1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * A fairly generic DMA-API to IOMMU-API glue layer. 4 * 5 * Copyright (C) 2014-2015 ARM Ltd. 6 * 7 * based in part on arch/arm/mm/dma-mapping.c: 8 * Copyright (C) 2000-2004 Russell King 9 */ 10 11 #include <linux/acpi_iort.h> 12 #include <linux/device.h> 13 #include <linux/dma-contiguous.h> 14 #include <linux/dma-iommu.h> 15 #include <linux/dma-noncoherent.h> 16 #include <linux/gfp.h> 17 #include <linux/huge_mm.h> 18 #include <linux/iommu.h> 19 #include <linux/iova.h> 20 #include <linux/irq.h> 21 #include <linux/mm.h> 22 #include <linux/pci.h> 23 #include <linux/scatterlist.h> 24 #include <linux/vmalloc.h> 25 26 struct iommu_dma_msi_page { 27 struct list_head list; 28 dma_addr_t iova; 29 phys_addr_t phys; 30 }; 31 32 enum iommu_dma_cookie_type { 33 IOMMU_DMA_IOVA_COOKIE, 34 IOMMU_DMA_MSI_COOKIE, 35 }; 36 37 struct iommu_dma_cookie { 38 enum iommu_dma_cookie_type type; 39 union { 40 /* Full allocator for IOMMU_DMA_IOVA_COOKIE */ 41 struct iova_domain iovad; 42 /* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */ 43 dma_addr_t msi_iova; 44 }; 45 struct list_head msi_page_list; 46 spinlock_t msi_lock; 47 48 /* Domain for flush queue callback; NULL if flush queue not in use */ 49 struct iommu_domain *fq_domain; 50 }; 51 52 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie) 53 { 54 if (cookie->type == IOMMU_DMA_IOVA_COOKIE) 55 return cookie->iovad.granule; 56 return PAGE_SIZE; 57 } 58 59 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type) 60 { 61 struct iommu_dma_cookie *cookie; 62 63 cookie = kzalloc(sizeof(*cookie), GFP_KERNEL); 64 if (cookie) { 65 spin_lock_init(&cookie->msi_lock); 66 INIT_LIST_HEAD(&cookie->msi_page_list); 67 cookie->type = type; 68 } 69 return cookie; 70 } 71 72 /** 73 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain 74 * @domain: IOMMU domain to prepare for DMA-API usage 75 * 76 * IOMMU drivers should normally call this from their domain_alloc 77 * callback when domain->type == IOMMU_DOMAIN_DMA. 78 */ 79 int iommu_get_dma_cookie(struct iommu_domain *domain) 80 { 81 if (domain->iova_cookie) 82 return -EEXIST; 83 84 domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE); 85 if (!domain->iova_cookie) 86 return -ENOMEM; 87 88 return 0; 89 } 90 EXPORT_SYMBOL(iommu_get_dma_cookie); 91 92 /** 93 * iommu_get_msi_cookie - Acquire just MSI remapping resources 94 * @domain: IOMMU domain to prepare 95 * @base: Start address of IOVA region for MSI mappings 96 * 97 * Users who manage their own IOVA allocation and do not want DMA API support, 98 * but would still like to take advantage of automatic MSI remapping, can use 99 * this to initialise their own domain appropriately. Users should reserve a 100 * contiguous IOVA region, starting at @base, large enough to accommodate the 101 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address 102 * used by the devices attached to @domain. 103 */ 104 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base) 105 { 106 struct iommu_dma_cookie *cookie; 107 108 if (domain->type != IOMMU_DOMAIN_UNMANAGED) 109 return -EINVAL; 110 111 if (domain->iova_cookie) 112 return -EEXIST; 113 114 cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE); 115 if (!cookie) 116 return -ENOMEM; 117 118 cookie->msi_iova = base; 119 domain->iova_cookie = cookie; 120 return 0; 121 } 122 EXPORT_SYMBOL(iommu_get_msi_cookie); 123 124 /** 125 * iommu_put_dma_cookie - Release a domain's DMA mapping resources 126 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or 127 * iommu_get_msi_cookie() 128 * 129 * IOMMU drivers should normally call this from their domain_free callback. 130 */ 131 void iommu_put_dma_cookie(struct iommu_domain *domain) 132 { 133 struct iommu_dma_cookie *cookie = domain->iova_cookie; 134 struct iommu_dma_msi_page *msi, *tmp; 135 136 if (!cookie) 137 return; 138 139 if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule) 140 put_iova_domain(&cookie->iovad); 141 142 list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) { 143 list_del(&msi->list); 144 kfree(msi); 145 } 146 kfree(cookie); 147 domain->iova_cookie = NULL; 148 } 149 EXPORT_SYMBOL(iommu_put_dma_cookie); 150 151 /** 152 * iommu_dma_get_resv_regions - Reserved region driver helper 153 * @dev: Device from iommu_get_resv_regions() 154 * @list: Reserved region list from iommu_get_resv_regions() 155 * 156 * IOMMU drivers can use this to implement their .get_resv_regions callback 157 * for general non-IOMMU-specific reservations. Currently, this covers GICv3 158 * ITS region reservation on ACPI based ARM platforms that may require HW MSI 159 * reservation. 160 */ 161 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list) 162 { 163 164 if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode)) 165 iort_iommu_msi_get_resv_regions(dev, list); 166 167 } 168 EXPORT_SYMBOL(iommu_dma_get_resv_regions); 169 170 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie, 171 phys_addr_t start, phys_addr_t end) 172 { 173 struct iova_domain *iovad = &cookie->iovad; 174 struct iommu_dma_msi_page *msi_page; 175 int i, num_pages; 176 177 start -= iova_offset(iovad, start); 178 num_pages = iova_align(iovad, end - start) >> iova_shift(iovad); 179 180 msi_page = kcalloc(num_pages, sizeof(*msi_page), GFP_KERNEL); 181 if (!msi_page) 182 return -ENOMEM; 183 184 for (i = 0; i < num_pages; i++) { 185 msi_page[i].phys = start; 186 msi_page[i].iova = start; 187 INIT_LIST_HEAD(&msi_page[i].list); 188 list_add(&msi_page[i].list, &cookie->msi_page_list); 189 start += iovad->granule; 190 } 191 192 return 0; 193 } 194 195 static int iova_reserve_pci_windows(struct pci_dev *dev, 196 struct iova_domain *iovad) 197 { 198 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus); 199 struct resource_entry *window; 200 unsigned long lo, hi; 201 phys_addr_t start = 0, end; 202 203 resource_list_for_each_entry(window, &bridge->windows) { 204 if (resource_type(window->res) != IORESOURCE_MEM) 205 continue; 206 207 lo = iova_pfn(iovad, window->res->start - window->offset); 208 hi = iova_pfn(iovad, window->res->end - window->offset); 209 reserve_iova(iovad, lo, hi); 210 } 211 212 /* Get reserved DMA windows from host bridge */ 213 resource_list_for_each_entry(window, &bridge->dma_ranges) { 214 end = window->res->start - window->offset; 215 resv_iova: 216 if (end > start) { 217 lo = iova_pfn(iovad, start); 218 hi = iova_pfn(iovad, end); 219 reserve_iova(iovad, lo, hi); 220 } else { 221 /* dma_ranges list should be sorted */ 222 dev_err(&dev->dev, "Failed to reserve IOVA\n"); 223 return -EINVAL; 224 } 225 226 start = window->res->end - window->offset + 1; 227 /* If window is last entry */ 228 if (window->node.next == &bridge->dma_ranges && 229 end != ~(phys_addr_t)0) { 230 end = ~(phys_addr_t)0; 231 goto resv_iova; 232 } 233 } 234 235 return 0; 236 } 237 238 static int iova_reserve_iommu_regions(struct device *dev, 239 struct iommu_domain *domain) 240 { 241 struct iommu_dma_cookie *cookie = domain->iova_cookie; 242 struct iova_domain *iovad = &cookie->iovad; 243 struct iommu_resv_region *region; 244 LIST_HEAD(resv_regions); 245 int ret = 0; 246 247 if (dev_is_pci(dev)) { 248 ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad); 249 if (ret) 250 return ret; 251 } 252 253 iommu_get_resv_regions(dev, &resv_regions); 254 list_for_each_entry(region, &resv_regions, list) { 255 unsigned long lo, hi; 256 257 /* We ARE the software that manages these! */ 258 if (region->type == IOMMU_RESV_SW_MSI) 259 continue; 260 261 lo = iova_pfn(iovad, region->start); 262 hi = iova_pfn(iovad, region->start + region->length - 1); 263 reserve_iova(iovad, lo, hi); 264 265 if (region->type == IOMMU_RESV_MSI) 266 ret = cookie_init_hw_msi_region(cookie, region->start, 267 region->start + region->length); 268 if (ret) 269 break; 270 } 271 iommu_put_resv_regions(dev, &resv_regions); 272 273 return ret; 274 } 275 276 static void iommu_dma_flush_iotlb_all(struct iova_domain *iovad) 277 { 278 struct iommu_dma_cookie *cookie; 279 struct iommu_domain *domain; 280 281 cookie = container_of(iovad, struct iommu_dma_cookie, iovad); 282 domain = cookie->fq_domain; 283 /* 284 * The IOMMU driver supporting DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE 285 * implies that ops->flush_iotlb_all must be non-NULL. 286 */ 287 domain->ops->flush_iotlb_all(domain); 288 } 289 290 /** 291 * iommu_dma_init_domain - Initialise a DMA mapping domain 292 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() 293 * @base: IOVA at which the mappable address space starts 294 * @size: Size of IOVA space 295 * @dev: Device the domain is being initialised for 296 * 297 * @base and @size should be exact multiples of IOMMU page granularity to 298 * avoid rounding surprises. If necessary, we reserve the page at address 0 299 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but 300 * any change which could make prior IOVAs invalid will fail. 301 */ 302 static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base, 303 u64 size, struct device *dev) 304 { 305 struct iommu_dma_cookie *cookie = domain->iova_cookie; 306 struct iova_domain *iovad = &cookie->iovad; 307 unsigned long order, base_pfn; 308 int attr; 309 310 if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE) 311 return -EINVAL; 312 313 /* Use the smallest supported page size for IOVA granularity */ 314 order = __ffs(domain->pgsize_bitmap); 315 base_pfn = max_t(unsigned long, 1, base >> order); 316 317 /* Check the domain allows at least some access to the device... */ 318 if (domain->geometry.force_aperture) { 319 if (base > domain->geometry.aperture_end || 320 base + size <= domain->geometry.aperture_start) { 321 pr_warn("specified DMA range outside IOMMU capability\n"); 322 return -EFAULT; 323 } 324 /* ...then finally give it a kicking to make sure it fits */ 325 base_pfn = max_t(unsigned long, base_pfn, 326 domain->geometry.aperture_start >> order); 327 } 328 329 /* start_pfn is always nonzero for an already-initialised domain */ 330 if (iovad->start_pfn) { 331 if (1UL << order != iovad->granule || 332 base_pfn != iovad->start_pfn) { 333 pr_warn("Incompatible range for DMA domain\n"); 334 return -EFAULT; 335 } 336 337 return 0; 338 } 339 340 init_iova_domain(iovad, 1UL << order, base_pfn); 341 342 if (!cookie->fq_domain && !iommu_domain_get_attr(domain, 343 DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE, &attr) && attr) { 344 cookie->fq_domain = domain; 345 init_iova_flush_queue(iovad, iommu_dma_flush_iotlb_all, NULL); 346 } 347 348 if (!dev) 349 return 0; 350 351 return iova_reserve_iommu_regions(dev, domain); 352 } 353 354 /** 355 * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API 356 * page flags. 357 * @dir: Direction of DMA transfer 358 * @coherent: Is the DMA master cache-coherent? 359 * @attrs: DMA attributes for the mapping 360 * 361 * Return: corresponding IOMMU API page protection flags 362 */ 363 static int dma_info_to_prot(enum dma_data_direction dir, bool coherent, 364 unsigned long attrs) 365 { 366 int prot = coherent ? IOMMU_CACHE : 0; 367 368 if (attrs & DMA_ATTR_PRIVILEGED) 369 prot |= IOMMU_PRIV; 370 371 switch (dir) { 372 case DMA_BIDIRECTIONAL: 373 return prot | IOMMU_READ | IOMMU_WRITE; 374 case DMA_TO_DEVICE: 375 return prot | IOMMU_READ; 376 case DMA_FROM_DEVICE: 377 return prot | IOMMU_WRITE; 378 default: 379 return 0; 380 } 381 } 382 383 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain, 384 size_t size, dma_addr_t dma_limit, struct device *dev) 385 { 386 struct iommu_dma_cookie *cookie = domain->iova_cookie; 387 struct iova_domain *iovad = &cookie->iovad; 388 unsigned long shift, iova_len, iova = 0; 389 390 if (cookie->type == IOMMU_DMA_MSI_COOKIE) { 391 cookie->msi_iova += size; 392 return cookie->msi_iova - size; 393 } 394 395 shift = iova_shift(iovad); 396 iova_len = size >> shift; 397 /* 398 * Freeing non-power-of-two-sized allocations back into the IOVA caches 399 * will come back to bite us badly, so we have to waste a bit of space 400 * rounding up anything cacheable to make sure that can't happen. The 401 * order of the unadjusted size will still match upon freeing. 402 */ 403 if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1))) 404 iova_len = roundup_pow_of_two(iova_len); 405 406 if (dev->bus_dma_mask) 407 dma_limit &= dev->bus_dma_mask; 408 409 if (domain->geometry.force_aperture) 410 dma_limit = min(dma_limit, domain->geometry.aperture_end); 411 412 /* Try to get PCI devices a SAC address */ 413 if (dma_limit > DMA_BIT_MASK(32) && dev_is_pci(dev)) 414 iova = alloc_iova_fast(iovad, iova_len, 415 DMA_BIT_MASK(32) >> shift, false); 416 417 if (!iova) 418 iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift, 419 true); 420 421 return (dma_addr_t)iova << shift; 422 } 423 424 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie, 425 dma_addr_t iova, size_t size) 426 { 427 struct iova_domain *iovad = &cookie->iovad; 428 429 /* The MSI case is only ever cleaning up its most recent allocation */ 430 if (cookie->type == IOMMU_DMA_MSI_COOKIE) 431 cookie->msi_iova -= size; 432 else if (cookie->fq_domain) /* non-strict mode */ 433 queue_iova(iovad, iova_pfn(iovad, iova), 434 size >> iova_shift(iovad), 0); 435 else 436 free_iova_fast(iovad, iova_pfn(iovad, iova), 437 size >> iova_shift(iovad)); 438 } 439 440 static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr, 441 size_t size) 442 { 443 struct iommu_domain *domain = iommu_get_dma_domain(dev); 444 struct iommu_dma_cookie *cookie = domain->iova_cookie; 445 struct iova_domain *iovad = &cookie->iovad; 446 size_t iova_off = iova_offset(iovad, dma_addr); 447 448 dma_addr -= iova_off; 449 size = iova_align(iovad, size + iova_off); 450 451 WARN_ON(iommu_unmap_fast(domain, dma_addr, size) != size); 452 if (!cookie->fq_domain) 453 iommu_tlb_sync(domain); 454 iommu_dma_free_iova(cookie, dma_addr, size); 455 } 456 457 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys, 458 size_t size, int prot) 459 { 460 struct iommu_domain *domain = iommu_get_dma_domain(dev); 461 struct iommu_dma_cookie *cookie = domain->iova_cookie; 462 struct iova_domain *iovad = &cookie->iovad; 463 size_t iova_off = iova_offset(iovad, phys); 464 dma_addr_t iova; 465 466 size = iova_align(iovad, size + iova_off); 467 468 iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev); 469 if (!iova) 470 return DMA_MAPPING_ERROR; 471 472 if (iommu_map(domain, iova, phys - iova_off, size, prot)) { 473 iommu_dma_free_iova(cookie, iova, size); 474 return DMA_MAPPING_ERROR; 475 } 476 return iova + iova_off; 477 } 478 479 static void __iommu_dma_free_pages(struct page **pages, int count) 480 { 481 while (count--) 482 __free_page(pages[count]); 483 kvfree(pages); 484 } 485 486 static struct page **__iommu_dma_alloc_pages(struct device *dev, 487 unsigned int count, unsigned long order_mask, gfp_t gfp) 488 { 489 struct page **pages; 490 unsigned int i = 0, nid = dev_to_node(dev); 491 492 order_mask &= (2U << MAX_ORDER) - 1; 493 if (!order_mask) 494 return NULL; 495 496 pages = kvzalloc(count * sizeof(*pages), GFP_KERNEL); 497 if (!pages) 498 return NULL; 499 500 /* IOMMU can map any pages, so himem can also be used here */ 501 gfp |= __GFP_NOWARN | __GFP_HIGHMEM; 502 503 while (count) { 504 struct page *page = NULL; 505 unsigned int order_size; 506 507 /* 508 * Higher-order allocations are a convenience rather 509 * than a necessity, hence using __GFP_NORETRY until 510 * falling back to minimum-order allocations. 511 */ 512 for (order_mask &= (2U << __fls(count)) - 1; 513 order_mask; order_mask &= ~order_size) { 514 unsigned int order = __fls(order_mask); 515 gfp_t alloc_flags = gfp; 516 517 order_size = 1U << order; 518 if (order_mask > order_size) 519 alloc_flags |= __GFP_NORETRY; 520 page = alloc_pages_node(nid, alloc_flags, order); 521 if (!page) 522 continue; 523 if (!order) 524 break; 525 if (!PageCompound(page)) { 526 split_page(page, order); 527 break; 528 } else if (!split_huge_page(page)) { 529 break; 530 } 531 __free_pages(page, order); 532 } 533 if (!page) { 534 __iommu_dma_free_pages(pages, i); 535 return NULL; 536 } 537 count -= order_size; 538 while (order_size--) 539 pages[i++] = page++; 540 } 541 return pages; 542 } 543 544 static struct page **__iommu_dma_get_pages(void *cpu_addr) 545 { 546 struct vm_struct *area = find_vm_area(cpu_addr); 547 548 if (!area || !area->pages) 549 return NULL; 550 return area->pages; 551 } 552 553 /** 554 * iommu_dma_alloc_remap - Allocate and map a buffer contiguous in IOVA space 555 * @dev: Device to allocate memory for. Must be a real device 556 * attached to an iommu_dma_domain 557 * @size: Size of buffer in bytes 558 * @dma_handle: Out argument for allocated DMA handle 559 * @gfp: Allocation flags 560 * @attrs: DMA attributes for this allocation 561 * 562 * If @size is less than PAGE_SIZE, then a full CPU page will be allocated, 563 * but an IOMMU which supports smaller pages might not map the whole thing. 564 * 565 * Return: Mapped virtual address, or NULL on failure. 566 */ 567 static void *iommu_dma_alloc_remap(struct device *dev, size_t size, 568 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) 569 { 570 struct iommu_domain *domain = iommu_get_dma_domain(dev); 571 struct iommu_dma_cookie *cookie = domain->iova_cookie; 572 struct iova_domain *iovad = &cookie->iovad; 573 bool coherent = dev_is_dma_coherent(dev); 574 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs); 575 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs); 576 unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap; 577 struct page **pages; 578 struct sg_table sgt; 579 dma_addr_t iova; 580 void *vaddr; 581 582 *dma_handle = DMA_MAPPING_ERROR; 583 584 min_size = alloc_sizes & -alloc_sizes; 585 if (min_size < PAGE_SIZE) { 586 min_size = PAGE_SIZE; 587 alloc_sizes |= PAGE_SIZE; 588 } else { 589 size = ALIGN(size, min_size); 590 } 591 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES) 592 alloc_sizes = min_size; 593 594 count = PAGE_ALIGN(size) >> PAGE_SHIFT; 595 pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT, 596 gfp); 597 if (!pages) 598 return NULL; 599 600 size = iova_align(iovad, size); 601 iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev); 602 if (!iova) 603 goto out_free_pages; 604 605 if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL)) 606 goto out_free_iova; 607 608 if (!(ioprot & IOMMU_CACHE)) { 609 struct scatterlist *sg; 610 int i; 611 612 for_each_sg(sgt.sgl, sg, sgt.orig_nents, i) 613 arch_dma_prep_coherent(sg_page(sg), sg->length); 614 } 615 616 if (iommu_map_sg(domain, iova, sgt.sgl, sgt.orig_nents, ioprot) 617 < size) 618 goto out_free_sg; 619 620 vaddr = dma_common_pages_remap(pages, size, VM_USERMAP, prot, 621 __builtin_return_address(0)); 622 if (!vaddr) 623 goto out_unmap; 624 625 *dma_handle = iova; 626 sg_free_table(&sgt); 627 return vaddr; 628 629 out_unmap: 630 __iommu_dma_unmap(dev, iova, size); 631 out_free_sg: 632 sg_free_table(&sgt); 633 out_free_iova: 634 iommu_dma_free_iova(cookie, iova, size); 635 out_free_pages: 636 __iommu_dma_free_pages(pages, count); 637 return NULL; 638 } 639 640 /** 641 * __iommu_dma_mmap - Map a buffer into provided user VMA 642 * @pages: Array representing buffer from __iommu_dma_alloc() 643 * @size: Size of buffer in bytes 644 * @vma: VMA describing requested userspace mapping 645 * 646 * Maps the pages of the buffer in @pages into @vma. The caller is responsible 647 * for verifying the correct size and protection of @vma beforehand. 648 */ 649 static int __iommu_dma_mmap(struct page **pages, size_t size, 650 struct vm_area_struct *vma) 651 { 652 return vm_map_pages(vma, pages, PAGE_ALIGN(size) >> PAGE_SHIFT); 653 } 654 655 static void iommu_dma_sync_single_for_cpu(struct device *dev, 656 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir) 657 { 658 phys_addr_t phys; 659 660 if (dev_is_dma_coherent(dev)) 661 return; 662 663 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle); 664 arch_sync_dma_for_cpu(dev, phys, size, dir); 665 } 666 667 static void iommu_dma_sync_single_for_device(struct device *dev, 668 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir) 669 { 670 phys_addr_t phys; 671 672 if (dev_is_dma_coherent(dev)) 673 return; 674 675 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle); 676 arch_sync_dma_for_device(dev, phys, size, dir); 677 } 678 679 static void iommu_dma_sync_sg_for_cpu(struct device *dev, 680 struct scatterlist *sgl, int nelems, 681 enum dma_data_direction dir) 682 { 683 struct scatterlist *sg; 684 int i; 685 686 if (dev_is_dma_coherent(dev)) 687 return; 688 689 for_each_sg(sgl, sg, nelems, i) 690 arch_sync_dma_for_cpu(dev, sg_phys(sg), sg->length, dir); 691 } 692 693 static void iommu_dma_sync_sg_for_device(struct device *dev, 694 struct scatterlist *sgl, int nelems, 695 enum dma_data_direction dir) 696 { 697 struct scatterlist *sg; 698 int i; 699 700 if (dev_is_dma_coherent(dev)) 701 return; 702 703 for_each_sg(sgl, sg, nelems, i) 704 arch_sync_dma_for_device(dev, sg_phys(sg), sg->length, dir); 705 } 706 707 static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page, 708 unsigned long offset, size_t size, enum dma_data_direction dir, 709 unsigned long attrs) 710 { 711 phys_addr_t phys = page_to_phys(page) + offset; 712 bool coherent = dev_is_dma_coherent(dev); 713 int prot = dma_info_to_prot(dir, coherent, attrs); 714 dma_addr_t dma_handle; 715 716 dma_handle =__iommu_dma_map(dev, phys, size, prot); 717 if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC) && 718 dma_handle != DMA_MAPPING_ERROR) 719 arch_sync_dma_for_device(dev, phys, size, dir); 720 return dma_handle; 721 } 722 723 static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle, 724 size_t size, enum dma_data_direction dir, unsigned long attrs) 725 { 726 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 727 iommu_dma_sync_single_for_cpu(dev, dma_handle, size, dir); 728 __iommu_dma_unmap(dev, dma_handle, size); 729 } 730 731 /* 732 * Prepare a successfully-mapped scatterlist to give back to the caller. 733 * 734 * At this point the segments are already laid out by iommu_dma_map_sg() to 735 * avoid individually crossing any boundaries, so we merely need to check a 736 * segment's start address to avoid concatenating across one. 737 */ 738 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents, 739 dma_addr_t dma_addr) 740 { 741 struct scatterlist *s, *cur = sg; 742 unsigned long seg_mask = dma_get_seg_boundary(dev); 743 unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev); 744 int i, count = 0; 745 746 for_each_sg(sg, s, nents, i) { 747 /* Restore this segment's original unaligned fields first */ 748 unsigned int s_iova_off = sg_dma_address(s); 749 unsigned int s_length = sg_dma_len(s); 750 unsigned int s_iova_len = s->length; 751 752 s->offset += s_iova_off; 753 s->length = s_length; 754 sg_dma_address(s) = DMA_MAPPING_ERROR; 755 sg_dma_len(s) = 0; 756 757 /* 758 * Now fill in the real DMA data. If... 759 * - there is a valid output segment to append to 760 * - and this segment starts on an IOVA page boundary 761 * - but doesn't fall at a segment boundary 762 * - and wouldn't make the resulting output segment too long 763 */ 764 if (cur_len && !s_iova_off && (dma_addr & seg_mask) && 765 (max_len - cur_len >= s_length)) { 766 /* ...then concatenate it with the previous one */ 767 cur_len += s_length; 768 } else { 769 /* Otherwise start the next output segment */ 770 if (i > 0) 771 cur = sg_next(cur); 772 cur_len = s_length; 773 count++; 774 775 sg_dma_address(cur) = dma_addr + s_iova_off; 776 } 777 778 sg_dma_len(cur) = cur_len; 779 dma_addr += s_iova_len; 780 781 if (s_length + s_iova_off < s_iova_len) 782 cur_len = 0; 783 } 784 return count; 785 } 786 787 /* 788 * If mapping failed, then just restore the original list, 789 * but making sure the DMA fields are invalidated. 790 */ 791 static void __invalidate_sg(struct scatterlist *sg, int nents) 792 { 793 struct scatterlist *s; 794 int i; 795 796 for_each_sg(sg, s, nents, i) { 797 if (sg_dma_address(s) != DMA_MAPPING_ERROR) 798 s->offset += sg_dma_address(s); 799 if (sg_dma_len(s)) 800 s->length = sg_dma_len(s); 801 sg_dma_address(s) = DMA_MAPPING_ERROR; 802 sg_dma_len(s) = 0; 803 } 804 } 805 806 /* 807 * The DMA API client is passing in a scatterlist which could describe 808 * any old buffer layout, but the IOMMU API requires everything to be 809 * aligned to IOMMU pages. Hence the need for this complicated bit of 810 * impedance-matching, to be able to hand off a suitably-aligned list, 811 * but still preserve the original offsets and sizes for the caller. 812 */ 813 static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg, 814 int nents, enum dma_data_direction dir, unsigned long attrs) 815 { 816 struct iommu_domain *domain = iommu_get_dma_domain(dev); 817 struct iommu_dma_cookie *cookie = domain->iova_cookie; 818 struct iova_domain *iovad = &cookie->iovad; 819 struct scatterlist *s, *prev = NULL; 820 int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs); 821 dma_addr_t iova; 822 size_t iova_len = 0; 823 unsigned long mask = dma_get_seg_boundary(dev); 824 int i; 825 826 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 827 iommu_dma_sync_sg_for_device(dev, sg, nents, dir); 828 829 /* 830 * Work out how much IOVA space we need, and align the segments to 831 * IOVA granules for the IOMMU driver to handle. With some clever 832 * trickery we can modify the list in-place, but reversibly, by 833 * stashing the unaligned parts in the as-yet-unused DMA fields. 834 */ 835 for_each_sg(sg, s, nents, i) { 836 size_t s_iova_off = iova_offset(iovad, s->offset); 837 size_t s_length = s->length; 838 size_t pad_len = (mask - iova_len + 1) & mask; 839 840 sg_dma_address(s) = s_iova_off; 841 sg_dma_len(s) = s_length; 842 s->offset -= s_iova_off; 843 s_length = iova_align(iovad, s_length + s_iova_off); 844 s->length = s_length; 845 846 /* 847 * Due to the alignment of our single IOVA allocation, we can 848 * depend on these assumptions about the segment boundary mask: 849 * - If mask size >= IOVA size, then the IOVA range cannot 850 * possibly fall across a boundary, so we don't care. 851 * - If mask size < IOVA size, then the IOVA range must start 852 * exactly on a boundary, therefore we can lay things out 853 * based purely on segment lengths without needing to know 854 * the actual addresses beforehand. 855 * - The mask must be a power of 2, so pad_len == 0 if 856 * iova_len == 0, thus we cannot dereference prev the first 857 * time through here (i.e. before it has a meaningful value). 858 */ 859 if (pad_len && pad_len < s_length - 1) { 860 prev->length += pad_len; 861 iova_len += pad_len; 862 } 863 864 iova_len += s_length; 865 prev = s; 866 } 867 868 iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev); 869 if (!iova) 870 goto out_restore_sg; 871 872 /* 873 * We'll leave any physical concatenation to the IOMMU driver's 874 * implementation - it knows better than we do. 875 */ 876 if (iommu_map_sg(domain, iova, sg, nents, prot) < iova_len) 877 goto out_free_iova; 878 879 return __finalise_sg(dev, sg, nents, iova); 880 881 out_free_iova: 882 iommu_dma_free_iova(cookie, iova, iova_len); 883 out_restore_sg: 884 __invalidate_sg(sg, nents); 885 return 0; 886 } 887 888 static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, 889 int nents, enum dma_data_direction dir, unsigned long attrs) 890 { 891 dma_addr_t start, end; 892 struct scatterlist *tmp; 893 int i; 894 895 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 896 iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir); 897 898 /* 899 * The scatterlist segments are mapped into a single 900 * contiguous IOVA allocation, so this is incredibly easy. 901 */ 902 start = sg_dma_address(sg); 903 for_each_sg(sg_next(sg), tmp, nents - 1, i) { 904 if (sg_dma_len(tmp) == 0) 905 break; 906 sg = tmp; 907 } 908 end = sg_dma_address(sg) + sg_dma_len(sg); 909 __iommu_dma_unmap(dev, start, end - start); 910 } 911 912 static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys, 913 size_t size, enum dma_data_direction dir, unsigned long attrs) 914 { 915 return __iommu_dma_map(dev, phys, size, 916 dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO); 917 } 918 919 static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle, 920 size_t size, enum dma_data_direction dir, unsigned long attrs) 921 { 922 __iommu_dma_unmap(dev, handle, size); 923 } 924 925 static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr) 926 { 927 size_t alloc_size = PAGE_ALIGN(size); 928 int count = alloc_size >> PAGE_SHIFT; 929 struct page *page = NULL, **pages = NULL; 930 931 /* Non-coherent atomic allocation? Easy */ 932 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && 933 dma_free_from_pool(cpu_addr, alloc_size)) 934 return; 935 936 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) { 937 /* 938 * If it the address is remapped, then it's either non-coherent 939 * or highmem CMA, or an iommu_dma_alloc_remap() construction. 940 */ 941 pages = __iommu_dma_get_pages(cpu_addr); 942 if (!pages) 943 page = vmalloc_to_page(cpu_addr); 944 dma_common_free_remap(cpu_addr, alloc_size, VM_USERMAP); 945 } else { 946 /* Lowmem means a coherent atomic or CMA allocation */ 947 page = virt_to_page(cpu_addr); 948 } 949 950 if (pages) 951 __iommu_dma_free_pages(pages, count); 952 if (page) 953 dma_free_contiguous(dev, page, alloc_size); 954 } 955 956 static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr, 957 dma_addr_t handle, unsigned long attrs) 958 { 959 __iommu_dma_unmap(dev, handle, size); 960 __iommu_dma_free(dev, size, cpu_addr); 961 } 962 963 static void *iommu_dma_alloc_pages(struct device *dev, size_t size, 964 struct page **pagep, gfp_t gfp, unsigned long attrs) 965 { 966 bool coherent = dev_is_dma_coherent(dev); 967 size_t alloc_size = PAGE_ALIGN(size); 968 int node = dev_to_node(dev); 969 struct page *page = NULL; 970 void *cpu_addr; 971 972 page = dma_alloc_contiguous(dev, alloc_size, gfp); 973 if (!page) 974 page = alloc_pages_node(node, gfp, get_order(alloc_size)); 975 if (!page) 976 return NULL; 977 978 if (IS_ENABLED(CONFIG_DMA_REMAP) && (!coherent || PageHighMem(page))) { 979 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs); 980 981 cpu_addr = dma_common_contiguous_remap(page, alloc_size, 982 VM_USERMAP, prot, __builtin_return_address(0)); 983 if (!cpu_addr) 984 goto out_free_pages; 985 986 if (!coherent) 987 arch_dma_prep_coherent(page, size); 988 } else { 989 cpu_addr = page_address(page); 990 } 991 992 *pagep = page; 993 memset(cpu_addr, 0, alloc_size); 994 return cpu_addr; 995 out_free_pages: 996 dma_free_contiguous(dev, page, alloc_size); 997 return NULL; 998 } 999 1000 static void *iommu_dma_alloc(struct device *dev, size_t size, 1001 dma_addr_t *handle, gfp_t gfp, unsigned long attrs) 1002 { 1003 bool coherent = dev_is_dma_coherent(dev); 1004 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs); 1005 struct page *page = NULL; 1006 void *cpu_addr; 1007 1008 gfp |= __GFP_ZERO; 1009 1010 if (IS_ENABLED(CONFIG_DMA_REMAP) && gfpflags_allow_blocking(gfp) && 1011 !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) 1012 return iommu_dma_alloc_remap(dev, size, handle, gfp, attrs); 1013 1014 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && 1015 !gfpflags_allow_blocking(gfp) && !coherent) 1016 cpu_addr = dma_alloc_from_pool(PAGE_ALIGN(size), &page, gfp); 1017 else 1018 cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs); 1019 if (!cpu_addr) 1020 return NULL; 1021 1022 *handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot); 1023 if (*handle == DMA_MAPPING_ERROR) { 1024 __iommu_dma_free(dev, size, cpu_addr); 1025 return NULL; 1026 } 1027 1028 return cpu_addr; 1029 } 1030 1031 static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma, 1032 void *cpu_addr, dma_addr_t dma_addr, size_t size, 1033 unsigned long attrs) 1034 { 1035 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 1036 unsigned long pfn, off = vma->vm_pgoff; 1037 int ret; 1038 1039 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs); 1040 1041 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) 1042 return ret; 1043 1044 if (off >= nr_pages || vma_pages(vma) > nr_pages - off) 1045 return -ENXIO; 1046 1047 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) { 1048 struct page **pages = __iommu_dma_get_pages(cpu_addr); 1049 1050 if (pages) 1051 return __iommu_dma_mmap(pages, size, vma); 1052 pfn = vmalloc_to_pfn(cpu_addr); 1053 } else { 1054 pfn = page_to_pfn(virt_to_page(cpu_addr)); 1055 } 1056 1057 return remap_pfn_range(vma, vma->vm_start, pfn + off, 1058 vma->vm_end - vma->vm_start, 1059 vma->vm_page_prot); 1060 } 1061 1062 static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt, 1063 void *cpu_addr, dma_addr_t dma_addr, size_t size, 1064 unsigned long attrs) 1065 { 1066 struct page *page; 1067 int ret; 1068 1069 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) { 1070 struct page **pages = __iommu_dma_get_pages(cpu_addr); 1071 1072 if (pages) { 1073 return sg_alloc_table_from_pages(sgt, pages, 1074 PAGE_ALIGN(size) >> PAGE_SHIFT, 1075 0, size, GFP_KERNEL); 1076 } 1077 1078 page = vmalloc_to_page(cpu_addr); 1079 } else { 1080 page = virt_to_page(cpu_addr); 1081 } 1082 1083 ret = sg_alloc_table(sgt, 1, GFP_KERNEL); 1084 if (!ret) 1085 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); 1086 return ret; 1087 } 1088 1089 static const struct dma_map_ops iommu_dma_ops = { 1090 .alloc = iommu_dma_alloc, 1091 .free = iommu_dma_free, 1092 .mmap = iommu_dma_mmap, 1093 .get_sgtable = iommu_dma_get_sgtable, 1094 .map_page = iommu_dma_map_page, 1095 .unmap_page = iommu_dma_unmap_page, 1096 .map_sg = iommu_dma_map_sg, 1097 .unmap_sg = iommu_dma_unmap_sg, 1098 .sync_single_for_cpu = iommu_dma_sync_single_for_cpu, 1099 .sync_single_for_device = iommu_dma_sync_single_for_device, 1100 .sync_sg_for_cpu = iommu_dma_sync_sg_for_cpu, 1101 .sync_sg_for_device = iommu_dma_sync_sg_for_device, 1102 .map_resource = iommu_dma_map_resource, 1103 .unmap_resource = iommu_dma_unmap_resource, 1104 }; 1105 1106 /* 1107 * The IOMMU core code allocates the default DMA domain, which the underlying 1108 * IOMMU driver needs to support via the dma-iommu layer. 1109 */ 1110 void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size) 1111 { 1112 struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 1113 1114 if (!domain) 1115 goto out_err; 1116 1117 /* 1118 * The IOMMU core code allocates the default DMA domain, which the 1119 * underlying IOMMU driver needs to support via the dma-iommu layer. 1120 */ 1121 if (domain->type == IOMMU_DOMAIN_DMA) { 1122 if (iommu_dma_init_domain(domain, dma_base, size, dev)) 1123 goto out_err; 1124 dev->dma_ops = &iommu_dma_ops; 1125 } 1126 1127 return; 1128 out_err: 1129 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n", 1130 dev_name(dev)); 1131 } 1132 1133 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev, 1134 phys_addr_t msi_addr, struct iommu_domain *domain) 1135 { 1136 struct iommu_dma_cookie *cookie = domain->iova_cookie; 1137 struct iommu_dma_msi_page *msi_page; 1138 dma_addr_t iova; 1139 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO; 1140 size_t size = cookie_msi_granule(cookie); 1141 1142 msi_addr &= ~(phys_addr_t)(size - 1); 1143 list_for_each_entry(msi_page, &cookie->msi_page_list, list) 1144 if (msi_page->phys == msi_addr) 1145 return msi_page; 1146 1147 msi_page = kzalloc(sizeof(*msi_page), GFP_ATOMIC); 1148 if (!msi_page) 1149 return NULL; 1150 1151 iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev); 1152 if (!iova) 1153 goto out_free_page; 1154 1155 if (iommu_map(domain, iova, msi_addr, size, prot)) 1156 goto out_free_iova; 1157 1158 INIT_LIST_HEAD(&msi_page->list); 1159 msi_page->phys = msi_addr; 1160 msi_page->iova = iova; 1161 list_add(&msi_page->list, &cookie->msi_page_list); 1162 return msi_page; 1163 1164 out_free_iova: 1165 iommu_dma_free_iova(cookie, iova, size); 1166 out_free_page: 1167 kfree(msi_page); 1168 return NULL; 1169 } 1170 1171 int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr) 1172 { 1173 struct device *dev = msi_desc_to_dev(desc); 1174 struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 1175 struct iommu_dma_cookie *cookie; 1176 struct iommu_dma_msi_page *msi_page; 1177 unsigned long flags; 1178 1179 if (!domain || !domain->iova_cookie) { 1180 desc->iommu_cookie = NULL; 1181 return 0; 1182 } 1183 1184 cookie = domain->iova_cookie; 1185 1186 /* 1187 * We disable IRQs to rule out a possible inversion against 1188 * irq_desc_lock if, say, someone tries to retarget the affinity 1189 * of an MSI from within an IPI handler. 1190 */ 1191 spin_lock_irqsave(&cookie->msi_lock, flags); 1192 msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain); 1193 spin_unlock_irqrestore(&cookie->msi_lock, flags); 1194 1195 msi_desc_set_iommu_cookie(desc, msi_page); 1196 1197 if (!msi_page) 1198 return -ENOMEM; 1199 return 0; 1200 } 1201 1202 void iommu_dma_compose_msi_msg(struct msi_desc *desc, 1203 struct msi_msg *msg) 1204 { 1205 struct device *dev = msi_desc_to_dev(desc); 1206 const struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 1207 const struct iommu_dma_msi_page *msi_page; 1208 1209 msi_page = msi_desc_get_iommu_cookie(desc); 1210 1211 if (!domain || !domain->iova_cookie || WARN_ON(!msi_page)) 1212 return; 1213 1214 msg->address_hi = upper_32_bits(msi_page->iova); 1215 msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1; 1216 msg->address_lo += lower_32_bits(msi_page->iova); 1217 } 1218 1219 static int iommu_dma_init(void) 1220 { 1221 return iova_cache_get(); 1222 } 1223 arch_initcall(iommu_dma_init); 1224