1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * A fairly generic DMA-API to IOMMU-API glue layer. 4 * 5 * Copyright (C) 2014-2015 ARM Ltd. 6 * 7 * based in part on arch/arm/mm/dma-mapping.c: 8 * Copyright (C) 2000-2004 Russell King 9 */ 10 11 #include <linux/acpi_iort.h> 12 #include <linux/atomic.h> 13 #include <linux/crash_dump.h> 14 #include <linux/device.h> 15 #include <linux/dma-direct.h> 16 #include <linux/dma-map-ops.h> 17 #include <linux/gfp.h> 18 #include <linux/huge_mm.h> 19 #include <linux/iommu.h> 20 #include <linux/iova.h> 21 #include <linux/irq.h> 22 #include <linux/list_sort.h> 23 #include <linux/memremap.h> 24 #include <linux/mm.h> 25 #include <linux/mutex.h> 26 #include <linux/of_iommu.h> 27 #include <linux/pci.h> 28 #include <linux/scatterlist.h> 29 #include <linux/spinlock.h> 30 #include <linux/swiotlb.h> 31 #include <linux/vmalloc.h> 32 33 #include "dma-iommu.h" 34 35 struct iommu_dma_msi_page { 36 struct list_head list; 37 dma_addr_t iova; 38 phys_addr_t phys; 39 }; 40 41 enum iommu_dma_cookie_type { 42 IOMMU_DMA_IOVA_COOKIE, 43 IOMMU_DMA_MSI_COOKIE, 44 }; 45 46 struct iommu_dma_cookie { 47 enum iommu_dma_cookie_type type; 48 union { 49 /* Full allocator for IOMMU_DMA_IOVA_COOKIE */ 50 struct { 51 struct iova_domain iovad; 52 53 struct iova_fq __percpu *fq; /* Flush queue */ 54 /* Number of TLB flushes that have been started */ 55 atomic64_t fq_flush_start_cnt; 56 /* Number of TLB flushes that have been finished */ 57 atomic64_t fq_flush_finish_cnt; 58 /* Timer to regularily empty the flush queues */ 59 struct timer_list fq_timer; 60 /* 1 when timer is active, 0 when not */ 61 atomic_t fq_timer_on; 62 }; 63 /* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */ 64 dma_addr_t msi_iova; 65 }; 66 struct list_head msi_page_list; 67 68 /* Domain for flush queue callback; NULL if flush queue not in use */ 69 struct iommu_domain *fq_domain; 70 struct mutex mutex; 71 }; 72 73 static DEFINE_STATIC_KEY_FALSE(iommu_deferred_attach_enabled); 74 bool iommu_dma_forcedac __read_mostly; 75 76 static int __init iommu_dma_forcedac_setup(char *str) 77 { 78 int ret = kstrtobool(str, &iommu_dma_forcedac); 79 80 if (!ret && iommu_dma_forcedac) 81 pr_info("Forcing DAC for PCI devices\n"); 82 return ret; 83 } 84 early_param("iommu.forcedac", iommu_dma_forcedac_setup); 85 86 /* Number of entries per flush queue */ 87 #define IOVA_FQ_SIZE 256 88 89 /* Timeout (in ms) after which entries are flushed from the queue */ 90 #define IOVA_FQ_TIMEOUT 10 91 92 /* Flush queue entry for deferred flushing */ 93 struct iova_fq_entry { 94 unsigned long iova_pfn; 95 unsigned long pages; 96 struct list_head freelist; 97 u64 counter; /* Flush counter when this entry was added */ 98 }; 99 100 /* Per-CPU flush queue structure */ 101 struct iova_fq { 102 struct iova_fq_entry entries[IOVA_FQ_SIZE]; 103 unsigned int head, tail; 104 spinlock_t lock; 105 }; 106 107 #define fq_ring_for_each(i, fq) \ 108 for ((i) = (fq)->head; (i) != (fq)->tail; (i) = ((i) + 1) % IOVA_FQ_SIZE) 109 110 static inline bool fq_full(struct iova_fq *fq) 111 { 112 assert_spin_locked(&fq->lock); 113 return (((fq->tail + 1) % IOVA_FQ_SIZE) == fq->head); 114 } 115 116 static inline unsigned int fq_ring_add(struct iova_fq *fq) 117 { 118 unsigned int idx = fq->tail; 119 120 assert_spin_locked(&fq->lock); 121 122 fq->tail = (idx + 1) % IOVA_FQ_SIZE; 123 124 return idx; 125 } 126 127 static void fq_ring_free(struct iommu_dma_cookie *cookie, struct iova_fq *fq) 128 { 129 u64 counter = atomic64_read(&cookie->fq_flush_finish_cnt); 130 unsigned int idx; 131 132 assert_spin_locked(&fq->lock); 133 134 fq_ring_for_each(idx, fq) { 135 136 if (fq->entries[idx].counter >= counter) 137 break; 138 139 put_pages_list(&fq->entries[idx].freelist); 140 free_iova_fast(&cookie->iovad, 141 fq->entries[idx].iova_pfn, 142 fq->entries[idx].pages); 143 144 fq->head = (fq->head + 1) % IOVA_FQ_SIZE; 145 } 146 } 147 148 static void fq_flush_iotlb(struct iommu_dma_cookie *cookie) 149 { 150 atomic64_inc(&cookie->fq_flush_start_cnt); 151 cookie->fq_domain->ops->flush_iotlb_all(cookie->fq_domain); 152 atomic64_inc(&cookie->fq_flush_finish_cnt); 153 } 154 155 static void fq_flush_timeout(struct timer_list *t) 156 { 157 struct iommu_dma_cookie *cookie = from_timer(cookie, t, fq_timer); 158 int cpu; 159 160 atomic_set(&cookie->fq_timer_on, 0); 161 fq_flush_iotlb(cookie); 162 163 for_each_possible_cpu(cpu) { 164 unsigned long flags; 165 struct iova_fq *fq; 166 167 fq = per_cpu_ptr(cookie->fq, cpu); 168 spin_lock_irqsave(&fq->lock, flags); 169 fq_ring_free(cookie, fq); 170 spin_unlock_irqrestore(&fq->lock, flags); 171 } 172 } 173 174 static void queue_iova(struct iommu_dma_cookie *cookie, 175 unsigned long pfn, unsigned long pages, 176 struct list_head *freelist) 177 { 178 struct iova_fq *fq; 179 unsigned long flags; 180 unsigned int idx; 181 182 /* 183 * Order against the IOMMU driver's pagetable update from unmapping 184 * @pte, to guarantee that fq_flush_iotlb() observes that if called 185 * from a different CPU before we release the lock below. Full barrier 186 * so it also pairs with iommu_dma_init_fq() to avoid seeing partially 187 * written fq state here. 188 */ 189 smp_mb(); 190 191 fq = raw_cpu_ptr(cookie->fq); 192 spin_lock_irqsave(&fq->lock, flags); 193 194 /* 195 * First remove all entries from the flush queue that have already been 196 * flushed out on another CPU. This makes the fq_full() check below less 197 * likely to be true. 198 */ 199 fq_ring_free(cookie, fq); 200 201 if (fq_full(fq)) { 202 fq_flush_iotlb(cookie); 203 fq_ring_free(cookie, fq); 204 } 205 206 idx = fq_ring_add(fq); 207 208 fq->entries[idx].iova_pfn = pfn; 209 fq->entries[idx].pages = pages; 210 fq->entries[idx].counter = atomic64_read(&cookie->fq_flush_start_cnt); 211 list_splice(freelist, &fq->entries[idx].freelist); 212 213 spin_unlock_irqrestore(&fq->lock, flags); 214 215 /* Avoid false sharing as much as possible. */ 216 if (!atomic_read(&cookie->fq_timer_on) && 217 !atomic_xchg(&cookie->fq_timer_on, 1)) 218 mod_timer(&cookie->fq_timer, 219 jiffies + msecs_to_jiffies(IOVA_FQ_TIMEOUT)); 220 } 221 222 static void iommu_dma_free_fq(struct iommu_dma_cookie *cookie) 223 { 224 int cpu, idx; 225 226 if (!cookie->fq) 227 return; 228 229 del_timer_sync(&cookie->fq_timer); 230 /* The IOVAs will be torn down separately, so just free our queued pages */ 231 for_each_possible_cpu(cpu) { 232 struct iova_fq *fq = per_cpu_ptr(cookie->fq, cpu); 233 234 fq_ring_for_each(idx, fq) 235 put_pages_list(&fq->entries[idx].freelist); 236 } 237 238 free_percpu(cookie->fq); 239 } 240 241 /* sysfs updates are serialised by the mutex of the group owning @domain */ 242 int iommu_dma_init_fq(struct iommu_domain *domain) 243 { 244 struct iommu_dma_cookie *cookie = domain->iova_cookie; 245 struct iova_fq __percpu *queue; 246 int i, cpu; 247 248 if (cookie->fq_domain) 249 return 0; 250 251 atomic64_set(&cookie->fq_flush_start_cnt, 0); 252 atomic64_set(&cookie->fq_flush_finish_cnt, 0); 253 254 queue = alloc_percpu(struct iova_fq); 255 if (!queue) { 256 pr_warn("iova flush queue initialization failed\n"); 257 return -ENOMEM; 258 } 259 260 for_each_possible_cpu(cpu) { 261 struct iova_fq *fq = per_cpu_ptr(queue, cpu); 262 263 fq->head = 0; 264 fq->tail = 0; 265 266 spin_lock_init(&fq->lock); 267 268 for (i = 0; i < IOVA_FQ_SIZE; i++) 269 INIT_LIST_HEAD(&fq->entries[i].freelist); 270 } 271 272 cookie->fq = queue; 273 274 timer_setup(&cookie->fq_timer, fq_flush_timeout, 0); 275 atomic_set(&cookie->fq_timer_on, 0); 276 /* 277 * Prevent incomplete fq state being observable. Pairs with path from 278 * __iommu_dma_unmap() through iommu_dma_free_iova() to queue_iova() 279 */ 280 smp_wmb(); 281 WRITE_ONCE(cookie->fq_domain, domain); 282 return 0; 283 } 284 285 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie) 286 { 287 if (cookie->type == IOMMU_DMA_IOVA_COOKIE) 288 return cookie->iovad.granule; 289 return PAGE_SIZE; 290 } 291 292 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type) 293 { 294 struct iommu_dma_cookie *cookie; 295 296 cookie = kzalloc(sizeof(*cookie), GFP_KERNEL); 297 if (cookie) { 298 INIT_LIST_HEAD(&cookie->msi_page_list); 299 cookie->type = type; 300 } 301 return cookie; 302 } 303 304 /** 305 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain 306 * @domain: IOMMU domain to prepare for DMA-API usage 307 */ 308 int iommu_get_dma_cookie(struct iommu_domain *domain) 309 { 310 if (domain->iova_cookie) 311 return -EEXIST; 312 313 domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE); 314 if (!domain->iova_cookie) 315 return -ENOMEM; 316 317 mutex_init(&domain->iova_cookie->mutex); 318 return 0; 319 } 320 321 /** 322 * iommu_get_msi_cookie - Acquire just MSI remapping resources 323 * @domain: IOMMU domain to prepare 324 * @base: Start address of IOVA region for MSI mappings 325 * 326 * Users who manage their own IOVA allocation and do not want DMA API support, 327 * but would still like to take advantage of automatic MSI remapping, can use 328 * this to initialise their own domain appropriately. Users should reserve a 329 * contiguous IOVA region, starting at @base, large enough to accommodate the 330 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address 331 * used by the devices attached to @domain. 332 */ 333 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base) 334 { 335 struct iommu_dma_cookie *cookie; 336 337 if (domain->type != IOMMU_DOMAIN_UNMANAGED) 338 return -EINVAL; 339 340 if (domain->iova_cookie) 341 return -EEXIST; 342 343 cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE); 344 if (!cookie) 345 return -ENOMEM; 346 347 cookie->msi_iova = base; 348 domain->iova_cookie = cookie; 349 return 0; 350 } 351 EXPORT_SYMBOL(iommu_get_msi_cookie); 352 353 /** 354 * iommu_put_dma_cookie - Release a domain's DMA mapping resources 355 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or 356 * iommu_get_msi_cookie() 357 */ 358 void iommu_put_dma_cookie(struct iommu_domain *domain) 359 { 360 struct iommu_dma_cookie *cookie = domain->iova_cookie; 361 struct iommu_dma_msi_page *msi, *tmp; 362 363 if (!cookie) 364 return; 365 366 if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule) { 367 iommu_dma_free_fq(cookie); 368 put_iova_domain(&cookie->iovad); 369 } 370 371 list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) { 372 list_del(&msi->list); 373 kfree(msi); 374 } 375 kfree(cookie); 376 domain->iova_cookie = NULL; 377 } 378 379 /** 380 * iommu_dma_get_resv_regions - Reserved region driver helper 381 * @dev: Device from iommu_get_resv_regions() 382 * @list: Reserved region list from iommu_get_resv_regions() 383 * 384 * IOMMU drivers can use this to implement their .get_resv_regions callback 385 * for general non-IOMMU-specific reservations. Currently, this covers GICv3 386 * ITS region reservation on ACPI based ARM platforms that may require HW MSI 387 * reservation. 388 */ 389 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list) 390 { 391 392 if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode)) 393 iort_iommu_get_resv_regions(dev, list); 394 395 if (dev->of_node) 396 of_iommu_get_resv_regions(dev, list); 397 } 398 EXPORT_SYMBOL(iommu_dma_get_resv_regions); 399 400 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie, 401 phys_addr_t start, phys_addr_t end) 402 { 403 struct iova_domain *iovad = &cookie->iovad; 404 struct iommu_dma_msi_page *msi_page; 405 int i, num_pages; 406 407 start -= iova_offset(iovad, start); 408 num_pages = iova_align(iovad, end - start) >> iova_shift(iovad); 409 410 for (i = 0; i < num_pages; i++) { 411 msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL); 412 if (!msi_page) 413 return -ENOMEM; 414 415 msi_page->phys = start; 416 msi_page->iova = start; 417 INIT_LIST_HEAD(&msi_page->list); 418 list_add(&msi_page->list, &cookie->msi_page_list); 419 start += iovad->granule; 420 } 421 422 return 0; 423 } 424 425 static int iommu_dma_ranges_sort(void *priv, const struct list_head *a, 426 const struct list_head *b) 427 { 428 struct resource_entry *res_a = list_entry(a, typeof(*res_a), node); 429 struct resource_entry *res_b = list_entry(b, typeof(*res_b), node); 430 431 return res_a->res->start > res_b->res->start; 432 } 433 434 static int iova_reserve_pci_windows(struct pci_dev *dev, 435 struct iova_domain *iovad) 436 { 437 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus); 438 struct resource_entry *window; 439 unsigned long lo, hi; 440 phys_addr_t start = 0, end; 441 442 resource_list_for_each_entry(window, &bridge->windows) { 443 if (resource_type(window->res) != IORESOURCE_MEM) 444 continue; 445 446 lo = iova_pfn(iovad, window->res->start - window->offset); 447 hi = iova_pfn(iovad, window->res->end - window->offset); 448 reserve_iova(iovad, lo, hi); 449 } 450 451 /* Get reserved DMA windows from host bridge */ 452 list_sort(NULL, &bridge->dma_ranges, iommu_dma_ranges_sort); 453 resource_list_for_each_entry(window, &bridge->dma_ranges) { 454 end = window->res->start - window->offset; 455 resv_iova: 456 if (end > start) { 457 lo = iova_pfn(iovad, start); 458 hi = iova_pfn(iovad, end); 459 reserve_iova(iovad, lo, hi); 460 } else if (end < start) { 461 /* DMA ranges should be non-overlapping */ 462 dev_err(&dev->dev, 463 "Failed to reserve IOVA [%pa-%pa]\n", 464 &start, &end); 465 return -EINVAL; 466 } 467 468 start = window->res->end - window->offset + 1; 469 /* If window is last entry */ 470 if (window->node.next == &bridge->dma_ranges && 471 end != ~(phys_addr_t)0) { 472 end = ~(phys_addr_t)0; 473 goto resv_iova; 474 } 475 } 476 477 return 0; 478 } 479 480 static int iova_reserve_iommu_regions(struct device *dev, 481 struct iommu_domain *domain) 482 { 483 struct iommu_dma_cookie *cookie = domain->iova_cookie; 484 struct iova_domain *iovad = &cookie->iovad; 485 struct iommu_resv_region *region; 486 LIST_HEAD(resv_regions); 487 int ret = 0; 488 489 if (dev_is_pci(dev)) { 490 ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad); 491 if (ret) 492 return ret; 493 } 494 495 iommu_get_resv_regions(dev, &resv_regions); 496 list_for_each_entry(region, &resv_regions, list) { 497 unsigned long lo, hi; 498 499 /* We ARE the software that manages these! */ 500 if (region->type == IOMMU_RESV_SW_MSI) 501 continue; 502 503 lo = iova_pfn(iovad, region->start); 504 hi = iova_pfn(iovad, region->start + region->length - 1); 505 reserve_iova(iovad, lo, hi); 506 507 if (region->type == IOMMU_RESV_MSI) 508 ret = cookie_init_hw_msi_region(cookie, region->start, 509 region->start + region->length); 510 if (ret) 511 break; 512 } 513 iommu_put_resv_regions(dev, &resv_regions); 514 515 return ret; 516 } 517 518 static bool dev_is_untrusted(struct device *dev) 519 { 520 return dev_is_pci(dev) && to_pci_dev(dev)->untrusted; 521 } 522 523 static bool dev_use_swiotlb(struct device *dev, size_t size, 524 enum dma_data_direction dir) 525 { 526 return IS_ENABLED(CONFIG_SWIOTLB) && 527 (dev_is_untrusted(dev) || 528 dma_kmalloc_needs_bounce(dev, size, dir)); 529 } 530 531 static bool dev_use_sg_swiotlb(struct device *dev, struct scatterlist *sg, 532 int nents, enum dma_data_direction dir) 533 { 534 struct scatterlist *s; 535 int i; 536 537 if (!IS_ENABLED(CONFIG_SWIOTLB)) 538 return false; 539 540 if (dev_is_untrusted(dev)) 541 return true; 542 543 /* 544 * If kmalloc() buffers are not DMA-safe for this device and 545 * direction, check the individual lengths in the sg list. If any 546 * element is deemed unsafe, use the swiotlb for bouncing. 547 */ 548 if (!dma_kmalloc_safe(dev, dir)) { 549 for_each_sg(sg, s, nents, i) 550 if (!dma_kmalloc_size_aligned(s->length)) 551 return true; 552 } 553 554 return false; 555 } 556 557 /** 558 * iommu_dma_init_domain - Initialise a DMA mapping domain 559 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() 560 * @base: IOVA at which the mappable address space starts 561 * @limit: Last address of the IOVA space 562 * @dev: Device the domain is being initialised for 563 * 564 * @base and @limit + 1 should be exact multiples of IOMMU page granularity to 565 * avoid rounding surprises. If necessary, we reserve the page at address 0 566 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but 567 * any change which could make prior IOVAs invalid will fail. 568 */ 569 static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base, 570 dma_addr_t limit, struct device *dev) 571 { 572 struct iommu_dma_cookie *cookie = domain->iova_cookie; 573 unsigned long order, base_pfn; 574 struct iova_domain *iovad; 575 int ret; 576 577 if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE) 578 return -EINVAL; 579 580 iovad = &cookie->iovad; 581 582 /* Use the smallest supported page size for IOVA granularity */ 583 order = __ffs(domain->pgsize_bitmap); 584 base_pfn = max_t(unsigned long, 1, base >> order); 585 586 /* Check the domain allows at least some access to the device... */ 587 if (domain->geometry.force_aperture) { 588 if (base > domain->geometry.aperture_end || 589 limit < domain->geometry.aperture_start) { 590 pr_warn("specified DMA range outside IOMMU capability\n"); 591 return -EFAULT; 592 } 593 /* ...then finally give it a kicking to make sure it fits */ 594 base_pfn = max_t(unsigned long, base_pfn, 595 domain->geometry.aperture_start >> order); 596 } 597 598 /* start_pfn is always nonzero for an already-initialised domain */ 599 mutex_lock(&cookie->mutex); 600 if (iovad->start_pfn) { 601 if (1UL << order != iovad->granule || 602 base_pfn != iovad->start_pfn) { 603 pr_warn("Incompatible range for DMA domain\n"); 604 ret = -EFAULT; 605 goto done_unlock; 606 } 607 608 ret = 0; 609 goto done_unlock; 610 } 611 612 init_iova_domain(iovad, 1UL << order, base_pfn); 613 ret = iova_domain_init_rcaches(iovad); 614 if (ret) 615 goto done_unlock; 616 617 /* If the FQ fails we can simply fall back to strict mode */ 618 if (domain->type == IOMMU_DOMAIN_DMA_FQ && iommu_dma_init_fq(domain)) 619 domain->type = IOMMU_DOMAIN_DMA; 620 621 ret = iova_reserve_iommu_regions(dev, domain); 622 623 done_unlock: 624 mutex_unlock(&cookie->mutex); 625 return ret; 626 } 627 628 /** 629 * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API 630 * page flags. 631 * @dir: Direction of DMA transfer 632 * @coherent: Is the DMA master cache-coherent? 633 * @attrs: DMA attributes for the mapping 634 * 635 * Return: corresponding IOMMU API page protection flags 636 */ 637 static int dma_info_to_prot(enum dma_data_direction dir, bool coherent, 638 unsigned long attrs) 639 { 640 int prot = coherent ? IOMMU_CACHE : 0; 641 642 if (attrs & DMA_ATTR_PRIVILEGED) 643 prot |= IOMMU_PRIV; 644 645 switch (dir) { 646 case DMA_BIDIRECTIONAL: 647 return prot | IOMMU_READ | IOMMU_WRITE; 648 case DMA_TO_DEVICE: 649 return prot | IOMMU_READ; 650 case DMA_FROM_DEVICE: 651 return prot | IOMMU_WRITE; 652 default: 653 return 0; 654 } 655 } 656 657 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain, 658 size_t size, u64 dma_limit, struct device *dev) 659 { 660 struct iommu_dma_cookie *cookie = domain->iova_cookie; 661 struct iova_domain *iovad = &cookie->iovad; 662 unsigned long shift, iova_len, iova = 0; 663 664 if (cookie->type == IOMMU_DMA_MSI_COOKIE) { 665 cookie->msi_iova += size; 666 return cookie->msi_iova - size; 667 } 668 669 shift = iova_shift(iovad); 670 iova_len = size >> shift; 671 672 dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit); 673 674 if (domain->geometry.force_aperture) 675 dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end); 676 677 /* Try to get PCI devices a SAC address */ 678 if (dma_limit > DMA_BIT_MASK(32) && !iommu_dma_forcedac && dev_is_pci(dev)) 679 iova = alloc_iova_fast(iovad, iova_len, 680 DMA_BIT_MASK(32) >> shift, false); 681 682 if (!iova) 683 iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift, 684 true); 685 686 return (dma_addr_t)iova << shift; 687 } 688 689 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie, 690 dma_addr_t iova, size_t size, struct iommu_iotlb_gather *gather) 691 { 692 struct iova_domain *iovad = &cookie->iovad; 693 694 /* The MSI case is only ever cleaning up its most recent allocation */ 695 if (cookie->type == IOMMU_DMA_MSI_COOKIE) 696 cookie->msi_iova -= size; 697 else if (gather && gather->queued) 698 queue_iova(cookie, iova_pfn(iovad, iova), 699 size >> iova_shift(iovad), 700 &gather->freelist); 701 else 702 free_iova_fast(iovad, iova_pfn(iovad, iova), 703 size >> iova_shift(iovad)); 704 } 705 706 static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr, 707 size_t size) 708 { 709 struct iommu_domain *domain = iommu_get_dma_domain(dev); 710 struct iommu_dma_cookie *cookie = domain->iova_cookie; 711 struct iova_domain *iovad = &cookie->iovad; 712 size_t iova_off = iova_offset(iovad, dma_addr); 713 struct iommu_iotlb_gather iotlb_gather; 714 size_t unmapped; 715 716 dma_addr -= iova_off; 717 size = iova_align(iovad, size + iova_off); 718 iommu_iotlb_gather_init(&iotlb_gather); 719 iotlb_gather.queued = READ_ONCE(cookie->fq_domain); 720 721 unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather); 722 WARN_ON(unmapped != size); 723 724 if (!iotlb_gather.queued) 725 iommu_iotlb_sync(domain, &iotlb_gather); 726 iommu_dma_free_iova(cookie, dma_addr, size, &iotlb_gather); 727 } 728 729 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys, 730 size_t size, int prot, u64 dma_mask) 731 { 732 struct iommu_domain *domain = iommu_get_dma_domain(dev); 733 struct iommu_dma_cookie *cookie = domain->iova_cookie; 734 struct iova_domain *iovad = &cookie->iovad; 735 size_t iova_off = iova_offset(iovad, phys); 736 dma_addr_t iova; 737 738 if (static_branch_unlikely(&iommu_deferred_attach_enabled) && 739 iommu_deferred_attach(dev, domain)) 740 return DMA_MAPPING_ERROR; 741 742 size = iova_align(iovad, size + iova_off); 743 744 iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev); 745 if (!iova) 746 return DMA_MAPPING_ERROR; 747 748 if (iommu_map(domain, iova, phys - iova_off, size, prot, GFP_ATOMIC)) { 749 iommu_dma_free_iova(cookie, iova, size, NULL); 750 return DMA_MAPPING_ERROR; 751 } 752 return iova + iova_off; 753 } 754 755 static void __iommu_dma_free_pages(struct page **pages, int count) 756 { 757 while (count--) 758 __free_page(pages[count]); 759 kvfree(pages); 760 } 761 762 static struct page **__iommu_dma_alloc_pages(struct device *dev, 763 unsigned int count, unsigned long order_mask, gfp_t gfp) 764 { 765 struct page **pages; 766 unsigned int i = 0, nid = dev_to_node(dev); 767 768 order_mask &= GENMASK(MAX_ORDER, 0); 769 if (!order_mask) 770 return NULL; 771 772 pages = kvcalloc(count, sizeof(*pages), GFP_KERNEL); 773 if (!pages) 774 return NULL; 775 776 /* IOMMU can map any pages, so himem can also be used here */ 777 gfp |= __GFP_NOWARN | __GFP_HIGHMEM; 778 779 while (count) { 780 struct page *page = NULL; 781 unsigned int order_size; 782 783 /* 784 * Higher-order allocations are a convenience rather 785 * than a necessity, hence using __GFP_NORETRY until 786 * falling back to minimum-order allocations. 787 */ 788 for (order_mask &= GENMASK(__fls(count), 0); 789 order_mask; order_mask &= ~order_size) { 790 unsigned int order = __fls(order_mask); 791 gfp_t alloc_flags = gfp; 792 793 order_size = 1U << order; 794 if (order_mask > order_size) 795 alloc_flags |= __GFP_NORETRY; 796 page = alloc_pages_node(nid, alloc_flags, order); 797 if (!page) 798 continue; 799 if (order) 800 split_page(page, order); 801 break; 802 } 803 if (!page) { 804 __iommu_dma_free_pages(pages, i); 805 return NULL; 806 } 807 count -= order_size; 808 while (order_size--) 809 pages[i++] = page++; 810 } 811 return pages; 812 } 813 814 /* 815 * If size is less than PAGE_SIZE, then a full CPU page will be allocated, 816 * but an IOMMU which supports smaller pages might not map the whole thing. 817 */ 818 static struct page **__iommu_dma_alloc_noncontiguous(struct device *dev, 819 size_t size, struct sg_table *sgt, gfp_t gfp, pgprot_t prot, 820 unsigned long attrs) 821 { 822 struct iommu_domain *domain = iommu_get_dma_domain(dev); 823 struct iommu_dma_cookie *cookie = domain->iova_cookie; 824 struct iova_domain *iovad = &cookie->iovad; 825 bool coherent = dev_is_dma_coherent(dev); 826 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs); 827 unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap; 828 struct page **pages; 829 dma_addr_t iova; 830 ssize_t ret; 831 832 if (static_branch_unlikely(&iommu_deferred_attach_enabled) && 833 iommu_deferred_attach(dev, domain)) 834 return NULL; 835 836 min_size = alloc_sizes & -alloc_sizes; 837 if (min_size < PAGE_SIZE) { 838 min_size = PAGE_SIZE; 839 alloc_sizes |= PAGE_SIZE; 840 } else { 841 size = ALIGN(size, min_size); 842 } 843 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES) 844 alloc_sizes = min_size; 845 846 count = PAGE_ALIGN(size) >> PAGE_SHIFT; 847 pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT, 848 gfp); 849 if (!pages) 850 return NULL; 851 852 size = iova_align(iovad, size); 853 iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev); 854 if (!iova) 855 goto out_free_pages; 856 857 /* 858 * Remove the zone/policy flags from the GFP - these are applied to the 859 * __iommu_dma_alloc_pages() but are not used for the supporting 860 * internal allocations that follow. 861 */ 862 gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM | __GFP_COMP); 863 864 if (sg_alloc_table_from_pages(sgt, pages, count, 0, size, gfp)) 865 goto out_free_iova; 866 867 if (!(ioprot & IOMMU_CACHE)) { 868 struct scatterlist *sg; 869 int i; 870 871 for_each_sg(sgt->sgl, sg, sgt->orig_nents, i) 872 arch_dma_prep_coherent(sg_page(sg), sg->length); 873 } 874 875 ret = iommu_map_sg(domain, iova, sgt->sgl, sgt->orig_nents, ioprot, 876 gfp); 877 if (ret < 0 || ret < size) 878 goto out_free_sg; 879 880 sgt->sgl->dma_address = iova; 881 sgt->sgl->dma_length = size; 882 return pages; 883 884 out_free_sg: 885 sg_free_table(sgt); 886 out_free_iova: 887 iommu_dma_free_iova(cookie, iova, size, NULL); 888 out_free_pages: 889 __iommu_dma_free_pages(pages, count); 890 return NULL; 891 } 892 893 static void *iommu_dma_alloc_remap(struct device *dev, size_t size, 894 dma_addr_t *dma_handle, gfp_t gfp, pgprot_t prot, 895 unsigned long attrs) 896 { 897 struct page **pages; 898 struct sg_table sgt; 899 void *vaddr; 900 901 pages = __iommu_dma_alloc_noncontiguous(dev, size, &sgt, gfp, prot, 902 attrs); 903 if (!pages) 904 return NULL; 905 *dma_handle = sgt.sgl->dma_address; 906 sg_free_table(&sgt); 907 vaddr = dma_common_pages_remap(pages, size, prot, 908 __builtin_return_address(0)); 909 if (!vaddr) 910 goto out_unmap; 911 return vaddr; 912 913 out_unmap: 914 __iommu_dma_unmap(dev, *dma_handle, size); 915 __iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT); 916 return NULL; 917 } 918 919 static struct sg_table *iommu_dma_alloc_noncontiguous(struct device *dev, 920 size_t size, enum dma_data_direction dir, gfp_t gfp, 921 unsigned long attrs) 922 { 923 struct dma_sgt_handle *sh; 924 925 sh = kmalloc(sizeof(*sh), gfp); 926 if (!sh) 927 return NULL; 928 929 sh->pages = __iommu_dma_alloc_noncontiguous(dev, size, &sh->sgt, gfp, 930 PAGE_KERNEL, attrs); 931 if (!sh->pages) { 932 kfree(sh); 933 return NULL; 934 } 935 return &sh->sgt; 936 } 937 938 static void iommu_dma_free_noncontiguous(struct device *dev, size_t size, 939 struct sg_table *sgt, enum dma_data_direction dir) 940 { 941 struct dma_sgt_handle *sh = sgt_handle(sgt); 942 943 __iommu_dma_unmap(dev, sgt->sgl->dma_address, size); 944 __iommu_dma_free_pages(sh->pages, PAGE_ALIGN(size) >> PAGE_SHIFT); 945 sg_free_table(&sh->sgt); 946 kfree(sh); 947 } 948 949 static void iommu_dma_sync_single_for_cpu(struct device *dev, 950 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir) 951 { 952 phys_addr_t phys; 953 954 if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev, size, dir)) 955 return; 956 957 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle); 958 if (!dev_is_dma_coherent(dev)) 959 arch_sync_dma_for_cpu(phys, size, dir); 960 961 if (is_swiotlb_buffer(dev, phys)) 962 swiotlb_sync_single_for_cpu(dev, phys, size, dir); 963 } 964 965 static void iommu_dma_sync_single_for_device(struct device *dev, 966 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir) 967 { 968 phys_addr_t phys; 969 970 if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev, size, dir)) 971 return; 972 973 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle); 974 if (is_swiotlb_buffer(dev, phys)) 975 swiotlb_sync_single_for_device(dev, phys, size, dir); 976 977 if (!dev_is_dma_coherent(dev)) 978 arch_sync_dma_for_device(phys, size, dir); 979 } 980 981 static void iommu_dma_sync_sg_for_cpu(struct device *dev, 982 struct scatterlist *sgl, int nelems, 983 enum dma_data_direction dir) 984 { 985 struct scatterlist *sg; 986 int i; 987 988 if (sg_dma_is_swiotlb(sgl)) 989 for_each_sg(sgl, sg, nelems, i) 990 iommu_dma_sync_single_for_cpu(dev, sg_dma_address(sg), 991 sg->length, dir); 992 else if (!dev_is_dma_coherent(dev)) 993 for_each_sg(sgl, sg, nelems, i) 994 arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir); 995 } 996 997 static void iommu_dma_sync_sg_for_device(struct device *dev, 998 struct scatterlist *sgl, int nelems, 999 enum dma_data_direction dir) 1000 { 1001 struct scatterlist *sg; 1002 int i; 1003 1004 if (sg_dma_is_swiotlb(sgl)) 1005 for_each_sg(sgl, sg, nelems, i) 1006 iommu_dma_sync_single_for_device(dev, 1007 sg_dma_address(sg), 1008 sg->length, dir); 1009 else if (!dev_is_dma_coherent(dev)) 1010 for_each_sg(sgl, sg, nelems, i) 1011 arch_sync_dma_for_device(sg_phys(sg), sg->length, dir); 1012 } 1013 1014 static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page, 1015 unsigned long offset, size_t size, enum dma_data_direction dir, 1016 unsigned long attrs) 1017 { 1018 phys_addr_t phys = page_to_phys(page) + offset; 1019 bool coherent = dev_is_dma_coherent(dev); 1020 int prot = dma_info_to_prot(dir, coherent, attrs); 1021 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1022 struct iommu_dma_cookie *cookie = domain->iova_cookie; 1023 struct iova_domain *iovad = &cookie->iovad; 1024 dma_addr_t iova, dma_mask = dma_get_mask(dev); 1025 1026 /* 1027 * If both the physical buffer start address and size are 1028 * page aligned, we don't need to use a bounce page. 1029 */ 1030 if (dev_use_swiotlb(dev, size, dir) && 1031 iova_offset(iovad, phys | size)) { 1032 void *padding_start; 1033 size_t padding_size, aligned_size; 1034 1035 if (!is_swiotlb_active(dev)) { 1036 dev_warn_once(dev, "DMA bounce buffers are inactive, unable to map unaligned transaction.\n"); 1037 return DMA_MAPPING_ERROR; 1038 } 1039 1040 aligned_size = iova_align(iovad, size); 1041 phys = swiotlb_tbl_map_single(dev, phys, size, aligned_size, 1042 iova_mask(iovad), dir, attrs); 1043 1044 if (phys == DMA_MAPPING_ERROR) 1045 return DMA_MAPPING_ERROR; 1046 1047 /* Cleanup the padding area. */ 1048 padding_start = phys_to_virt(phys); 1049 padding_size = aligned_size; 1050 1051 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && 1052 (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) { 1053 padding_start += size; 1054 padding_size -= size; 1055 } 1056 1057 memset(padding_start, 0, padding_size); 1058 } 1059 1060 if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 1061 arch_sync_dma_for_device(phys, size, dir); 1062 1063 iova = __iommu_dma_map(dev, phys, size, prot, dma_mask); 1064 if (iova == DMA_MAPPING_ERROR && is_swiotlb_buffer(dev, phys)) 1065 swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs); 1066 return iova; 1067 } 1068 1069 static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle, 1070 size_t size, enum dma_data_direction dir, unsigned long attrs) 1071 { 1072 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1073 phys_addr_t phys; 1074 1075 phys = iommu_iova_to_phys(domain, dma_handle); 1076 if (WARN_ON(!phys)) 1077 return; 1078 1079 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && !dev_is_dma_coherent(dev)) 1080 arch_sync_dma_for_cpu(phys, size, dir); 1081 1082 __iommu_dma_unmap(dev, dma_handle, size); 1083 1084 if (unlikely(is_swiotlb_buffer(dev, phys))) 1085 swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs); 1086 } 1087 1088 /* 1089 * Prepare a successfully-mapped scatterlist to give back to the caller. 1090 * 1091 * At this point the segments are already laid out by iommu_dma_map_sg() to 1092 * avoid individually crossing any boundaries, so we merely need to check a 1093 * segment's start address to avoid concatenating across one. 1094 */ 1095 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents, 1096 dma_addr_t dma_addr) 1097 { 1098 struct scatterlist *s, *cur = sg; 1099 unsigned long seg_mask = dma_get_seg_boundary(dev); 1100 unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev); 1101 int i, count = 0; 1102 1103 for_each_sg(sg, s, nents, i) { 1104 /* Restore this segment's original unaligned fields first */ 1105 dma_addr_t s_dma_addr = sg_dma_address(s); 1106 unsigned int s_iova_off = sg_dma_address(s); 1107 unsigned int s_length = sg_dma_len(s); 1108 unsigned int s_iova_len = s->length; 1109 1110 sg_dma_address(s) = DMA_MAPPING_ERROR; 1111 sg_dma_len(s) = 0; 1112 1113 if (sg_dma_is_bus_address(s)) { 1114 if (i > 0) 1115 cur = sg_next(cur); 1116 1117 sg_dma_unmark_bus_address(s); 1118 sg_dma_address(cur) = s_dma_addr; 1119 sg_dma_len(cur) = s_length; 1120 sg_dma_mark_bus_address(cur); 1121 count++; 1122 cur_len = 0; 1123 continue; 1124 } 1125 1126 s->offset += s_iova_off; 1127 s->length = s_length; 1128 1129 /* 1130 * Now fill in the real DMA data. If... 1131 * - there is a valid output segment to append to 1132 * - and this segment starts on an IOVA page boundary 1133 * - but doesn't fall at a segment boundary 1134 * - and wouldn't make the resulting output segment too long 1135 */ 1136 if (cur_len && !s_iova_off && (dma_addr & seg_mask) && 1137 (max_len - cur_len >= s_length)) { 1138 /* ...then concatenate it with the previous one */ 1139 cur_len += s_length; 1140 } else { 1141 /* Otherwise start the next output segment */ 1142 if (i > 0) 1143 cur = sg_next(cur); 1144 cur_len = s_length; 1145 count++; 1146 1147 sg_dma_address(cur) = dma_addr + s_iova_off; 1148 } 1149 1150 sg_dma_len(cur) = cur_len; 1151 dma_addr += s_iova_len; 1152 1153 if (s_length + s_iova_off < s_iova_len) 1154 cur_len = 0; 1155 } 1156 return count; 1157 } 1158 1159 /* 1160 * If mapping failed, then just restore the original list, 1161 * but making sure the DMA fields are invalidated. 1162 */ 1163 static void __invalidate_sg(struct scatterlist *sg, int nents) 1164 { 1165 struct scatterlist *s; 1166 int i; 1167 1168 for_each_sg(sg, s, nents, i) { 1169 if (sg_dma_is_bus_address(s)) { 1170 sg_dma_unmark_bus_address(s); 1171 } else { 1172 if (sg_dma_address(s) != DMA_MAPPING_ERROR) 1173 s->offset += sg_dma_address(s); 1174 if (sg_dma_len(s)) 1175 s->length = sg_dma_len(s); 1176 } 1177 sg_dma_address(s) = DMA_MAPPING_ERROR; 1178 sg_dma_len(s) = 0; 1179 } 1180 } 1181 1182 static void iommu_dma_unmap_sg_swiotlb(struct device *dev, struct scatterlist *sg, 1183 int nents, enum dma_data_direction dir, unsigned long attrs) 1184 { 1185 struct scatterlist *s; 1186 int i; 1187 1188 for_each_sg(sg, s, nents, i) 1189 iommu_dma_unmap_page(dev, sg_dma_address(s), 1190 sg_dma_len(s), dir, attrs); 1191 } 1192 1193 static int iommu_dma_map_sg_swiotlb(struct device *dev, struct scatterlist *sg, 1194 int nents, enum dma_data_direction dir, unsigned long attrs) 1195 { 1196 struct scatterlist *s; 1197 int i; 1198 1199 sg_dma_mark_swiotlb(sg); 1200 1201 for_each_sg(sg, s, nents, i) { 1202 sg_dma_address(s) = iommu_dma_map_page(dev, sg_page(s), 1203 s->offset, s->length, dir, attrs); 1204 if (sg_dma_address(s) == DMA_MAPPING_ERROR) 1205 goto out_unmap; 1206 sg_dma_len(s) = s->length; 1207 } 1208 1209 return nents; 1210 1211 out_unmap: 1212 iommu_dma_unmap_sg_swiotlb(dev, sg, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC); 1213 return -EIO; 1214 } 1215 1216 /* 1217 * The DMA API client is passing in a scatterlist which could describe 1218 * any old buffer layout, but the IOMMU API requires everything to be 1219 * aligned to IOMMU pages. Hence the need for this complicated bit of 1220 * impedance-matching, to be able to hand off a suitably-aligned list, 1221 * but still preserve the original offsets and sizes for the caller. 1222 */ 1223 static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg, 1224 int nents, enum dma_data_direction dir, unsigned long attrs) 1225 { 1226 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1227 struct iommu_dma_cookie *cookie = domain->iova_cookie; 1228 struct iova_domain *iovad = &cookie->iovad; 1229 struct scatterlist *s, *prev = NULL; 1230 int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs); 1231 struct pci_p2pdma_map_state p2pdma_state = {}; 1232 enum pci_p2pdma_map_type map; 1233 dma_addr_t iova; 1234 size_t iova_len = 0; 1235 unsigned long mask = dma_get_seg_boundary(dev); 1236 ssize_t ret; 1237 int i; 1238 1239 if (static_branch_unlikely(&iommu_deferred_attach_enabled)) { 1240 ret = iommu_deferred_attach(dev, domain); 1241 if (ret) 1242 goto out; 1243 } 1244 1245 if (dev_use_sg_swiotlb(dev, sg, nents, dir)) 1246 return iommu_dma_map_sg_swiotlb(dev, sg, nents, dir, attrs); 1247 1248 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 1249 iommu_dma_sync_sg_for_device(dev, sg, nents, dir); 1250 1251 /* 1252 * Work out how much IOVA space we need, and align the segments to 1253 * IOVA granules for the IOMMU driver to handle. With some clever 1254 * trickery we can modify the list in-place, but reversibly, by 1255 * stashing the unaligned parts in the as-yet-unused DMA fields. 1256 */ 1257 for_each_sg(sg, s, nents, i) { 1258 size_t s_iova_off = iova_offset(iovad, s->offset); 1259 size_t s_length = s->length; 1260 size_t pad_len = (mask - iova_len + 1) & mask; 1261 1262 if (is_pci_p2pdma_page(sg_page(s))) { 1263 map = pci_p2pdma_map_segment(&p2pdma_state, dev, s); 1264 switch (map) { 1265 case PCI_P2PDMA_MAP_BUS_ADDR: 1266 /* 1267 * iommu_map_sg() will skip this segment as 1268 * it is marked as a bus address, 1269 * __finalise_sg() will copy the dma address 1270 * into the output segment. 1271 */ 1272 continue; 1273 case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE: 1274 /* 1275 * Mapping through host bridge should be 1276 * mapped with regular IOVAs, thus we 1277 * do nothing here and continue below. 1278 */ 1279 break; 1280 default: 1281 ret = -EREMOTEIO; 1282 goto out_restore_sg; 1283 } 1284 } 1285 1286 sg_dma_address(s) = s_iova_off; 1287 sg_dma_len(s) = s_length; 1288 s->offset -= s_iova_off; 1289 s_length = iova_align(iovad, s_length + s_iova_off); 1290 s->length = s_length; 1291 1292 /* 1293 * Due to the alignment of our single IOVA allocation, we can 1294 * depend on these assumptions about the segment boundary mask: 1295 * - If mask size >= IOVA size, then the IOVA range cannot 1296 * possibly fall across a boundary, so we don't care. 1297 * - If mask size < IOVA size, then the IOVA range must start 1298 * exactly on a boundary, therefore we can lay things out 1299 * based purely on segment lengths without needing to know 1300 * the actual addresses beforehand. 1301 * - The mask must be a power of 2, so pad_len == 0 if 1302 * iova_len == 0, thus we cannot dereference prev the first 1303 * time through here (i.e. before it has a meaningful value). 1304 */ 1305 if (pad_len && pad_len < s_length - 1) { 1306 prev->length += pad_len; 1307 iova_len += pad_len; 1308 } 1309 1310 iova_len += s_length; 1311 prev = s; 1312 } 1313 1314 if (!iova_len) 1315 return __finalise_sg(dev, sg, nents, 0); 1316 1317 iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev); 1318 if (!iova) { 1319 ret = -ENOMEM; 1320 goto out_restore_sg; 1321 } 1322 1323 /* 1324 * We'll leave any physical concatenation to the IOMMU driver's 1325 * implementation - it knows better than we do. 1326 */ 1327 ret = iommu_map_sg(domain, iova, sg, nents, prot, GFP_ATOMIC); 1328 if (ret < 0 || ret < iova_len) 1329 goto out_free_iova; 1330 1331 return __finalise_sg(dev, sg, nents, iova); 1332 1333 out_free_iova: 1334 iommu_dma_free_iova(cookie, iova, iova_len, NULL); 1335 out_restore_sg: 1336 __invalidate_sg(sg, nents); 1337 out: 1338 if (ret != -ENOMEM && ret != -EREMOTEIO) 1339 return -EINVAL; 1340 return ret; 1341 } 1342 1343 static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, 1344 int nents, enum dma_data_direction dir, unsigned long attrs) 1345 { 1346 dma_addr_t end = 0, start; 1347 struct scatterlist *tmp; 1348 int i; 1349 1350 if (sg_dma_is_swiotlb(sg)) { 1351 iommu_dma_unmap_sg_swiotlb(dev, sg, nents, dir, attrs); 1352 return; 1353 } 1354 1355 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 1356 iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir); 1357 1358 /* 1359 * The scatterlist segments are mapped into a single 1360 * contiguous IOVA allocation, the start and end points 1361 * just have to be determined. 1362 */ 1363 for_each_sg(sg, tmp, nents, i) { 1364 if (sg_dma_is_bus_address(tmp)) { 1365 sg_dma_unmark_bus_address(tmp); 1366 continue; 1367 } 1368 1369 if (sg_dma_len(tmp) == 0) 1370 break; 1371 1372 start = sg_dma_address(tmp); 1373 break; 1374 } 1375 1376 nents -= i; 1377 for_each_sg(tmp, tmp, nents, i) { 1378 if (sg_dma_is_bus_address(tmp)) { 1379 sg_dma_unmark_bus_address(tmp); 1380 continue; 1381 } 1382 1383 if (sg_dma_len(tmp) == 0) 1384 break; 1385 1386 end = sg_dma_address(tmp) + sg_dma_len(tmp); 1387 } 1388 1389 if (end) 1390 __iommu_dma_unmap(dev, start, end - start); 1391 } 1392 1393 static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys, 1394 size_t size, enum dma_data_direction dir, unsigned long attrs) 1395 { 1396 return __iommu_dma_map(dev, phys, size, 1397 dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO, 1398 dma_get_mask(dev)); 1399 } 1400 1401 static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle, 1402 size_t size, enum dma_data_direction dir, unsigned long attrs) 1403 { 1404 __iommu_dma_unmap(dev, handle, size); 1405 } 1406 1407 static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr) 1408 { 1409 size_t alloc_size = PAGE_ALIGN(size); 1410 int count = alloc_size >> PAGE_SHIFT; 1411 struct page *page = NULL, **pages = NULL; 1412 1413 /* Non-coherent atomic allocation? Easy */ 1414 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && 1415 dma_free_from_pool(dev, cpu_addr, alloc_size)) 1416 return; 1417 1418 if (is_vmalloc_addr(cpu_addr)) { 1419 /* 1420 * If it the address is remapped, then it's either non-coherent 1421 * or highmem CMA, or an iommu_dma_alloc_remap() construction. 1422 */ 1423 pages = dma_common_find_pages(cpu_addr); 1424 if (!pages) 1425 page = vmalloc_to_page(cpu_addr); 1426 dma_common_free_remap(cpu_addr, alloc_size); 1427 } else { 1428 /* Lowmem means a coherent atomic or CMA allocation */ 1429 page = virt_to_page(cpu_addr); 1430 } 1431 1432 if (pages) 1433 __iommu_dma_free_pages(pages, count); 1434 if (page) 1435 dma_free_contiguous(dev, page, alloc_size); 1436 } 1437 1438 static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr, 1439 dma_addr_t handle, unsigned long attrs) 1440 { 1441 __iommu_dma_unmap(dev, handle, size); 1442 __iommu_dma_free(dev, size, cpu_addr); 1443 } 1444 1445 static void *iommu_dma_alloc_pages(struct device *dev, size_t size, 1446 struct page **pagep, gfp_t gfp, unsigned long attrs) 1447 { 1448 bool coherent = dev_is_dma_coherent(dev); 1449 size_t alloc_size = PAGE_ALIGN(size); 1450 int node = dev_to_node(dev); 1451 struct page *page = NULL; 1452 void *cpu_addr; 1453 1454 page = dma_alloc_contiguous(dev, alloc_size, gfp); 1455 if (!page) 1456 page = alloc_pages_node(node, gfp, get_order(alloc_size)); 1457 if (!page) 1458 return NULL; 1459 1460 if (!coherent || PageHighMem(page)) { 1461 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs); 1462 1463 cpu_addr = dma_common_contiguous_remap(page, alloc_size, 1464 prot, __builtin_return_address(0)); 1465 if (!cpu_addr) 1466 goto out_free_pages; 1467 1468 if (!coherent) 1469 arch_dma_prep_coherent(page, size); 1470 } else { 1471 cpu_addr = page_address(page); 1472 } 1473 1474 *pagep = page; 1475 memset(cpu_addr, 0, alloc_size); 1476 return cpu_addr; 1477 out_free_pages: 1478 dma_free_contiguous(dev, page, alloc_size); 1479 return NULL; 1480 } 1481 1482 static void *iommu_dma_alloc(struct device *dev, size_t size, 1483 dma_addr_t *handle, gfp_t gfp, unsigned long attrs) 1484 { 1485 bool coherent = dev_is_dma_coherent(dev); 1486 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs); 1487 struct page *page = NULL; 1488 void *cpu_addr; 1489 1490 gfp |= __GFP_ZERO; 1491 1492 if (gfpflags_allow_blocking(gfp) && 1493 !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) { 1494 return iommu_dma_alloc_remap(dev, size, handle, gfp, 1495 dma_pgprot(dev, PAGE_KERNEL, attrs), attrs); 1496 } 1497 1498 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && 1499 !gfpflags_allow_blocking(gfp) && !coherent) 1500 page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr, 1501 gfp, NULL); 1502 else 1503 cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs); 1504 if (!cpu_addr) 1505 return NULL; 1506 1507 *handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot, 1508 dev->coherent_dma_mask); 1509 if (*handle == DMA_MAPPING_ERROR) { 1510 __iommu_dma_free(dev, size, cpu_addr); 1511 return NULL; 1512 } 1513 1514 return cpu_addr; 1515 } 1516 1517 static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma, 1518 void *cpu_addr, dma_addr_t dma_addr, size_t size, 1519 unsigned long attrs) 1520 { 1521 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 1522 unsigned long pfn, off = vma->vm_pgoff; 1523 int ret; 1524 1525 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs); 1526 1527 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) 1528 return ret; 1529 1530 if (off >= nr_pages || vma_pages(vma) > nr_pages - off) 1531 return -ENXIO; 1532 1533 if (is_vmalloc_addr(cpu_addr)) { 1534 struct page **pages = dma_common_find_pages(cpu_addr); 1535 1536 if (pages) 1537 return vm_map_pages(vma, pages, nr_pages); 1538 pfn = vmalloc_to_pfn(cpu_addr); 1539 } else { 1540 pfn = page_to_pfn(virt_to_page(cpu_addr)); 1541 } 1542 1543 return remap_pfn_range(vma, vma->vm_start, pfn + off, 1544 vma->vm_end - vma->vm_start, 1545 vma->vm_page_prot); 1546 } 1547 1548 static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt, 1549 void *cpu_addr, dma_addr_t dma_addr, size_t size, 1550 unsigned long attrs) 1551 { 1552 struct page *page; 1553 int ret; 1554 1555 if (is_vmalloc_addr(cpu_addr)) { 1556 struct page **pages = dma_common_find_pages(cpu_addr); 1557 1558 if (pages) { 1559 return sg_alloc_table_from_pages(sgt, pages, 1560 PAGE_ALIGN(size) >> PAGE_SHIFT, 1561 0, size, GFP_KERNEL); 1562 } 1563 1564 page = vmalloc_to_page(cpu_addr); 1565 } else { 1566 page = virt_to_page(cpu_addr); 1567 } 1568 1569 ret = sg_alloc_table(sgt, 1, GFP_KERNEL); 1570 if (!ret) 1571 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); 1572 return ret; 1573 } 1574 1575 static unsigned long iommu_dma_get_merge_boundary(struct device *dev) 1576 { 1577 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1578 1579 return (1UL << __ffs(domain->pgsize_bitmap)) - 1; 1580 } 1581 1582 static size_t iommu_dma_opt_mapping_size(void) 1583 { 1584 return iova_rcache_range(); 1585 } 1586 1587 static const struct dma_map_ops iommu_dma_ops = { 1588 .flags = DMA_F_PCI_P2PDMA_SUPPORTED, 1589 .alloc = iommu_dma_alloc, 1590 .free = iommu_dma_free, 1591 .alloc_pages = dma_common_alloc_pages, 1592 .free_pages = dma_common_free_pages, 1593 .alloc_noncontiguous = iommu_dma_alloc_noncontiguous, 1594 .free_noncontiguous = iommu_dma_free_noncontiguous, 1595 .mmap = iommu_dma_mmap, 1596 .get_sgtable = iommu_dma_get_sgtable, 1597 .map_page = iommu_dma_map_page, 1598 .unmap_page = iommu_dma_unmap_page, 1599 .map_sg = iommu_dma_map_sg, 1600 .unmap_sg = iommu_dma_unmap_sg, 1601 .sync_single_for_cpu = iommu_dma_sync_single_for_cpu, 1602 .sync_single_for_device = iommu_dma_sync_single_for_device, 1603 .sync_sg_for_cpu = iommu_dma_sync_sg_for_cpu, 1604 .sync_sg_for_device = iommu_dma_sync_sg_for_device, 1605 .map_resource = iommu_dma_map_resource, 1606 .unmap_resource = iommu_dma_unmap_resource, 1607 .get_merge_boundary = iommu_dma_get_merge_boundary, 1608 .opt_mapping_size = iommu_dma_opt_mapping_size, 1609 }; 1610 1611 /* 1612 * The IOMMU core code allocates the default DMA domain, which the underlying 1613 * IOMMU driver needs to support via the dma-iommu layer. 1614 */ 1615 void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 dma_limit) 1616 { 1617 struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 1618 1619 if (!domain) 1620 goto out_err; 1621 1622 /* 1623 * The IOMMU core code allocates the default DMA domain, which the 1624 * underlying IOMMU driver needs to support via the dma-iommu layer. 1625 */ 1626 if (iommu_is_dma_domain(domain)) { 1627 if (iommu_dma_init_domain(domain, dma_base, dma_limit, dev)) 1628 goto out_err; 1629 dev->dma_ops = &iommu_dma_ops; 1630 } 1631 1632 return; 1633 out_err: 1634 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n", 1635 dev_name(dev)); 1636 } 1637 EXPORT_SYMBOL_GPL(iommu_setup_dma_ops); 1638 1639 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev, 1640 phys_addr_t msi_addr, struct iommu_domain *domain) 1641 { 1642 struct iommu_dma_cookie *cookie = domain->iova_cookie; 1643 struct iommu_dma_msi_page *msi_page; 1644 dma_addr_t iova; 1645 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO; 1646 size_t size = cookie_msi_granule(cookie); 1647 1648 msi_addr &= ~(phys_addr_t)(size - 1); 1649 list_for_each_entry(msi_page, &cookie->msi_page_list, list) 1650 if (msi_page->phys == msi_addr) 1651 return msi_page; 1652 1653 msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL); 1654 if (!msi_page) 1655 return NULL; 1656 1657 iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev); 1658 if (!iova) 1659 goto out_free_page; 1660 1661 if (iommu_map(domain, iova, msi_addr, size, prot, GFP_KERNEL)) 1662 goto out_free_iova; 1663 1664 INIT_LIST_HEAD(&msi_page->list); 1665 msi_page->phys = msi_addr; 1666 msi_page->iova = iova; 1667 list_add(&msi_page->list, &cookie->msi_page_list); 1668 return msi_page; 1669 1670 out_free_iova: 1671 iommu_dma_free_iova(cookie, iova, size, NULL); 1672 out_free_page: 1673 kfree(msi_page); 1674 return NULL; 1675 } 1676 1677 /** 1678 * iommu_dma_prepare_msi() - Map the MSI page in the IOMMU domain 1679 * @desc: MSI descriptor, will store the MSI page 1680 * @msi_addr: MSI target address to be mapped 1681 * 1682 * Return: 0 on success or negative error code if the mapping failed. 1683 */ 1684 int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr) 1685 { 1686 struct device *dev = msi_desc_to_dev(desc); 1687 struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 1688 struct iommu_dma_msi_page *msi_page; 1689 static DEFINE_MUTEX(msi_prepare_lock); /* see below */ 1690 1691 if (!domain || !domain->iova_cookie) { 1692 desc->iommu_cookie = NULL; 1693 return 0; 1694 } 1695 1696 /* 1697 * In fact the whole prepare operation should already be serialised by 1698 * irq_domain_mutex further up the callchain, but that's pretty subtle 1699 * on its own, so consider this locking as failsafe documentation... 1700 */ 1701 mutex_lock(&msi_prepare_lock); 1702 msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain); 1703 mutex_unlock(&msi_prepare_lock); 1704 1705 msi_desc_set_iommu_cookie(desc, msi_page); 1706 1707 if (!msi_page) 1708 return -ENOMEM; 1709 return 0; 1710 } 1711 1712 /** 1713 * iommu_dma_compose_msi_msg() - Apply translation to an MSI message 1714 * @desc: MSI descriptor prepared by iommu_dma_prepare_msi() 1715 * @msg: MSI message containing target physical address 1716 */ 1717 void iommu_dma_compose_msi_msg(struct msi_desc *desc, struct msi_msg *msg) 1718 { 1719 struct device *dev = msi_desc_to_dev(desc); 1720 const struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 1721 const struct iommu_dma_msi_page *msi_page; 1722 1723 msi_page = msi_desc_get_iommu_cookie(desc); 1724 1725 if (!domain || !domain->iova_cookie || WARN_ON(!msi_page)) 1726 return; 1727 1728 msg->address_hi = upper_32_bits(msi_page->iova); 1729 msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1; 1730 msg->address_lo += lower_32_bits(msi_page->iova); 1731 } 1732 1733 static int iommu_dma_init(void) 1734 { 1735 if (is_kdump_kernel()) 1736 static_branch_enable(&iommu_deferred_attach_enabled); 1737 1738 return iova_cache_get(); 1739 } 1740 arch_initcall(iommu_dma_init); 1741