma_handle, gfp_t gfp, pgprot_t prot,
835 		unsigned long attrs)
836 {
837 	struct page **pages;
838 	struct sg_table sgt;
839 	void *vaddr;
840 
841 	pages = __iommu_dma_alloc_noncontiguous(dev, size, &sgt, gfp, prot,
842 						attrs);
843 	if (!pages)
844 		return NULL;
845 	*dma_handle = sgt.sgl->dma_address;
846 	sg_free_table(&sgt);
847 	vaddr = dma_common_pages_remap(pages, size, prot,
848 			__builtin_return_address(0));
849 	if (!vaddr)
850 		goto out_unmap;
851 	return vaddr;
852 
853 out_unmap:
854 	__iommu_dma_unmap(dev, *dma_handle, size);
855 	__iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
856 	return NULL;
857 }
858 
859 static struct sg_table *iommu_dma_alloc_noncontiguous(struct device *dev,
860 		size_t size, enum dma_data_direction dir, gfp_t gfp,
861 		unsigned long attrs)
862 {
863 	struct dma_sgt_handle *sh;
864 
865 	sh = kmalloc(sizeof(*sh), gfp);
866 	if (!sh)
867 		return NULL;
868 
869 	sh->pages = __iommu_dma_alloc_noncontiguous(dev, size, &sh->sgt, gfp,
870 						    PAGE_KERNEL, attrs);
871 	if (!sh->pages) {
872 		kfree(sh);
873 		return NULL;
874 	}
875 	return &sh->sgt;
876 }
877 
878 static void iommu_dma_free_noncontiguous(struct device *dev, size_t size,
879 		struct sg_table *sgt, enum dma_data_direction dir)
880 {
881 	struct dma_sgt_handle *sh = sgt_handle(sgt);
882 
883 	__iommu_dma_unmap(dev, sgt->sgl->dma_address, size);
884 	__iommu_dma_free_pages(sh->pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
885 	sg_free_table(&sh->sgt);
886 	kfree(sh);
887 }
888 
889 static void iommu_dma_sync_single_for_cpu(struct device *dev,
890 		dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
891 {
892 	phys_addr_t phys;
893 
894 	if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev))
895 		return;
896 
897 	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
898 	if (!dev_is_dma_coherent(dev))
899 		arch_sync_dma_for_cpu(phys, size, dir);
900 
901 	if (is_swiotlb_buffer(dev, phys))
902 		swiotlb_sync_single_for_cpu(dev, phys, size, dir);
903 }
904 
905 static void iommu_dma_sync_single_for_device(struct device *dev,
906 		dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
907 {
908 	phys_addr_t phys;
909 
910 	if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev))
911 		return;
912 
913 	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
914 	if (is_swiotlb_buffer(dev, phys))
915 		swiotlb_sync_single_for_device(dev, phys, size, dir);
916 
917 	if (!dev_is_dma_coherent(dev))
918 		arch_sync_dma_for_device(phys, size, dir);
919 }
920 
921 static void iommu_dma_sync_sg_for_cpu(struct device *dev,
922 		struct scatterlist *sgl, int nelems,
923 		enum dma_data_direction dir)
924 {
925 	struct scatterlist *sg;
926 	int i;
927 
928 	if (dev_use_swiotlb(dev))
929 		for_each_sg(sgl, sg, nelems, i)
930 			iommu_dma_sync_single_for_cpu(dev, sg_dma_address(sg),
931 						      sg->length, dir);
932 	else if (!dev_is_dma_coherent(dev))
933 		for_each_sg(sgl, sg, nelems, i)
934 			arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir);
935 }
936 
937 static void iommu_dma_sync_sg_for_device(struct device *dev,
938 		struct scatterlist *sgl, int nelems,
939 		enum dma_data_direction dir)
940 {
941 	struct scatterlist *sg;
942 	int i;
943 
944 	if (dev_use_swiotlb(dev))
945 		for_each_sg(sgl, sg, nelems, i)
946 			iommu_dma_sync_single_for_device(dev,
947 							 sg_dma_address(sg),
948 							 sg->length, dir);
949 	else if (!dev_is_dma_coherent(dev))
950 		for_each_sg(sgl, sg, nelems, i)
951 			arch_sync_dma_for_device(sg_phys(sg), sg->length, dir);
952 }
953 
954 static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
955 		unsigned long offset, size_t size, enum dma_data_direction dir,
956 		unsigned long attrs)
957 {
958 	phys_addr_t phys = page_to_phys(page) + offset;
959 	bool coherent = dev_is_dma_coherent(dev);
960 	int prot = dma_info_to_prot(dir, coherent, attrs);
961 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
962 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
963 	struct iova_domain *iovad = &cookie->iovad;
964 	dma_addr_t iova, dma_mask = dma_get_mask(dev);
965 
966 	/*
967 	 * If both the physical buffer start address and size are
968 	 * page aligned, we don't need to use a bounce page.
969 	 */
970 	if (dev_use_swiotlb(dev) && iova_offset(iovad, phys | size)) {
971 		void *padding_start;
972 		size_t padding_size, aligned_size;
973 
974 		aligned_size = iova_align(iovad, size);
975 		phys = swiotlb_tbl_map_single(dev, phys, size, aligned_size,
976 					      iova_mask(iovad), dir, attrs);
977 
978 		if (phys == DMA_MAPPING_ERROR)
979 			return DMA_MAPPING_ERROR;
980 
981 		/* Cleanup the padding area. */
982 		padding_start = phys_to_virt(phys);
983 		padding_size = aligned_size;
984 
985 		if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
986 		    (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) {
987 			padding_start += size;
988 			padding_size -= size;
989 		}
990 
991 		memset(padding_start, 0, padding_size);
992 	}
993 
994 	if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
995 		arch_sync_dma_for_device(phys, size, dir);
996 
997 	iova = __iommu_dma_map(dev, phys, size, prot, dma_mask);
998 	if (iova == DMA_MAPPING_ERROR && is_swiotlb_buffer(dev, phys))
999 		swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
1000 	return iova;
1001 }
1002 
1003 static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle,
1004 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1005 {
1006 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1007 	phys_addr_t phys;
1008 
1009 	phys = iommu_iova_to_phys(domain, dma_handle);
1010 	if (WARN_ON(!phys))
1011 		return;
1012 
1013 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && !dev_is_dma_coherent(dev))
1014 		arch_sync_dma_for_cpu(phys, size, dir);
1015 
1016 	__iommu_dma_unmap(dev, dma_handle, size);
1017 
1018 	if (unlikely(is_swiotlb_buffer(dev, phys)))
1019 		swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
1020 }
1021 
1022 /*
1023  * Prepare a successfully-mapped scatterlist to give back to the caller.
1024  *
1025  * At this point the segments are already laid out by iommu_dma_map_sg() to
1026  * avoid individually crossing any boundaries, so we merely need to check a
1027  * segment's start address to avoid concatenating across one.
1028  */
1029 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
1030 		dma_addr_t dma_addr)
1031 {
1032 	struct scatterlist *s, *cur = sg;
1033 	unsigned long seg_mask = dma_get_seg_boundary(dev);
1034 	unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
1035 	int i, count = 0;
1036 
1037 	for_each_sg(sg, s, nents, i) {
1038 		/* Restore this segment's original unaligned fields first */
1039 		unsigned int s_iova_off = sg_dma_address(s);
1040 		unsigned int s_length = sg_dma_len(s);
1041 		unsigned int s_iova_len = s->length;
1042 
1043 		s->offset += s_iova_off;
1044 		s->length = s_length;
1045 		sg_dma_address(s) = DMA_MAPPING_ERROR;
1046 		sg_dma_len(s) = 0;
1047 
1048 		/*
1049 		 * Now fill in the real DMA data. If...
1050 		 * - there is a valid output segment to append to
1051 		 * - and this segment starts on an IOVA page boundary
1052 		 * - but doesn't fall at a segment boundary
1053 		 * - and wouldn't make the resulting output segment too long
1054 		 */
1055 		if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
1056 		    (max_len - cur_len >= s_length)) {
1057 			/* ...then concatenate it with the previous one */
1058 			cur_len += s_length;
1059 		} else {
1060 			/* Otherwise start the next output segment */
1061 			if (i > 0)
1062 				cur = sg_next(cur);
1063 			cur_len = s_length;
1064 			count++;
1065 
1066 			sg_dma_address(cur) = dma_addr + s_iova_off;
1067 		}
1068 
1069 		sg_dma_len(cur) = cur_len;
1070 		dma_addr += s_iova_len;
1071 
1072 		if (s_length + s_iova_off < s_iova_len)
1073 			cur_len = 0;
1074 	}
1075 	return count;
1076 }
1077 
1078 /*
1079  * If mapping failed, then just restore the original list,
1080  * but making sure the DMA fields are invalidated.
1081  */
1082 static void __invalidate_sg(struct scatterlist *sg, int nents)
1083 {
1084 	struct scatterlist *s;
1085 	int i;
1086 
1087 	for_each_sg(sg, s, nents, i) {
1088 		if (sg_dma_address(s) != DMA_MAPPING_ERROR)
1089 			s->offset += sg_dma_address(s);
1090 		if (sg_dma_len(s))
1091 			s->length = sg_dma_len(s);
1092 		sg_dma_address(s) = DMA_MAPPING_ERROR;
1093 		sg_dma_len(s) = 0;
1094 	}
1095 }
1096 
1097 static void iommu_dma_unmap_sg_swiotlb(struct device *dev, struct scatterlist *sg,
1098 		int nents, enum dma_data_direction dir, unsigned long attrs)
1099 {
1100 	struct scatterlist *s;
1101 	int i;
1102 
1103 	for_each_sg(sg, s, nents, i)
1104 		iommu_dma_unmap_page(dev, sg_dma_address(s),
1105 				sg_dma_len(s), dir, attrs);
1106 }
1107 
1108 static int iommu_dma_map_sg_swiotlb(struct device *dev, struct scatterlist *sg,
1109 		int nents, enum dma_data_direction dir, unsigned long attrs)
1110 {
1111 	struct scatterlist *s;
1112 	int i;
1113 
1114 	for_each_sg(sg, s, nents, i) {
1115 		sg_dma_address(s) = iommu_dma_map_page(dev, sg_page(s),
1116 				s->offset, s->length, dir, attrs);
1117 		if (sg_dma_address(s) == DMA_MAPPING_ERROR)
1118 			goto out_unmap;
1119 		sg_dma_len(s) = s->length;
1120 	}
1121 
1122 	return nents;
1123 
1124 out_unmap:
1125 	iommu_dma_unmap_sg_swiotlb(dev, sg, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
1126 	return -EIO;
1127 }
1128 
1129 /*
1130  * The DMA API client is passing in a scatterlist which could describe
1131  * any old buffer layout, but the IOMMU API requires everything to be
1132  * aligned to IOMMU pages. Hence the need for this complicated bit of
1133  * impedance-matching, to be able to hand off a suitably-aligned list,
1134  * but still preserve the original offsets and sizes for the caller.
1135  */
1136 static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
1137 		int nents, enum dma_data_direction dir, unsigned long attrs)
1138 {
1139 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1140 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
1141 	struct iova_domain *iovad = &cookie->iovad;
1142 	struct scatterlist *s, *prev = NULL;
1143 	int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs);
1144 	dma_addr_t iova;
1145 	size_t iova_len = 0;
1146 	unsigned long mask = dma_get_seg_boundary(dev);
1147 	ssize_t ret;
1148 	int i;
1149 
1150 	if (static_branch_unlikely(&iommu_deferred_attach_enabled)) {
1151 		ret = iommu_deferred_attach(dev, domain);
1152 		if (ret)
1153 			goto out;
1154 	}
1155 
1156 	if (dev_use_swiotlb(dev))
1157 		return iommu_dma_map_sg_swiotlb(dev, sg, nents, dir, attrs);
1158 
1159 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1160 		iommu_dma_sync_sg_for_device(dev, sg, nents, dir);
1161 
1162 	/*
1163 	 * Work out how much IOVA space we need, and align the segments to
1164 	 * IOVA granules for the IOMMU driver to handle. With some clever
1165 	 * trickery we can modify the list in-place, but reversibly, by
1166 	 * stashing the unaligned parts in the as-yet-unused DMA fields.
1167 	 */
1168 	for_each_sg(sg, s, nents, i) {
1169 		size_t s_iova_off = iova_offset(iovad, s->offset);
1170 		size_t s_length = s->length;
1171 		size_t pad_len = (mask - iova_len + 1) & mask;
1172 
1173 		sg_dma_address(s) = s_iova_off;
1174 		sg_dma_len(s) = s_length;
1175 		s->offset -= s_iova_off;
1176 		s_length = iova_align(iovad, s_length + s_iova_off);
1177 		s->length = s_length;
1178 
1179 		/*
1180 		 * Due to the alignment of our single IOVA allocation, we can
1181 		 * depend on these assumptions about the segment boundary mask:
1182 		 * - If mask size >= IOVA size, then the IOVA range cannot
1183 		 *   possibly fall across a boundary, so we don't care.
1184 		 * - If mask size < IOVA size, then the IOVA range must start
1185 		 *   exactly on a boundary, therefore we can lay things out
1186 		 *   based purely on segment lengths without needing to know
1187 		 *   the actual addresses beforehand.
1188 		 * - The mask must be a power of 2, so pad_len == 0 if
1189 		 *   iova_len == 0, thus we cannot dereference prev the first
1190 		 *   time through here (i.e. before it has a meaningful value).
1191 		 */
1192 		if (pad_len && pad_len < s_length - 1) {
1193 			prev->length += pad_len;
1194 			iova_len += pad_len;
1195 		}
1196 
1197 		iova_len += s_length;
1198 		prev = s;
1199 	}
1200 
1201 	iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
1202 	if (!iova) {
1203 		ret = -ENOMEM;
1204 		goto out_restore_sg;
1205 	}
1206 
1207 	/*
1208 	 * We'll leave any physical concatenation to the IOMMU driver's
1209 	 * implementation - it knows better than we do.
1210 	 */
1211 	ret = iommu_map_sg_atomic(domain, iova, sg, nents, prot);
1212 	if (ret < iova_len)
1213 		goto out_free_iova;
1214 
1215 	return __finalise_sg(dev, sg, nents, iova);
1216 
1217 out_free_iova:
1218 	iommu_dma_free_iova(cookie, iova, iova_len, NULL);
1219 out_restore_sg:
1220 	__invalidate_sg(sg, nents);
1221 out:
1222 	if (ret != -ENOMEM)
1223 		return -EINVAL;
1224 	return ret;
1225 }
1226 
1227 static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
1228 		int nents, enum dma_data_direction dir, unsigned long attrs)
1229 {
1230 	dma_addr_t start, end;
1231 	struct scatterlist *tmp;
1232 	int i;
1233 
1234 	if (dev_use_swiotlb(dev)) {
1235 		iommu_dma_unmap_sg_swiotlb(dev, sg, nents, dir, attrs);
1236 		return;
1237 	}
1238 
1239 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1240 		iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir);
1241 
1242 	/*
1243 	 * The scatterlist segments are mapped into a single
1244 	 * contiguous IOVA allocation, so this is incredibly easy.
1245 	 */
1246 	start = sg_dma_address(sg);
1247 	for_each_sg(sg_next(sg), tmp, nents - 1, i) {
1248 		if (sg_dma_len(tmp) == 0)
1249 			break;
1250 		sg = tmp;
1251 	}
1252 	end = sg_dma_address(sg) + sg_dma_len(sg);
1253 	__iommu_dma_unmap(dev, start, end - start);
1254 }
1255 
1256 static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
1257 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1258 {
1259 	return __iommu_dma_map(dev, phys, size,
1260 			dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO,
1261 			dma_get_mask(dev));
1262 }
1263 
1264 static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
1265 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1266 {
1267 	__iommu_dma_unmap(dev, handle, size);
1268 }
1269 
1270 static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr)
1271 {
1272 	size_t alloc_size = PAGE_ALIGN(size);
1273 	int count = alloc_size >> PAGE_SHIFT;
1274 	struct page *page = NULL, **pages = NULL;
1275 
1276 	/* Non-coherent atomic allocation? Easy */
1277 	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1278 	    dma_free_from_pool(dev, cpu_addr, alloc_size))
1279 		return;
1280 
1281 	if (is_vmalloc_addr(cpu_addr)) {
1282 		/*
1283 		 * If it the address is remapped, then it's either non-coherent
1284 		 * or highmem CMA, or an iommu_dma_alloc_remap() construction.
1285 		 */
1286 		pages = dma_common_find_pages(cpu_addr);
1287 		if (!pages)
1288 			page = vmalloc_to_page(cpu_addr);
1289 		dma_common_free_remap(cpu_addr, alloc_size);
1290 	} else {
1291 		/* Lowmem means a coherent atomic or CMA allocation */
1292 		page = virt_to_page(cpu_addr);
1293 	}
1294 
1295 	if (pages)
1296 		__iommu_dma_free_pages(pages, count);
1297 	if (page)
1298 		dma_free_contiguous(dev, page, alloc_size);
1299 }
1300 
1301 static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr,
1302 		dma_addr_t handle, unsigned long attrs)
1303 {
1304 	__iommu_dma_unmap(dev, handle, size);
1305 	__iommu_dma_free(dev, size, cpu_addr);
1306 }
1307 
1308 static void *iommu_dma_alloc_pages(struct device *dev, size_t size,
1309 		struct page **pagep, gfp_t gfp, unsigned long attrs)
1310 {
1311 	bool coherent = dev_is_dma_coherent(dev);
1312 	size_t alloc_size = PAGE_ALIGN(size);
1313 	int node = dev_to_node(dev);
1314 	struct page *page = NULL;
1315 	void *cpu_addr;
1316 
1317 	page = dma_alloc_contiguous(dev, alloc_size, gfp);
1318 	if (!page)
1319 		page = alloc_pages_node(node, gfp, get_order(alloc_size));
1320 	if (!page)
1321 		return NULL;
1322 
1323 	if (!coherent || PageHighMem(page)) {
1324 		pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
1325 
1326 		cpu_addr = dma_common_contiguous_remap(page, alloc_size,
1327 				prot, __builtin_return_address(0));
1328 		if (!cpu_addr)
1329 			goto out_free_pages;
1330 
1331 		if (!coherent)
1332 			arch_dma_prep_coherent(page, size);
1333 	} else {
1334 		cpu_addr = page_address(page);
1335 	}
1336 
1337 	*pagep = page;
1338 	memset(cpu_addr, 0, alloc_size);
1339 	return cpu_addr;
1340 out_free_pages:
1341 	dma_free_contiguous(dev, page, alloc_size);
1342 	return NULL;
1343 }
1344 
1345 static void *iommu_dma_alloc(struct device *dev, size_t size,
1346 		dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1347 {
1348 	bool coherent = dev_is_dma_coherent(dev);
1349 	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
1350 	struct page *page = NULL;
1351 	void *cpu_addr;
1352 
1353 	gfp |= __GFP_ZERO;
1354 
1355 	if (gfpflags_allow_blocking(gfp) &&
1356 	    !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) {
1357 		return iommu_dma_alloc_remap(dev, size, handle, gfp,
1358 				dma_pgprot(dev, PAGE_KERNEL, attrs), attrs);
1359 	}
1360 
1361 	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1362 	    !gfpflags_allow_blocking(gfp) && !coherent)
1363 		page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr,
1364 					       gfp, NULL);
1365 	else
1366 		cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs);
1367 	if (!cpu_addr)
1368 		return NULL;
1369 
1370 	*handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot,
1371 			dev->coherent_dma_mask);
1372 	if (*handle == DMA_MAPPING_ERROR) {
1373 		__iommu_dma_free(dev, size, cpu_addr);
1374 		return NULL;
1375 	}
1376 
1377 	return cpu_addr;
1378 }
1379 
1380 static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma,
1381 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
1382 		unsigned long attrs)
1383 {
1384 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1385 	unsigned long pfn, off = vma->vm_pgoff;
1386 	int ret;
1387 
1388 	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
1389 
1390 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
1391 		return ret;
1392 
1393 	if (off >= nr_pages || vma_pages(vma) > nr_pages - off)
1394 		return -ENXIO;
1395 
1396 	if (is_vmalloc_addr(cpu_addr)) {
1397 		struct page **pages = dma_common_find_pages(cpu_addr);
1398 
1399 		if (pages)
1400 			return vm_map_pages(vma, pages, nr_pages);
1401 		pfn = vmalloc_to_pfn(cpu_addr);
1402 	} else {
1403 		pfn = page_to_pfn(virt_to_page(cpu_addr));
1404 	}
1405 
1406 	return remap_pfn_range(vma, vma->vm_start, pfn + off,
1407 			       vma->vm_end - vma->vm_start,
1408 			       vma->vm_page_prot);
1409 }
1410 
1411 static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
1412 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
1413 		unsigned long attrs)
1414 {
1415 	struct page *page;
1416 	int ret;
1417 
1418 	if (is_vmalloc_addr(cpu_addr)) {
1419 		struct page **pages = dma_common_find_pages(cpu_addr);
1420 
1421 		if (pages) {
1422 			return sg_alloc_table_from_pages(sgt, pages,
1423 					PAGE_ALIGN(size) >> PAGE_SHIFT,
1424 					0, size, GFP_KERNEL);
1425 		}
1426 
1427 		page = vmalloc_to_page(cpu_addr);
1428 	} else {
1429 		page = virt_to_page(cpu_addr);
1430 	}
1431 
1432 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
1433 	if (!ret)
1434 		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
1435 	return ret;
1436 }
1437 
1438 static unsigned long iommu_dma_get_merge_boundary(struct device *dev)
1439 {
1440 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1441 
1442 	return (1UL << __ffs(domain->pgsize_bitmap)) - 1;
1443 }
1444 
1445 static const struct dma_map_ops iommu_dma_ops = {
1446 	.alloc			= iommu_dma_alloc,
1447 	.free			= iommu_dma_free,
1448 	.alloc_pages		= dma_common_alloc_pages,
1449 	.free_pages		= dma_common_free_pages,
1450 	.alloc_noncontiguous	= iommu_dma_alloc_noncontiguous,
1451 	.free_noncontiguous	= iommu_dma_free_noncontiguous,
1452 	.mmap			= iommu_dma_mmap,
1453 	.get_sgtable		= iommu_dma_get_sgtable,
1454 	.map_page		= iommu_dma_map_page,
1455 	.unmap_page		= iommu_dma_unmap_page,
1456 	.map_sg			= iommu_dma_map_sg,
1457 	.unmap_sg		= iommu_dma_unmap_sg,
1458 	.sync_single_for_cpu	= iommu_dma_sync_single_for_cpu,
1459 	.sync_single_for_device	= iommu_dma_sync_single_for_device,
1460 	.sync_sg_for_cpu	= iommu_dma_sync_sg_for_cpu,
1461 	.sync_sg_for_device	= iommu_dma_sync_sg_for_device,
1462 	.map_resource		= iommu_dma_map_resource,
1463 	.unmap_resource		= iommu_dma_unmap_resource,
1464 	.get_merge_boundary	= iommu_dma_get_merge_boundary,
1465 };
1466 
1467 /*
1468  * The IOMMU core code allocates the default DMA domain, which the underlying
1469  * IOMMU driver needs to support via the dma-iommu layer.
1470  */
1471 void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 dma_limit)
1472 {
1473 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1474 
1475 	if (!domain)
1476 		goto out_err;
1477 
1478 	/*
1479 	 * The IOMMU core code allocates the default DMA domain, which the
1480 	 * underlying IOMMU driver needs to support via the dma-iommu layer.
1481 	 */
1482 	if (iommu_is_dma_domain(domain)) {
1483 		if (iommu_dma_init_domain(domain, dma_base, dma_limit, dev))
1484 			goto out_err;
1485 		dev->dma_ops = &iommu_dma_ops;
1486 	}
1487 
1488 	return;
1489 out_err:
1490 	 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
1491 		 dev_name(dev));
1492 }
1493 EXPORT_SYMBOL_GPL(iommu_setup_dma_ops);
1494 
1495 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
1496 		phys_addr_t msi_addr, struct iommu_domain *domain)
1497 {
1498 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
1499 	struct iommu_dma_msi_page *msi_page;
1500 	dma_addr_t iova;
1501 	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1502 	size_t size = cookie_msi_granule(cookie);
1503 
1504 	msi_addr &= ~(phys_addr_t)(size - 1);
1505 	list_for_each_entry(msi_page, &cookie->msi_page_list, list)
1506 		if (msi_page->phys == msi_addr)
1507 			return msi_page;
1508 
1509 	msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL);
1510 	if (!msi_page)
1511 		return NULL;
1512 
1513 	iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
1514 	if (!iova)
1515 		goto out_free_page;
1516 
1517 	if (iommu_map(domain, iova, msi_addr, size, prot))
1518 		goto out_free_iova;
1519 
1520 	INIT_LIST_HEAD(&msi_page->list);
1521 	msi_page->phys = msi_addr;
1522 	msi_page->iova = iova;
1523 	list_add(&msi_page->list, &cookie->msi_page_list);
1524 	return msi_page;
1525 
1526 out_free_iova:
1527 	iommu_dma_free_iova(cookie, iova, size, NULL);
1528 out_free_page:
1529 	kfree(msi_page);
1530 	return NULL;
1531 }
1532 
1533 int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)
1534 {
1535 	struct device *dev = msi_desc_to_dev(desc);
1536 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1537 	struct iommu_dma_msi_page *msi_page;
1538 	static DEFINE_MUTEX(msi_prepare_lock); /* see below */
1539 
1540 	if (!domain || !domain->iova_cookie) {
1541 		desc->iommu_cookie = NULL;
1542 		return 0;
1543 	}
1544 
1545 	/*
1546 	 * In fact the whole prepare operation should already be serialised by
1547 	 * irq_domain_mutex further up the callchain, but that's pretty subtle
1548 	 * on its own, so consider this locking as failsafe documentation...
1549 	 */
1550 	mutex_lock(&msi_prepare_lock);
1551 	msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
1552 	mutex_unlock(&msi_prepare_lock);
1553 
1554 	msi_desc_set_iommu_cookie(desc, msi_page);
1555 
1556 	if (!msi_page)
1557 		return -ENOMEM;
1558 	return 0;
1559 }
1560 
1561 void iommu_dma_compose_msi_msg(struct msi_desc *desc,
1562 			       struct msi_msg *msg)
1563 {
1564 	struct device *dev = msi_desc_to_dev(desc);
1565 	const struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1566 	const struct iommu_dma_msi_page *msi_page;
1567 
1568 	msi_page = msi_desc_get_iommu_cookie(desc);
1569 
1570 	if (!domain || !domain->iova_cookie || WARN_ON(!msi_page))
1571 		return;
1572 
1573 	msg->address_hi = upper_32_bits(msi_page->iova);
1574 	msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1;
1575 	msg->address_lo += lower_32_bits(msi_page->iova);
1576 }
1577 
1578 static int iommu_dma_init(void)
1579 {
1580 	if (is_kdump_kernel())
1581 		static_branch_enable(&iommu_deferred_attach_enabled);
1582 
1583 	return iova_cache_get();
1584 }
1585 arch_initcall(iommu_dma_init);
1586