1 /* 2 * A fairly generic DMA-API to IOMMU-API glue layer. 3 * 4 * Copyright (C) 2014-2015 ARM Ltd. 5 * 6 * based in part on arch/arm/mm/dma-mapping.c: 7 * Copyright (C) 2000-2004 Russell King 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program. If not, see <http://www.gnu.org/licenses/>. 20 */ 21 22 #include <linux/acpi_iort.h> 23 #include <linux/device.h> 24 #include <linux/dma-iommu.h> 25 #include <linux/gfp.h> 26 #include <linux/huge_mm.h> 27 #include <linux/iommu.h> 28 #include <linux/iova.h> 29 #include <linux/irq.h> 30 #include <linux/mm.h> 31 #include <linux/pci.h> 32 #include <linux/scatterlist.h> 33 #include <linux/vmalloc.h> 34 35 #define IOMMU_MAPPING_ERROR 0 36 37 struct iommu_dma_msi_page { 38 struct list_head list; 39 dma_addr_t iova; 40 phys_addr_t phys; 41 }; 42 43 enum iommu_dma_cookie_type { 44 IOMMU_DMA_IOVA_COOKIE, 45 IOMMU_DMA_MSI_COOKIE, 46 }; 47 48 struct iommu_dma_cookie { 49 enum iommu_dma_cookie_type type; 50 union { 51 /* Full allocator for IOMMU_DMA_IOVA_COOKIE */ 52 struct iova_domain iovad; 53 /* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */ 54 dma_addr_t msi_iova; 55 }; 56 struct list_head msi_page_list; 57 spinlock_t msi_lock; 58 59 /* Domain for flush queue callback; NULL if flush queue not in use */ 60 struct iommu_domain *fq_domain; 61 }; 62 63 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie) 64 { 65 if (cookie->type == IOMMU_DMA_IOVA_COOKIE) 66 return cookie->iovad.granule; 67 return PAGE_SIZE; 68 } 69 70 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type) 71 { 72 struct iommu_dma_cookie *cookie; 73 74 cookie = kzalloc(sizeof(*cookie), GFP_KERNEL); 75 if (cookie) { 76 spin_lock_init(&cookie->msi_lock); 77 INIT_LIST_HEAD(&cookie->msi_page_list); 78 cookie->type = type; 79 } 80 return cookie; 81 } 82 83 int iommu_dma_init(void) 84 { 85 return iova_cache_get(); 86 } 87 88 /** 89 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain 90 * @domain: IOMMU domain to prepare for DMA-API usage 91 * 92 * IOMMU drivers should normally call this from their domain_alloc 93 * callback when domain->type == IOMMU_DOMAIN_DMA. 94 */ 95 int iommu_get_dma_cookie(struct iommu_domain *domain) 96 { 97 if (domain->iova_cookie) 98 return -EEXIST; 99 100 domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE); 101 if (!domain->iova_cookie) 102 return -ENOMEM; 103 104 return 0; 105 } 106 EXPORT_SYMBOL(iommu_get_dma_cookie); 107 108 /** 109 * iommu_get_msi_cookie - Acquire just MSI remapping resources 110 * @domain: IOMMU domain to prepare 111 * @base: Start address of IOVA region for MSI mappings 112 * 113 * Users who manage their own IOVA allocation and do not want DMA API support, 114 * but would still like to take advantage of automatic MSI remapping, can use 115 * this to initialise their own domain appropriately. Users should reserve a 116 * contiguous IOVA region, starting at @base, large enough to accommodate the 117 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address 118 * used by the devices attached to @domain. 119 */ 120 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base) 121 { 122 struct iommu_dma_cookie *cookie; 123 124 if (domain->type != IOMMU_DOMAIN_UNMANAGED) 125 return -EINVAL; 126 127 if (domain->iova_cookie) 128 return -EEXIST; 129 130 cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE); 131 if (!cookie) 132 return -ENOMEM; 133 134 cookie->msi_iova = base; 135 domain->iova_cookie = cookie; 136 return 0; 137 } 138 EXPORT_SYMBOL(iommu_get_msi_cookie); 139 140 /** 141 * iommu_put_dma_cookie - Release a domain's DMA mapping resources 142 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or 143 * iommu_get_msi_cookie() 144 * 145 * IOMMU drivers should normally call this from their domain_free callback. 146 */ 147 void iommu_put_dma_cookie(struct iommu_domain *domain) 148 { 149 struct iommu_dma_cookie *cookie = domain->iova_cookie; 150 struct iommu_dma_msi_page *msi, *tmp; 151 152 if (!cookie) 153 return; 154 155 if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule) 156 put_iova_domain(&cookie->iovad); 157 158 list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) { 159 list_del(&msi->list); 160 kfree(msi); 161 } 162 kfree(cookie); 163 domain->iova_cookie = NULL; 164 } 165 EXPORT_SYMBOL(iommu_put_dma_cookie); 166 167 /** 168 * iommu_dma_get_resv_regions - Reserved region driver helper 169 * @dev: Device from iommu_get_resv_regions() 170 * @list: Reserved region list from iommu_get_resv_regions() 171 * 172 * IOMMU drivers can use this to implement their .get_resv_regions callback 173 * for general non-IOMMU-specific reservations. Currently, this covers GICv3 174 * ITS region reservation on ACPI based ARM platforms that may require HW MSI 175 * reservation. 176 */ 177 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list) 178 { 179 180 if (!is_of_node(dev->iommu_fwspec->iommu_fwnode)) 181 iort_iommu_msi_get_resv_regions(dev, list); 182 183 } 184 EXPORT_SYMBOL(iommu_dma_get_resv_regions); 185 186 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie, 187 phys_addr_t start, phys_addr_t end) 188 { 189 struct iova_domain *iovad = &cookie->iovad; 190 struct iommu_dma_msi_page *msi_page; 191 int i, num_pages; 192 193 start -= iova_offset(iovad, start); 194 num_pages = iova_align(iovad, end - start) >> iova_shift(iovad); 195 196 msi_page = kcalloc(num_pages, sizeof(*msi_page), GFP_KERNEL); 197 if (!msi_page) 198 return -ENOMEM; 199 200 for (i = 0; i < num_pages; i++) { 201 msi_page[i].phys = start; 202 msi_page[i].iova = start; 203 INIT_LIST_HEAD(&msi_page[i].list); 204 list_add(&msi_page[i].list, &cookie->msi_page_list); 205 start += iovad->granule; 206 } 207 208 return 0; 209 } 210 211 static void iova_reserve_pci_windows(struct pci_dev *dev, 212 struct iova_domain *iovad) 213 { 214 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus); 215 struct resource_entry *window; 216 unsigned long lo, hi; 217 218 resource_list_for_each_entry(window, &bridge->windows) { 219 if (resource_type(window->res) != IORESOURCE_MEM) 220 continue; 221 222 lo = iova_pfn(iovad, window->res->start - window->offset); 223 hi = iova_pfn(iovad, window->res->end - window->offset); 224 reserve_iova(iovad, lo, hi); 225 } 226 } 227 228 static int iova_reserve_iommu_regions(struct device *dev, 229 struct iommu_domain *domain) 230 { 231 struct iommu_dma_cookie *cookie = domain->iova_cookie; 232 struct iova_domain *iovad = &cookie->iovad; 233 struct iommu_resv_region *region; 234 LIST_HEAD(resv_regions); 235 int ret = 0; 236 237 if (dev_is_pci(dev)) 238 iova_reserve_pci_windows(to_pci_dev(dev), iovad); 239 240 iommu_get_resv_regions(dev, &resv_regions); 241 list_for_each_entry(region, &resv_regions, list) { 242 unsigned long lo, hi; 243 244 /* We ARE the software that manages these! */ 245 if (region->type == IOMMU_RESV_SW_MSI) 246 continue; 247 248 lo = iova_pfn(iovad, region->start); 249 hi = iova_pfn(iovad, region->start + region->length - 1); 250 reserve_iova(iovad, lo, hi); 251 252 if (region->type == IOMMU_RESV_MSI) 253 ret = cookie_init_hw_msi_region(cookie, region->start, 254 region->start + region->length); 255 if (ret) 256 break; 257 } 258 iommu_put_resv_regions(dev, &resv_regions); 259 260 return ret; 261 } 262 263 static void iommu_dma_flush_iotlb_all(struct iova_domain *iovad) 264 { 265 struct iommu_dma_cookie *cookie; 266 struct iommu_domain *domain; 267 268 cookie = container_of(iovad, struct iommu_dma_cookie, iovad); 269 domain = cookie->fq_domain; 270 /* 271 * The IOMMU driver supporting DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE 272 * implies that ops->flush_iotlb_all must be non-NULL. 273 */ 274 domain->ops->flush_iotlb_all(domain); 275 } 276 277 /** 278 * iommu_dma_init_domain - Initialise a DMA mapping domain 279 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() 280 * @base: IOVA at which the mappable address space starts 281 * @size: Size of IOVA space 282 * @dev: Device the domain is being initialised for 283 * 284 * @base and @size should be exact multiples of IOMMU page granularity to 285 * avoid rounding surprises. If necessary, we reserve the page at address 0 286 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but 287 * any change which could make prior IOVAs invalid will fail. 288 */ 289 int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base, 290 u64 size, struct device *dev) 291 { 292 struct iommu_dma_cookie *cookie = domain->iova_cookie; 293 struct iova_domain *iovad = &cookie->iovad; 294 unsigned long order, base_pfn, end_pfn; 295 int attr; 296 297 if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE) 298 return -EINVAL; 299 300 /* Use the smallest supported page size for IOVA granularity */ 301 order = __ffs(domain->pgsize_bitmap); 302 base_pfn = max_t(unsigned long, 1, base >> order); 303 end_pfn = (base + size - 1) >> order; 304 305 /* Check the domain allows at least some access to the device... */ 306 if (domain->geometry.force_aperture) { 307 if (base > domain->geometry.aperture_end || 308 base + size <= domain->geometry.aperture_start) { 309 pr_warn("specified DMA range outside IOMMU capability\n"); 310 return -EFAULT; 311 } 312 /* ...then finally give it a kicking to make sure it fits */ 313 base_pfn = max_t(unsigned long, base_pfn, 314 domain->geometry.aperture_start >> order); 315 } 316 317 /* start_pfn is always nonzero for an already-initialised domain */ 318 if (iovad->start_pfn) { 319 if (1UL << order != iovad->granule || 320 base_pfn != iovad->start_pfn) { 321 pr_warn("Incompatible range for DMA domain\n"); 322 return -EFAULT; 323 } 324 325 return 0; 326 } 327 328 init_iova_domain(iovad, 1UL << order, base_pfn); 329 330 if (!cookie->fq_domain && !iommu_domain_get_attr(domain, 331 DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE, &attr) && attr) { 332 cookie->fq_domain = domain; 333 init_iova_flush_queue(iovad, iommu_dma_flush_iotlb_all, NULL); 334 } 335 336 if (!dev) 337 return 0; 338 339 return iova_reserve_iommu_regions(dev, domain); 340 } 341 EXPORT_SYMBOL(iommu_dma_init_domain); 342 343 /** 344 * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API 345 * page flags. 346 * @dir: Direction of DMA transfer 347 * @coherent: Is the DMA master cache-coherent? 348 * @attrs: DMA attributes for the mapping 349 * 350 * Return: corresponding IOMMU API page protection flags 351 */ 352 int dma_info_to_prot(enum dma_data_direction dir, bool coherent, 353 unsigned long attrs) 354 { 355 int prot = coherent ? IOMMU_CACHE : 0; 356 357 if (attrs & DMA_ATTR_PRIVILEGED) 358 prot |= IOMMU_PRIV; 359 360 switch (dir) { 361 case DMA_BIDIRECTIONAL: 362 return prot | IOMMU_READ | IOMMU_WRITE; 363 case DMA_TO_DEVICE: 364 return prot | IOMMU_READ; 365 case DMA_FROM_DEVICE: 366 return prot | IOMMU_WRITE; 367 default: 368 return 0; 369 } 370 } 371 372 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain, 373 size_t size, dma_addr_t dma_limit, struct device *dev) 374 { 375 struct iommu_dma_cookie *cookie = domain->iova_cookie; 376 struct iova_domain *iovad = &cookie->iovad; 377 unsigned long shift, iova_len, iova = 0; 378 379 if (cookie->type == IOMMU_DMA_MSI_COOKIE) { 380 cookie->msi_iova += size; 381 return cookie->msi_iova - size; 382 } 383 384 shift = iova_shift(iovad); 385 iova_len = size >> shift; 386 /* 387 * Freeing non-power-of-two-sized allocations back into the IOVA caches 388 * will come back to bite us badly, so we have to waste a bit of space 389 * rounding up anything cacheable to make sure that can't happen. The 390 * order of the unadjusted size will still match upon freeing. 391 */ 392 if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1))) 393 iova_len = roundup_pow_of_two(iova_len); 394 395 if (dev->bus_dma_mask) 396 dma_limit &= dev->bus_dma_mask; 397 398 if (domain->geometry.force_aperture) 399 dma_limit = min(dma_limit, domain->geometry.aperture_end); 400 401 /* Try to get PCI devices a SAC address */ 402 if (dma_limit > DMA_BIT_MASK(32) && dev_is_pci(dev)) 403 iova = alloc_iova_fast(iovad, iova_len, 404 DMA_BIT_MASK(32) >> shift, false); 405 406 if (!iova) 407 iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift, 408 true); 409 410 return (dma_addr_t)iova << shift; 411 } 412 413 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie, 414 dma_addr_t iova, size_t size) 415 { 416 struct iova_domain *iovad = &cookie->iovad; 417 418 /* The MSI case is only ever cleaning up its most recent allocation */ 419 if (cookie->type == IOMMU_DMA_MSI_COOKIE) 420 cookie->msi_iova -= size; 421 else if (cookie->fq_domain) /* non-strict mode */ 422 queue_iova(iovad, iova_pfn(iovad, iova), 423 size >> iova_shift(iovad), 0); 424 else 425 free_iova_fast(iovad, iova_pfn(iovad, iova), 426 size >> iova_shift(iovad)); 427 } 428 429 static void __iommu_dma_unmap(struct iommu_domain *domain, dma_addr_t dma_addr, 430 size_t size) 431 { 432 struct iommu_dma_cookie *cookie = domain->iova_cookie; 433 struct iova_domain *iovad = &cookie->iovad; 434 size_t iova_off = iova_offset(iovad, dma_addr); 435 436 dma_addr -= iova_off; 437 size = iova_align(iovad, size + iova_off); 438 439 WARN_ON(iommu_unmap_fast(domain, dma_addr, size) != size); 440 if (!cookie->fq_domain) 441 iommu_tlb_sync(domain); 442 iommu_dma_free_iova(cookie, dma_addr, size); 443 } 444 445 static void __iommu_dma_free_pages(struct page **pages, int count) 446 { 447 while (count--) 448 __free_page(pages[count]); 449 kvfree(pages); 450 } 451 452 static struct page **__iommu_dma_alloc_pages(unsigned int count, 453 unsigned long order_mask, gfp_t gfp) 454 { 455 struct page **pages; 456 unsigned int i = 0, array_size = count * sizeof(*pages); 457 458 order_mask &= (2U << MAX_ORDER) - 1; 459 if (!order_mask) 460 return NULL; 461 462 if (array_size <= PAGE_SIZE) 463 pages = kzalloc(array_size, GFP_KERNEL); 464 else 465 pages = vzalloc(array_size); 466 if (!pages) 467 return NULL; 468 469 /* IOMMU can map any pages, so himem can also be used here */ 470 gfp |= __GFP_NOWARN | __GFP_HIGHMEM; 471 472 while (count) { 473 struct page *page = NULL; 474 unsigned int order_size; 475 476 /* 477 * Higher-order allocations are a convenience rather 478 * than a necessity, hence using __GFP_NORETRY until 479 * falling back to minimum-order allocations. 480 */ 481 for (order_mask &= (2U << __fls(count)) - 1; 482 order_mask; order_mask &= ~order_size) { 483 unsigned int order = __fls(order_mask); 484 485 order_size = 1U << order; 486 page = alloc_pages((order_mask - order_size) ? 487 gfp | __GFP_NORETRY : gfp, order); 488 if (!page) 489 continue; 490 if (!order) 491 break; 492 if (!PageCompound(page)) { 493 split_page(page, order); 494 break; 495 } else if (!split_huge_page(page)) { 496 break; 497 } 498 __free_pages(page, order); 499 } 500 if (!page) { 501 __iommu_dma_free_pages(pages, i); 502 return NULL; 503 } 504 count -= order_size; 505 while (order_size--) 506 pages[i++] = page++; 507 } 508 return pages; 509 } 510 511 /** 512 * iommu_dma_free - Free a buffer allocated by iommu_dma_alloc() 513 * @dev: Device which owns this buffer 514 * @pages: Array of buffer pages as returned by iommu_dma_alloc() 515 * @size: Size of buffer in bytes 516 * @handle: DMA address of buffer 517 * 518 * Frees both the pages associated with the buffer, and the array 519 * describing them 520 */ 521 void iommu_dma_free(struct device *dev, struct page **pages, size_t size, 522 dma_addr_t *handle) 523 { 524 __iommu_dma_unmap(iommu_get_dma_domain(dev), *handle, size); 525 __iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT); 526 *handle = IOMMU_MAPPING_ERROR; 527 } 528 529 /** 530 * iommu_dma_alloc - Allocate and map a buffer contiguous in IOVA space 531 * @dev: Device to allocate memory for. Must be a real device 532 * attached to an iommu_dma_domain 533 * @size: Size of buffer in bytes 534 * @gfp: Allocation flags 535 * @attrs: DMA attributes for this allocation 536 * @prot: IOMMU mapping flags 537 * @handle: Out argument for allocated DMA handle 538 * @flush_page: Arch callback which must ensure PAGE_SIZE bytes from the 539 * given VA/PA are visible to the given non-coherent device. 540 * 541 * If @size is less than PAGE_SIZE, then a full CPU page will be allocated, 542 * but an IOMMU which supports smaller pages might not map the whole thing. 543 * 544 * Return: Array of struct page pointers describing the buffer, 545 * or NULL on failure. 546 */ 547 struct page **iommu_dma_alloc(struct device *dev, size_t size, gfp_t gfp, 548 unsigned long attrs, int prot, dma_addr_t *handle, 549 void (*flush_page)(struct device *, const void *, phys_addr_t)) 550 { 551 struct iommu_domain *domain = iommu_get_dma_domain(dev); 552 struct iommu_dma_cookie *cookie = domain->iova_cookie; 553 struct iova_domain *iovad = &cookie->iovad; 554 struct page **pages; 555 struct sg_table sgt; 556 dma_addr_t iova; 557 unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap; 558 559 *handle = IOMMU_MAPPING_ERROR; 560 561 min_size = alloc_sizes & -alloc_sizes; 562 if (min_size < PAGE_SIZE) { 563 min_size = PAGE_SIZE; 564 alloc_sizes |= PAGE_SIZE; 565 } else { 566 size = ALIGN(size, min_size); 567 } 568 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES) 569 alloc_sizes = min_size; 570 571 count = PAGE_ALIGN(size) >> PAGE_SHIFT; 572 pages = __iommu_dma_alloc_pages(count, alloc_sizes >> PAGE_SHIFT, gfp); 573 if (!pages) 574 return NULL; 575 576 size = iova_align(iovad, size); 577 iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev); 578 if (!iova) 579 goto out_free_pages; 580 581 if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL)) 582 goto out_free_iova; 583 584 if (!(prot & IOMMU_CACHE)) { 585 struct sg_mapping_iter miter; 586 /* 587 * The CPU-centric flushing implied by SG_MITER_TO_SG isn't 588 * sufficient here, so skip it by using the "wrong" direction. 589 */ 590 sg_miter_start(&miter, sgt.sgl, sgt.orig_nents, SG_MITER_FROM_SG); 591 while (sg_miter_next(&miter)) 592 flush_page(dev, miter.addr, page_to_phys(miter.page)); 593 sg_miter_stop(&miter); 594 } 595 596 if (iommu_map_sg(domain, iova, sgt.sgl, sgt.orig_nents, prot) 597 < size) 598 goto out_free_sg; 599 600 *handle = iova; 601 sg_free_table(&sgt); 602 return pages; 603 604 out_free_sg: 605 sg_free_table(&sgt); 606 out_free_iova: 607 iommu_dma_free_iova(cookie, iova, size); 608 out_free_pages: 609 __iommu_dma_free_pages(pages, count); 610 return NULL; 611 } 612 613 /** 614 * iommu_dma_mmap - Map a buffer into provided user VMA 615 * @pages: Array representing buffer from iommu_dma_alloc() 616 * @size: Size of buffer in bytes 617 * @vma: VMA describing requested userspace mapping 618 * 619 * Maps the pages of the buffer in @pages into @vma. The caller is responsible 620 * for verifying the correct size and protection of @vma beforehand. 621 */ 622 623 int iommu_dma_mmap(struct page **pages, size_t size, struct vm_area_struct *vma) 624 { 625 unsigned long uaddr = vma->vm_start; 626 unsigned int i, count = PAGE_ALIGN(size) >> PAGE_SHIFT; 627 int ret = -ENXIO; 628 629 for (i = vma->vm_pgoff; i < count && uaddr < vma->vm_end; i++) { 630 ret = vm_insert_page(vma, uaddr, pages[i]); 631 if (ret) 632 break; 633 uaddr += PAGE_SIZE; 634 } 635 return ret; 636 } 637 638 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys, 639 size_t size, int prot, struct iommu_domain *domain) 640 { 641 struct iommu_dma_cookie *cookie = domain->iova_cookie; 642 size_t iova_off = 0; 643 dma_addr_t iova; 644 645 if (cookie->type == IOMMU_DMA_IOVA_COOKIE) { 646 iova_off = iova_offset(&cookie->iovad, phys); 647 size = iova_align(&cookie->iovad, size + iova_off); 648 } 649 650 iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev); 651 if (!iova) 652 return IOMMU_MAPPING_ERROR; 653 654 if (iommu_map(domain, iova, phys - iova_off, size, prot)) { 655 iommu_dma_free_iova(cookie, iova, size); 656 return IOMMU_MAPPING_ERROR; 657 } 658 return iova + iova_off; 659 } 660 661 dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page, 662 unsigned long offset, size_t size, int prot) 663 { 664 return __iommu_dma_map(dev, page_to_phys(page) + offset, size, prot, 665 iommu_get_dma_domain(dev)); 666 } 667 668 void iommu_dma_unmap_page(struct device *dev, dma_addr_t handle, size_t size, 669 enum dma_data_direction dir, unsigned long attrs) 670 { 671 __iommu_dma_unmap(iommu_get_dma_domain(dev), handle, size); 672 } 673 674 /* 675 * Prepare a successfully-mapped scatterlist to give back to the caller. 676 * 677 * At this point the segments are already laid out by iommu_dma_map_sg() to 678 * avoid individually crossing any boundaries, so we merely need to check a 679 * segment's start address to avoid concatenating across one. 680 */ 681 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents, 682 dma_addr_t dma_addr) 683 { 684 struct scatterlist *s, *cur = sg; 685 unsigned long seg_mask = dma_get_seg_boundary(dev); 686 unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev); 687 int i, count = 0; 688 689 for_each_sg(sg, s, nents, i) { 690 /* Restore this segment's original unaligned fields first */ 691 unsigned int s_iova_off = sg_dma_address(s); 692 unsigned int s_length = sg_dma_len(s); 693 unsigned int s_iova_len = s->length; 694 695 s->offset += s_iova_off; 696 s->length = s_length; 697 sg_dma_address(s) = IOMMU_MAPPING_ERROR; 698 sg_dma_len(s) = 0; 699 700 /* 701 * Now fill in the real DMA data. If... 702 * - there is a valid output segment to append to 703 * - and this segment starts on an IOVA page boundary 704 * - but doesn't fall at a segment boundary 705 * - and wouldn't make the resulting output segment too long 706 */ 707 if (cur_len && !s_iova_off && (dma_addr & seg_mask) && 708 (cur_len + s_length <= max_len)) { 709 /* ...then concatenate it with the previous one */ 710 cur_len += s_length; 711 } else { 712 /* Otherwise start the next output segment */ 713 if (i > 0) 714 cur = sg_next(cur); 715 cur_len = s_length; 716 count++; 717 718 sg_dma_address(cur) = dma_addr + s_iova_off; 719 } 720 721 sg_dma_len(cur) = cur_len; 722 dma_addr += s_iova_len; 723 724 if (s_length + s_iova_off < s_iova_len) 725 cur_len = 0; 726 } 727 return count; 728 } 729 730 /* 731 * If mapping failed, then just restore the original list, 732 * but making sure the DMA fields are invalidated. 733 */ 734 static void __invalidate_sg(struct scatterlist *sg, int nents) 735 { 736 struct scatterlist *s; 737 int i; 738 739 for_each_sg(sg, s, nents, i) { 740 if (sg_dma_address(s) != IOMMU_MAPPING_ERROR) 741 s->offset += sg_dma_address(s); 742 if (sg_dma_len(s)) 743 s->length = sg_dma_len(s); 744 sg_dma_address(s) = IOMMU_MAPPING_ERROR; 745 sg_dma_len(s) = 0; 746 } 747 } 748 749 /* 750 * The DMA API client is passing in a scatterlist which could describe 751 * any old buffer layout, but the IOMMU API requires everything to be 752 * aligned to IOMMU pages. Hence the need for this complicated bit of 753 * impedance-matching, to be able to hand off a suitably-aligned list, 754 * but still preserve the original offsets and sizes for the caller. 755 */ 756 int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg, 757 int nents, int prot) 758 { 759 struct iommu_domain *domain = iommu_get_dma_domain(dev); 760 struct iommu_dma_cookie *cookie = domain->iova_cookie; 761 struct iova_domain *iovad = &cookie->iovad; 762 struct scatterlist *s, *prev = NULL; 763 dma_addr_t iova; 764 size_t iova_len = 0; 765 unsigned long mask = dma_get_seg_boundary(dev); 766 int i; 767 768 /* 769 * Work out how much IOVA space we need, and align the segments to 770 * IOVA granules for the IOMMU driver to handle. With some clever 771 * trickery we can modify the list in-place, but reversibly, by 772 * stashing the unaligned parts in the as-yet-unused DMA fields. 773 */ 774 for_each_sg(sg, s, nents, i) { 775 size_t s_iova_off = iova_offset(iovad, s->offset); 776 size_t s_length = s->length; 777 size_t pad_len = (mask - iova_len + 1) & mask; 778 779 sg_dma_address(s) = s_iova_off; 780 sg_dma_len(s) = s_length; 781 s->offset -= s_iova_off; 782 s_length = iova_align(iovad, s_length + s_iova_off); 783 s->length = s_length; 784 785 /* 786 * Due to the alignment of our single IOVA allocation, we can 787 * depend on these assumptions about the segment boundary mask: 788 * - If mask size >= IOVA size, then the IOVA range cannot 789 * possibly fall across a boundary, so we don't care. 790 * - If mask size < IOVA size, then the IOVA range must start 791 * exactly on a boundary, therefore we can lay things out 792 * based purely on segment lengths without needing to know 793 * the actual addresses beforehand. 794 * - The mask must be a power of 2, so pad_len == 0 if 795 * iova_len == 0, thus we cannot dereference prev the first 796 * time through here (i.e. before it has a meaningful value). 797 */ 798 if (pad_len && pad_len < s_length - 1) { 799 prev->length += pad_len; 800 iova_len += pad_len; 801 } 802 803 iova_len += s_length; 804 prev = s; 805 } 806 807 iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev); 808 if (!iova) 809 goto out_restore_sg; 810 811 /* 812 * We'll leave any physical concatenation to the IOMMU driver's 813 * implementation - it knows better than we do. 814 */ 815 if (iommu_map_sg(domain, iova, sg, nents, prot) < iova_len) 816 goto out_free_iova; 817 818 return __finalise_sg(dev, sg, nents, iova); 819 820 out_free_iova: 821 iommu_dma_free_iova(cookie, iova, iova_len); 822 out_restore_sg: 823 __invalidate_sg(sg, nents); 824 return 0; 825 } 826 827 void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 828 enum dma_data_direction dir, unsigned long attrs) 829 { 830 dma_addr_t start, end; 831 struct scatterlist *tmp; 832 int i; 833 /* 834 * The scatterlist segments are mapped into a single 835 * contiguous IOVA allocation, so this is incredibly easy. 836 */ 837 start = sg_dma_address(sg); 838 for_each_sg(sg_next(sg), tmp, nents - 1, i) { 839 if (sg_dma_len(tmp) == 0) 840 break; 841 sg = tmp; 842 } 843 end = sg_dma_address(sg) + sg_dma_len(sg); 844 __iommu_dma_unmap(iommu_get_dma_domain(dev), start, end - start); 845 } 846 847 dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys, 848 size_t size, enum dma_data_direction dir, unsigned long attrs) 849 { 850 return __iommu_dma_map(dev, phys, size, 851 dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO, 852 iommu_get_dma_domain(dev)); 853 } 854 855 void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle, 856 size_t size, enum dma_data_direction dir, unsigned long attrs) 857 { 858 __iommu_dma_unmap(iommu_get_dma_domain(dev), handle, size); 859 } 860 861 int iommu_dma_mapping_error(struct device *dev, dma_addr_t dma_addr) 862 { 863 return dma_addr == IOMMU_MAPPING_ERROR; 864 } 865 866 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev, 867 phys_addr_t msi_addr, struct iommu_domain *domain) 868 { 869 struct iommu_dma_cookie *cookie = domain->iova_cookie; 870 struct iommu_dma_msi_page *msi_page; 871 dma_addr_t iova; 872 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO; 873 size_t size = cookie_msi_granule(cookie); 874 875 msi_addr &= ~(phys_addr_t)(size - 1); 876 list_for_each_entry(msi_page, &cookie->msi_page_list, list) 877 if (msi_page->phys == msi_addr) 878 return msi_page; 879 880 msi_page = kzalloc(sizeof(*msi_page), GFP_ATOMIC); 881 if (!msi_page) 882 return NULL; 883 884 iova = __iommu_dma_map(dev, msi_addr, size, prot, domain); 885 if (iommu_dma_mapping_error(dev, iova)) 886 goto out_free_page; 887 888 INIT_LIST_HEAD(&msi_page->list); 889 msi_page->phys = msi_addr; 890 msi_page->iova = iova; 891 list_add(&msi_page->list, &cookie->msi_page_list); 892 return msi_page; 893 894 out_free_page: 895 kfree(msi_page); 896 return NULL; 897 } 898 899 void iommu_dma_map_msi_msg(int irq, struct msi_msg *msg) 900 { 901 struct device *dev = msi_desc_to_dev(irq_get_msi_desc(irq)); 902 struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 903 struct iommu_dma_cookie *cookie; 904 struct iommu_dma_msi_page *msi_page; 905 phys_addr_t msi_addr = (u64)msg->address_hi << 32 | msg->address_lo; 906 unsigned long flags; 907 908 if (!domain || !domain->iova_cookie) 909 return; 910 911 cookie = domain->iova_cookie; 912 913 /* 914 * We disable IRQs to rule out a possible inversion against 915 * irq_desc_lock if, say, someone tries to retarget the affinity 916 * of an MSI from within an IPI handler. 917 */ 918 spin_lock_irqsave(&cookie->msi_lock, flags); 919 msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain); 920 spin_unlock_irqrestore(&cookie->msi_lock, flags); 921 922 if (WARN_ON(!msi_page)) { 923 /* 924 * We're called from a void callback, so the best we can do is 925 * 'fail' by filling the message with obviously bogus values. 926 * Since we got this far due to an IOMMU being present, it's 927 * not like the existing address would have worked anyway... 928 */ 929 msg->address_hi = ~0U; 930 msg->address_lo = ~0U; 931 msg->data = ~0U; 932 } else { 933 msg->address_hi = upper_32_bits(msi_page->iova); 934 msg->address_lo &= cookie_msi_granule(cookie) - 1; 935 msg->address_lo += lower_32_bits(msi_page->iova); 936 } 937 } 938