xref: /openbmc/linux/drivers/iommu/dma-iommu.c (revision 83946783)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * A fairly generic DMA-API to IOMMU-API glue layer.
4  *
5  * Copyright (C) 2014-2015 ARM Ltd.
6  *
7  * based in part on arch/arm/mm/dma-mapping.c:
8  * Copyright (C) 2000-2004 Russell King
9  */
10 
11 #include <linux/acpi_iort.h>
12 #include <linux/device.h>
13 #include <linux/dma-map-ops.h>
14 #include <linux/dma-iommu.h>
15 #include <linux/gfp.h>
16 #include <linux/huge_mm.h>
17 #include <linux/iommu.h>
18 #include <linux/iova.h>
19 #include <linux/irq.h>
20 #include <linux/mm.h>
21 #include <linux/mutex.h>
22 #include <linux/pci.h>
23 #include <linux/swiotlb.h>
24 #include <linux/scatterlist.h>
25 #include <linux/vmalloc.h>
26 #include <linux/crash_dump.h>
27 #include <linux/dma-direct.h>
28 
29 struct iommu_dma_msi_page {
30 	struct list_head	list;
31 	dma_addr_t		iova;
32 	phys_addr_t		phys;
33 };
34 
35 enum iommu_dma_cookie_type {
36 	IOMMU_DMA_IOVA_COOKIE,
37 	IOMMU_DMA_MSI_COOKIE,
38 };
39 
40 struct iommu_dma_cookie {
41 	enum iommu_dma_cookie_type	type;
42 	union {
43 		/* Full allocator for IOMMU_DMA_IOVA_COOKIE */
44 		struct iova_domain	iovad;
45 		/* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
46 		dma_addr_t		msi_iova;
47 	};
48 	struct list_head		msi_page_list;
49 
50 	/* Domain for flush queue callback; NULL if flush queue not in use */
51 	struct iommu_domain		*fq_domain;
52 };
53 
54 static DEFINE_STATIC_KEY_FALSE(iommu_deferred_attach_enabled);
55 bool iommu_dma_forcedac __read_mostly;
56 
57 static int __init iommu_dma_forcedac_setup(char *str)
58 {
59 	int ret = kstrtobool(str, &iommu_dma_forcedac);
60 
61 	if (!ret && iommu_dma_forcedac)
62 		pr_info("Forcing DAC for PCI devices\n");
63 	return ret;
64 }
65 early_param("iommu.forcedac", iommu_dma_forcedac_setup);
66 
67 static void iommu_dma_entry_dtor(unsigned long data)
68 {
69 	struct page *freelist = (struct page *)data;
70 
71 	while (freelist) {
72 		unsigned long p = (unsigned long)page_address(freelist);
73 
74 		freelist = freelist->freelist;
75 		free_page(p);
76 	}
77 }
78 
79 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
80 {
81 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
82 		return cookie->iovad.granule;
83 	return PAGE_SIZE;
84 }
85 
86 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
87 {
88 	struct iommu_dma_cookie *cookie;
89 
90 	cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
91 	if (cookie) {
92 		INIT_LIST_HEAD(&cookie->msi_page_list);
93 		cookie->type = type;
94 	}
95 	return cookie;
96 }
97 
98 /**
99  * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
100  * @domain: IOMMU domain to prepare for DMA-API usage
101  */
102 int iommu_get_dma_cookie(struct iommu_domain *domain)
103 {
104 	if (domain->iova_cookie)
105 		return -EEXIST;
106 
107 	domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
108 	if (!domain->iova_cookie)
109 		return -ENOMEM;
110 
111 	return 0;
112 }
113 
114 /**
115  * iommu_get_msi_cookie - Acquire just MSI remapping resources
116  * @domain: IOMMU domain to prepare
117  * @base: Start address of IOVA region for MSI mappings
118  *
119  * Users who manage their own IOVA allocation and do not want DMA API support,
120  * but would still like to take advantage of automatic MSI remapping, can use
121  * this to initialise their own domain appropriately. Users should reserve a
122  * contiguous IOVA region, starting at @base, large enough to accommodate the
123  * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
124  * used by the devices attached to @domain.
125  */
126 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
127 {
128 	struct iommu_dma_cookie *cookie;
129 
130 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
131 		return -EINVAL;
132 
133 	if (domain->iova_cookie)
134 		return -EEXIST;
135 
136 	cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
137 	if (!cookie)
138 		return -ENOMEM;
139 
140 	cookie->msi_iova = base;
141 	domain->iova_cookie = cookie;
142 	return 0;
143 }
144 EXPORT_SYMBOL(iommu_get_msi_cookie);
145 
146 /**
147  * iommu_put_dma_cookie - Release a domain's DMA mapping resources
148  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
149  *          iommu_get_msi_cookie()
150  */
151 void iommu_put_dma_cookie(struct iommu_domain *domain)
152 {
153 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
154 	struct iommu_dma_msi_page *msi, *tmp;
155 
156 	if (!cookie)
157 		return;
158 
159 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule)
160 		put_iova_domain(&cookie->iovad);
161 
162 	list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
163 		list_del(&msi->list);
164 		kfree(msi);
165 	}
166 	kfree(cookie);
167 	domain->iova_cookie = NULL;
168 }
169 
170 /**
171  * iommu_dma_get_resv_regions - Reserved region driver helper
172  * @dev: Device from iommu_get_resv_regions()
173  * @list: Reserved region list from iommu_get_resv_regions()
174  *
175  * IOMMU drivers can use this to implement their .get_resv_regions callback
176  * for general non-IOMMU-specific reservations. Currently, this covers GICv3
177  * ITS region reservation on ACPI based ARM platforms that may require HW MSI
178  * reservation.
179  */
180 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
181 {
182 
183 	if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode))
184 		iort_iommu_msi_get_resv_regions(dev, list);
185 
186 }
187 EXPORT_SYMBOL(iommu_dma_get_resv_regions);
188 
189 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
190 		phys_addr_t start, phys_addr_t end)
191 {
192 	struct iova_domain *iovad = &cookie->iovad;
193 	struct iommu_dma_msi_page *msi_page;
194 	int i, num_pages;
195 
196 	start -= iova_offset(iovad, start);
197 	num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
198 
199 	for (i = 0; i < num_pages; i++) {
200 		msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL);
201 		if (!msi_page)
202 			return -ENOMEM;
203 
204 		msi_page->phys = start;
205 		msi_page->iova = start;
206 		INIT_LIST_HEAD(&msi_page->list);
207 		list_add(&msi_page->list, &cookie->msi_page_list);
208 		start += iovad->granule;
209 	}
210 
211 	return 0;
212 }
213 
214 static int iova_reserve_pci_windows(struct pci_dev *dev,
215 		struct iova_domain *iovad)
216 {
217 	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
218 	struct resource_entry *window;
219 	unsigned long lo, hi;
220 	phys_addr_t start = 0, end;
221 
222 	resource_list_for_each_entry(window, &bridge->windows) {
223 		if (resource_type(window->res) != IORESOURCE_MEM)
224 			continue;
225 
226 		lo = iova_pfn(iovad, window->res->start - window->offset);
227 		hi = iova_pfn(iovad, window->res->end - window->offset);
228 		reserve_iova(iovad, lo, hi);
229 	}
230 
231 	/* Get reserved DMA windows from host bridge */
232 	resource_list_for_each_entry(window, &bridge->dma_ranges) {
233 		end = window->res->start - window->offset;
234 resv_iova:
235 		if (end > start) {
236 			lo = iova_pfn(iovad, start);
237 			hi = iova_pfn(iovad, end);
238 			reserve_iova(iovad, lo, hi);
239 		} else if (end < start) {
240 			/* dma_ranges list should be sorted */
241 			dev_err(&dev->dev,
242 				"Failed to reserve IOVA [%pa-%pa]\n",
243 				&start, &end);
244 			return -EINVAL;
245 		}
246 
247 		start = window->res->end - window->offset + 1;
248 		/* If window is last entry */
249 		if (window->node.next == &bridge->dma_ranges &&
250 		    end != ~(phys_addr_t)0) {
251 			end = ~(phys_addr_t)0;
252 			goto resv_iova;
253 		}
254 	}
255 
256 	return 0;
257 }
258 
259 static int iova_reserve_iommu_regions(struct device *dev,
260 		struct iommu_domain *domain)
261 {
262 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
263 	struct iova_domain *iovad = &cookie->iovad;
264 	struct iommu_resv_region *region;
265 	LIST_HEAD(resv_regions);
266 	int ret = 0;
267 
268 	if (dev_is_pci(dev)) {
269 		ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad);
270 		if (ret)
271 			return ret;
272 	}
273 
274 	iommu_get_resv_regions(dev, &resv_regions);
275 	list_for_each_entry(region, &resv_regions, list) {
276 		unsigned long lo, hi;
277 
278 		/* We ARE the software that manages these! */
279 		if (region->type == IOMMU_RESV_SW_MSI)
280 			continue;
281 
282 		lo = iova_pfn(iovad, region->start);
283 		hi = iova_pfn(iovad, region->start + region->length - 1);
284 		reserve_iova(iovad, lo, hi);
285 
286 		if (region->type == IOMMU_RESV_MSI)
287 			ret = cookie_init_hw_msi_region(cookie, region->start,
288 					region->start + region->length);
289 		if (ret)
290 			break;
291 	}
292 	iommu_put_resv_regions(dev, &resv_regions);
293 
294 	return ret;
295 }
296 
297 static void iommu_dma_flush_iotlb_all(struct iova_domain *iovad)
298 {
299 	struct iommu_dma_cookie *cookie;
300 	struct iommu_domain *domain;
301 
302 	cookie = container_of(iovad, struct iommu_dma_cookie, iovad);
303 	domain = cookie->fq_domain;
304 
305 	domain->ops->flush_iotlb_all(domain);
306 }
307 
308 static bool dev_is_untrusted(struct device *dev)
309 {
310 	return dev_is_pci(dev) && to_pci_dev(dev)->untrusted;
311 }
312 
313 static bool dev_use_swiotlb(struct device *dev)
314 {
315 	return IS_ENABLED(CONFIG_SWIOTLB) && dev_is_untrusted(dev);
316 }
317 
318 /* sysfs updates are serialised by the mutex of the group owning @domain */
319 int iommu_dma_init_fq(struct iommu_domain *domain)
320 {
321 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
322 	int ret;
323 
324 	if (cookie->fq_domain)
325 		return 0;
326 
327 	ret = init_iova_flush_queue(&cookie->iovad, iommu_dma_flush_iotlb_all,
328 				    iommu_dma_entry_dtor);
329 	if (ret) {
330 		pr_warn("iova flush queue initialization failed\n");
331 		return ret;
332 	}
333 	/*
334 	 * Prevent incomplete iovad->fq being observable. Pairs with path from
335 	 * __iommu_dma_unmap() through iommu_dma_free_iova() to queue_iova()
336 	 */
337 	smp_wmb();
338 	WRITE_ONCE(cookie->fq_domain, domain);
339 	return 0;
340 }
341 
342 /**
343  * iommu_dma_init_domain - Initialise a DMA mapping domain
344  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
345  * @base: IOVA at which the mappable address space starts
346  * @limit: Last address of the IOVA space
347  * @dev: Device the domain is being initialised for
348  *
349  * @base and @limit + 1 should be exact multiples of IOMMU page granularity to
350  * avoid rounding surprises. If necessary, we reserve the page at address 0
351  * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
352  * any change which could make prior IOVAs invalid will fail.
353  */
354 static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
355 				 dma_addr_t limit, struct device *dev)
356 {
357 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
358 	unsigned long order, base_pfn;
359 	struct iova_domain *iovad;
360 
361 	if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
362 		return -EINVAL;
363 
364 	iovad = &cookie->iovad;
365 
366 	/* Use the smallest supported page size for IOVA granularity */
367 	order = __ffs(domain->pgsize_bitmap);
368 	base_pfn = max_t(unsigned long, 1, base >> order);
369 
370 	/* Check the domain allows at least some access to the device... */
371 	if (domain->geometry.force_aperture) {
372 		if (base > domain->geometry.aperture_end ||
373 		    limit < domain->geometry.aperture_start) {
374 			pr_warn("specified DMA range outside IOMMU capability\n");
375 			return -EFAULT;
376 		}
377 		/* ...then finally give it a kicking to make sure it fits */
378 		base_pfn = max_t(unsigned long, base_pfn,
379 				domain->geometry.aperture_start >> order);
380 	}
381 
382 	/* start_pfn is always nonzero for an already-initialised domain */
383 	if (iovad->start_pfn) {
384 		if (1UL << order != iovad->granule ||
385 		    base_pfn != iovad->start_pfn) {
386 			pr_warn("Incompatible range for DMA domain\n");
387 			return -EFAULT;
388 		}
389 
390 		return 0;
391 	}
392 
393 	init_iova_domain(iovad, 1UL << order, base_pfn);
394 
395 	/* If the FQ fails we can simply fall back to strict mode */
396 	if (domain->type == IOMMU_DOMAIN_DMA_FQ && iommu_dma_init_fq(domain))
397 		domain->type = IOMMU_DOMAIN_DMA;
398 
399 	return iova_reserve_iommu_regions(dev, domain);
400 }
401 
402 /**
403  * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
404  *                    page flags.
405  * @dir: Direction of DMA transfer
406  * @coherent: Is the DMA master cache-coherent?
407  * @attrs: DMA attributes for the mapping
408  *
409  * Return: corresponding IOMMU API page protection flags
410  */
411 static int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
412 		     unsigned long attrs)
413 {
414 	int prot = coherent ? IOMMU_CACHE : 0;
415 
416 	if (attrs & DMA_ATTR_PRIVILEGED)
417 		prot |= IOMMU_PRIV;
418 
419 	switch (dir) {
420 	case DMA_BIDIRECTIONAL:
421 		return prot | IOMMU_READ | IOMMU_WRITE;
422 	case DMA_TO_DEVICE:
423 		return prot | IOMMU_READ;
424 	case DMA_FROM_DEVICE:
425 		return prot | IOMMU_WRITE;
426 	default:
427 		return 0;
428 	}
429 }
430 
431 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
432 		size_t size, u64 dma_limit, struct device *dev)
433 {
434 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
435 	struct iova_domain *iovad = &cookie->iovad;
436 	unsigned long shift, iova_len, iova = 0;
437 
438 	if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
439 		cookie->msi_iova += size;
440 		return cookie->msi_iova - size;
441 	}
442 
443 	shift = iova_shift(iovad);
444 	iova_len = size >> shift;
445 	/*
446 	 * Freeing non-power-of-two-sized allocations back into the IOVA caches
447 	 * will come back to bite us badly, so we have to waste a bit of space
448 	 * rounding up anything cacheable to make sure that can't happen. The
449 	 * order of the unadjusted size will still match upon freeing.
450 	 */
451 	if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1)))
452 		iova_len = roundup_pow_of_two(iova_len);
453 
454 	dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit);
455 
456 	if (domain->geometry.force_aperture)
457 		dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end);
458 
459 	/* Try to get PCI devices a SAC address */
460 	if (dma_limit > DMA_BIT_MASK(32) && !iommu_dma_forcedac && dev_is_pci(dev))
461 		iova = alloc_iova_fast(iovad, iova_len,
462 				       DMA_BIT_MASK(32) >> shift, false);
463 
464 	if (!iova)
465 		iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift,
466 				       true);
467 
468 	return (dma_addr_t)iova << shift;
469 }
470 
471 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
472 		dma_addr_t iova, size_t size, struct iommu_iotlb_gather *gather)
473 {
474 	struct iova_domain *iovad = &cookie->iovad;
475 
476 	/* The MSI case is only ever cleaning up its most recent allocation */
477 	if (cookie->type == IOMMU_DMA_MSI_COOKIE)
478 		cookie->msi_iova -= size;
479 	else if (gather && gather->queued)
480 		queue_iova(iovad, iova_pfn(iovad, iova),
481 				size >> iova_shift(iovad),
482 				(unsigned long)gather->freelist);
483 	else
484 		free_iova_fast(iovad, iova_pfn(iovad, iova),
485 				size >> iova_shift(iovad));
486 }
487 
488 static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr,
489 		size_t size)
490 {
491 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
492 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
493 	struct iova_domain *iovad = &cookie->iovad;
494 	size_t iova_off = iova_offset(iovad, dma_addr);
495 	struct iommu_iotlb_gather iotlb_gather;
496 	size_t unmapped;
497 
498 	dma_addr -= iova_off;
499 	size = iova_align(iovad, size + iova_off);
500 	iommu_iotlb_gather_init(&iotlb_gather);
501 	iotlb_gather.queued = READ_ONCE(cookie->fq_domain);
502 
503 	unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather);
504 	WARN_ON(unmapped != size);
505 
506 	if (!iotlb_gather.queued)
507 		iommu_iotlb_sync(domain, &iotlb_gather);
508 	iommu_dma_free_iova(cookie, dma_addr, size, &iotlb_gather);
509 }
510 
511 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
512 		size_t size, int prot, u64 dma_mask)
513 {
514 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
515 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
516 	struct iova_domain *iovad = &cookie->iovad;
517 	size_t iova_off = iova_offset(iovad, phys);
518 	dma_addr_t iova;
519 
520 	if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
521 	    iommu_deferred_attach(dev, domain))
522 		return DMA_MAPPING_ERROR;
523 
524 	size = iova_align(iovad, size + iova_off);
525 
526 	iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev);
527 	if (!iova)
528 		return DMA_MAPPING_ERROR;
529 
530 	if (iommu_map_atomic(domain, iova, phys - iova_off, size, prot)) {
531 		iommu_dma_free_iova(cookie, iova, size, NULL);
532 		return DMA_MAPPING_ERROR;
533 	}
534 	return iova + iova_off;
535 }
536 
537 static void __iommu_dma_free_pages(struct page **pages, int count)
538 {
539 	while (count--)
540 		__free_page(pages[count]);
541 	kvfree(pages);
542 }
543 
544 static struct page **__iommu_dma_alloc_pages(struct device *dev,
545 		unsigned int count, unsigned long order_mask, gfp_t gfp)
546 {
547 	struct page **pages;
548 	unsigned int i = 0, nid = dev_to_node(dev);
549 
550 	order_mask &= (2U << MAX_ORDER) - 1;
551 	if (!order_mask)
552 		return NULL;
553 
554 	pages = kvcalloc(count, sizeof(*pages), GFP_KERNEL);
555 	if (!pages)
556 		return NULL;
557 
558 	/* IOMMU can map any pages, so himem can also be used here */
559 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
560 
561 	/* It makes no sense to muck about with huge pages */
562 	gfp &= ~__GFP_COMP;
563 
564 	while (count) {
565 		struct page *page = NULL;
566 		unsigned int order_size;
567 
568 		/*
569 		 * Higher-order allocations are a convenience rather
570 		 * than a necessity, hence using __GFP_NORETRY until
571 		 * falling back to minimum-order allocations.
572 		 */
573 		for (order_mask &= (2U << __fls(count)) - 1;
574 		     order_mask; order_mask &= ~order_size) {
575 			unsigned int order = __fls(order_mask);
576 			gfp_t alloc_flags = gfp;
577 
578 			order_size = 1U << order;
579 			if (order_mask > order_size)
580 				alloc_flags |= __GFP_NORETRY;
581 			page = alloc_pages_node(nid, alloc_flags, order);
582 			if (!page)
583 				continue;
584 			if (order)
585 				split_page(page, order);
586 			break;
587 		}
588 		if (!page) {
589 			__iommu_dma_free_pages(pages, i);
590 			return NULL;
591 		}
592 		count -= order_size;
593 		while (order_size--)
594 			pages[i++] = page++;
595 	}
596 	return pages;
597 }
598 
599 /*
600  * If size is less than PAGE_SIZE, then a full CPU page will be allocated,
601  * but an IOMMU which supports smaller pages might not map the whole thing.
602  */
603 static struct page **__iommu_dma_alloc_noncontiguous(struct device *dev,
604 		size_t size, struct sg_table *sgt, gfp_t gfp, pgprot_t prot,
605 		unsigned long attrs)
606 {
607 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
608 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
609 	struct iova_domain *iovad = &cookie->iovad;
610 	bool coherent = dev_is_dma_coherent(dev);
611 	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
612 	unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
613 	struct page **pages;
614 	dma_addr_t iova;
615 
616 	if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
617 	    iommu_deferred_attach(dev, domain))
618 		return NULL;
619 
620 	min_size = alloc_sizes & -alloc_sizes;
621 	if (min_size < PAGE_SIZE) {
622 		min_size = PAGE_SIZE;
623 		alloc_sizes |= PAGE_SIZE;
624 	} else {
625 		size = ALIGN(size, min_size);
626 	}
627 	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
628 		alloc_sizes = min_size;
629 
630 	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
631 	pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT,
632 					gfp);
633 	if (!pages)
634 		return NULL;
635 
636 	size = iova_align(iovad, size);
637 	iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
638 	if (!iova)
639 		goto out_free_pages;
640 
641 	if (sg_alloc_table_from_pages(sgt, pages, count, 0, size, GFP_KERNEL))
642 		goto out_free_iova;
643 
644 	if (!(ioprot & IOMMU_CACHE)) {
645 		struct scatterlist *sg;
646 		int i;
647 
648 		for_each_sg(sgt->sgl, sg, sgt->orig_nents, i)
649 			arch_dma_prep_coherent(sg_page(sg), sg->length);
650 	}
651 
652 	if (iommu_map_sg_atomic(domain, iova, sgt->sgl, sgt->orig_nents, ioprot)
653 			< size)
654 		goto out_free_sg;
655 
656 	sgt->sgl->dma_address = iova;
657 	sgt->sgl->dma_length = size;
658 	return pages;
659 
660 out_free_sg:
661 	sg_free_table(sgt);
662 out_free_iova:
663 	iommu_dma_free_iova(cookie, iova, size, NULL);
664 out_free_pages:
665 	__iommu_dma_free_pages(pages, count);
666 	return NULL;
667 }
668 
669 static void *iommu_dma_alloc_remap(struct device *dev, size_t size,
670 		dma_addr_t *dma_handle, gfp_t gfp, pgprot_t prot,
671 		unsigned long attrs)
672 {
673 	struct page **pages;
674 	struct sg_table sgt;
675 	void *vaddr;
676 
677 	pages = __iommu_dma_alloc_noncontiguous(dev, size, &sgt, gfp, prot,
678 						attrs);
679 	if (!pages)
680 		return NULL;
681 	*dma_handle = sgt.sgl->dma_address;
682 	sg_free_table(&sgt);
683 	vaddr = dma_common_pages_remap(pages, size, prot,
684 			__builtin_return_address(0));
685 	if (!vaddr)
686 		goto out_unmap;
687 	return vaddr;
688 
689 out_unmap:
690 	__iommu_dma_unmap(dev, *dma_handle, size);
691 	__iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
692 	return NULL;
693 }
694 
695 #ifdef CONFIG_DMA_REMAP
696 static struct sg_table *iommu_dma_alloc_noncontiguous(struct device *dev,
697 		size_t size, enum dma_data_direction dir, gfp_t gfp,
698 		unsigned long attrs)
699 {
700 	struct dma_sgt_handle *sh;
701 
702 	sh = kmalloc(sizeof(*sh), gfp);
703 	if (!sh)
704 		return NULL;
705 
706 	sh->pages = __iommu_dma_alloc_noncontiguous(dev, size, &sh->sgt, gfp,
707 						    PAGE_KERNEL, attrs);
708 	if (!sh->pages) {
709 		kfree(sh);
710 		return NULL;
711 	}
712 	return &sh->sgt;
713 }
714 
715 static void iommu_dma_free_noncontiguous(struct device *dev, size_t size,
716 		struct sg_table *sgt, enum dma_data_direction dir)
717 {
718 	struct dma_sgt_handle *sh = sgt_handle(sgt);
719 
720 	__iommu_dma_unmap(dev, sgt->sgl->dma_address, size);
721 	__iommu_dma_free_pages(sh->pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
722 	sg_free_table(&sh->sgt);
723 	kfree(sh);
724 }
725 #endif /* CONFIG_DMA_REMAP */
726 
727 static void iommu_dma_sync_single_for_cpu(struct device *dev,
728 		dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
729 {
730 	phys_addr_t phys;
731 
732 	if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev))
733 		return;
734 
735 	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
736 	if (!dev_is_dma_coherent(dev))
737 		arch_sync_dma_for_cpu(phys, size, dir);
738 
739 	if (is_swiotlb_buffer(dev, phys))
740 		swiotlb_sync_single_for_cpu(dev, phys, size, dir);
741 }
742 
743 static void iommu_dma_sync_single_for_device(struct device *dev,
744 		dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
745 {
746 	phys_addr_t phys;
747 
748 	if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev))
749 		return;
750 
751 	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
752 	if (is_swiotlb_buffer(dev, phys))
753 		swiotlb_sync_single_for_device(dev, phys, size, dir);
754 
755 	if (!dev_is_dma_coherent(dev))
756 		arch_sync_dma_for_device(phys, size, dir);
757 }
758 
759 static void iommu_dma_sync_sg_for_cpu(struct device *dev,
760 		struct scatterlist *sgl, int nelems,
761 		enum dma_data_direction dir)
762 {
763 	struct scatterlist *sg;
764 	int i;
765 
766 	if (dev_use_swiotlb(dev))
767 		for_each_sg(sgl, sg, nelems, i)
768 			iommu_dma_sync_single_for_cpu(dev, sg_dma_address(sg),
769 						      sg->length, dir);
770 	else if (!dev_is_dma_coherent(dev))
771 		for_each_sg(sgl, sg, nelems, i)
772 			arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir);
773 }
774 
775 static void iommu_dma_sync_sg_for_device(struct device *dev,
776 		struct scatterlist *sgl, int nelems,
777 		enum dma_data_direction dir)
778 {
779 	struct scatterlist *sg;
780 	int i;
781 
782 	if (dev_use_swiotlb(dev))
783 		for_each_sg(sgl, sg, nelems, i)
784 			iommu_dma_sync_single_for_device(dev,
785 							 sg_dma_address(sg),
786 							 sg->length, dir);
787 	else if (!dev_is_dma_coherent(dev))
788 		for_each_sg(sgl, sg, nelems, i)
789 			arch_sync_dma_for_device(sg_phys(sg), sg->length, dir);
790 }
791 
792 static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
793 		unsigned long offset, size_t size, enum dma_data_direction dir,
794 		unsigned long attrs)
795 {
796 	phys_addr_t phys = page_to_phys(page) + offset;
797 	bool coherent = dev_is_dma_coherent(dev);
798 	int prot = dma_info_to_prot(dir, coherent, attrs);
799 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
800 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
801 	struct iova_domain *iovad = &cookie->iovad;
802 	dma_addr_t iova, dma_mask = dma_get_mask(dev);
803 
804 	/*
805 	 * If both the physical buffer start address and size are
806 	 * page aligned, we don't need to use a bounce page.
807 	 */
808 	if (dev_use_swiotlb(dev) && iova_offset(iovad, phys | size)) {
809 		void *padding_start;
810 		size_t padding_size, aligned_size;
811 
812 		aligned_size = iova_align(iovad, size);
813 		phys = swiotlb_tbl_map_single(dev, phys, size, aligned_size,
814 					      iova_mask(iovad), dir, attrs);
815 
816 		if (phys == DMA_MAPPING_ERROR)
817 			return DMA_MAPPING_ERROR;
818 
819 		/* Cleanup the padding area. */
820 		padding_start = phys_to_virt(phys);
821 		padding_size = aligned_size;
822 
823 		if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
824 		    (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) {
825 			padding_start += size;
826 			padding_size -= size;
827 		}
828 
829 		memset(padding_start, 0, padding_size);
830 	}
831 
832 	if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
833 		arch_sync_dma_for_device(phys, size, dir);
834 
835 	iova = __iommu_dma_map(dev, phys, size, prot, dma_mask);
836 	if (iova == DMA_MAPPING_ERROR && is_swiotlb_buffer(dev, phys))
837 		swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
838 	return iova;
839 }
840 
841 static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle,
842 		size_t size, enum dma_data_direction dir, unsigned long attrs)
843 {
844 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
845 	phys_addr_t phys;
846 
847 	phys = iommu_iova_to_phys(domain, dma_handle);
848 	if (WARN_ON(!phys))
849 		return;
850 
851 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && !dev_is_dma_coherent(dev))
852 		arch_sync_dma_for_cpu(phys, size, dir);
853 
854 	__iommu_dma_unmap(dev, dma_handle, size);
855 
856 	if (unlikely(is_swiotlb_buffer(dev, phys)))
857 		swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
858 }
859 
860 /*
861  * Prepare a successfully-mapped scatterlist to give back to the caller.
862  *
863  * At this point the segments are already laid out by iommu_dma_map_sg() to
864  * avoid individually crossing any boundaries, so we merely need to check a
865  * segment's start address to avoid concatenating across one.
866  */
867 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
868 		dma_addr_t dma_addr)
869 {
870 	struct scatterlist *s, *cur = sg;
871 	unsigned long seg_mask = dma_get_seg_boundary(dev);
872 	unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
873 	int i, count = 0;
874 
875 	for_each_sg(sg, s, nents, i) {
876 		/* Restore this segment's original unaligned fields first */
877 		unsigned int s_iova_off = sg_dma_address(s);
878 		unsigned int s_length = sg_dma_len(s);
879 		unsigned int s_iova_len = s->length;
880 
881 		s->offset += s_iova_off;
882 		s->length = s_length;
883 		sg_dma_address(s) = DMA_MAPPING_ERROR;
884 		sg_dma_len(s) = 0;
885 
886 		/*
887 		 * Now fill in the real DMA data. If...
888 		 * - there is a valid output segment to append to
889 		 * - and this segment starts on an IOVA page boundary
890 		 * - but doesn't fall at a segment boundary
891 		 * - and wouldn't make the resulting output segment too long
892 		 */
893 		if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
894 		    (max_len - cur_len >= s_length)) {
895 			/* ...then concatenate it with the previous one */
896 			cur_len += s_length;
897 		} else {
898 			/* Otherwise start the next output segment */
899 			if (i > 0)
900 				cur = sg_next(cur);
901 			cur_len = s_length;
902 			count++;
903 
904 			sg_dma_address(cur) = dma_addr + s_iova_off;
905 		}
906 
907 		sg_dma_len(cur) = cur_len;
908 		dma_addr += s_iova_len;
909 
910 		if (s_length + s_iova_off < s_iova_len)
911 			cur_len = 0;
912 	}
913 	return count;
914 }
915 
916 /*
917  * If mapping failed, then just restore the original list,
918  * but making sure the DMA fields are invalidated.
919  */
920 static void __invalidate_sg(struct scatterlist *sg, int nents)
921 {
922 	struct scatterlist *s;
923 	int i;
924 
925 	for_each_sg(sg, s, nents, i) {
926 		if (sg_dma_address(s) != DMA_MAPPING_ERROR)
927 			s->offset += sg_dma_address(s);
928 		if (sg_dma_len(s))
929 			s->length = sg_dma_len(s);
930 		sg_dma_address(s) = DMA_MAPPING_ERROR;
931 		sg_dma_len(s) = 0;
932 	}
933 }
934 
935 static void iommu_dma_unmap_sg_swiotlb(struct device *dev, struct scatterlist *sg,
936 		int nents, enum dma_data_direction dir, unsigned long attrs)
937 {
938 	struct scatterlist *s;
939 	int i;
940 
941 	for_each_sg(sg, s, nents, i)
942 		iommu_dma_unmap_page(dev, sg_dma_address(s),
943 				sg_dma_len(s), dir, attrs);
944 }
945 
946 static int iommu_dma_map_sg_swiotlb(struct device *dev, struct scatterlist *sg,
947 		int nents, enum dma_data_direction dir, unsigned long attrs)
948 {
949 	struct scatterlist *s;
950 	int i;
951 
952 	for_each_sg(sg, s, nents, i) {
953 		sg_dma_address(s) = iommu_dma_map_page(dev, sg_page(s),
954 				s->offset, s->length, dir, attrs);
955 		if (sg_dma_address(s) == DMA_MAPPING_ERROR)
956 			goto out_unmap;
957 		sg_dma_len(s) = s->length;
958 	}
959 
960 	return nents;
961 
962 out_unmap:
963 	iommu_dma_unmap_sg_swiotlb(dev, sg, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
964 	return -EIO;
965 }
966 
967 /*
968  * The DMA API client is passing in a scatterlist which could describe
969  * any old buffer layout, but the IOMMU API requires everything to be
970  * aligned to IOMMU pages. Hence the need for this complicated bit of
971  * impedance-matching, to be able to hand off a suitably-aligned list,
972  * but still preserve the original offsets and sizes for the caller.
973  */
974 static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
975 		int nents, enum dma_data_direction dir, unsigned long attrs)
976 {
977 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
978 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
979 	struct iova_domain *iovad = &cookie->iovad;
980 	struct scatterlist *s, *prev = NULL;
981 	int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs);
982 	dma_addr_t iova;
983 	size_t iova_len = 0;
984 	unsigned long mask = dma_get_seg_boundary(dev);
985 	ssize_t ret;
986 	int i;
987 
988 	if (static_branch_unlikely(&iommu_deferred_attach_enabled)) {
989 		ret = iommu_deferred_attach(dev, domain);
990 		if (ret)
991 			goto out;
992 	}
993 
994 	if (dev_use_swiotlb(dev))
995 		return iommu_dma_map_sg_swiotlb(dev, sg, nents, dir, attrs);
996 
997 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
998 		iommu_dma_sync_sg_for_device(dev, sg, nents, dir);
999 
1000 	/*
1001 	 * Work out how much IOVA space we need, and align the segments to
1002 	 * IOVA granules for the IOMMU driver to handle. With some clever
1003 	 * trickery we can modify the list in-place, but reversibly, by
1004 	 * stashing the unaligned parts in the as-yet-unused DMA fields.
1005 	 */
1006 	for_each_sg(sg, s, nents, i) {
1007 		size_t s_iova_off = iova_offset(iovad, s->offset);
1008 		size_t s_length = s->length;
1009 		size_t pad_len = (mask - iova_len + 1) & mask;
1010 
1011 		sg_dma_address(s) = s_iova_off;
1012 		sg_dma_len(s) = s_length;
1013 		s->offset -= s_iova_off;
1014 		s_length = iova_align(iovad, s_length + s_iova_off);
1015 		s->length = s_length;
1016 
1017 		/*
1018 		 * Due to the alignment of our single IOVA allocation, we can
1019 		 * depend on these assumptions about the segment boundary mask:
1020 		 * - If mask size >= IOVA size, then the IOVA range cannot
1021 		 *   possibly fall across a boundary, so we don't care.
1022 		 * - If mask size < IOVA size, then the IOVA range must start
1023 		 *   exactly on a boundary, therefore we can lay things out
1024 		 *   based purely on segment lengths without needing to know
1025 		 *   the actual addresses beforehand.
1026 		 * - The mask must be a power of 2, so pad_len == 0 if
1027 		 *   iova_len == 0, thus we cannot dereference prev the first
1028 		 *   time through here (i.e. before it has a meaningful value).
1029 		 */
1030 		if (pad_len && pad_len < s_length - 1) {
1031 			prev->length += pad_len;
1032 			iova_len += pad_len;
1033 		}
1034 
1035 		iova_len += s_length;
1036 		prev = s;
1037 	}
1038 
1039 	iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
1040 	if (!iova) {
1041 		ret = -ENOMEM;
1042 		goto out_restore_sg;
1043 	}
1044 
1045 	/*
1046 	 * We'll leave any physical concatenation to the IOMMU driver's
1047 	 * implementation - it knows better than we do.
1048 	 */
1049 	ret = iommu_map_sg_atomic(domain, iova, sg, nents, prot);
1050 	if (ret < iova_len)
1051 		goto out_free_iova;
1052 
1053 	return __finalise_sg(dev, sg, nents, iova);
1054 
1055 out_free_iova:
1056 	iommu_dma_free_iova(cookie, iova, iova_len, NULL);
1057 out_restore_sg:
1058 	__invalidate_sg(sg, nents);
1059 out:
1060 	if (ret != -ENOMEM)
1061 		return -EINVAL;
1062 	return ret;
1063 }
1064 
1065 static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
1066 		int nents, enum dma_data_direction dir, unsigned long attrs)
1067 {
1068 	dma_addr_t start, end;
1069 	struct scatterlist *tmp;
1070 	int i;
1071 
1072 	if (dev_use_swiotlb(dev)) {
1073 		iommu_dma_unmap_sg_swiotlb(dev, sg, nents, dir, attrs);
1074 		return;
1075 	}
1076 
1077 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1078 		iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir);
1079 
1080 	/*
1081 	 * The scatterlist segments are mapped into a single
1082 	 * contiguous IOVA allocation, so this is incredibly easy.
1083 	 */
1084 	start = sg_dma_address(sg);
1085 	for_each_sg(sg_next(sg), tmp, nents - 1, i) {
1086 		if (sg_dma_len(tmp) == 0)
1087 			break;
1088 		sg = tmp;
1089 	}
1090 	end = sg_dma_address(sg) + sg_dma_len(sg);
1091 	__iommu_dma_unmap(dev, start, end - start);
1092 }
1093 
1094 static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
1095 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1096 {
1097 	return __iommu_dma_map(dev, phys, size,
1098 			dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO,
1099 			dma_get_mask(dev));
1100 }
1101 
1102 static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
1103 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1104 {
1105 	__iommu_dma_unmap(dev, handle, size);
1106 }
1107 
1108 static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr)
1109 {
1110 	size_t alloc_size = PAGE_ALIGN(size);
1111 	int count = alloc_size >> PAGE_SHIFT;
1112 	struct page *page = NULL, **pages = NULL;
1113 
1114 	/* Non-coherent atomic allocation? Easy */
1115 	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1116 	    dma_free_from_pool(dev, cpu_addr, alloc_size))
1117 		return;
1118 
1119 	if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1120 		/*
1121 		 * If it the address is remapped, then it's either non-coherent
1122 		 * or highmem CMA, or an iommu_dma_alloc_remap() construction.
1123 		 */
1124 		pages = dma_common_find_pages(cpu_addr);
1125 		if (!pages)
1126 			page = vmalloc_to_page(cpu_addr);
1127 		dma_common_free_remap(cpu_addr, alloc_size);
1128 	} else {
1129 		/* Lowmem means a coherent atomic or CMA allocation */
1130 		page = virt_to_page(cpu_addr);
1131 	}
1132 
1133 	if (pages)
1134 		__iommu_dma_free_pages(pages, count);
1135 	if (page)
1136 		dma_free_contiguous(dev, page, alloc_size);
1137 }
1138 
1139 static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr,
1140 		dma_addr_t handle, unsigned long attrs)
1141 {
1142 	__iommu_dma_unmap(dev, handle, size);
1143 	__iommu_dma_free(dev, size, cpu_addr);
1144 }
1145 
1146 static void *iommu_dma_alloc_pages(struct device *dev, size_t size,
1147 		struct page **pagep, gfp_t gfp, unsigned long attrs)
1148 {
1149 	bool coherent = dev_is_dma_coherent(dev);
1150 	size_t alloc_size = PAGE_ALIGN(size);
1151 	int node = dev_to_node(dev);
1152 	struct page *page = NULL;
1153 	void *cpu_addr;
1154 
1155 	page = dma_alloc_contiguous(dev, alloc_size, gfp);
1156 	if (!page)
1157 		page = alloc_pages_node(node, gfp, get_order(alloc_size));
1158 	if (!page)
1159 		return NULL;
1160 
1161 	if (IS_ENABLED(CONFIG_DMA_REMAP) && (!coherent || PageHighMem(page))) {
1162 		pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
1163 
1164 		cpu_addr = dma_common_contiguous_remap(page, alloc_size,
1165 				prot, __builtin_return_address(0));
1166 		if (!cpu_addr)
1167 			goto out_free_pages;
1168 
1169 		if (!coherent)
1170 			arch_dma_prep_coherent(page, size);
1171 	} else {
1172 		cpu_addr = page_address(page);
1173 	}
1174 
1175 	*pagep = page;
1176 	memset(cpu_addr, 0, alloc_size);
1177 	return cpu_addr;
1178 out_free_pages:
1179 	dma_free_contiguous(dev, page, alloc_size);
1180 	return NULL;
1181 }
1182 
1183 static void *iommu_dma_alloc(struct device *dev, size_t size,
1184 		dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1185 {
1186 	bool coherent = dev_is_dma_coherent(dev);
1187 	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
1188 	struct page *page = NULL;
1189 	void *cpu_addr;
1190 
1191 	gfp |= __GFP_ZERO;
1192 
1193 	if (IS_ENABLED(CONFIG_DMA_REMAP) && gfpflags_allow_blocking(gfp) &&
1194 	    !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) {
1195 		return iommu_dma_alloc_remap(dev, size, handle, gfp,
1196 				dma_pgprot(dev, PAGE_KERNEL, attrs), attrs);
1197 	}
1198 
1199 	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1200 	    !gfpflags_allow_blocking(gfp) && !coherent)
1201 		page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr,
1202 					       gfp, NULL);
1203 	else
1204 		cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs);
1205 	if (!cpu_addr)
1206 		return NULL;
1207 
1208 	*handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot,
1209 			dev->coherent_dma_mask);
1210 	if (*handle == DMA_MAPPING_ERROR) {
1211 		__iommu_dma_free(dev, size, cpu_addr);
1212 		return NULL;
1213 	}
1214 
1215 	return cpu_addr;
1216 }
1217 
1218 static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma,
1219 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
1220 		unsigned long attrs)
1221 {
1222 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1223 	unsigned long pfn, off = vma->vm_pgoff;
1224 	int ret;
1225 
1226 	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
1227 
1228 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
1229 		return ret;
1230 
1231 	if (off >= nr_pages || vma_pages(vma) > nr_pages - off)
1232 		return -ENXIO;
1233 
1234 	if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1235 		struct page **pages = dma_common_find_pages(cpu_addr);
1236 
1237 		if (pages)
1238 			return vm_map_pages(vma, pages, nr_pages);
1239 		pfn = vmalloc_to_pfn(cpu_addr);
1240 	} else {
1241 		pfn = page_to_pfn(virt_to_page(cpu_addr));
1242 	}
1243 
1244 	return remap_pfn_range(vma, vma->vm_start, pfn + off,
1245 			       vma->vm_end - vma->vm_start,
1246 			       vma->vm_page_prot);
1247 }
1248 
1249 static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
1250 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
1251 		unsigned long attrs)
1252 {
1253 	struct page *page;
1254 	int ret;
1255 
1256 	if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1257 		struct page **pages = dma_common_find_pages(cpu_addr);
1258 
1259 		if (pages) {
1260 			return sg_alloc_table_from_pages(sgt, pages,
1261 					PAGE_ALIGN(size) >> PAGE_SHIFT,
1262 					0, size, GFP_KERNEL);
1263 		}
1264 
1265 		page = vmalloc_to_page(cpu_addr);
1266 	} else {
1267 		page = virt_to_page(cpu_addr);
1268 	}
1269 
1270 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
1271 	if (!ret)
1272 		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
1273 	return ret;
1274 }
1275 
1276 static unsigned long iommu_dma_get_merge_boundary(struct device *dev)
1277 {
1278 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1279 
1280 	return (1UL << __ffs(domain->pgsize_bitmap)) - 1;
1281 }
1282 
1283 static const struct dma_map_ops iommu_dma_ops = {
1284 	.alloc			= iommu_dma_alloc,
1285 	.free			= iommu_dma_free,
1286 	.alloc_pages		= dma_common_alloc_pages,
1287 	.free_pages		= dma_common_free_pages,
1288 #ifdef CONFIG_DMA_REMAP
1289 	.alloc_noncontiguous	= iommu_dma_alloc_noncontiguous,
1290 	.free_noncontiguous	= iommu_dma_free_noncontiguous,
1291 #endif
1292 	.mmap			= iommu_dma_mmap,
1293 	.get_sgtable		= iommu_dma_get_sgtable,
1294 	.map_page		= iommu_dma_map_page,
1295 	.unmap_page		= iommu_dma_unmap_page,
1296 	.map_sg			= iommu_dma_map_sg,
1297 	.unmap_sg		= iommu_dma_unmap_sg,
1298 	.sync_single_for_cpu	= iommu_dma_sync_single_for_cpu,
1299 	.sync_single_for_device	= iommu_dma_sync_single_for_device,
1300 	.sync_sg_for_cpu	= iommu_dma_sync_sg_for_cpu,
1301 	.sync_sg_for_device	= iommu_dma_sync_sg_for_device,
1302 	.map_resource		= iommu_dma_map_resource,
1303 	.unmap_resource		= iommu_dma_unmap_resource,
1304 	.get_merge_boundary	= iommu_dma_get_merge_boundary,
1305 };
1306 
1307 /*
1308  * The IOMMU core code allocates the default DMA domain, which the underlying
1309  * IOMMU driver needs to support via the dma-iommu layer.
1310  */
1311 void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 dma_limit)
1312 {
1313 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1314 
1315 	if (!domain)
1316 		goto out_err;
1317 
1318 	/*
1319 	 * The IOMMU core code allocates the default DMA domain, which the
1320 	 * underlying IOMMU driver needs to support via the dma-iommu layer.
1321 	 */
1322 	if (iommu_is_dma_domain(domain)) {
1323 		if (iommu_dma_init_domain(domain, dma_base, dma_limit, dev))
1324 			goto out_err;
1325 		dev->dma_ops = &iommu_dma_ops;
1326 	}
1327 
1328 	return;
1329 out_err:
1330 	 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
1331 		 dev_name(dev));
1332 }
1333 EXPORT_SYMBOL_GPL(iommu_setup_dma_ops);
1334 
1335 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
1336 		phys_addr_t msi_addr, struct iommu_domain *domain)
1337 {
1338 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
1339 	struct iommu_dma_msi_page *msi_page;
1340 	dma_addr_t iova;
1341 	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1342 	size_t size = cookie_msi_granule(cookie);
1343 
1344 	msi_addr &= ~(phys_addr_t)(size - 1);
1345 	list_for_each_entry(msi_page, &cookie->msi_page_list, list)
1346 		if (msi_page->phys == msi_addr)
1347 			return msi_page;
1348 
1349 	msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL);
1350 	if (!msi_page)
1351 		return NULL;
1352 
1353 	iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
1354 	if (!iova)
1355 		goto out_free_page;
1356 
1357 	if (iommu_map(domain, iova, msi_addr, size, prot))
1358 		goto out_free_iova;
1359 
1360 	INIT_LIST_HEAD(&msi_page->list);
1361 	msi_page->phys = msi_addr;
1362 	msi_page->iova = iova;
1363 	list_add(&msi_page->list, &cookie->msi_page_list);
1364 	return msi_page;
1365 
1366 out_free_iova:
1367 	iommu_dma_free_iova(cookie, iova, size, NULL);
1368 out_free_page:
1369 	kfree(msi_page);
1370 	return NULL;
1371 }
1372 
1373 int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)
1374 {
1375 	struct device *dev = msi_desc_to_dev(desc);
1376 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1377 	struct iommu_dma_msi_page *msi_page;
1378 	static DEFINE_MUTEX(msi_prepare_lock); /* see below */
1379 
1380 	if (!domain || !domain->iova_cookie) {
1381 		desc->iommu_cookie = NULL;
1382 		return 0;
1383 	}
1384 
1385 	/*
1386 	 * In fact the whole prepare operation should already be serialised by
1387 	 * irq_domain_mutex further up the callchain, but that's pretty subtle
1388 	 * on its own, so consider this locking as failsafe documentation...
1389 	 */
1390 	mutex_lock(&msi_prepare_lock);
1391 	msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
1392 	mutex_unlock(&msi_prepare_lock);
1393 
1394 	msi_desc_set_iommu_cookie(desc, msi_page);
1395 
1396 	if (!msi_page)
1397 		return -ENOMEM;
1398 	return 0;
1399 }
1400 
1401 void iommu_dma_compose_msi_msg(struct msi_desc *desc,
1402 			       struct msi_msg *msg)
1403 {
1404 	struct device *dev = msi_desc_to_dev(desc);
1405 	const struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1406 	const struct iommu_dma_msi_page *msi_page;
1407 
1408 	msi_page = msi_desc_get_iommu_cookie(desc);
1409 
1410 	if (!domain || !domain->iova_cookie || WARN_ON(!msi_page))
1411 		return;
1412 
1413 	msg->address_hi = upper_32_bits(msi_page->iova);
1414 	msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1;
1415 	msg->address_lo += lower_32_bits(msi_page->iova);
1416 }
1417 
1418 static int iommu_dma_init(void)
1419 {
1420 	if (is_kdump_kernel())
1421 		static_branch_enable(&iommu_deferred_attach_enabled);
1422 
1423 	return iova_cache_get();
1424 }
1425 arch_initcall(iommu_dma_init);
1426