xref: /openbmc/linux/drivers/iommu/dma-iommu.c (revision 8bf3cbe32b180836720f735e6de5dee700052317)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * A fairly generic DMA-API to IOMMU-API glue layer.
4  *
5  * Copyright (C) 2014-2015 ARM Ltd.
6  *
7  * based in part on arch/arm/mm/dma-mapping.c:
8  * Copyright (C) 2000-2004 Russell King
9  */
10 
11 #include <linux/acpi_iort.h>
12 #include <linux/device.h>
13 #include <linux/dma-contiguous.h>
14 #include <linux/dma-iommu.h>
15 #include <linux/dma-noncoherent.h>
16 #include <linux/gfp.h>
17 #include <linux/huge_mm.h>
18 #include <linux/iommu.h>
19 #include <linux/iova.h>
20 #include <linux/irq.h>
21 #include <linux/mm.h>
22 #include <linux/pci.h>
23 #include <linux/scatterlist.h>
24 #include <linux/vmalloc.h>
25 
26 struct iommu_dma_msi_page {
27 	struct list_head	list;
28 	dma_addr_t		iova;
29 	phys_addr_t		phys;
30 };
31 
32 enum iommu_dma_cookie_type {
33 	IOMMU_DMA_IOVA_COOKIE,
34 	IOMMU_DMA_MSI_COOKIE,
35 };
36 
37 struct iommu_dma_cookie {
38 	enum iommu_dma_cookie_type	type;
39 	union {
40 		/* Full allocator for IOMMU_DMA_IOVA_COOKIE */
41 		struct iova_domain	iovad;
42 		/* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
43 		dma_addr_t		msi_iova;
44 	};
45 	struct list_head		msi_page_list;
46 	spinlock_t			msi_lock;
47 
48 	/* Domain for flush queue callback; NULL if flush queue not in use */
49 	struct iommu_domain		*fq_domain;
50 };
51 
52 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
53 {
54 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
55 		return cookie->iovad.granule;
56 	return PAGE_SIZE;
57 }
58 
59 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
60 {
61 	struct iommu_dma_cookie *cookie;
62 
63 	cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
64 	if (cookie) {
65 		spin_lock_init(&cookie->msi_lock);
66 		INIT_LIST_HEAD(&cookie->msi_page_list);
67 		cookie->type = type;
68 	}
69 	return cookie;
70 }
71 
72 /**
73  * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
74  * @domain: IOMMU domain to prepare for DMA-API usage
75  *
76  * IOMMU drivers should normally call this from their domain_alloc
77  * callback when domain->type == IOMMU_DOMAIN_DMA.
78  */
79 int iommu_get_dma_cookie(struct iommu_domain *domain)
80 {
81 	if (domain->iova_cookie)
82 		return -EEXIST;
83 
84 	domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
85 	if (!domain->iova_cookie)
86 		return -ENOMEM;
87 
88 	return 0;
89 }
90 EXPORT_SYMBOL(iommu_get_dma_cookie);
91 
92 /**
93  * iommu_get_msi_cookie - Acquire just MSI remapping resources
94  * @domain: IOMMU domain to prepare
95  * @base: Start address of IOVA region for MSI mappings
96  *
97  * Users who manage their own IOVA allocation and do not want DMA API support,
98  * but would still like to take advantage of automatic MSI remapping, can use
99  * this to initialise their own domain appropriately. Users should reserve a
100  * contiguous IOVA region, starting at @base, large enough to accommodate the
101  * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
102  * used by the devices attached to @domain.
103  */
104 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
105 {
106 	struct iommu_dma_cookie *cookie;
107 
108 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
109 		return -EINVAL;
110 
111 	if (domain->iova_cookie)
112 		return -EEXIST;
113 
114 	cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
115 	if (!cookie)
116 		return -ENOMEM;
117 
118 	cookie->msi_iova = base;
119 	domain->iova_cookie = cookie;
120 	return 0;
121 }
122 EXPORT_SYMBOL(iommu_get_msi_cookie);
123 
124 /**
125  * iommu_put_dma_cookie - Release a domain's DMA mapping resources
126  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
127  *          iommu_get_msi_cookie()
128  *
129  * IOMMU drivers should normally call this from their domain_free callback.
130  */
131 void iommu_put_dma_cookie(struct iommu_domain *domain)
132 {
133 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
134 	struct iommu_dma_msi_page *msi, *tmp;
135 
136 	if (!cookie)
137 		return;
138 
139 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule)
140 		put_iova_domain(&cookie->iovad);
141 
142 	list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
143 		list_del(&msi->list);
144 		kfree(msi);
145 	}
146 	kfree(cookie);
147 	domain->iova_cookie = NULL;
148 }
149 EXPORT_SYMBOL(iommu_put_dma_cookie);
150 
151 /**
152  * iommu_dma_get_resv_regions - Reserved region driver helper
153  * @dev: Device from iommu_get_resv_regions()
154  * @list: Reserved region list from iommu_get_resv_regions()
155  *
156  * IOMMU drivers can use this to implement their .get_resv_regions callback
157  * for general non-IOMMU-specific reservations. Currently, this covers GICv3
158  * ITS region reservation on ACPI based ARM platforms that may require HW MSI
159  * reservation.
160  */
161 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
162 {
163 
164 	if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode))
165 		iort_iommu_msi_get_resv_regions(dev, list);
166 
167 }
168 EXPORT_SYMBOL(iommu_dma_get_resv_regions);
169 
170 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
171 		phys_addr_t start, phys_addr_t end)
172 {
173 	struct iova_domain *iovad = &cookie->iovad;
174 	struct iommu_dma_msi_page *msi_page;
175 	int i, num_pages;
176 
177 	start -= iova_offset(iovad, start);
178 	num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
179 
180 	msi_page = kcalloc(num_pages, sizeof(*msi_page), GFP_KERNEL);
181 	if (!msi_page)
182 		return -ENOMEM;
183 
184 	for (i = 0; i < num_pages; i++) {
185 		msi_page[i].phys = start;
186 		msi_page[i].iova = start;
187 		INIT_LIST_HEAD(&msi_page[i].list);
188 		list_add(&msi_page[i].list, &cookie->msi_page_list);
189 		start += iovad->granule;
190 	}
191 
192 	return 0;
193 }
194 
195 static int iova_reserve_pci_windows(struct pci_dev *dev,
196 		struct iova_domain *iovad)
197 {
198 	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
199 	struct resource_entry *window;
200 	unsigned long lo, hi;
201 	phys_addr_t start = 0, end;
202 
203 	resource_list_for_each_entry(window, &bridge->windows) {
204 		if (resource_type(window->res) != IORESOURCE_MEM)
205 			continue;
206 
207 		lo = iova_pfn(iovad, window->res->start - window->offset);
208 		hi = iova_pfn(iovad, window->res->end - window->offset);
209 		reserve_iova(iovad, lo, hi);
210 	}
211 
212 	/* Get reserved DMA windows from host bridge */
213 	resource_list_for_each_entry(window, &bridge->dma_ranges) {
214 		end = window->res->start - window->offset;
215 resv_iova:
216 		if (end > start) {
217 			lo = iova_pfn(iovad, start);
218 			hi = iova_pfn(iovad, end);
219 			reserve_iova(iovad, lo, hi);
220 		} else {
221 			/* dma_ranges list should be sorted */
222 			dev_err(&dev->dev, "Failed to reserve IOVA\n");
223 			return -EINVAL;
224 		}
225 
226 		start = window->res->end - window->offset + 1;
227 		/* If window is last entry */
228 		if (window->node.next == &bridge->dma_ranges &&
229 		    end != ~(phys_addr_t)0) {
230 			end = ~(phys_addr_t)0;
231 			goto resv_iova;
232 		}
233 	}
234 
235 	return 0;
236 }
237 
238 static int iova_reserve_iommu_regions(struct device *dev,
239 		struct iommu_domain *domain)
240 {
241 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
242 	struct iova_domain *iovad = &cookie->iovad;
243 	struct iommu_resv_region *region;
244 	LIST_HEAD(resv_regions);
245 	int ret = 0;
246 
247 	if (dev_is_pci(dev)) {
248 		ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad);
249 		if (ret)
250 			return ret;
251 	}
252 
253 	iommu_get_resv_regions(dev, &resv_regions);
254 	list_for_each_entry(region, &resv_regions, list) {
255 		unsigned long lo, hi;
256 
257 		/* We ARE the software that manages these! */
258 		if (region->type == IOMMU_RESV_SW_MSI)
259 			continue;
260 
261 		lo = iova_pfn(iovad, region->start);
262 		hi = iova_pfn(iovad, region->start + region->length - 1);
263 		reserve_iova(iovad, lo, hi);
264 
265 		if (region->type == IOMMU_RESV_MSI)
266 			ret = cookie_init_hw_msi_region(cookie, region->start,
267 					region->start + region->length);
268 		if (ret)
269 			break;
270 	}
271 	iommu_put_resv_regions(dev, &resv_regions);
272 
273 	return ret;
274 }
275 
276 static void iommu_dma_flush_iotlb_all(struct iova_domain *iovad)
277 {
278 	struct iommu_dma_cookie *cookie;
279 	struct iommu_domain *domain;
280 
281 	cookie = container_of(iovad, struct iommu_dma_cookie, iovad);
282 	domain = cookie->fq_domain;
283 	/*
284 	 * The IOMMU driver supporting DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE
285 	 * implies that ops->flush_iotlb_all must be non-NULL.
286 	 */
287 	domain->ops->flush_iotlb_all(domain);
288 }
289 
290 /**
291  * iommu_dma_init_domain - Initialise a DMA mapping domain
292  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
293  * @base: IOVA at which the mappable address space starts
294  * @size: Size of IOVA space
295  * @dev: Device the domain is being initialised for
296  *
297  * @base and @size should be exact multiples of IOMMU page granularity to
298  * avoid rounding surprises. If necessary, we reserve the page at address 0
299  * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
300  * any change which could make prior IOVAs invalid will fail.
301  */
302 static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
303 		u64 size, struct device *dev)
304 {
305 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
306 	struct iova_domain *iovad = &cookie->iovad;
307 	unsigned long order, base_pfn;
308 	int attr;
309 
310 	if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
311 		return -EINVAL;
312 
313 	/* Use the smallest supported page size for IOVA granularity */
314 	order = __ffs(domain->pgsize_bitmap);
315 	base_pfn = max_t(unsigned long, 1, base >> order);
316 
317 	/* Check the domain allows at least some access to the device... */
318 	if (domain->geometry.force_aperture) {
319 		if (base > domain->geometry.aperture_end ||
320 		    base + size <= domain->geometry.aperture_start) {
321 			pr_warn("specified DMA range outside IOMMU capability\n");
322 			return -EFAULT;
323 		}
324 		/* ...then finally give it a kicking to make sure it fits */
325 		base_pfn = max_t(unsigned long, base_pfn,
326 				domain->geometry.aperture_start >> order);
327 	}
328 
329 	/* start_pfn is always nonzero for an already-initialised domain */
330 	if (iovad->start_pfn) {
331 		if (1UL << order != iovad->granule ||
332 		    base_pfn != iovad->start_pfn) {
333 			pr_warn("Incompatible range for DMA domain\n");
334 			return -EFAULT;
335 		}
336 
337 		return 0;
338 	}
339 
340 	init_iova_domain(iovad, 1UL << order, base_pfn);
341 
342 	if (!cookie->fq_domain && !iommu_domain_get_attr(domain,
343 			DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE, &attr) && attr) {
344 		cookie->fq_domain = domain;
345 		init_iova_flush_queue(iovad, iommu_dma_flush_iotlb_all, NULL);
346 	}
347 
348 	if (!dev)
349 		return 0;
350 
351 	return iova_reserve_iommu_regions(dev, domain);
352 }
353 
354 /**
355  * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
356  *                    page flags.
357  * @dir: Direction of DMA transfer
358  * @coherent: Is the DMA master cache-coherent?
359  * @attrs: DMA attributes for the mapping
360  *
361  * Return: corresponding IOMMU API page protection flags
362  */
363 static int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
364 		     unsigned long attrs)
365 {
366 	int prot = coherent ? IOMMU_CACHE : 0;
367 
368 	if (attrs & DMA_ATTR_PRIVILEGED)
369 		prot |= IOMMU_PRIV;
370 
371 	switch (dir) {
372 	case DMA_BIDIRECTIONAL:
373 		return prot | IOMMU_READ | IOMMU_WRITE;
374 	case DMA_TO_DEVICE:
375 		return prot | IOMMU_READ;
376 	case DMA_FROM_DEVICE:
377 		return prot | IOMMU_WRITE;
378 	default:
379 		return 0;
380 	}
381 }
382 
383 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
384 		size_t size, dma_addr_t dma_limit, struct device *dev)
385 {
386 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
387 	struct iova_domain *iovad = &cookie->iovad;
388 	unsigned long shift, iova_len, iova = 0;
389 
390 	if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
391 		cookie->msi_iova += size;
392 		return cookie->msi_iova - size;
393 	}
394 
395 	shift = iova_shift(iovad);
396 	iova_len = size >> shift;
397 	/*
398 	 * Freeing non-power-of-two-sized allocations back into the IOVA caches
399 	 * will come back to bite us badly, so we have to waste a bit of space
400 	 * rounding up anything cacheable to make sure that can't happen. The
401 	 * order of the unadjusted size will still match upon freeing.
402 	 */
403 	if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1)))
404 		iova_len = roundup_pow_of_two(iova_len);
405 
406 	if (dev->bus_dma_mask)
407 		dma_limit &= dev->bus_dma_mask;
408 
409 	if (domain->geometry.force_aperture)
410 		dma_limit = min(dma_limit, domain->geometry.aperture_end);
411 
412 	/* Try to get PCI devices a SAC address */
413 	if (dma_limit > DMA_BIT_MASK(32) && dev_is_pci(dev))
414 		iova = alloc_iova_fast(iovad, iova_len,
415 				       DMA_BIT_MASK(32) >> shift, false);
416 
417 	if (!iova)
418 		iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift,
419 				       true);
420 
421 	return (dma_addr_t)iova << shift;
422 }
423 
424 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
425 		dma_addr_t iova, size_t size)
426 {
427 	struct iova_domain *iovad = &cookie->iovad;
428 
429 	/* The MSI case is only ever cleaning up its most recent allocation */
430 	if (cookie->type == IOMMU_DMA_MSI_COOKIE)
431 		cookie->msi_iova -= size;
432 	else if (cookie->fq_domain)	/* non-strict mode */
433 		queue_iova(iovad, iova_pfn(iovad, iova),
434 				size >> iova_shift(iovad), 0);
435 	else
436 		free_iova_fast(iovad, iova_pfn(iovad, iova),
437 				size >> iova_shift(iovad));
438 }
439 
440 static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr,
441 		size_t size)
442 {
443 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
444 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
445 	struct iova_domain *iovad = &cookie->iovad;
446 	size_t iova_off = iova_offset(iovad, dma_addr);
447 
448 	dma_addr -= iova_off;
449 	size = iova_align(iovad, size + iova_off);
450 
451 	WARN_ON(iommu_unmap_fast(domain, dma_addr, size) != size);
452 	if (!cookie->fq_domain)
453 		iommu_tlb_sync(domain);
454 	iommu_dma_free_iova(cookie, dma_addr, size);
455 }
456 
457 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
458 		size_t size, int prot)
459 {
460 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
461 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
462 	struct iova_domain *iovad = &cookie->iovad;
463 	size_t iova_off = iova_offset(iovad, phys);
464 	dma_addr_t iova;
465 
466 	size = iova_align(iovad, size + iova_off);
467 
468 	iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
469 	if (!iova)
470 		return DMA_MAPPING_ERROR;
471 
472 	if (iommu_map(domain, iova, phys - iova_off, size, prot)) {
473 		iommu_dma_free_iova(cookie, iova, size);
474 		return DMA_MAPPING_ERROR;
475 	}
476 	return iova + iova_off;
477 }
478 
479 static void __iommu_dma_free_pages(struct page **pages, int count)
480 {
481 	while (count--)
482 		__free_page(pages[count]);
483 	kvfree(pages);
484 }
485 
486 static struct page **__iommu_dma_alloc_pages(struct device *dev,
487 		unsigned int count, unsigned long order_mask, gfp_t gfp)
488 {
489 	struct page **pages;
490 	unsigned int i = 0, nid = dev_to_node(dev);
491 
492 	order_mask &= (2U << MAX_ORDER) - 1;
493 	if (!order_mask)
494 		return NULL;
495 
496 	pages = kvzalloc(count * sizeof(*pages), GFP_KERNEL);
497 	if (!pages)
498 		return NULL;
499 
500 	/* IOMMU can map any pages, so himem can also be used here */
501 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
502 
503 	while (count) {
504 		struct page *page = NULL;
505 		unsigned int order_size;
506 
507 		/*
508 		 * Higher-order allocations are a convenience rather
509 		 * than a necessity, hence using __GFP_NORETRY until
510 		 * falling back to minimum-order allocations.
511 		 */
512 		for (order_mask &= (2U << __fls(count)) - 1;
513 		     order_mask; order_mask &= ~order_size) {
514 			unsigned int order = __fls(order_mask);
515 			gfp_t alloc_flags = gfp;
516 
517 			order_size = 1U << order;
518 			if (order_mask > order_size)
519 				alloc_flags |= __GFP_NORETRY;
520 			page = alloc_pages_node(nid, alloc_flags, order);
521 			if (!page)
522 				continue;
523 			if (!order)
524 				break;
525 			if (!PageCompound(page)) {
526 				split_page(page, order);
527 				break;
528 			} else if (!split_huge_page(page)) {
529 				break;
530 			}
531 			__free_pages(page, order);
532 		}
533 		if (!page) {
534 			__iommu_dma_free_pages(pages, i);
535 			return NULL;
536 		}
537 		count -= order_size;
538 		while (order_size--)
539 			pages[i++] = page++;
540 	}
541 	return pages;
542 }
543 
544 static struct page **__iommu_dma_get_pages(void *cpu_addr)
545 {
546 	struct vm_struct *area = find_vm_area(cpu_addr);
547 
548 	if (!area || !area->pages)
549 		return NULL;
550 	return area->pages;
551 }
552 
553 /**
554  * iommu_dma_alloc_remap - Allocate and map a buffer contiguous in IOVA space
555  * @dev: Device to allocate memory for. Must be a real device
556  *	 attached to an iommu_dma_domain
557  * @size: Size of buffer in bytes
558  * @dma_handle: Out argument for allocated DMA handle
559  * @gfp: Allocation flags
560  * @attrs: DMA attributes for this allocation
561  *
562  * If @size is less than PAGE_SIZE, then a full CPU page will be allocated,
563  * but an IOMMU which supports smaller pages might not map the whole thing.
564  *
565  * Return: Mapped virtual address, or NULL on failure.
566  */
567 static void *iommu_dma_alloc_remap(struct device *dev, size_t size,
568 		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
569 {
570 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
571 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
572 	struct iova_domain *iovad = &cookie->iovad;
573 	bool coherent = dev_is_dma_coherent(dev);
574 	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
575 	pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
576 	unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
577 	struct page **pages;
578 	struct sg_table sgt;
579 	dma_addr_t iova;
580 	void *vaddr;
581 
582 	*dma_handle = DMA_MAPPING_ERROR;
583 
584 	min_size = alloc_sizes & -alloc_sizes;
585 	if (min_size < PAGE_SIZE) {
586 		min_size = PAGE_SIZE;
587 		alloc_sizes |= PAGE_SIZE;
588 	} else {
589 		size = ALIGN(size, min_size);
590 	}
591 	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
592 		alloc_sizes = min_size;
593 
594 	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
595 	pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT,
596 					gfp);
597 	if (!pages)
598 		return NULL;
599 
600 	size = iova_align(iovad, size);
601 	iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
602 	if (!iova)
603 		goto out_free_pages;
604 
605 	if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL))
606 		goto out_free_iova;
607 
608 	if (!(ioprot & IOMMU_CACHE)) {
609 		struct scatterlist *sg;
610 		int i;
611 
612 		for_each_sg(sgt.sgl, sg, sgt.orig_nents, i)
613 			arch_dma_prep_coherent(sg_page(sg), sg->length);
614 	}
615 
616 	if (iommu_map_sg(domain, iova, sgt.sgl, sgt.orig_nents, ioprot)
617 			< size)
618 		goto out_free_sg;
619 
620 	vaddr = dma_common_pages_remap(pages, size, VM_USERMAP, prot,
621 			__builtin_return_address(0));
622 	if (!vaddr)
623 		goto out_unmap;
624 
625 	*dma_handle = iova;
626 	sg_free_table(&sgt);
627 	return vaddr;
628 
629 out_unmap:
630 	__iommu_dma_unmap(dev, iova, size);
631 out_free_sg:
632 	sg_free_table(&sgt);
633 out_free_iova:
634 	iommu_dma_free_iova(cookie, iova, size);
635 out_free_pages:
636 	__iommu_dma_free_pages(pages, count);
637 	return NULL;
638 }
639 
640 /**
641  * __iommu_dma_mmap - Map a buffer into provided user VMA
642  * @pages: Array representing buffer from __iommu_dma_alloc()
643  * @size: Size of buffer in bytes
644  * @vma: VMA describing requested userspace mapping
645  *
646  * Maps the pages of the buffer in @pages into @vma. The caller is responsible
647  * for verifying the correct size and protection of @vma beforehand.
648  */
649 static int __iommu_dma_mmap(struct page **pages, size_t size,
650 		struct vm_area_struct *vma)
651 {
652 	return vm_map_pages(vma, pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
653 }
654 
655 static void iommu_dma_sync_single_for_cpu(struct device *dev,
656 		dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
657 {
658 	phys_addr_t phys;
659 
660 	if (dev_is_dma_coherent(dev))
661 		return;
662 
663 	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
664 	arch_sync_dma_for_cpu(dev, phys, size, dir);
665 }
666 
667 static void iommu_dma_sync_single_for_device(struct device *dev,
668 		dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
669 {
670 	phys_addr_t phys;
671 
672 	if (dev_is_dma_coherent(dev))
673 		return;
674 
675 	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
676 	arch_sync_dma_for_device(dev, phys, size, dir);
677 }
678 
679 static void iommu_dma_sync_sg_for_cpu(struct device *dev,
680 		struct scatterlist *sgl, int nelems,
681 		enum dma_data_direction dir)
682 {
683 	struct scatterlist *sg;
684 	int i;
685 
686 	if (dev_is_dma_coherent(dev))
687 		return;
688 
689 	for_each_sg(sgl, sg, nelems, i)
690 		arch_sync_dma_for_cpu(dev, sg_phys(sg), sg->length, dir);
691 }
692 
693 static void iommu_dma_sync_sg_for_device(struct device *dev,
694 		struct scatterlist *sgl, int nelems,
695 		enum dma_data_direction dir)
696 {
697 	struct scatterlist *sg;
698 	int i;
699 
700 	if (dev_is_dma_coherent(dev))
701 		return;
702 
703 	for_each_sg(sgl, sg, nelems, i)
704 		arch_sync_dma_for_device(dev, sg_phys(sg), sg->length, dir);
705 }
706 
707 static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
708 		unsigned long offset, size_t size, enum dma_data_direction dir,
709 		unsigned long attrs)
710 {
711 	phys_addr_t phys = page_to_phys(page) + offset;
712 	bool coherent = dev_is_dma_coherent(dev);
713 	int prot = dma_info_to_prot(dir, coherent, attrs);
714 	dma_addr_t dma_handle;
715 
716 	dma_handle =__iommu_dma_map(dev, phys, size, prot);
717 	if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
718 	    dma_handle != DMA_MAPPING_ERROR)
719 		arch_sync_dma_for_device(dev, phys, size, dir);
720 	return dma_handle;
721 }
722 
723 static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle,
724 		size_t size, enum dma_data_direction dir, unsigned long attrs)
725 {
726 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
727 		iommu_dma_sync_single_for_cpu(dev, dma_handle, size, dir);
728 	__iommu_dma_unmap(dev, dma_handle, size);
729 }
730 
731 /*
732  * Prepare a successfully-mapped scatterlist to give back to the caller.
733  *
734  * At this point the segments are already laid out by iommu_dma_map_sg() to
735  * avoid individually crossing any boundaries, so we merely need to check a
736  * segment's start address to avoid concatenating across one.
737  */
738 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
739 		dma_addr_t dma_addr)
740 {
741 	struct scatterlist *s, *cur = sg;
742 	unsigned long seg_mask = dma_get_seg_boundary(dev);
743 	unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
744 	int i, count = 0;
745 
746 	for_each_sg(sg, s, nents, i) {
747 		/* Restore this segment's original unaligned fields first */
748 		unsigned int s_iova_off = sg_dma_address(s);
749 		unsigned int s_length = sg_dma_len(s);
750 		unsigned int s_iova_len = s->length;
751 
752 		s->offset += s_iova_off;
753 		s->length = s_length;
754 		sg_dma_address(s) = DMA_MAPPING_ERROR;
755 		sg_dma_len(s) = 0;
756 
757 		/*
758 		 * Now fill in the real DMA data. If...
759 		 * - there is a valid output segment to append to
760 		 * - and this segment starts on an IOVA page boundary
761 		 * - but doesn't fall at a segment boundary
762 		 * - and wouldn't make the resulting output segment too long
763 		 */
764 		if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
765 		    (max_len - cur_len >= s_length)) {
766 			/* ...then concatenate it with the previous one */
767 			cur_len += s_length;
768 		} else {
769 			/* Otherwise start the next output segment */
770 			if (i > 0)
771 				cur = sg_next(cur);
772 			cur_len = s_length;
773 			count++;
774 
775 			sg_dma_address(cur) = dma_addr + s_iova_off;
776 		}
777 
778 		sg_dma_len(cur) = cur_len;
779 		dma_addr += s_iova_len;
780 
781 		if (s_length + s_iova_off < s_iova_len)
782 			cur_len = 0;
783 	}
784 	return count;
785 }
786 
787 /*
788  * If mapping failed, then just restore the original list,
789  * but making sure the DMA fields are invalidated.
790  */
791 static void __invalidate_sg(struct scatterlist *sg, int nents)
792 {
793 	struct scatterlist *s;
794 	int i;
795 
796 	for_each_sg(sg, s, nents, i) {
797 		if (sg_dma_address(s) != DMA_MAPPING_ERROR)
798 			s->offset += sg_dma_address(s);
799 		if (sg_dma_len(s))
800 			s->length = sg_dma_len(s);
801 		sg_dma_address(s) = DMA_MAPPING_ERROR;
802 		sg_dma_len(s) = 0;
803 	}
804 }
805 
806 /*
807  * The DMA API client is passing in a scatterlist which could describe
808  * any old buffer layout, but the IOMMU API requires everything to be
809  * aligned to IOMMU pages. Hence the need for this complicated bit of
810  * impedance-matching, to be able to hand off a suitably-aligned list,
811  * but still preserve the original offsets and sizes for the caller.
812  */
813 static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
814 		int nents, enum dma_data_direction dir, unsigned long attrs)
815 {
816 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
817 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
818 	struct iova_domain *iovad = &cookie->iovad;
819 	struct scatterlist *s, *prev = NULL;
820 	int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs);
821 	dma_addr_t iova;
822 	size_t iova_len = 0;
823 	unsigned long mask = dma_get_seg_boundary(dev);
824 	int i;
825 
826 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
827 		iommu_dma_sync_sg_for_device(dev, sg, nents, dir);
828 
829 	/*
830 	 * Work out how much IOVA space we need, and align the segments to
831 	 * IOVA granules for the IOMMU driver to handle. With some clever
832 	 * trickery we can modify the list in-place, but reversibly, by
833 	 * stashing the unaligned parts in the as-yet-unused DMA fields.
834 	 */
835 	for_each_sg(sg, s, nents, i) {
836 		size_t s_iova_off = iova_offset(iovad, s->offset);
837 		size_t s_length = s->length;
838 		size_t pad_len = (mask - iova_len + 1) & mask;
839 
840 		sg_dma_address(s) = s_iova_off;
841 		sg_dma_len(s) = s_length;
842 		s->offset -= s_iova_off;
843 		s_length = iova_align(iovad, s_length + s_iova_off);
844 		s->length = s_length;
845 
846 		/*
847 		 * Due to the alignment of our single IOVA allocation, we can
848 		 * depend on these assumptions about the segment boundary mask:
849 		 * - If mask size >= IOVA size, then the IOVA range cannot
850 		 *   possibly fall across a boundary, so we don't care.
851 		 * - If mask size < IOVA size, then the IOVA range must start
852 		 *   exactly on a boundary, therefore we can lay things out
853 		 *   based purely on segment lengths without needing to know
854 		 *   the actual addresses beforehand.
855 		 * - The mask must be a power of 2, so pad_len == 0 if
856 		 *   iova_len == 0, thus we cannot dereference prev the first
857 		 *   time through here (i.e. before it has a meaningful value).
858 		 */
859 		if (pad_len && pad_len < s_length - 1) {
860 			prev->length += pad_len;
861 			iova_len += pad_len;
862 		}
863 
864 		iova_len += s_length;
865 		prev = s;
866 	}
867 
868 	iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
869 	if (!iova)
870 		goto out_restore_sg;
871 
872 	/*
873 	 * We'll leave any physical concatenation to the IOMMU driver's
874 	 * implementation - it knows better than we do.
875 	 */
876 	if (iommu_map_sg(domain, iova, sg, nents, prot) < iova_len)
877 		goto out_free_iova;
878 
879 	return __finalise_sg(dev, sg, nents, iova);
880 
881 out_free_iova:
882 	iommu_dma_free_iova(cookie, iova, iova_len);
883 out_restore_sg:
884 	__invalidate_sg(sg, nents);
885 	return 0;
886 }
887 
888 static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
889 		int nents, enum dma_data_direction dir, unsigned long attrs)
890 {
891 	dma_addr_t start, end;
892 	struct scatterlist *tmp;
893 	int i;
894 
895 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
896 		iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir);
897 
898 	/*
899 	 * The scatterlist segments are mapped into a single
900 	 * contiguous IOVA allocation, so this is incredibly easy.
901 	 */
902 	start = sg_dma_address(sg);
903 	for_each_sg(sg_next(sg), tmp, nents - 1, i) {
904 		if (sg_dma_len(tmp) == 0)
905 			break;
906 		sg = tmp;
907 	}
908 	end = sg_dma_address(sg) + sg_dma_len(sg);
909 	__iommu_dma_unmap(dev, start, end - start);
910 }
911 
912 static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
913 		size_t size, enum dma_data_direction dir, unsigned long attrs)
914 {
915 	return __iommu_dma_map(dev, phys, size,
916 			dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO);
917 }
918 
919 static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
920 		size_t size, enum dma_data_direction dir, unsigned long attrs)
921 {
922 	__iommu_dma_unmap(dev, handle, size);
923 }
924 
925 static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr)
926 {
927 	size_t alloc_size = PAGE_ALIGN(size);
928 	int count = alloc_size >> PAGE_SHIFT;
929 	struct page *page = NULL, **pages = NULL;
930 
931 	/* Non-coherent atomic allocation? Easy */
932 	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
933 	    dma_free_from_pool(cpu_addr, alloc_size))
934 		return;
935 
936 	if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
937 		/*
938 		 * If it the address is remapped, then it's either non-coherent
939 		 * or highmem CMA, or an iommu_dma_alloc_remap() construction.
940 		 */
941 		pages = __iommu_dma_get_pages(cpu_addr);
942 		if (!pages)
943 			page = vmalloc_to_page(cpu_addr);
944 		dma_common_free_remap(cpu_addr, alloc_size, VM_USERMAP);
945 	} else {
946 		/* Lowmem means a coherent atomic or CMA allocation */
947 		page = virt_to_page(cpu_addr);
948 	}
949 
950 	if (pages)
951 		__iommu_dma_free_pages(pages, count);
952 	if (page)
953 		dma_free_contiguous(dev, page, alloc_size);
954 }
955 
956 static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr,
957 		dma_addr_t handle, unsigned long attrs)
958 {
959 	__iommu_dma_unmap(dev, handle, size);
960 	__iommu_dma_free(dev, size, cpu_addr);
961 }
962 
963 static void *iommu_dma_alloc_pages(struct device *dev, size_t size,
964 		struct page **pagep, gfp_t gfp, unsigned long attrs)
965 {
966 	bool coherent = dev_is_dma_coherent(dev);
967 	size_t alloc_size = PAGE_ALIGN(size);
968 	int node = dev_to_node(dev);
969 	struct page *page = NULL;
970 	void *cpu_addr;
971 
972 	page = dma_alloc_contiguous(dev, alloc_size, gfp);
973 	if (!page)
974 		page = alloc_pages_node(node, gfp, get_order(alloc_size));
975 	if (!page)
976 		return NULL;
977 
978 	if (IS_ENABLED(CONFIG_DMA_REMAP) && (!coherent || PageHighMem(page))) {
979 		pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
980 
981 		cpu_addr = dma_common_contiguous_remap(page, alloc_size,
982 				VM_USERMAP, prot, __builtin_return_address(0));
983 		if (!cpu_addr)
984 			goto out_free_pages;
985 
986 		if (!coherent)
987 			arch_dma_prep_coherent(page, size);
988 	} else {
989 		cpu_addr = page_address(page);
990 	}
991 
992 	*pagep = page;
993 	memset(cpu_addr, 0, alloc_size);
994 	return cpu_addr;
995 out_free_pages:
996 	dma_free_contiguous(dev, page, alloc_size);
997 	return NULL;
998 }
999 
1000 static void *iommu_dma_alloc(struct device *dev, size_t size,
1001 		dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1002 {
1003 	bool coherent = dev_is_dma_coherent(dev);
1004 	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
1005 	struct page *page = NULL;
1006 	void *cpu_addr;
1007 
1008 	gfp |= __GFP_ZERO;
1009 
1010 	if (IS_ENABLED(CONFIG_DMA_REMAP) && gfpflags_allow_blocking(gfp) &&
1011 	    !(attrs & DMA_ATTR_FORCE_CONTIGUOUS))
1012 		return iommu_dma_alloc_remap(dev, size, handle, gfp, attrs);
1013 
1014 	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1015 	    !gfpflags_allow_blocking(gfp) && !coherent)
1016 		cpu_addr = dma_alloc_from_pool(PAGE_ALIGN(size), &page, gfp);
1017 	else
1018 		cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs);
1019 	if (!cpu_addr)
1020 		return NULL;
1021 
1022 	*handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot);
1023 	if (*handle == DMA_MAPPING_ERROR) {
1024 		__iommu_dma_free(dev, size, cpu_addr);
1025 		return NULL;
1026 	}
1027 
1028 	return cpu_addr;
1029 }
1030 
1031 static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma,
1032 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
1033 		unsigned long attrs)
1034 {
1035 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1036 	unsigned long pfn, off = vma->vm_pgoff;
1037 	int ret;
1038 
1039 	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
1040 
1041 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
1042 		return ret;
1043 
1044 	if (off >= nr_pages || vma_pages(vma) > nr_pages - off)
1045 		return -ENXIO;
1046 
1047 	if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1048 		struct page **pages = __iommu_dma_get_pages(cpu_addr);
1049 
1050 		if (pages)
1051 			return __iommu_dma_mmap(pages, size, vma);
1052 		pfn = vmalloc_to_pfn(cpu_addr);
1053 	} else {
1054 		pfn = page_to_pfn(virt_to_page(cpu_addr));
1055 	}
1056 
1057 	return remap_pfn_range(vma, vma->vm_start, pfn + off,
1058 			       vma->vm_end - vma->vm_start,
1059 			       vma->vm_page_prot);
1060 }
1061 
1062 static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
1063 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
1064 		unsigned long attrs)
1065 {
1066 	struct page *page;
1067 	int ret;
1068 
1069 	if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1070 		struct page **pages = __iommu_dma_get_pages(cpu_addr);
1071 
1072 		if (pages) {
1073 			return sg_alloc_table_from_pages(sgt, pages,
1074 					PAGE_ALIGN(size) >> PAGE_SHIFT,
1075 					0, size, GFP_KERNEL);
1076 		}
1077 
1078 		page = vmalloc_to_page(cpu_addr);
1079 	} else {
1080 		page = virt_to_page(cpu_addr);
1081 	}
1082 
1083 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
1084 	if (!ret)
1085 		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
1086 	return ret;
1087 }
1088 
1089 static const struct dma_map_ops iommu_dma_ops = {
1090 	.alloc			= iommu_dma_alloc,
1091 	.free			= iommu_dma_free,
1092 	.mmap			= iommu_dma_mmap,
1093 	.get_sgtable		= iommu_dma_get_sgtable,
1094 	.map_page		= iommu_dma_map_page,
1095 	.unmap_page		= iommu_dma_unmap_page,
1096 	.map_sg			= iommu_dma_map_sg,
1097 	.unmap_sg		= iommu_dma_unmap_sg,
1098 	.sync_single_for_cpu	= iommu_dma_sync_single_for_cpu,
1099 	.sync_single_for_device	= iommu_dma_sync_single_for_device,
1100 	.sync_sg_for_cpu	= iommu_dma_sync_sg_for_cpu,
1101 	.sync_sg_for_device	= iommu_dma_sync_sg_for_device,
1102 	.map_resource		= iommu_dma_map_resource,
1103 	.unmap_resource		= iommu_dma_unmap_resource,
1104 };
1105 
1106 /*
1107  * The IOMMU core code allocates the default DMA domain, which the underlying
1108  * IOMMU driver needs to support via the dma-iommu layer.
1109  */
1110 void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size)
1111 {
1112 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1113 
1114 	if (!domain)
1115 		goto out_err;
1116 
1117 	/*
1118 	 * The IOMMU core code allocates the default DMA domain, which the
1119 	 * underlying IOMMU driver needs to support via the dma-iommu layer.
1120 	 */
1121 	if (domain->type == IOMMU_DOMAIN_DMA) {
1122 		if (iommu_dma_init_domain(domain, dma_base, size, dev))
1123 			goto out_err;
1124 		dev->dma_ops = &iommu_dma_ops;
1125 	}
1126 
1127 	return;
1128 out_err:
1129 	 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
1130 		 dev_name(dev));
1131 }
1132 
1133 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
1134 		phys_addr_t msi_addr, struct iommu_domain *domain)
1135 {
1136 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
1137 	struct iommu_dma_msi_page *msi_page;
1138 	dma_addr_t iova;
1139 	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1140 	size_t size = cookie_msi_granule(cookie);
1141 
1142 	msi_addr &= ~(phys_addr_t)(size - 1);
1143 	list_for_each_entry(msi_page, &cookie->msi_page_list, list)
1144 		if (msi_page->phys == msi_addr)
1145 			return msi_page;
1146 
1147 	msi_page = kzalloc(sizeof(*msi_page), GFP_ATOMIC);
1148 	if (!msi_page)
1149 		return NULL;
1150 
1151 	iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
1152 	if (!iova)
1153 		goto out_free_page;
1154 
1155 	if (iommu_map(domain, iova, msi_addr, size, prot))
1156 		goto out_free_iova;
1157 
1158 	INIT_LIST_HEAD(&msi_page->list);
1159 	msi_page->phys = msi_addr;
1160 	msi_page->iova = iova;
1161 	list_add(&msi_page->list, &cookie->msi_page_list);
1162 	return msi_page;
1163 
1164 out_free_iova:
1165 	iommu_dma_free_iova(cookie, iova, size);
1166 out_free_page:
1167 	kfree(msi_page);
1168 	return NULL;
1169 }
1170 
1171 int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)
1172 {
1173 	struct device *dev = msi_desc_to_dev(desc);
1174 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1175 	struct iommu_dma_cookie *cookie;
1176 	struct iommu_dma_msi_page *msi_page;
1177 	unsigned long flags;
1178 
1179 	if (!domain || !domain->iova_cookie) {
1180 		desc->iommu_cookie = NULL;
1181 		return 0;
1182 	}
1183 
1184 	cookie = domain->iova_cookie;
1185 
1186 	/*
1187 	 * We disable IRQs to rule out a possible inversion against
1188 	 * irq_desc_lock if, say, someone tries to retarget the affinity
1189 	 * of an MSI from within an IPI handler.
1190 	 */
1191 	spin_lock_irqsave(&cookie->msi_lock, flags);
1192 	msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
1193 	spin_unlock_irqrestore(&cookie->msi_lock, flags);
1194 
1195 	msi_desc_set_iommu_cookie(desc, msi_page);
1196 
1197 	if (!msi_page)
1198 		return -ENOMEM;
1199 	return 0;
1200 }
1201 
1202 void iommu_dma_compose_msi_msg(struct msi_desc *desc,
1203 			       struct msi_msg *msg)
1204 {
1205 	struct device *dev = msi_desc_to_dev(desc);
1206 	const struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1207 	const struct iommu_dma_msi_page *msi_page;
1208 
1209 	msi_page = msi_desc_get_iommu_cookie(desc);
1210 
1211 	if (!domain || !domain->iova_cookie || WARN_ON(!msi_page))
1212 		return;
1213 
1214 	msg->address_hi = upper_32_bits(msi_page->iova);
1215 	msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1;
1216 	msg->address_lo += lower_32_bits(msi_page->iova);
1217 }
1218 
1219 static int iommu_dma_init(void)
1220 {
1221 	return iova_cache_get();
1222 }
1223 arch_initcall(iommu_dma_init);
1224