xref: /openbmc/linux/drivers/iommu/dma-iommu.c (revision 726ccdba)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * A fairly generic DMA-API to IOMMU-API glue layer.
4  *
5  * Copyright (C) 2014-2015 ARM Ltd.
6  *
7  * based in part on arch/arm/mm/dma-mapping.c:
8  * Copyright (C) 2000-2004 Russell King
9  */
10 
11 #include <linux/acpi_iort.h>
12 #include <linux/atomic.h>
13 #include <linux/crash_dump.h>
14 #include <linux/device.h>
15 #include <linux/dma-direct.h>
16 #include <linux/dma-map-ops.h>
17 #include <linux/gfp.h>
18 #include <linux/huge_mm.h>
19 #include <linux/iommu.h>
20 #include <linux/iova.h>
21 #include <linux/irq.h>
22 #include <linux/list_sort.h>
23 #include <linux/memremap.h>
24 #include <linux/mm.h>
25 #include <linux/mutex.h>
26 #include <linux/of_iommu.h>
27 #include <linux/pci.h>
28 #include <linux/scatterlist.h>
29 #include <linux/spinlock.h>
30 #include <linux/swiotlb.h>
31 #include <linux/vmalloc.h>
32 
33 #include "dma-iommu.h"
34 
35 struct iommu_dma_msi_page {
36 	struct list_head	list;
37 	dma_addr_t		iova;
38 	phys_addr_t		phys;
39 };
40 
41 enum iommu_dma_cookie_type {
42 	IOMMU_DMA_IOVA_COOKIE,
43 	IOMMU_DMA_MSI_COOKIE,
44 };
45 
46 struct iommu_dma_cookie {
47 	enum iommu_dma_cookie_type	type;
48 	union {
49 		/* Full allocator for IOMMU_DMA_IOVA_COOKIE */
50 		struct {
51 			struct iova_domain	iovad;
52 
53 			struct iova_fq __percpu *fq;	/* Flush queue */
54 			/* Number of TLB flushes that have been started */
55 			atomic64_t		fq_flush_start_cnt;
56 			/* Number of TLB flushes that have been finished */
57 			atomic64_t		fq_flush_finish_cnt;
58 			/* Timer to regularily empty the flush queues */
59 			struct timer_list	fq_timer;
60 			/* 1 when timer is active, 0 when not */
61 			atomic_t		fq_timer_on;
62 		};
63 		/* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
64 		dma_addr_t		msi_iova;
65 	};
66 	struct list_head		msi_page_list;
67 
68 	/* Domain for flush queue callback; NULL if flush queue not in use */
69 	struct iommu_domain		*fq_domain;
70 	struct mutex			mutex;
71 };
72 
73 static DEFINE_STATIC_KEY_FALSE(iommu_deferred_attach_enabled);
74 bool iommu_dma_forcedac __read_mostly;
75 
76 static int __init iommu_dma_forcedac_setup(char *str)
77 {
78 	int ret = kstrtobool(str, &iommu_dma_forcedac);
79 
80 	if (!ret && iommu_dma_forcedac)
81 		pr_info("Forcing DAC for PCI devices\n");
82 	return ret;
83 }
84 early_param("iommu.forcedac", iommu_dma_forcedac_setup);
85 
86 /* Number of entries per flush queue */
87 #define IOVA_FQ_SIZE	256
88 
89 /* Timeout (in ms) after which entries are flushed from the queue */
90 #define IOVA_FQ_TIMEOUT	10
91 
92 /* Flush queue entry for deferred flushing */
93 struct iova_fq_entry {
94 	unsigned long iova_pfn;
95 	unsigned long pages;
96 	struct list_head freelist;
97 	u64 counter; /* Flush counter when this entry was added */
98 };
99 
100 /* Per-CPU flush queue structure */
101 struct iova_fq {
102 	struct iova_fq_entry entries[IOVA_FQ_SIZE];
103 	unsigned int head, tail;
104 	spinlock_t lock;
105 };
106 
107 #define fq_ring_for_each(i, fq) \
108 	for ((i) = (fq)->head; (i) != (fq)->tail; (i) = ((i) + 1) % IOVA_FQ_SIZE)
109 
110 static inline bool fq_full(struct iova_fq *fq)
111 {
112 	assert_spin_locked(&fq->lock);
113 	return (((fq->tail + 1) % IOVA_FQ_SIZE) == fq->head);
114 }
115 
116 static inline unsigned int fq_ring_add(struct iova_fq *fq)
117 {
118 	unsigned int idx = fq->tail;
119 
120 	assert_spin_locked(&fq->lock);
121 
122 	fq->tail = (idx + 1) % IOVA_FQ_SIZE;
123 
124 	return idx;
125 }
126 
127 static void fq_ring_free(struct iommu_dma_cookie *cookie, struct iova_fq *fq)
128 {
129 	u64 counter = atomic64_read(&cookie->fq_flush_finish_cnt);
130 	unsigned int idx;
131 
132 	assert_spin_locked(&fq->lock);
133 
134 	fq_ring_for_each(idx, fq) {
135 
136 		if (fq->entries[idx].counter >= counter)
137 			break;
138 
139 		put_pages_list(&fq->entries[idx].freelist);
140 		free_iova_fast(&cookie->iovad,
141 			       fq->entries[idx].iova_pfn,
142 			       fq->entries[idx].pages);
143 
144 		fq->head = (fq->head + 1) % IOVA_FQ_SIZE;
145 	}
146 }
147 
148 static void fq_flush_iotlb(struct iommu_dma_cookie *cookie)
149 {
150 	atomic64_inc(&cookie->fq_flush_start_cnt);
151 	cookie->fq_domain->ops->flush_iotlb_all(cookie->fq_domain);
152 	atomic64_inc(&cookie->fq_flush_finish_cnt);
153 }
154 
155 static void fq_flush_timeout(struct timer_list *t)
156 {
157 	struct iommu_dma_cookie *cookie = from_timer(cookie, t, fq_timer);
158 	int cpu;
159 
160 	atomic_set(&cookie->fq_timer_on, 0);
161 	fq_flush_iotlb(cookie);
162 
163 	for_each_possible_cpu(cpu) {
164 		unsigned long flags;
165 		struct iova_fq *fq;
166 
167 		fq = per_cpu_ptr(cookie->fq, cpu);
168 		spin_lock_irqsave(&fq->lock, flags);
169 		fq_ring_free(cookie, fq);
170 		spin_unlock_irqrestore(&fq->lock, flags);
171 	}
172 }
173 
174 static void queue_iova(struct iommu_dma_cookie *cookie,
175 		unsigned long pfn, unsigned long pages,
176 		struct list_head *freelist)
177 {
178 	struct iova_fq *fq;
179 	unsigned long flags;
180 	unsigned int idx;
181 
182 	/*
183 	 * Order against the IOMMU driver's pagetable update from unmapping
184 	 * @pte, to guarantee that fq_flush_iotlb() observes that if called
185 	 * from a different CPU before we release the lock below. Full barrier
186 	 * so it also pairs with iommu_dma_init_fq() to avoid seeing partially
187 	 * written fq state here.
188 	 */
189 	smp_mb();
190 
191 	fq = raw_cpu_ptr(cookie->fq);
192 	spin_lock_irqsave(&fq->lock, flags);
193 
194 	/*
195 	 * First remove all entries from the flush queue that have already been
196 	 * flushed out on another CPU. This makes the fq_full() check below less
197 	 * likely to be true.
198 	 */
199 	fq_ring_free(cookie, fq);
200 
201 	if (fq_full(fq)) {
202 		fq_flush_iotlb(cookie);
203 		fq_ring_free(cookie, fq);
204 	}
205 
206 	idx = fq_ring_add(fq);
207 
208 	fq->entries[idx].iova_pfn = pfn;
209 	fq->entries[idx].pages    = pages;
210 	fq->entries[idx].counter  = atomic64_read(&cookie->fq_flush_start_cnt);
211 	list_splice(freelist, &fq->entries[idx].freelist);
212 
213 	spin_unlock_irqrestore(&fq->lock, flags);
214 
215 	/* Avoid false sharing as much as possible. */
216 	if (!atomic_read(&cookie->fq_timer_on) &&
217 	    !atomic_xchg(&cookie->fq_timer_on, 1))
218 		mod_timer(&cookie->fq_timer,
219 			  jiffies + msecs_to_jiffies(IOVA_FQ_TIMEOUT));
220 }
221 
222 static void iommu_dma_free_fq(struct iommu_dma_cookie *cookie)
223 {
224 	int cpu, idx;
225 
226 	if (!cookie->fq)
227 		return;
228 
229 	del_timer_sync(&cookie->fq_timer);
230 	/* The IOVAs will be torn down separately, so just free our queued pages */
231 	for_each_possible_cpu(cpu) {
232 		struct iova_fq *fq = per_cpu_ptr(cookie->fq, cpu);
233 
234 		fq_ring_for_each(idx, fq)
235 			put_pages_list(&fq->entries[idx].freelist);
236 	}
237 
238 	free_percpu(cookie->fq);
239 }
240 
241 /* sysfs updates are serialised by the mutex of the group owning @domain */
242 int iommu_dma_init_fq(struct iommu_domain *domain)
243 {
244 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
245 	struct iova_fq __percpu *queue;
246 	int i, cpu;
247 
248 	if (cookie->fq_domain)
249 		return 0;
250 
251 	atomic64_set(&cookie->fq_flush_start_cnt,  0);
252 	atomic64_set(&cookie->fq_flush_finish_cnt, 0);
253 
254 	queue = alloc_percpu(struct iova_fq);
255 	if (!queue) {
256 		pr_warn("iova flush queue initialization failed\n");
257 		return -ENOMEM;
258 	}
259 
260 	for_each_possible_cpu(cpu) {
261 		struct iova_fq *fq = per_cpu_ptr(queue, cpu);
262 
263 		fq->head = 0;
264 		fq->tail = 0;
265 
266 		spin_lock_init(&fq->lock);
267 
268 		for (i = 0; i < IOVA_FQ_SIZE; i++)
269 			INIT_LIST_HEAD(&fq->entries[i].freelist);
270 	}
271 
272 	cookie->fq = queue;
273 
274 	timer_setup(&cookie->fq_timer, fq_flush_timeout, 0);
275 	atomic_set(&cookie->fq_timer_on, 0);
276 	/*
277 	 * Prevent incomplete fq state being observable. Pairs with path from
278 	 * __iommu_dma_unmap() through iommu_dma_free_iova() to queue_iova()
279 	 */
280 	smp_wmb();
281 	WRITE_ONCE(cookie->fq_domain, domain);
282 	return 0;
283 }
284 
285 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
286 {
287 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
288 		return cookie->iovad.granule;
289 	return PAGE_SIZE;
290 }
291 
292 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
293 {
294 	struct iommu_dma_cookie *cookie;
295 
296 	cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
297 	if (cookie) {
298 		INIT_LIST_HEAD(&cookie->msi_page_list);
299 		cookie->type = type;
300 	}
301 	return cookie;
302 }
303 
304 /**
305  * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
306  * @domain: IOMMU domain to prepare for DMA-API usage
307  */
308 int iommu_get_dma_cookie(struct iommu_domain *domain)
309 {
310 	if (domain->iova_cookie)
311 		return -EEXIST;
312 
313 	domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
314 	if (!domain->iova_cookie)
315 		return -ENOMEM;
316 
317 	mutex_init(&domain->iova_cookie->mutex);
318 	return 0;
319 }
320 
321 /**
322  * iommu_get_msi_cookie - Acquire just MSI remapping resources
323  * @domain: IOMMU domain to prepare
324  * @base: Start address of IOVA region for MSI mappings
325  *
326  * Users who manage their own IOVA allocation and do not want DMA API support,
327  * but would still like to take advantage of automatic MSI remapping, can use
328  * this to initialise their own domain appropriately. Users should reserve a
329  * contiguous IOVA region, starting at @base, large enough to accommodate the
330  * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
331  * used by the devices attached to @domain.
332  */
333 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
334 {
335 	struct iommu_dma_cookie *cookie;
336 
337 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
338 		return -EINVAL;
339 
340 	if (domain->iova_cookie)
341 		return -EEXIST;
342 
343 	cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
344 	if (!cookie)
345 		return -ENOMEM;
346 
347 	cookie->msi_iova = base;
348 	domain->iova_cookie = cookie;
349 	return 0;
350 }
351 EXPORT_SYMBOL(iommu_get_msi_cookie);
352 
353 /**
354  * iommu_put_dma_cookie - Release a domain's DMA mapping resources
355  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
356  *          iommu_get_msi_cookie()
357  */
358 void iommu_put_dma_cookie(struct iommu_domain *domain)
359 {
360 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
361 	struct iommu_dma_msi_page *msi, *tmp;
362 
363 	if (!cookie)
364 		return;
365 
366 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule) {
367 		iommu_dma_free_fq(cookie);
368 		put_iova_domain(&cookie->iovad);
369 	}
370 
371 	list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
372 		list_del(&msi->list);
373 		kfree(msi);
374 	}
375 	kfree(cookie);
376 	domain->iova_cookie = NULL;
377 }
378 
379 /**
380  * iommu_dma_get_resv_regions - Reserved region driver helper
381  * @dev: Device from iommu_get_resv_regions()
382  * @list: Reserved region list from iommu_get_resv_regions()
383  *
384  * IOMMU drivers can use this to implement their .get_resv_regions callback
385  * for general non-IOMMU-specific reservations. Currently, this covers GICv3
386  * ITS region reservation on ACPI based ARM platforms that may require HW MSI
387  * reservation.
388  */
389 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
390 {
391 
392 	if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode))
393 		iort_iommu_get_resv_regions(dev, list);
394 
395 	if (dev->of_node)
396 		of_iommu_get_resv_regions(dev, list);
397 }
398 EXPORT_SYMBOL(iommu_dma_get_resv_regions);
399 
400 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
401 		phys_addr_t start, phys_addr_t end)
402 {
403 	struct iova_domain *iovad = &cookie->iovad;
404 	struct iommu_dma_msi_page *msi_page;
405 	int i, num_pages;
406 
407 	start -= iova_offset(iovad, start);
408 	num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
409 
410 	for (i = 0; i < num_pages; i++) {
411 		msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL);
412 		if (!msi_page)
413 			return -ENOMEM;
414 
415 		msi_page->phys = start;
416 		msi_page->iova = start;
417 		INIT_LIST_HEAD(&msi_page->list);
418 		list_add(&msi_page->list, &cookie->msi_page_list);
419 		start += iovad->granule;
420 	}
421 
422 	return 0;
423 }
424 
425 static int iommu_dma_ranges_sort(void *priv, const struct list_head *a,
426 		const struct list_head *b)
427 {
428 	struct resource_entry *res_a = list_entry(a, typeof(*res_a), node);
429 	struct resource_entry *res_b = list_entry(b, typeof(*res_b), node);
430 
431 	return res_a->res->start > res_b->res->start;
432 }
433 
434 static int iova_reserve_pci_windows(struct pci_dev *dev,
435 		struct iova_domain *iovad)
436 {
437 	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
438 	struct resource_entry *window;
439 	unsigned long lo, hi;
440 	phys_addr_t start = 0, end;
441 
442 	resource_list_for_each_entry(window, &bridge->windows) {
443 		if (resource_type(window->res) != IORESOURCE_MEM)
444 			continue;
445 
446 		lo = iova_pfn(iovad, window->res->start - window->offset);
447 		hi = iova_pfn(iovad, window->res->end - window->offset);
448 		reserve_iova(iovad, lo, hi);
449 	}
450 
451 	/* Get reserved DMA windows from host bridge */
452 	list_sort(NULL, &bridge->dma_ranges, iommu_dma_ranges_sort);
453 	resource_list_for_each_entry(window, &bridge->dma_ranges) {
454 		end = window->res->start - window->offset;
455 resv_iova:
456 		if (end > start) {
457 			lo = iova_pfn(iovad, start);
458 			hi = iova_pfn(iovad, end);
459 			reserve_iova(iovad, lo, hi);
460 		} else if (end < start) {
461 			/* DMA ranges should be non-overlapping */
462 			dev_err(&dev->dev,
463 				"Failed to reserve IOVA [%pa-%pa]\n",
464 				&start, &end);
465 			return -EINVAL;
466 		}
467 
468 		start = window->res->end - window->offset + 1;
469 		/* If window is last entry */
470 		if (window->node.next == &bridge->dma_ranges &&
471 		    end != ~(phys_addr_t)0) {
472 			end = ~(phys_addr_t)0;
473 			goto resv_iova;
474 		}
475 	}
476 
477 	return 0;
478 }
479 
480 static int iova_reserve_iommu_regions(struct device *dev,
481 		struct iommu_domain *domain)
482 {
483 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
484 	struct iova_domain *iovad = &cookie->iovad;
485 	struct iommu_resv_region *region;
486 	LIST_HEAD(resv_regions);
487 	int ret = 0;
488 
489 	if (dev_is_pci(dev)) {
490 		ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad);
491 		if (ret)
492 			return ret;
493 	}
494 
495 	iommu_get_resv_regions(dev, &resv_regions);
496 	list_for_each_entry(region, &resv_regions, list) {
497 		unsigned long lo, hi;
498 
499 		/* We ARE the software that manages these! */
500 		if (region->type == IOMMU_RESV_SW_MSI)
501 			continue;
502 
503 		lo = iova_pfn(iovad, region->start);
504 		hi = iova_pfn(iovad, region->start + region->length - 1);
505 		reserve_iova(iovad, lo, hi);
506 
507 		if (region->type == IOMMU_RESV_MSI)
508 			ret = cookie_init_hw_msi_region(cookie, region->start,
509 					region->start + region->length);
510 		if (ret)
511 			break;
512 	}
513 	iommu_put_resv_regions(dev, &resv_regions);
514 
515 	return ret;
516 }
517 
518 static bool dev_is_untrusted(struct device *dev)
519 {
520 	return dev_is_pci(dev) && to_pci_dev(dev)->untrusted;
521 }
522 
523 static bool dev_use_swiotlb(struct device *dev, size_t size,
524 			    enum dma_data_direction dir)
525 {
526 	return IS_ENABLED(CONFIG_SWIOTLB) &&
527 		(dev_is_untrusted(dev) ||
528 		 dma_kmalloc_needs_bounce(dev, size, dir));
529 }
530 
531 static bool dev_use_sg_swiotlb(struct device *dev, struct scatterlist *sg,
532 			       int nents, enum dma_data_direction dir)
533 {
534 	struct scatterlist *s;
535 	int i;
536 
537 	if (!IS_ENABLED(CONFIG_SWIOTLB))
538 		return false;
539 
540 	if (dev_is_untrusted(dev))
541 		return true;
542 
543 	/*
544 	 * If kmalloc() buffers are not DMA-safe for this device and
545 	 * direction, check the individual lengths in the sg list. If any
546 	 * element is deemed unsafe, use the swiotlb for bouncing.
547 	 */
548 	if (!dma_kmalloc_safe(dev, dir)) {
549 		for_each_sg(sg, s, nents, i)
550 			if (!dma_kmalloc_size_aligned(s->length))
551 				return true;
552 	}
553 
554 	return false;
555 }
556 
557 /**
558  * iommu_dma_init_domain - Initialise a DMA mapping domain
559  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
560  * @base: IOVA at which the mappable address space starts
561  * @limit: Last address of the IOVA space
562  * @dev: Device the domain is being initialised for
563  *
564  * @base and @limit + 1 should be exact multiples of IOMMU page granularity to
565  * avoid rounding surprises. If necessary, we reserve the page at address 0
566  * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
567  * any change which could make prior IOVAs invalid will fail.
568  */
569 static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
570 				 dma_addr_t limit, struct device *dev)
571 {
572 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
573 	unsigned long order, base_pfn;
574 	struct iova_domain *iovad;
575 	int ret;
576 
577 	if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
578 		return -EINVAL;
579 
580 	iovad = &cookie->iovad;
581 
582 	/* Use the smallest supported page size for IOVA granularity */
583 	order = __ffs(domain->pgsize_bitmap);
584 	base_pfn = max_t(unsigned long, 1, base >> order);
585 
586 	/* Check the domain allows at least some access to the device... */
587 	if (domain->geometry.force_aperture) {
588 		if (base > domain->geometry.aperture_end ||
589 		    limit < domain->geometry.aperture_start) {
590 			pr_warn("specified DMA range outside IOMMU capability\n");
591 			return -EFAULT;
592 		}
593 		/* ...then finally give it a kicking to make sure it fits */
594 		base_pfn = max_t(unsigned long, base_pfn,
595 				domain->geometry.aperture_start >> order);
596 	}
597 
598 	/* start_pfn is always nonzero for an already-initialised domain */
599 	mutex_lock(&cookie->mutex);
600 	if (iovad->start_pfn) {
601 		if (1UL << order != iovad->granule ||
602 		    base_pfn != iovad->start_pfn) {
603 			pr_warn("Incompatible range for DMA domain\n");
604 			ret = -EFAULT;
605 			goto done_unlock;
606 		}
607 
608 		ret = 0;
609 		goto done_unlock;
610 	}
611 
612 	init_iova_domain(iovad, 1UL << order, base_pfn);
613 	ret = iova_domain_init_rcaches(iovad);
614 	if (ret)
615 		goto done_unlock;
616 
617 	/* If the FQ fails we can simply fall back to strict mode */
618 	if (domain->type == IOMMU_DOMAIN_DMA_FQ && iommu_dma_init_fq(domain))
619 		domain->type = IOMMU_DOMAIN_DMA;
620 
621 	ret = iova_reserve_iommu_regions(dev, domain);
622 
623 done_unlock:
624 	mutex_unlock(&cookie->mutex);
625 	return ret;
626 }
627 
628 /**
629  * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
630  *                    page flags.
631  * @dir: Direction of DMA transfer
632  * @coherent: Is the DMA master cache-coherent?
633  * @attrs: DMA attributes for the mapping
634  *
635  * Return: corresponding IOMMU API page protection flags
636  */
637 static int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
638 		     unsigned long attrs)
639 {
640 	int prot = coherent ? IOMMU_CACHE : 0;
641 
642 	if (attrs & DMA_ATTR_PRIVILEGED)
643 		prot |= IOMMU_PRIV;
644 
645 	switch (dir) {
646 	case DMA_BIDIRECTIONAL:
647 		return prot | IOMMU_READ | IOMMU_WRITE;
648 	case DMA_TO_DEVICE:
649 		return prot | IOMMU_READ;
650 	case DMA_FROM_DEVICE:
651 		return prot | IOMMU_WRITE;
652 	default:
653 		return 0;
654 	}
655 }
656 
657 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
658 		size_t size, u64 dma_limit, struct device *dev)
659 {
660 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
661 	struct iova_domain *iovad = &cookie->iovad;
662 	unsigned long shift, iova_len, iova = 0;
663 
664 	if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
665 		cookie->msi_iova += size;
666 		return cookie->msi_iova - size;
667 	}
668 
669 	shift = iova_shift(iovad);
670 	iova_len = size >> shift;
671 
672 	dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit);
673 
674 	if (domain->geometry.force_aperture)
675 		dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end);
676 
677 	/* Try to get PCI devices a SAC address */
678 	if (dma_limit > DMA_BIT_MASK(32) && !iommu_dma_forcedac && dev_is_pci(dev))
679 		iova = alloc_iova_fast(iovad, iova_len,
680 				       DMA_BIT_MASK(32) >> shift, false);
681 
682 	if (!iova)
683 		iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift,
684 				       true);
685 
686 	return (dma_addr_t)iova << shift;
687 }
688 
689 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
690 		dma_addr_t iova, size_t size, struct iommu_iotlb_gather *gather)
691 {
692 	struct iova_domain *iovad = &cookie->iovad;
693 
694 	/* The MSI case is only ever cleaning up its most recent allocation */
695 	if (cookie->type == IOMMU_DMA_MSI_COOKIE)
696 		cookie->msi_iova -= size;
697 	else if (gather && gather->queued)
698 		queue_iova(cookie, iova_pfn(iovad, iova),
699 				size >> iova_shift(iovad),
700 				&gather->freelist);
701 	else
702 		free_iova_fast(iovad, iova_pfn(iovad, iova),
703 				size >> iova_shift(iovad));
704 }
705 
706 static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr,
707 		size_t size)
708 {
709 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
710 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
711 	struct iova_domain *iovad = &cookie->iovad;
712 	size_t iova_off = iova_offset(iovad, dma_addr);
713 	struct iommu_iotlb_gather iotlb_gather;
714 	size_t unmapped;
715 
716 	dma_addr -= iova_off;
717 	size = iova_align(iovad, size + iova_off);
718 	iommu_iotlb_gather_init(&iotlb_gather);
719 	iotlb_gather.queued = READ_ONCE(cookie->fq_domain);
720 
721 	unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather);
722 	WARN_ON(unmapped != size);
723 
724 	if (!iotlb_gather.queued)
725 		iommu_iotlb_sync(domain, &iotlb_gather);
726 	iommu_dma_free_iova(cookie, dma_addr, size, &iotlb_gather);
727 }
728 
729 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
730 		size_t size, int prot, u64 dma_mask)
731 {
732 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
733 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
734 	struct iova_domain *iovad = &cookie->iovad;
735 	size_t iova_off = iova_offset(iovad, phys);
736 	dma_addr_t iova;
737 
738 	if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
739 	    iommu_deferred_attach(dev, domain))
740 		return DMA_MAPPING_ERROR;
741 
742 	size = iova_align(iovad, size + iova_off);
743 
744 	iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev);
745 	if (!iova)
746 		return DMA_MAPPING_ERROR;
747 
748 	if (iommu_map(domain, iova, phys - iova_off, size, prot, GFP_ATOMIC)) {
749 		iommu_dma_free_iova(cookie, iova, size, NULL);
750 		return DMA_MAPPING_ERROR;
751 	}
752 	return iova + iova_off;
753 }
754 
755 static void __iommu_dma_free_pages(struct page **pages, int count)
756 {
757 	while (count--)
758 		__free_page(pages[count]);
759 	kvfree(pages);
760 }
761 
762 static struct page **__iommu_dma_alloc_pages(struct device *dev,
763 		unsigned int count, unsigned long order_mask, gfp_t gfp)
764 {
765 	struct page **pages;
766 	unsigned int i = 0, nid = dev_to_node(dev);
767 
768 	order_mask &= GENMASK(MAX_ORDER, 0);
769 	if (!order_mask)
770 		return NULL;
771 
772 	pages = kvcalloc(count, sizeof(*pages), GFP_KERNEL);
773 	if (!pages)
774 		return NULL;
775 
776 	/* IOMMU can map any pages, so himem can also be used here */
777 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
778 
779 	while (count) {
780 		struct page *page = NULL;
781 		unsigned int order_size;
782 
783 		/*
784 		 * Higher-order allocations are a convenience rather
785 		 * than a necessity, hence using __GFP_NORETRY until
786 		 * falling back to minimum-order allocations.
787 		 */
788 		for (order_mask &= GENMASK(__fls(count), 0);
789 		     order_mask; order_mask &= ~order_size) {
790 			unsigned int order = __fls(order_mask);
791 			gfp_t alloc_flags = gfp;
792 
793 			order_size = 1U << order;
794 			if (order_mask > order_size)
795 				alloc_flags |= __GFP_NORETRY;
796 			page = alloc_pages_node(nid, alloc_flags, order);
797 			if (!page)
798 				continue;
799 			if (order)
800 				split_page(page, order);
801 			break;
802 		}
803 		if (!page) {
804 			__iommu_dma_free_pages(pages, i);
805 			return NULL;
806 		}
807 		count -= order_size;
808 		while (order_size--)
809 			pages[i++] = page++;
810 	}
811 	return pages;
812 }
813 
814 /*
815  * If size is less than PAGE_SIZE, then a full CPU page will be allocated,
816  * but an IOMMU which supports smaller pages might not map the whole thing.
817  */
818 static struct page **__iommu_dma_alloc_noncontiguous(struct device *dev,
819 		size_t size, struct sg_table *sgt, gfp_t gfp, pgprot_t prot,
820 		unsigned long attrs)
821 {
822 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
823 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
824 	struct iova_domain *iovad = &cookie->iovad;
825 	bool coherent = dev_is_dma_coherent(dev);
826 	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
827 	unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
828 	struct page **pages;
829 	dma_addr_t iova;
830 	ssize_t ret;
831 
832 	if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
833 	    iommu_deferred_attach(dev, domain))
834 		return NULL;
835 
836 	min_size = alloc_sizes & -alloc_sizes;
837 	if (min_size < PAGE_SIZE) {
838 		min_size = PAGE_SIZE;
839 		alloc_sizes |= PAGE_SIZE;
840 	} else {
841 		size = ALIGN(size, min_size);
842 	}
843 	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
844 		alloc_sizes = min_size;
845 
846 	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
847 	pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT,
848 					gfp);
849 	if (!pages)
850 		return NULL;
851 
852 	size = iova_align(iovad, size);
853 	iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
854 	if (!iova)
855 		goto out_free_pages;
856 
857 	/*
858 	 * Remove the zone/policy flags from the GFP - these are applied to the
859 	 * __iommu_dma_alloc_pages() but are not used for the supporting
860 	 * internal allocations that follow.
861 	 */
862 	gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM | __GFP_COMP);
863 
864 	if (sg_alloc_table_from_pages(sgt, pages, count, 0, size, gfp))
865 		goto out_free_iova;
866 
867 	if (!(ioprot & IOMMU_CACHE)) {
868 		struct scatterlist *sg;
869 		int i;
870 
871 		for_each_sg(sgt->sgl, sg, sgt->orig_nents, i)
872 			arch_dma_prep_coherent(sg_page(sg), sg->length);
873 	}
874 
875 	ret = iommu_map_sg(domain, iova, sgt->sgl, sgt->orig_nents, ioprot,
876 			   gfp);
877 	if (ret < 0 || ret < size)
878 		goto out_free_sg;
879 
880 	sgt->sgl->dma_address = iova;
881 	sgt->sgl->dma_length = size;
882 	return pages;
883 
884 out_free_sg:
885 	sg_free_table(sgt);
886 out_free_iova:
887 	iommu_dma_free_iova(cookie, iova, size, NULL);
888 out_free_pages:
889 	__iommu_dma_free_pages(pages, count);
890 	return NULL;
891 }
892 
893 static void *iommu_dma_alloc_remap(struct device *dev, size_t size,
894 		dma_addr_t *dma_handle, gfp_t gfp, pgprot_t prot,
895 		unsigned long attrs)
896 {
897 	struct page **pages;
898 	struct sg_table sgt;
899 	void *vaddr;
900 
901 	pages = __iommu_dma_alloc_noncontiguous(dev, size, &sgt, gfp, prot,
902 						attrs);
903 	if (!pages)
904 		return NULL;
905 	*dma_handle = sgt.sgl->dma_address;
906 	sg_free_table(&sgt);
907 	vaddr = dma_common_pages_remap(pages, size, prot,
908 			__builtin_return_address(0));
909 	if (!vaddr)
910 		goto out_unmap;
911 	return vaddr;
912 
913 out_unmap:
914 	__iommu_dma_unmap(dev, *dma_handle, size);
915 	__iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
916 	return NULL;
917 }
918 
919 static struct sg_table *iommu_dma_alloc_noncontiguous(struct device *dev,
920 		size_t size, enum dma_data_direction dir, gfp_t gfp,
921 		unsigned long attrs)
922 {
923 	struct dma_sgt_handle *sh;
924 
925 	sh = kmalloc(sizeof(*sh), gfp);
926 	if (!sh)
927 		return NULL;
928 
929 	sh->pages = __iommu_dma_alloc_noncontiguous(dev, size, &sh->sgt, gfp,
930 						    PAGE_KERNEL, attrs);
931 	if (!sh->pages) {
932 		kfree(sh);
933 		return NULL;
934 	}
935 	return &sh->sgt;
936 }
937 
938 static void iommu_dma_free_noncontiguous(struct device *dev, size_t size,
939 		struct sg_table *sgt, enum dma_data_direction dir)
940 {
941 	struct dma_sgt_handle *sh = sgt_handle(sgt);
942 
943 	__iommu_dma_unmap(dev, sgt->sgl->dma_address, size);
944 	__iommu_dma_free_pages(sh->pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
945 	sg_free_table(&sh->sgt);
946 	kfree(sh);
947 }
948 
949 static void iommu_dma_sync_single_for_cpu(struct device *dev,
950 		dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
951 {
952 	phys_addr_t phys;
953 
954 	if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev, size, dir))
955 		return;
956 
957 	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
958 	if (!dev_is_dma_coherent(dev))
959 		arch_sync_dma_for_cpu(phys, size, dir);
960 
961 	if (is_swiotlb_buffer(dev, phys))
962 		swiotlb_sync_single_for_cpu(dev, phys, size, dir);
963 }
964 
965 static void iommu_dma_sync_single_for_device(struct device *dev,
966 		dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
967 {
968 	phys_addr_t phys;
969 
970 	if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev, size, dir))
971 		return;
972 
973 	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
974 	if (is_swiotlb_buffer(dev, phys))
975 		swiotlb_sync_single_for_device(dev, phys, size, dir);
976 
977 	if (!dev_is_dma_coherent(dev))
978 		arch_sync_dma_for_device(phys, size, dir);
979 }
980 
981 static void iommu_dma_sync_sg_for_cpu(struct device *dev,
982 		struct scatterlist *sgl, int nelems,
983 		enum dma_data_direction dir)
984 {
985 	struct scatterlist *sg;
986 	int i;
987 
988 	if (sg_dma_is_swiotlb(sgl))
989 		for_each_sg(sgl, sg, nelems, i)
990 			iommu_dma_sync_single_for_cpu(dev, sg_dma_address(sg),
991 						      sg->length, dir);
992 	else if (!dev_is_dma_coherent(dev))
993 		for_each_sg(sgl, sg, nelems, i)
994 			arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir);
995 }
996 
997 static void iommu_dma_sync_sg_for_device(struct device *dev,
998 		struct scatterlist *sgl, int nelems,
999 		enum dma_data_direction dir)
1000 {
1001 	struct scatterlist *sg;
1002 	int i;
1003 
1004 	if (sg_dma_is_swiotlb(sgl))
1005 		for_each_sg(sgl, sg, nelems, i)
1006 			iommu_dma_sync_single_for_device(dev,
1007 							 sg_dma_address(sg),
1008 							 sg->length, dir);
1009 	else if (!dev_is_dma_coherent(dev))
1010 		for_each_sg(sgl, sg, nelems, i)
1011 			arch_sync_dma_for_device(sg_phys(sg), sg->length, dir);
1012 }
1013 
1014 static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
1015 		unsigned long offset, size_t size, enum dma_data_direction dir,
1016 		unsigned long attrs)
1017 {
1018 	phys_addr_t phys = page_to_phys(page) + offset;
1019 	bool coherent = dev_is_dma_coherent(dev);
1020 	int prot = dma_info_to_prot(dir, coherent, attrs);
1021 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1022 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
1023 	struct iova_domain *iovad = &cookie->iovad;
1024 	dma_addr_t iova, dma_mask = dma_get_mask(dev);
1025 
1026 	/*
1027 	 * If both the physical buffer start address and size are
1028 	 * page aligned, we don't need to use a bounce page.
1029 	 */
1030 	if (dev_use_swiotlb(dev, size, dir) &&
1031 	    iova_offset(iovad, phys | size)) {
1032 		void *padding_start;
1033 		size_t padding_size, aligned_size;
1034 
1035 		if (!is_swiotlb_active(dev)) {
1036 			dev_warn_once(dev, "DMA bounce buffers are inactive, unable to map unaligned transaction.\n");
1037 			return DMA_MAPPING_ERROR;
1038 		}
1039 
1040 		aligned_size = iova_align(iovad, size);
1041 		phys = swiotlb_tbl_map_single(dev, phys, size, aligned_size,
1042 					      iova_mask(iovad), dir, attrs);
1043 
1044 		if (phys == DMA_MAPPING_ERROR)
1045 			return DMA_MAPPING_ERROR;
1046 
1047 		/* Cleanup the padding area. */
1048 		padding_start = phys_to_virt(phys);
1049 		padding_size = aligned_size;
1050 
1051 		if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
1052 		    (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) {
1053 			padding_start += size;
1054 			padding_size -= size;
1055 		}
1056 
1057 		memset(padding_start, 0, padding_size);
1058 	}
1059 
1060 	if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1061 		arch_sync_dma_for_device(phys, size, dir);
1062 
1063 	iova = __iommu_dma_map(dev, phys, size, prot, dma_mask);
1064 	if (iova == DMA_MAPPING_ERROR && is_swiotlb_buffer(dev, phys))
1065 		swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
1066 	return iova;
1067 }
1068 
1069 static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle,
1070 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1071 {
1072 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1073 	phys_addr_t phys;
1074 
1075 	phys = iommu_iova_to_phys(domain, dma_handle);
1076 	if (WARN_ON(!phys))
1077 		return;
1078 
1079 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && !dev_is_dma_coherent(dev))
1080 		arch_sync_dma_for_cpu(phys, size, dir);
1081 
1082 	__iommu_dma_unmap(dev, dma_handle, size);
1083 
1084 	if (unlikely(is_swiotlb_buffer(dev, phys)))
1085 		swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
1086 }
1087 
1088 /*
1089  * Prepare a successfully-mapped scatterlist to give back to the caller.
1090  *
1091  * At this point the segments are already laid out by iommu_dma_map_sg() to
1092  * avoid individually crossing any boundaries, so we merely need to check a
1093  * segment's start address to avoid concatenating across one.
1094  */
1095 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
1096 		dma_addr_t dma_addr)
1097 {
1098 	struct scatterlist *s, *cur = sg;
1099 	unsigned long seg_mask = dma_get_seg_boundary(dev);
1100 	unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
1101 	int i, count = 0;
1102 
1103 	for_each_sg(sg, s, nents, i) {
1104 		/* Restore this segment's original unaligned fields first */
1105 		dma_addr_t s_dma_addr = sg_dma_address(s);
1106 		unsigned int s_iova_off = sg_dma_address(s);
1107 		unsigned int s_length = sg_dma_len(s);
1108 		unsigned int s_iova_len = s->length;
1109 
1110 		sg_dma_address(s) = DMA_MAPPING_ERROR;
1111 		sg_dma_len(s) = 0;
1112 
1113 		if (sg_dma_is_bus_address(s)) {
1114 			if (i > 0)
1115 				cur = sg_next(cur);
1116 
1117 			sg_dma_unmark_bus_address(s);
1118 			sg_dma_address(cur) = s_dma_addr;
1119 			sg_dma_len(cur) = s_length;
1120 			sg_dma_mark_bus_address(cur);
1121 			count++;
1122 			cur_len = 0;
1123 			continue;
1124 		}
1125 
1126 		s->offset += s_iova_off;
1127 		s->length = s_length;
1128 
1129 		/*
1130 		 * Now fill in the real DMA data. If...
1131 		 * - there is a valid output segment to append to
1132 		 * - and this segment starts on an IOVA page boundary
1133 		 * - but doesn't fall at a segment boundary
1134 		 * - and wouldn't make the resulting output segment too long
1135 		 */
1136 		if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
1137 		    (max_len - cur_len >= s_length)) {
1138 			/* ...then concatenate it with the previous one */
1139 			cur_len += s_length;
1140 		} else {
1141 			/* Otherwise start the next output segment */
1142 			if (i > 0)
1143 				cur = sg_next(cur);
1144 			cur_len = s_length;
1145 			count++;
1146 
1147 			sg_dma_address(cur) = dma_addr + s_iova_off;
1148 		}
1149 
1150 		sg_dma_len(cur) = cur_len;
1151 		dma_addr += s_iova_len;
1152 
1153 		if (s_length + s_iova_off < s_iova_len)
1154 			cur_len = 0;
1155 	}
1156 	return count;
1157 }
1158 
1159 /*
1160  * If mapping failed, then just restore the original list,
1161  * but making sure the DMA fields are invalidated.
1162  */
1163 static void __invalidate_sg(struct scatterlist *sg, int nents)
1164 {
1165 	struct scatterlist *s;
1166 	int i;
1167 
1168 	for_each_sg(sg, s, nents, i) {
1169 		if (sg_dma_is_bus_address(s)) {
1170 			sg_dma_unmark_bus_address(s);
1171 		} else {
1172 			if (sg_dma_address(s) != DMA_MAPPING_ERROR)
1173 				s->offset += sg_dma_address(s);
1174 			if (sg_dma_len(s))
1175 				s->length = sg_dma_len(s);
1176 		}
1177 		sg_dma_address(s) = DMA_MAPPING_ERROR;
1178 		sg_dma_len(s) = 0;
1179 	}
1180 }
1181 
1182 static void iommu_dma_unmap_sg_swiotlb(struct device *dev, struct scatterlist *sg,
1183 		int nents, enum dma_data_direction dir, unsigned long attrs)
1184 {
1185 	struct scatterlist *s;
1186 	int i;
1187 
1188 	for_each_sg(sg, s, nents, i)
1189 		iommu_dma_unmap_page(dev, sg_dma_address(s),
1190 				sg_dma_len(s), dir, attrs);
1191 }
1192 
1193 static int iommu_dma_map_sg_swiotlb(struct device *dev, struct scatterlist *sg,
1194 		int nents, enum dma_data_direction dir, unsigned long attrs)
1195 {
1196 	struct scatterlist *s;
1197 	int i;
1198 
1199 	sg_dma_mark_swiotlb(sg);
1200 
1201 	for_each_sg(sg, s, nents, i) {
1202 		sg_dma_address(s) = iommu_dma_map_page(dev, sg_page(s),
1203 				s->offset, s->length, dir, attrs);
1204 		if (sg_dma_address(s) == DMA_MAPPING_ERROR)
1205 			goto out_unmap;
1206 		sg_dma_len(s) = s->length;
1207 	}
1208 
1209 	return nents;
1210 
1211 out_unmap:
1212 	iommu_dma_unmap_sg_swiotlb(dev, sg, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
1213 	return -EIO;
1214 }
1215 
1216 /*
1217  * The DMA API client is passing in a scatterlist which could describe
1218  * any old buffer layout, but the IOMMU API requires everything to be
1219  * aligned to IOMMU pages. Hence the need for this complicated bit of
1220  * impedance-matching, to be able to hand off a suitably-aligned list,
1221  * but still preserve the original offsets and sizes for the caller.
1222  */
1223 static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
1224 		int nents, enum dma_data_direction dir, unsigned long attrs)
1225 {
1226 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1227 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
1228 	struct iova_domain *iovad = &cookie->iovad;
1229 	struct scatterlist *s, *prev = NULL;
1230 	int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs);
1231 	struct pci_p2pdma_map_state p2pdma_state = {};
1232 	enum pci_p2pdma_map_type map;
1233 	dma_addr_t iova;
1234 	size_t iova_len = 0;
1235 	unsigned long mask = dma_get_seg_boundary(dev);
1236 	ssize_t ret;
1237 	int i;
1238 
1239 	if (static_branch_unlikely(&iommu_deferred_attach_enabled)) {
1240 		ret = iommu_deferred_attach(dev, domain);
1241 		if (ret)
1242 			goto out;
1243 	}
1244 
1245 	if (dev_use_sg_swiotlb(dev, sg, nents, dir))
1246 		return iommu_dma_map_sg_swiotlb(dev, sg, nents, dir, attrs);
1247 
1248 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1249 		iommu_dma_sync_sg_for_device(dev, sg, nents, dir);
1250 
1251 	/*
1252 	 * Work out how much IOVA space we need, and align the segments to
1253 	 * IOVA granules for the IOMMU driver to handle. With some clever
1254 	 * trickery we can modify the list in-place, but reversibly, by
1255 	 * stashing the unaligned parts in the as-yet-unused DMA fields.
1256 	 */
1257 	for_each_sg(sg, s, nents, i) {
1258 		size_t s_iova_off = iova_offset(iovad, s->offset);
1259 		size_t s_length = s->length;
1260 		size_t pad_len = (mask - iova_len + 1) & mask;
1261 
1262 		if (is_pci_p2pdma_page(sg_page(s))) {
1263 			map = pci_p2pdma_map_segment(&p2pdma_state, dev, s);
1264 			switch (map) {
1265 			case PCI_P2PDMA_MAP_BUS_ADDR:
1266 				/*
1267 				 * iommu_map_sg() will skip this segment as
1268 				 * it is marked as a bus address,
1269 				 * __finalise_sg() will copy the dma address
1270 				 * into the output segment.
1271 				 */
1272 				continue;
1273 			case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
1274 				/*
1275 				 * Mapping through host bridge should be
1276 				 * mapped with regular IOVAs, thus we
1277 				 * do nothing here and continue below.
1278 				 */
1279 				break;
1280 			default:
1281 				ret = -EREMOTEIO;
1282 				goto out_restore_sg;
1283 			}
1284 		}
1285 
1286 		sg_dma_address(s) = s_iova_off;
1287 		sg_dma_len(s) = s_length;
1288 		s->offset -= s_iova_off;
1289 		s_length = iova_align(iovad, s_length + s_iova_off);
1290 		s->length = s_length;
1291 
1292 		/*
1293 		 * Due to the alignment of our single IOVA allocation, we can
1294 		 * depend on these assumptions about the segment boundary mask:
1295 		 * - If mask size >= IOVA size, then the IOVA range cannot
1296 		 *   possibly fall across a boundary, so we don't care.
1297 		 * - If mask size < IOVA size, then the IOVA range must start
1298 		 *   exactly on a boundary, therefore we can lay things out
1299 		 *   based purely on segment lengths without needing to know
1300 		 *   the actual addresses beforehand.
1301 		 * - The mask must be a power of 2, so pad_len == 0 if
1302 		 *   iova_len == 0, thus we cannot dereference prev the first
1303 		 *   time through here (i.e. before it has a meaningful value).
1304 		 */
1305 		if (pad_len && pad_len < s_length - 1) {
1306 			prev->length += pad_len;
1307 			iova_len += pad_len;
1308 		}
1309 
1310 		iova_len += s_length;
1311 		prev = s;
1312 	}
1313 
1314 	if (!iova_len)
1315 		return __finalise_sg(dev, sg, nents, 0);
1316 
1317 	iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
1318 	if (!iova) {
1319 		ret = -ENOMEM;
1320 		goto out_restore_sg;
1321 	}
1322 
1323 	/*
1324 	 * We'll leave any physical concatenation to the IOMMU driver's
1325 	 * implementation - it knows better than we do.
1326 	 */
1327 	ret = iommu_map_sg(domain, iova, sg, nents, prot, GFP_ATOMIC);
1328 	if (ret < 0 || ret < iova_len)
1329 		goto out_free_iova;
1330 
1331 	return __finalise_sg(dev, sg, nents, iova);
1332 
1333 out_free_iova:
1334 	iommu_dma_free_iova(cookie, iova, iova_len, NULL);
1335 out_restore_sg:
1336 	__invalidate_sg(sg, nents);
1337 out:
1338 	if (ret != -ENOMEM && ret != -EREMOTEIO)
1339 		return -EINVAL;
1340 	return ret;
1341 }
1342 
1343 static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
1344 		int nents, enum dma_data_direction dir, unsigned long attrs)
1345 {
1346 	dma_addr_t end = 0, start;
1347 	struct scatterlist *tmp;
1348 	int i;
1349 
1350 	if (sg_dma_is_swiotlb(sg)) {
1351 		iommu_dma_unmap_sg_swiotlb(dev, sg, nents, dir, attrs);
1352 		return;
1353 	}
1354 
1355 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1356 		iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir);
1357 
1358 	/*
1359 	 * The scatterlist segments are mapped into a single
1360 	 * contiguous IOVA allocation, the start and end points
1361 	 * just have to be determined.
1362 	 */
1363 	for_each_sg(sg, tmp, nents, i) {
1364 		if (sg_dma_is_bus_address(tmp)) {
1365 			sg_dma_unmark_bus_address(tmp);
1366 			continue;
1367 		}
1368 
1369 		if (sg_dma_len(tmp) == 0)
1370 			break;
1371 
1372 		start = sg_dma_address(tmp);
1373 		break;
1374 	}
1375 
1376 	nents -= i;
1377 	for_each_sg(tmp, tmp, nents, i) {
1378 		if (sg_dma_is_bus_address(tmp)) {
1379 			sg_dma_unmark_bus_address(tmp);
1380 			continue;
1381 		}
1382 
1383 		if (sg_dma_len(tmp) == 0)
1384 			break;
1385 
1386 		end = sg_dma_address(tmp) + sg_dma_len(tmp);
1387 	}
1388 
1389 	if (end)
1390 		__iommu_dma_unmap(dev, start, end - start);
1391 }
1392 
1393 static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
1394 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1395 {
1396 	return __iommu_dma_map(dev, phys, size,
1397 			dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO,
1398 			dma_get_mask(dev));
1399 }
1400 
1401 static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
1402 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1403 {
1404 	__iommu_dma_unmap(dev, handle, size);
1405 }
1406 
1407 static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr)
1408 {
1409 	size_t alloc_size = PAGE_ALIGN(size);
1410 	int count = alloc_size >> PAGE_SHIFT;
1411 	struct page *page = NULL, **pages = NULL;
1412 
1413 	/* Non-coherent atomic allocation? Easy */
1414 	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1415 	    dma_free_from_pool(dev, cpu_addr, alloc_size))
1416 		return;
1417 
1418 	if (is_vmalloc_addr(cpu_addr)) {
1419 		/*
1420 		 * If it the address is remapped, then it's either non-coherent
1421 		 * or highmem CMA, or an iommu_dma_alloc_remap() construction.
1422 		 */
1423 		pages = dma_common_find_pages(cpu_addr);
1424 		if (!pages)
1425 			page = vmalloc_to_page(cpu_addr);
1426 		dma_common_free_remap(cpu_addr, alloc_size);
1427 	} else {
1428 		/* Lowmem means a coherent atomic or CMA allocation */
1429 		page = virt_to_page(cpu_addr);
1430 	}
1431 
1432 	if (pages)
1433 		__iommu_dma_free_pages(pages, count);
1434 	if (page)
1435 		dma_free_contiguous(dev, page, alloc_size);
1436 }
1437 
1438 static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr,
1439 		dma_addr_t handle, unsigned long attrs)
1440 {
1441 	__iommu_dma_unmap(dev, handle, size);
1442 	__iommu_dma_free(dev, size, cpu_addr);
1443 }
1444 
1445 static void *iommu_dma_alloc_pages(struct device *dev, size_t size,
1446 		struct page **pagep, gfp_t gfp, unsigned long attrs)
1447 {
1448 	bool coherent = dev_is_dma_coherent(dev);
1449 	size_t alloc_size = PAGE_ALIGN(size);
1450 	int node = dev_to_node(dev);
1451 	struct page *page = NULL;
1452 	void *cpu_addr;
1453 
1454 	page = dma_alloc_contiguous(dev, alloc_size, gfp);
1455 	if (!page)
1456 		page = alloc_pages_node(node, gfp, get_order(alloc_size));
1457 	if (!page)
1458 		return NULL;
1459 
1460 	if (!coherent || PageHighMem(page)) {
1461 		pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
1462 
1463 		cpu_addr = dma_common_contiguous_remap(page, alloc_size,
1464 				prot, __builtin_return_address(0));
1465 		if (!cpu_addr)
1466 			goto out_free_pages;
1467 
1468 		if (!coherent)
1469 			arch_dma_prep_coherent(page, size);
1470 	} else {
1471 		cpu_addr = page_address(page);
1472 	}
1473 
1474 	*pagep = page;
1475 	memset(cpu_addr, 0, alloc_size);
1476 	return cpu_addr;
1477 out_free_pages:
1478 	dma_free_contiguous(dev, page, alloc_size);
1479 	return NULL;
1480 }
1481 
1482 static void *iommu_dma_alloc(struct device *dev, size_t size,
1483 		dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1484 {
1485 	bool coherent = dev_is_dma_coherent(dev);
1486 	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
1487 	struct page *page = NULL;
1488 	void *cpu_addr;
1489 
1490 	gfp |= __GFP_ZERO;
1491 
1492 	if (gfpflags_allow_blocking(gfp) &&
1493 	    !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) {
1494 		return iommu_dma_alloc_remap(dev, size, handle, gfp,
1495 				dma_pgprot(dev, PAGE_KERNEL, attrs), attrs);
1496 	}
1497 
1498 	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1499 	    !gfpflags_allow_blocking(gfp) && !coherent)
1500 		page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr,
1501 					       gfp, NULL);
1502 	else
1503 		cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs);
1504 	if (!cpu_addr)
1505 		return NULL;
1506 
1507 	*handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot,
1508 			dev->coherent_dma_mask);
1509 	if (*handle == DMA_MAPPING_ERROR) {
1510 		__iommu_dma_free(dev, size, cpu_addr);
1511 		return NULL;
1512 	}
1513 
1514 	return cpu_addr;
1515 }
1516 
1517 static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma,
1518 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
1519 		unsigned long attrs)
1520 {
1521 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1522 	unsigned long pfn, off = vma->vm_pgoff;
1523 	int ret;
1524 
1525 	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
1526 
1527 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
1528 		return ret;
1529 
1530 	if (off >= nr_pages || vma_pages(vma) > nr_pages - off)
1531 		return -ENXIO;
1532 
1533 	if (is_vmalloc_addr(cpu_addr)) {
1534 		struct page **pages = dma_common_find_pages(cpu_addr);
1535 
1536 		if (pages)
1537 			return vm_map_pages(vma, pages, nr_pages);
1538 		pfn = vmalloc_to_pfn(cpu_addr);
1539 	} else {
1540 		pfn = page_to_pfn(virt_to_page(cpu_addr));
1541 	}
1542 
1543 	return remap_pfn_range(vma, vma->vm_start, pfn + off,
1544 			       vma->vm_end - vma->vm_start,
1545 			       vma->vm_page_prot);
1546 }
1547 
1548 static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
1549 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
1550 		unsigned long attrs)
1551 {
1552 	struct page *page;
1553 	int ret;
1554 
1555 	if (is_vmalloc_addr(cpu_addr)) {
1556 		struct page **pages = dma_common_find_pages(cpu_addr);
1557 
1558 		if (pages) {
1559 			return sg_alloc_table_from_pages(sgt, pages,
1560 					PAGE_ALIGN(size) >> PAGE_SHIFT,
1561 					0, size, GFP_KERNEL);
1562 		}
1563 
1564 		page = vmalloc_to_page(cpu_addr);
1565 	} else {
1566 		page = virt_to_page(cpu_addr);
1567 	}
1568 
1569 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
1570 	if (!ret)
1571 		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
1572 	return ret;
1573 }
1574 
1575 static unsigned long iommu_dma_get_merge_boundary(struct device *dev)
1576 {
1577 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1578 
1579 	return (1UL << __ffs(domain->pgsize_bitmap)) - 1;
1580 }
1581 
1582 static size_t iommu_dma_opt_mapping_size(void)
1583 {
1584 	return iova_rcache_range();
1585 }
1586 
1587 static const struct dma_map_ops iommu_dma_ops = {
1588 	.flags			= DMA_F_PCI_P2PDMA_SUPPORTED,
1589 	.alloc			= iommu_dma_alloc,
1590 	.free			= iommu_dma_free,
1591 	.alloc_pages		= dma_common_alloc_pages,
1592 	.free_pages		= dma_common_free_pages,
1593 	.alloc_noncontiguous	= iommu_dma_alloc_noncontiguous,
1594 	.free_noncontiguous	= iommu_dma_free_noncontiguous,
1595 	.mmap			= iommu_dma_mmap,
1596 	.get_sgtable		= iommu_dma_get_sgtable,
1597 	.map_page		= iommu_dma_map_page,
1598 	.unmap_page		= iommu_dma_unmap_page,
1599 	.map_sg			= iommu_dma_map_sg,
1600 	.unmap_sg		= iommu_dma_unmap_sg,
1601 	.sync_single_for_cpu	= iommu_dma_sync_single_for_cpu,
1602 	.sync_single_for_device	= iommu_dma_sync_single_for_device,
1603 	.sync_sg_for_cpu	= iommu_dma_sync_sg_for_cpu,
1604 	.sync_sg_for_device	= iommu_dma_sync_sg_for_device,
1605 	.map_resource		= iommu_dma_map_resource,
1606 	.unmap_resource		= iommu_dma_unmap_resource,
1607 	.get_merge_boundary	= iommu_dma_get_merge_boundary,
1608 	.opt_mapping_size	= iommu_dma_opt_mapping_size,
1609 };
1610 
1611 /*
1612  * The IOMMU core code allocates the default DMA domain, which the underlying
1613  * IOMMU driver needs to support via the dma-iommu layer.
1614  */
1615 void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 dma_limit)
1616 {
1617 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1618 
1619 	if (!domain)
1620 		goto out_err;
1621 
1622 	/*
1623 	 * The IOMMU core code allocates the default DMA domain, which the
1624 	 * underlying IOMMU driver needs to support via the dma-iommu layer.
1625 	 */
1626 	if (iommu_is_dma_domain(domain)) {
1627 		if (iommu_dma_init_domain(domain, dma_base, dma_limit, dev))
1628 			goto out_err;
1629 		dev->dma_ops = &iommu_dma_ops;
1630 	}
1631 
1632 	return;
1633 out_err:
1634 	 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
1635 		 dev_name(dev));
1636 }
1637 EXPORT_SYMBOL_GPL(iommu_setup_dma_ops);
1638 
1639 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
1640 		phys_addr_t msi_addr, struct iommu_domain *domain)
1641 {
1642 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
1643 	struct iommu_dma_msi_page *msi_page;
1644 	dma_addr_t iova;
1645 	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1646 	size_t size = cookie_msi_granule(cookie);
1647 
1648 	msi_addr &= ~(phys_addr_t)(size - 1);
1649 	list_for_each_entry(msi_page, &cookie->msi_page_list, list)
1650 		if (msi_page->phys == msi_addr)
1651 			return msi_page;
1652 
1653 	msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL);
1654 	if (!msi_page)
1655 		return NULL;
1656 
1657 	iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
1658 	if (!iova)
1659 		goto out_free_page;
1660 
1661 	if (iommu_map(domain, iova, msi_addr, size, prot, GFP_KERNEL))
1662 		goto out_free_iova;
1663 
1664 	INIT_LIST_HEAD(&msi_page->list);
1665 	msi_page->phys = msi_addr;
1666 	msi_page->iova = iova;
1667 	list_add(&msi_page->list, &cookie->msi_page_list);
1668 	return msi_page;
1669 
1670 out_free_iova:
1671 	iommu_dma_free_iova(cookie, iova, size, NULL);
1672 out_free_page:
1673 	kfree(msi_page);
1674 	return NULL;
1675 }
1676 
1677 /**
1678  * iommu_dma_prepare_msi() - Map the MSI page in the IOMMU domain
1679  * @desc: MSI descriptor, will store the MSI page
1680  * @msi_addr: MSI target address to be mapped
1681  *
1682  * Return: 0 on success or negative error code if the mapping failed.
1683  */
1684 int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)
1685 {
1686 	struct device *dev = msi_desc_to_dev(desc);
1687 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1688 	struct iommu_dma_msi_page *msi_page;
1689 	static DEFINE_MUTEX(msi_prepare_lock); /* see below */
1690 
1691 	if (!domain || !domain->iova_cookie) {
1692 		desc->iommu_cookie = NULL;
1693 		return 0;
1694 	}
1695 
1696 	/*
1697 	 * In fact the whole prepare operation should already be serialised by
1698 	 * irq_domain_mutex further up the callchain, but that's pretty subtle
1699 	 * on its own, so consider this locking as failsafe documentation...
1700 	 */
1701 	mutex_lock(&msi_prepare_lock);
1702 	msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
1703 	mutex_unlock(&msi_prepare_lock);
1704 
1705 	msi_desc_set_iommu_cookie(desc, msi_page);
1706 
1707 	if (!msi_page)
1708 		return -ENOMEM;
1709 	return 0;
1710 }
1711 
1712 /**
1713  * iommu_dma_compose_msi_msg() - Apply translation to an MSI message
1714  * @desc: MSI descriptor prepared by iommu_dma_prepare_msi()
1715  * @msg: MSI message containing target physical address
1716  */
1717 void iommu_dma_compose_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
1718 {
1719 	struct device *dev = msi_desc_to_dev(desc);
1720 	const struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1721 	const struct iommu_dma_msi_page *msi_page;
1722 
1723 	msi_page = msi_desc_get_iommu_cookie(desc);
1724 
1725 	if (!domain || !domain->iova_cookie || WARN_ON(!msi_page))
1726 		return;
1727 
1728 	msg->address_hi = upper_32_bits(msi_page->iova);
1729 	msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1;
1730 	msg->address_lo += lower_32_bits(msi_page->iova);
1731 }
1732 
1733 static int iommu_dma_init(void)
1734 {
1735 	if (is_kdump_kernel())
1736 		static_branch_enable(&iommu_deferred_attach_enabled);
1737 
1738 	return iova_cache_get();
1739 }
1740 arch_initcall(iommu_dma_init);
1741