xref: /openbmc/linux/drivers/iommu/dma-iommu.c (revision 630dce2810b9f09d312aed4189300e785254c24b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * A fairly generic DMA-API to IOMMU-API glue layer.
4  *
5  * Copyright (C) 2014-2015 ARM Ltd.
6  *
7  * based in part on arch/arm/mm/dma-mapping.c:
8  * Copyright (C) 2000-2004 Russell King
9  */
10 
11 #include <linux/acpi_iort.h>
12 #include <linux/device.h>
13 #include <linux/dma-map-ops.h>
14 #include <linux/dma-iommu.h>
15 #include <linux/gfp.h>
16 #include <linux/huge_mm.h>
17 #include <linux/iommu.h>
18 #include <linux/iova.h>
19 #include <linux/irq.h>
20 #include <linux/mm.h>
21 #include <linux/mutex.h>
22 #include <linux/pci.h>
23 #include <linux/swiotlb.h>
24 #include <linux/scatterlist.h>
25 #include <linux/vmalloc.h>
26 #include <linux/crash_dump.h>
27 #include <linux/dma-direct.h>
28 
29 struct iommu_dma_msi_page {
30 	struct list_head	list;
31 	dma_addr_t		iova;
32 	phys_addr_t		phys;
33 };
34 
35 enum iommu_dma_cookie_type {
36 	IOMMU_DMA_IOVA_COOKIE,
37 	IOMMU_DMA_MSI_COOKIE,
38 };
39 
40 struct iommu_dma_cookie {
41 	enum iommu_dma_cookie_type	type;
42 	union {
43 		/* Full allocator for IOMMU_DMA_IOVA_COOKIE */
44 		struct iova_domain	iovad;
45 		/* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
46 		dma_addr_t		msi_iova;
47 	};
48 	struct list_head		msi_page_list;
49 
50 	/* Domain for flush queue callback; NULL if flush queue not in use */
51 	struct iommu_domain		*fq_domain;
52 };
53 
54 void iommu_dma_free_cpu_cached_iovas(unsigned int cpu,
55 		struct iommu_domain *domain)
56 {
57 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
58 	struct iova_domain *iovad = &cookie->iovad;
59 
60 	free_cpu_cached_iovas(cpu, iovad);
61 }
62 
63 static void iommu_dma_entry_dtor(unsigned long data)
64 {
65 	struct page *freelist = (struct page *)data;
66 
67 	while (freelist) {
68 		unsigned long p = (unsigned long)page_address(freelist);
69 
70 		freelist = freelist->freelist;
71 		free_page(p);
72 	}
73 }
74 
75 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
76 {
77 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
78 		return cookie->iovad.granule;
79 	return PAGE_SIZE;
80 }
81 
82 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
83 {
84 	struct iommu_dma_cookie *cookie;
85 
86 	cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
87 	if (cookie) {
88 		INIT_LIST_HEAD(&cookie->msi_page_list);
89 		cookie->type = type;
90 	}
91 	return cookie;
92 }
93 
94 /**
95  * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
96  * @domain: IOMMU domain to prepare for DMA-API usage
97  *
98  * IOMMU drivers should normally call this from their domain_alloc
99  * callback when domain->type == IOMMU_DOMAIN_DMA.
100  */
101 int iommu_get_dma_cookie(struct iommu_domain *domain)
102 {
103 	if (domain->iova_cookie)
104 		return -EEXIST;
105 
106 	domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
107 	if (!domain->iova_cookie)
108 		return -ENOMEM;
109 
110 	return 0;
111 }
112 EXPORT_SYMBOL(iommu_get_dma_cookie);
113 
114 /**
115  * iommu_get_msi_cookie - Acquire just MSI remapping resources
116  * @domain: IOMMU domain to prepare
117  * @base: Start address of IOVA region for MSI mappings
118  *
119  * Users who manage their own IOVA allocation and do not want DMA API support,
120  * but would still like to take advantage of automatic MSI remapping, can use
121  * this to initialise their own domain appropriately. Users should reserve a
122  * contiguous IOVA region, starting at @base, large enough to accommodate the
123  * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
124  * used by the devices attached to @domain.
125  */
126 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
127 {
128 	struct iommu_dma_cookie *cookie;
129 
130 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
131 		return -EINVAL;
132 
133 	if (domain->iova_cookie)
134 		return -EEXIST;
135 
136 	cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
137 	if (!cookie)
138 		return -ENOMEM;
139 
140 	cookie->msi_iova = base;
141 	domain->iova_cookie = cookie;
142 	return 0;
143 }
144 EXPORT_SYMBOL(iommu_get_msi_cookie);
145 
146 /**
147  * iommu_put_dma_cookie - Release a domain's DMA mapping resources
148  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
149  *          iommu_get_msi_cookie()
150  *
151  * IOMMU drivers should normally call this from their domain_free callback.
152  */
153 void iommu_put_dma_cookie(struct iommu_domain *domain)
154 {
155 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
156 	struct iommu_dma_msi_page *msi, *tmp;
157 
158 	if (!cookie)
159 		return;
160 
161 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule)
162 		put_iova_domain(&cookie->iovad);
163 
164 	list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
165 		list_del(&msi->list);
166 		kfree(msi);
167 	}
168 	kfree(cookie);
169 	domain->iova_cookie = NULL;
170 }
171 EXPORT_SYMBOL(iommu_put_dma_cookie);
172 
173 /**
174  * iommu_dma_get_resv_regions - Reserved region driver helper
175  * @dev: Device from iommu_get_resv_regions()
176  * @list: Reserved region list from iommu_get_resv_regions()
177  *
178  * IOMMU drivers can use this to implement their .get_resv_regions callback
179  * for general non-IOMMU-specific reservations. Currently, this covers GICv3
180  * ITS region reservation on ACPI based ARM platforms that may require HW MSI
181  * reservation.
182  */
183 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
184 {
185 
186 	if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode))
187 		iort_iommu_msi_get_resv_regions(dev, list);
188 
189 }
190 EXPORT_SYMBOL(iommu_dma_get_resv_regions);
191 
192 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
193 		phys_addr_t start, phys_addr_t end)
194 {
195 	struct iova_domain *iovad = &cookie->iovad;
196 	struct iommu_dma_msi_page *msi_page;
197 	int i, num_pages;
198 
199 	start -= iova_offset(iovad, start);
200 	num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
201 
202 	for (i = 0; i < num_pages; i++) {
203 		msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL);
204 		if (!msi_page)
205 			return -ENOMEM;
206 
207 		msi_page->phys = start;
208 		msi_page->iova = start;
209 		INIT_LIST_HEAD(&msi_page->list);
210 		list_add(&msi_page->list, &cookie->msi_page_list);
211 		start += iovad->granule;
212 	}
213 
214 	return 0;
215 }
216 
217 static int iova_reserve_pci_windows(struct pci_dev *dev,
218 		struct iova_domain *iovad)
219 {
220 	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
221 	struct resource_entry *window;
222 	unsigned long lo, hi;
223 	phys_addr_t start = 0, end;
224 
225 	resource_list_for_each_entry(window, &bridge->windows) {
226 		if (resource_type(window->res) != IORESOURCE_MEM)
227 			continue;
228 
229 		lo = iova_pfn(iovad, window->res->start - window->offset);
230 		hi = iova_pfn(iovad, window->res->end - window->offset);
231 		reserve_iova(iovad, lo, hi);
232 	}
233 
234 	/* Get reserved DMA windows from host bridge */
235 	resource_list_for_each_entry(window, &bridge->dma_ranges) {
236 		end = window->res->start - window->offset;
237 resv_iova:
238 		if (end > start) {
239 			lo = iova_pfn(iovad, start);
240 			hi = iova_pfn(iovad, end);
241 			reserve_iova(iovad, lo, hi);
242 		} else {
243 			/* dma_ranges list should be sorted */
244 			dev_err(&dev->dev, "Failed to reserve IOVA\n");
245 			return -EINVAL;
246 		}
247 
248 		start = window->res->end - window->offset + 1;
249 		/* If window is last entry */
250 		if (window->node.next == &bridge->dma_ranges &&
251 		    end != ~(phys_addr_t)0) {
252 			end = ~(phys_addr_t)0;
253 			goto resv_iova;
254 		}
255 	}
256 
257 	return 0;
258 }
259 
260 static int iova_reserve_iommu_regions(struct device *dev,
261 		struct iommu_domain *domain)
262 {
263 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
264 	struct iova_domain *iovad = &cookie->iovad;
265 	struct iommu_resv_region *region;
266 	LIST_HEAD(resv_regions);
267 	int ret = 0;
268 
269 	if (dev_is_pci(dev)) {
270 		ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad);
271 		if (ret)
272 			return ret;
273 	}
274 
275 	iommu_get_resv_regions(dev, &resv_regions);
276 	list_for_each_entry(region, &resv_regions, list) {
277 		unsigned long lo, hi;
278 
279 		/* We ARE the software that manages these! */
280 		if (region->type == IOMMU_RESV_SW_MSI)
281 			continue;
282 
283 		lo = iova_pfn(iovad, region->start);
284 		hi = iova_pfn(iovad, region->start + region->length - 1);
285 		reserve_iova(iovad, lo, hi);
286 
287 		if (region->type == IOMMU_RESV_MSI)
288 			ret = cookie_init_hw_msi_region(cookie, region->start,
289 					region->start + region->length);
290 		if (ret)
291 			break;
292 	}
293 	iommu_put_resv_regions(dev, &resv_regions);
294 
295 	return ret;
296 }
297 
298 static void iommu_dma_flush_iotlb_all(struct iova_domain *iovad)
299 {
300 	struct iommu_dma_cookie *cookie;
301 	struct iommu_domain *domain;
302 
303 	cookie = container_of(iovad, struct iommu_dma_cookie, iovad);
304 	domain = cookie->fq_domain;
305 	/*
306 	 * The IOMMU driver supporting DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE
307 	 * implies that ops->flush_iotlb_all must be non-NULL.
308 	 */
309 	domain->ops->flush_iotlb_all(domain);
310 }
311 
312 /**
313  * iommu_dma_init_domain - Initialise a DMA mapping domain
314  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
315  * @base: IOVA at which the mappable address space starts
316  * @size: Size of IOVA space
317  * @dev: Device the domain is being initialised for
318  *
319  * @base and @size should be exact multiples of IOMMU page granularity to
320  * avoid rounding surprises. If necessary, we reserve the page at address 0
321  * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
322  * any change which could make prior IOVAs invalid will fail.
323  */
324 static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
325 		u64 size, struct device *dev)
326 {
327 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
328 	unsigned long order, base_pfn;
329 	struct iova_domain *iovad;
330 	int attr;
331 
332 	if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
333 		return -EINVAL;
334 
335 	iovad = &cookie->iovad;
336 
337 	/* Use the smallest supported page size for IOVA granularity */
338 	order = __ffs(domain->pgsize_bitmap);
339 	base_pfn = max_t(unsigned long, 1, base >> order);
340 
341 	/* Check the domain allows at least some access to the device... */
342 	if (domain->geometry.force_aperture) {
343 		if (base > domain->geometry.aperture_end ||
344 		    base + size <= domain->geometry.aperture_start) {
345 			pr_warn("specified DMA range outside IOMMU capability\n");
346 			return -EFAULT;
347 		}
348 		/* ...then finally give it a kicking to make sure it fits */
349 		base_pfn = max_t(unsigned long, base_pfn,
350 				domain->geometry.aperture_start >> order);
351 	}
352 
353 	/* start_pfn is always nonzero for an already-initialised domain */
354 	if (iovad->start_pfn) {
355 		if (1UL << order != iovad->granule ||
356 		    base_pfn != iovad->start_pfn) {
357 			pr_warn("Incompatible range for DMA domain\n");
358 			return -EFAULT;
359 		}
360 
361 		return 0;
362 	}
363 
364 	init_iova_domain(iovad, 1UL << order, base_pfn);
365 
366 	if (!cookie->fq_domain && !iommu_domain_get_attr(domain,
367 			DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE, &attr) && attr) {
368 		if (init_iova_flush_queue(iovad, iommu_dma_flush_iotlb_all,
369 					  iommu_dma_entry_dtor))
370 			pr_warn("iova flush queue initialization failed\n");
371 		else
372 			cookie->fq_domain = domain;
373 	}
374 
375 	if (!dev)
376 		return 0;
377 
378 	return iova_reserve_iommu_regions(dev, domain);
379 }
380 
381 static int iommu_dma_deferred_attach(struct device *dev,
382 		struct iommu_domain *domain)
383 {
384 	const struct iommu_ops *ops = domain->ops;
385 
386 	if (!is_kdump_kernel())
387 		return 0;
388 
389 	if (unlikely(ops->is_attach_deferred &&
390 			ops->is_attach_deferred(domain, dev)))
391 		return iommu_attach_device(domain, dev);
392 
393 	return 0;
394 }
395 
396 /**
397  * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
398  *                    page flags.
399  * @dir: Direction of DMA transfer
400  * @coherent: Is the DMA master cache-coherent?
401  * @attrs: DMA attributes for the mapping
402  *
403  * Return: corresponding IOMMU API page protection flags
404  */
405 static int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
406 		     unsigned long attrs)
407 {
408 	int prot = coherent ? IOMMU_CACHE : 0;
409 
410 	if (attrs & DMA_ATTR_PRIVILEGED)
411 		prot |= IOMMU_PRIV;
412 
413 	switch (dir) {
414 	case DMA_BIDIRECTIONAL:
415 		return prot | IOMMU_READ | IOMMU_WRITE;
416 	case DMA_TO_DEVICE:
417 		return prot | IOMMU_READ;
418 	case DMA_FROM_DEVICE:
419 		return prot | IOMMU_WRITE;
420 	default:
421 		return 0;
422 	}
423 }
424 
425 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
426 		size_t size, u64 dma_limit, struct device *dev)
427 {
428 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
429 	struct iova_domain *iovad = &cookie->iovad;
430 	unsigned long shift, iova_len, iova = 0;
431 
432 	if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
433 		cookie->msi_iova += size;
434 		return cookie->msi_iova - size;
435 	}
436 
437 	shift = iova_shift(iovad);
438 	iova_len = size >> shift;
439 	/*
440 	 * Freeing non-power-of-two-sized allocations back into the IOVA caches
441 	 * will come back to bite us badly, so we have to waste a bit of space
442 	 * rounding up anything cacheable to make sure that can't happen. The
443 	 * order of the unadjusted size will still match upon freeing.
444 	 */
445 	if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1)))
446 		iova_len = roundup_pow_of_two(iova_len);
447 
448 	dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit);
449 
450 	if (domain->geometry.force_aperture)
451 		dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end);
452 
453 	/* Try to get PCI devices a SAC address */
454 	if (dma_limit > DMA_BIT_MASK(32) && dev_is_pci(dev))
455 		iova = alloc_iova_fast(iovad, iova_len,
456 				       DMA_BIT_MASK(32) >> shift, false);
457 
458 	if (!iova)
459 		iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift,
460 				       true);
461 
462 	return (dma_addr_t)iova << shift;
463 }
464 
465 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
466 		dma_addr_t iova, size_t size, struct page *freelist)
467 {
468 	struct iova_domain *iovad = &cookie->iovad;
469 
470 	/* The MSI case is only ever cleaning up its most recent allocation */
471 	if (cookie->type == IOMMU_DMA_MSI_COOKIE)
472 		cookie->msi_iova -= size;
473 	else if (cookie->fq_domain)	/* non-strict mode */
474 		queue_iova(iovad, iova_pfn(iovad, iova),
475 				size >> iova_shift(iovad),
476 				(unsigned long)freelist);
477 	else
478 		free_iova_fast(iovad, iova_pfn(iovad, iova),
479 				size >> iova_shift(iovad));
480 }
481 
482 static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr,
483 		size_t size)
484 {
485 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
486 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
487 	struct iova_domain *iovad = &cookie->iovad;
488 	size_t iova_off = iova_offset(iovad, dma_addr);
489 	struct iommu_iotlb_gather iotlb_gather;
490 	size_t unmapped;
491 
492 	dma_addr -= iova_off;
493 	size = iova_align(iovad, size + iova_off);
494 	iommu_iotlb_gather_init(&iotlb_gather);
495 
496 	unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather);
497 	WARN_ON(unmapped != size);
498 
499 	if (!cookie->fq_domain)
500 		iommu_iotlb_sync(domain, &iotlb_gather);
501 	iommu_dma_free_iova(cookie, dma_addr, size, iotlb_gather.freelist);
502 }
503 
504 static void __iommu_dma_unmap_swiotlb(struct device *dev, dma_addr_t dma_addr,
505 		size_t size, enum dma_data_direction dir,
506 		unsigned long attrs)
507 {
508 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
509 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
510 	struct iova_domain *iovad = &cookie->iovad;
511 	phys_addr_t phys;
512 
513 	phys = iommu_iova_to_phys(domain, dma_addr);
514 	if (WARN_ON(!phys))
515 		return;
516 
517 	__iommu_dma_unmap(dev, dma_addr, size);
518 
519 	if (unlikely(is_swiotlb_buffer(phys)))
520 		swiotlb_tbl_unmap_single(dev, phys, size,
521 				iova_align(iovad, size), dir, attrs);
522 }
523 
524 static bool dev_is_untrusted(struct device *dev)
525 {
526 	return dev_is_pci(dev) && to_pci_dev(dev)->untrusted;
527 }
528 
529 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
530 		size_t size, int prot, u64 dma_mask)
531 {
532 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
533 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
534 	struct iova_domain *iovad = &cookie->iovad;
535 	size_t iova_off = iova_offset(iovad, phys);
536 	dma_addr_t iova;
537 
538 	if (unlikely(iommu_dma_deferred_attach(dev, domain)))
539 		return DMA_MAPPING_ERROR;
540 
541 	size = iova_align(iovad, size + iova_off);
542 
543 	iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev);
544 	if (!iova)
545 		return DMA_MAPPING_ERROR;
546 
547 	if (iommu_map_atomic(domain, iova, phys - iova_off, size, prot)) {
548 		iommu_dma_free_iova(cookie, iova, size, NULL);
549 		return DMA_MAPPING_ERROR;
550 	}
551 	return iova + iova_off;
552 }
553 
554 static dma_addr_t __iommu_dma_map_swiotlb(struct device *dev, phys_addr_t phys,
555 		size_t org_size, dma_addr_t dma_mask, bool coherent,
556 		enum dma_data_direction dir, unsigned long attrs)
557 {
558 	int prot = dma_info_to_prot(dir, coherent, attrs);
559 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
560 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
561 	struct iova_domain *iovad = &cookie->iovad;
562 	size_t aligned_size = org_size;
563 	void *padding_start;
564 	size_t padding_size;
565 	dma_addr_t iova;
566 
567 	/*
568 	 * If both the physical buffer start address and size are
569 	 * page aligned, we don't need to use a bounce page.
570 	 */
571 	if (IS_ENABLED(CONFIG_SWIOTLB) && dev_is_untrusted(dev) &&
572 	    iova_offset(iovad, phys | org_size)) {
573 		aligned_size = iova_align(iovad, org_size);
574 		phys = swiotlb_tbl_map_single(dev, phys, org_size,
575 					      aligned_size, dir, attrs);
576 
577 		if (phys == DMA_MAPPING_ERROR)
578 			return DMA_MAPPING_ERROR;
579 
580 		/* Cleanup the padding area. */
581 		padding_start = phys_to_virt(phys);
582 		padding_size = aligned_size;
583 
584 		if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
585 		    (dir == DMA_TO_DEVICE ||
586 		     dir == DMA_BIDIRECTIONAL)) {
587 			padding_start += org_size;
588 			padding_size -= org_size;
589 		}
590 
591 		memset(padding_start, 0, padding_size);
592 	}
593 
594 	iova = __iommu_dma_map(dev, phys, aligned_size, prot, dma_mask);
595 	if ((iova == DMA_MAPPING_ERROR) && is_swiotlb_buffer(phys))
596 		swiotlb_tbl_unmap_single(dev, phys, org_size,
597 				aligned_size, dir, attrs);
598 
599 	return iova;
600 }
601 
602 static void __iommu_dma_free_pages(struct page **pages, int count)
603 {
604 	while (count--)
605 		__free_page(pages[count]);
606 	kvfree(pages);
607 }
608 
609 static struct page **__iommu_dma_alloc_pages(struct device *dev,
610 		unsigned int count, unsigned long order_mask, gfp_t gfp)
611 {
612 	struct page **pages;
613 	unsigned int i = 0, nid = dev_to_node(dev);
614 
615 	order_mask &= (2U << MAX_ORDER) - 1;
616 	if (!order_mask)
617 		return NULL;
618 
619 	pages = kvzalloc(count * sizeof(*pages), GFP_KERNEL);
620 	if (!pages)
621 		return NULL;
622 
623 	/* IOMMU can map any pages, so himem can also be used here */
624 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
625 
626 	/* It makes no sense to muck about with huge pages */
627 	gfp &= ~__GFP_COMP;
628 
629 	while (count) {
630 		struct page *page = NULL;
631 		unsigned int order_size;
632 
633 		/*
634 		 * Higher-order allocations are a convenience rather
635 		 * than a necessity, hence using __GFP_NORETRY until
636 		 * falling back to minimum-order allocations.
637 		 */
638 		for (order_mask &= (2U << __fls(count)) - 1;
639 		     order_mask; order_mask &= ~order_size) {
640 			unsigned int order = __fls(order_mask);
641 			gfp_t alloc_flags = gfp;
642 
643 			order_size = 1U << order;
644 			if (order_mask > order_size)
645 				alloc_flags |= __GFP_NORETRY;
646 			page = alloc_pages_node(nid, alloc_flags, order);
647 			if (!page)
648 				continue;
649 			if (order)
650 				split_page(page, order);
651 			break;
652 		}
653 		if (!page) {
654 			__iommu_dma_free_pages(pages, i);
655 			return NULL;
656 		}
657 		count -= order_size;
658 		while (order_size--)
659 			pages[i++] = page++;
660 	}
661 	return pages;
662 }
663 
664 /**
665  * iommu_dma_alloc_remap - Allocate and map a buffer contiguous in IOVA space
666  * @dev: Device to allocate memory for. Must be a real device
667  *	 attached to an iommu_dma_domain
668  * @size: Size of buffer in bytes
669  * @dma_handle: Out argument for allocated DMA handle
670  * @gfp: Allocation flags
671  * @prot: pgprot_t to use for the remapped mapping
672  * @attrs: DMA attributes for this allocation
673  *
674  * If @size is less than PAGE_SIZE, then a full CPU page will be allocated,
675  * but an IOMMU which supports smaller pages might not map the whole thing.
676  *
677  * Return: Mapped virtual address, or NULL on failure.
678  */
679 static void *iommu_dma_alloc_remap(struct device *dev, size_t size,
680 		dma_addr_t *dma_handle, gfp_t gfp, pgprot_t prot,
681 		unsigned long attrs)
682 {
683 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
684 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
685 	struct iova_domain *iovad = &cookie->iovad;
686 	bool coherent = dev_is_dma_coherent(dev);
687 	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
688 	unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
689 	struct page **pages;
690 	struct sg_table sgt;
691 	dma_addr_t iova;
692 	void *vaddr;
693 
694 	*dma_handle = DMA_MAPPING_ERROR;
695 
696 	if (unlikely(iommu_dma_deferred_attach(dev, domain)))
697 		return NULL;
698 
699 	min_size = alloc_sizes & -alloc_sizes;
700 	if (min_size < PAGE_SIZE) {
701 		min_size = PAGE_SIZE;
702 		alloc_sizes |= PAGE_SIZE;
703 	} else {
704 		size = ALIGN(size, min_size);
705 	}
706 	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
707 		alloc_sizes = min_size;
708 
709 	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
710 	pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT,
711 					gfp);
712 	if (!pages)
713 		return NULL;
714 
715 	size = iova_align(iovad, size);
716 	iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
717 	if (!iova)
718 		goto out_free_pages;
719 
720 	if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL))
721 		goto out_free_iova;
722 
723 	if (!(ioprot & IOMMU_CACHE)) {
724 		struct scatterlist *sg;
725 		int i;
726 
727 		for_each_sg(sgt.sgl, sg, sgt.orig_nents, i)
728 			arch_dma_prep_coherent(sg_page(sg), sg->length);
729 	}
730 
731 	if (iommu_map_sg_atomic(domain, iova, sgt.sgl, sgt.orig_nents, ioprot)
732 			< size)
733 		goto out_free_sg;
734 
735 	vaddr = dma_common_pages_remap(pages, size, prot,
736 			__builtin_return_address(0));
737 	if (!vaddr)
738 		goto out_unmap;
739 
740 	*dma_handle = iova;
741 	sg_free_table(&sgt);
742 	return vaddr;
743 
744 out_unmap:
745 	__iommu_dma_unmap(dev, iova, size);
746 out_free_sg:
747 	sg_free_table(&sgt);
748 out_free_iova:
749 	iommu_dma_free_iova(cookie, iova, size, NULL);
750 out_free_pages:
751 	__iommu_dma_free_pages(pages, count);
752 	return NULL;
753 }
754 
755 static void iommu_dma_sync_single_for_cpu(struct device *dev,
756 		dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
757 {
758 	phys_addr_t phys;
759 
760 	if (dev_is_dma_coherent(dev) && !dev_is_untrusted(dev))
761 		return;
762 
763 	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
764 	if (!dev_is_dma_coherent(dev))
765 		arch_sync_dma_for_cpu(phys, size, dir);
766 
767 	if (is_swiotlb_buffer(phys))
768 		swiotlb_tbl_sync_single(dev, phys, size, dir, SYNC_FOR_CPU);
769 }
770 
771 static void iommu_dma_sync_single_for_device(struct device *dev,
772 		dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
773 {
774 	phys_addr_t phys;
775 
776 	if (dev_is_dma_coherent(dev) && !dev_is_untrusted(dev))
777 		return;
778 
779 	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
780 	if (is_swiotlb_buffer(phys))
781 		swiotlb_tbl_sync_single(dev, phys, size, dir, SYNC_FOR_DEVICE);
782 
783 	if (!dev_is_dma_coherent(dev))
784 		arch_sync_dma_for_device(phys, size, dir);
785 }
786 
787 static void iommu_dma_sync_sg_for_cpu(struct device *dev,
788 		struct scatterlist *sgl, int nelems,
789 		enum dma_data_direction dir)
790 {
791 	struct scatterlist *sg;
792 	int i;
793 
794 	if (dev_is_dma_coherent(dev) && !dev_is_untrusted(dev))
795 		return;
796 
797 	for_each_sg(sgl, sg, nelems, i) {
798 		if (!dev_is_dma_coherent(dev))
799 			arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir);
800 
801 		if (is_swiotlb_buffer(sg_phys(sg)))
802 			swiotlb_tbl_sync_single(dev, sg_phys(sg), sg->length,
803 						dir, SYNC_FOR_CPU);
804 	}
805 }
806 
807 static void iommu_dma_sync_sg_for_device(struct device *dev,
808 		struct scatterlist *sgl, int nelems,
809 		enum dma_data_direction dir)
810 {
811 	struct scatterlist *sg;
812 	int i;
813 
814 	if (dev_is_dma_coherent(dev) && !dev_is_untrusted(dev))
815 		return;
816 
817 	for_each_sg(sgl, sg, nelems, i) {
818 		if (is_swiotlb_buffer(sg_phys(sg)))
819 			swiotlb_tbl_sync_single(dev, sg_phys(sg), sg->length,
820 						dir, SYNC_FOR_DEVICE);
821 
822 		if (!dev_is_dma_coherent(dev))
823 			arch_sync_dma_for_device(sg_phys(sg), sg->length, dir);
824 	}
825 }
826 
827 static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
828 		unsigned long offset, size_t size, enum dma_data_direction dir,
829 		unsigned long attrs)
830 {
831 	phys_addr_t phys = page_to_phys(page) + offset;
832 	bool coherent = dev_is_dma_coherent(dev);
833 	dma_addr_t dma_handle;
834 
835 	dma_handle = __iommu_dma_map_swiotlb(dev, phys, size, dma_get_mask(dev),
836 			coherent, dir, attrs);
837 	if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
838 	    dma_handle != DMA_MAPPING_ERROR)
839 		arch_sync_dma_for_device(phys, size, dir);
840 	return dma_handle;
841 }
842 
843 static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle,
844 		size_t size, enum dma_data_direction dir, unsigned long attrs)
845 {
846 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
847 		iommu_dma_sync_single_for_cpu(dev, dma_handle, size, dir);
848 	__iommu_dma_unmap_swiotlb(dev, dma_handle, size, dir, attrs);
849 }
850 
851 /*
852  * Prepare a successfully-mapped scatterlist to give back to the caller.
853  *
854  * At this point the segments are already laid out by iommu_dma_map_sg() to
855  * avoid individually crossing any boundaries, so we merely need to check a
856  * segment's start address to avoid concatenating across one.
857  */
858 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
859 		dma_addr_t dma_addr)
860 {
861 	struct scatterlist *s, *cur = sg;
862 	unsigned long seg_mask = dma_get_seg_boundary(dev);
863 	unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
864 	int i, count = 0;
865 
866 	for_each_sg(sg, s, nents, i) {
867 		/* Restore this segment's original unaligned fields first */
868 		unsigned int s_iova_off = sg_dma_address(s);
869 		unsigned int s_length = sg_dma_len(s);
870 		unsigned int s_iova_len = s->length;
871 
872 		s->offset += s_iova_off;
873 		s->length = s_length;
874 		sg_dma_address(s) = DMA_MAPPING_ERROR;
875 		sg_dma_len(s) = 0;
876 
877 		/*
878 		 * Now fill in the real DMA data. If...
879 		 * - there is a valid output segment to append to
880 		 * - and this segment starts on an IOVA page boundary
881 		 * - but doesn't fall at a segment boundary
882 		 * - and wouldn't make the resulting output segment too long
883 		 */
884 		if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
885 		    (max_len - cur_len >= s_length)) {
886 			/* ...then concatenate it with the previous one */
887 			cur_len += s_length;
888 		} else {
889 			/* Otherwise start the next output segment */
890 			if (i > 0)
891 				cur = sg_next(cur);
892 			cur_len = s_length;
893 			count++;
894 
895 			sg_dma_address(cur) = dma_addr + s_iova_off;
896 		}
897 
898 		sg_dma_len(cur) = cur_len;
899 		dma_addr += s_iova_len;
900 
901 		if (s_length + s_iova_off < s_iova_len)
902 			cur_len = 0;
903 	}
904 	return count;
905 }
906 
907 /*
908  * If mapping failed, then just restore the original list,
909  * but making sure the DMA fields are invalidated.
910  */
911 static void __invalidate_sg(struct scatterlist *sg, int nents)
912 {
913 	struct scatterlist *s;
914 	int i;
915 
916 	for_each_sg(sg, s, nents, i) {
917 		if (sg_dma_address(s) != DMA_MAPPING_ERROR)
918 			s->offset += sg_dma_address(s);
919 		if (sg_dma_len(s))
920 			s->length = sg_dma_len(s);
921 		sg_dma_address(s) = DMA_MAPPING_ERROR;
922 		sg_dma_len(s) = 0;
923 	}
924 }
925 
926 static void iommu_dma_unmap_sg_swiotlb(struct device *dev, struct scatterlist *sg,
927 		int nents, enum dma_data_direction dir, unsigned long attrs)
928 {
929 	struct scatterlist *s;
930 	int i;
931 
932 	for_each_sg(sg, s, nents, i)
933 		__iommu_dma_unmap_swiotlb(dev, sg_dma_address(s),
934 				sg_dma_len(s), dir, attrs);
935 }
936 
937 static int iommu_dma_map_sg_swiotlb(struct device *dev, struct scatterlist *sg,
938 		int nents, enum dma_data_direction dir, unsigned long attrs)
939 {
940 	struct scatterlist *s;
941 	int i;
942 
943 	for_each_sg(sg, s, nents, i) {
944 		sg_dma_address(s) = __iommu_dma_map_swiotlb(dev, sg_phys(s),
945 				s->length, dma_get_mask(dev),
946 				dev_is_dma_coherent(dev), dir, attrs);
947 		if (sg_dma_address(s) == DMA_MAPPING_ERROR)
948 			goto out_unmap;
949 		sg_dma_len(s) = s->length;
950 	}
951 
952 	return nents;
953 
954 out_unmap:
955 	iommu_dma_unmap_sg_swiotlb(dev, sg, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
956 	return 0;
957 }
958 
959 /*
960  * The DMA API client is passing in a scatterlist which could describe
961  * any old buffer layout, but the IOMMU API requires everything to be
962  * aligned to IOMMU pages. Hence the need for this complicated bit of
963  * impedance-matching, to be able to hand off a suitably-aligned list,
964  * but still preserve the original offsets and sizes for the caller.
965  */
966 static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
967 		int nents, enum dma_data_direction dir, unsigned long attrs)
968 {
969 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
970 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
971 	struct iova_domain *iovad = &cookie->iovad;
972 	struct scatterlist *s, *prev = NULL;
973 	int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs);
974 	dma_addr_t iova;
975 	size_t iova_len = 0;
976 	unsigned long mask = dma_get_seg_boundary(dev);
977 	int i;
978 
979 	if (unlikely(iommu_dma_deferred_attach(dev, domain)))
980 		return 0;
981 
982 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
983 		iommu_dma_sync_sg_for_device(dev, sg, nents, dir);
984 
985 	if (dev_is_untrusted(dev))
986 		return iommu_dma_map_sg_swiotlb(dev, sg, nents, dir, attrs);
987 
988 	/*
989 	 * Work out how much IOVA space we need, and align the segments to
990 	 * IOVA granules for the IOMMU driver to handle. With some clever
991 	 * trickery we can modify the list in-place, but reversibly, by
992 	 * stashing the unaligned parts in the as-yet-unused DMA fields.
993 	 */
994 	for_each_sg(sg, s, nents, i) {
995 		size_t s_iova_off = iova_offset(iovad, s->offset);
996 		size_t s_length = s->length;
997 		size_t pad_len = (mask - iova_len + 1) & mask;
998 
999 		sg_dma_address(s) = s_iova_off;
1000 		sg_dma_len(s) = s_length;
1001 		s->offset -= s_iova_off;
1002 		s_length = iova_align(iovad, s_length + s_iova_off);
1003 		s->length = s_length;
1004 
1005 		/*
1006 		 * Due to the alignment of our single IOVA allocation, we can
1007 		 * depend on these assumptions about the segment boundary mask:
1008 		 * - If mask size >= IOVA size, then the IOVA range cannot
1009 		 *   possibly fall across a boundary, so we don't care.
1010 		 * - If mask size < IOVA size, then the IOVA range must start
1011 		 *   exactly on a boundary, therefore we can lay things out
1012 		 *   based purely on segment lengths without needing to know
1013 		 *   the actual addresses beforehand.
1014 		 * - The mask must be a power of 2, so pad_len == 0 if
1015 		 *   iova_len == 0, thus we cannot dereference prev the first
1016 		 *   time through here (i.e. before it has a meaningful value).
1017 		 */
1018 		if (pad_len && pad_len < s_length - 1) {
1019 			prev->length += pad_len;
1020 			iova_len += pad_len;
1021 		}
1022 
1023 		iova_len += s_length;
1024 		prev = s;
1025 	}
1026 
1027 	iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
1028 	if (!iova)
1029 		goto out_restore_sg;
1030 
1031 	/*
1032 	 * We'll leave any physical concatenation to the IOMMU driver's
1033 	 * implementation - it knows better than we do.
1034 	 */
1035 	if (iommu_map_sg_atomic(domain, iova, sg, nents, prot) < iova_len)
1036 		goto out_free_iova;
1037 
1038 	return __finalise_sg(dev, sg, nents, iova);
1039 
1040 out_free_iova:
1041 	iommu_dma_free_iova(cookie, iova, iova_len, NULL);
1042 out_restore_sg:
1043 	__invalidate_sg(sg, nents);
1044 	return 0;
1045 }
1046 
1047 static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
1048 		int nents, enum dma_data_direction dir, unsigned long attrs)
1049 {
1050 	dma_addr_t start, end;
1051 	struct scatterlist *tmp;
1052 	int i;
1053 
1054 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1055 		iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir);
1056 
1057 	if (dev_is_untrusted(dev)) {
1058 		iommu_dma_unmap_sg_swiotlb(dev, sg, nents, dir, attrs);
1059 		return;
1060 	}
1061 
1062 	/*
1063 	 * The scatterlist segments are mapped into a single
1064 	 * contiguous IOVA allocation, so this is incredibly easy.
1065 	 */
1066 	start = sg_dma_address(sg);
1067 	for_each_sg(sg_next(sg), tmp, nents - 1, i) {
1068 		if (sg_dma_len(tmp) == 0)
1069 			break;
1070 		sg = tmp;
1071 	}
1072 	end = sg_dma_address(sg) + sg_dma_len(sg);
1073 	__iommu_dma_unmap(dev, start, end - start);
1074 }
1075 
1076 static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
1077 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1078 {
1079 	return __iommu_dma_map(dev, phys, size,
1080 			dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO,
1081 			dma_get_mask(dev));
1082 }
1083 
1084 static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
1085 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1086 {
1087 	__iommu_dma_unmap(dev, handle, size);
1088 }
1089 
1090 static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr)
1091 {
1092 	size_t alloc_size = PAGE_ALIGN(size);
1093 	int count = alloc_size >> PAGE_SHIFT;
1094 	struct page *page = NULL, **pages = NULL;
1095 
1096 	/* Non-coherent atomic allocation? Easy */
1097 	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1098 	    dma_free_from_pool(dev, cpu_addr, alloc_size))
1099 		return;
1100 
1101 	if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1102 		/*
1103 		 * If it the address is remapped, then it's either non-coherent
1104 		 * or highmem CMA, or an iommu_dma_alloc_remap() construction.
1105 		 */
1106 		pages = dma_common_find_pages(cpu_addr);
1107 		if (!pages)
1108 			page = vmalloc_to_page(cpu_addr);
1109 		dma_common_free_remap(cpu_addr, alloc_size);
1110 	} else {
1111 		/* Lowmem means a coherent atomic or CMA allocation */
1112 		page = virt_to_page(cpu_addr);
1113 	}
1114 
1115 	if (pages)
1116 		__iommu_dma_free_pages(pages, count);
1117 	if (page)
1118 		dma_free_contiguous(dev, page, alloc_size);
1119 }
1120 
1121 static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr,
1122 		dma_addr_t handle, unsigned long attrs)
1123 {
1124 	__iommu_dma_unmap(dev, handle, size);
1125 	__iommu_dma_free(dev, size, cpu_addr);
1126 }
1127 
1128 static void *iommu_dma_alloc_pages(struct device *dev, size_t size,
1129 		struct page **pagep, gfp_t gfp, unsigned long attrs)
1130 {
1131 	bool coherent = dev_is_dma_coherent(dev);
1132 	size_t alloc_size = PAGE_ALIGN(size);
1133 	int node = dev_to_node(dev);
1134 	struct page *page = NULL;
1135 	void *cpu_addr;
1136 
1137 	page = dma_alloc_contiguous(dev, alloc_size, gfp);
1138 	if (!page)
1139 		page = alloc_pages_node(node, gfp, get_order(alloc_size));
1140 	if (!page)
1141 		return NULL;
1142 
1143 	if (IS_ENABLED(CONFIG_DMA_REMAP) && (!coherent || PageHighMem(page))) {
1144 		pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
1145 
1146 		cpu_addr = dma_common_contiguous_remap(page, alloc_size,
1147 				prot, __builtin_return_address(0));
1148 		if (!cpu_addr)
1149 			goto out_free_pages;
1150 
1151 		if (!coherent)
1152 			arch_dma_prep_coherent(page, size);
1153 	} else {
1154 		cpu_addr = page_address(page);
1155 	}
1156 
1157 	*pagep = page;
1158 	memset(cpu_addr, 0, alloc_size);
1159 	return cpu_addr;
1160 out_free_pages:
1161 	dma_free_contiguous(dev, page, alloc_size);
1162 	return NULL;
1163 }
1164 
1165 static void *iommu_dma_alloc(struct device *dev, size_t size,
1166 		dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1167 {
1168 	bool coherent = dev_is_dma_coherent(dev);
1169 	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
1170 	struct page *page = NULL;
1171 	void *cpu_addr;
1172 
1173 	gfp |= __GFP_ZERO;
1174 
1175 	if (IS_ENABLED(CONFIG_DMA_REMAP) && gfpflags_allow_blocking(gfp) &&
1176 	    !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) {
1177 		return iommu_dma_alloc_remap(dev, size, handle, gfp,
1178 				dma_pgprot(dev, PAGE_KERNEL, attrs), attrs);
1179 	}
1180 
1181 	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1182 	    !gfpflags_allow_blocking(gfp) && !coherent)
1183 		page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr,
1184 					       gfp, NULL);
1185 	else
1186 		cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs);
1187 	if (!cpu_addr)
1188 		return NULL;
1189 
1190 	*handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot,
1191 			dev->coherent_dma_mask);
1192 	if (*handle == DMA_MAPPING_ERROR) {
1193 		__iommu_dma_free(dev, size, cpu_addr);
1194 		return NULL;
1195 	}
1196 
1197 	return cpu_addr;
1198 }
1199 
1200 #ifdef CONFIG_DMA_REMAP
1201 static void *iommu_dma_alloc_noncoherent(struct device *dev, size_t size,
1202 		dma_addr_t *handle, enum dma_data_direction dir, gfp_t gfp)
1203 {
1204 	if (!gfpflags_allow_blocking(gfp)) {
1205 		struct page *page;
1206 
1207 		page = dma_common_alloc_pages(dev, size, handle, dir, gfp);
1208 		if (!page)
1209 			return NULL;
1210 		return page_address(page);
1211 	}
1212 
1213 	return iommu_dma_alloc_remap(dev, size, handle, gfp | __GFP_ZERO,
1214 				     PAGE_KERNEL, 0);
1215 }
1216 
1217 static void iommu_dma_free_noncoherent(struct device *dev, size_t size,
1218 		void *cpu_addr, dma_addr_t handle, enum dma_data_direction dir)
1219 {
1220 	__iommu_dma_unmap(dev, handle, size);
1221 	__iommu_dma_free(dev, size, cpu_addr);
1222 }
1223 #else
1224 #define iommu_dma_alloc_noncoherent		NULL
1225 #define iommu_dma_free_noncoherent		NULL
1226 #endif /* CONFIG_DMA_REMAP */
1227 
1228 static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma,
1229 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
1230 		unsigned long attrs)
1231 {
1232 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1233 	unsigned long pfn, off = vma->vm_pgoff;
1234 	int ret;
1235 
1236 	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
1237 
1238 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
1239 		return ret;
1240 
1241 	if (off >= nr_pages || vma_pages(vma) > nr_pages - off)
1242 		return -ENXIO;
1243 
1244 	if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1245 		struct page **pages = dma_common_find_pages(cpu_addr);
1246 
1247 		if (pages)
1248 			return vm_map_pages(vma, pages, nr_pages);
1249 		pfn = vmalloc_to_pfn(cpu_addr);
1250 	} else {
1251 		pfn = page_to_pfn(virt_to_page(cpu_addr));
1252 	}
1253 
1254 	return remap_pfn_range(vma, vma->vm_start, pfn + off,
1255 			       vma->vm_end - vma->vm_start,
1256 			       vma->vm_page_prot);
1257 }
1258 
1259 static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
1260 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
1261 		unsigned long attrs)
1262 {
1263 	struct page *page;
1264 	int ret;
1265 
1266 	if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1267 		struct page **pages = dma_common_find_pages(cpu_addr);
1268 
1269 		if (pages) {
1270 			return sg_alloc_table_from_pages(sgt, pages,
1271 					PAGE_ALIGN(size) >> PAGE_SHIFT,
1272 					0, size, GFP_KERNEL);
1273 		}
1274 
1275 		page = vmalloc_to_page(cpu_addr);
1276 	} else {
1277 		page = virt_to_page(cpu_addr);
1278 	}
1279 
1280 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
1281 	if (!ret)
1282 		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
1283 	return ret;
1284 }
1285 
1286 static unsigned long iommu_dma_get_merge_boundary(struct device *dev)
1287 {
1288 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1289 
1290 	return (1UL << __ffs(domain->pgsize_bitmap)) - 1;
1291 }
1292 
1293 static const struct dma_map_ops iommu_dma_ops = {
1294 	.alloc			= iommu_dma_alloc,
1295 	.free			= iommu_dma_free,
1296 	.alloc_pages		= dma_common_alloc_pages,
1297 	.free_pages		= dma_common_free_pages,
1298 	.alloc_noncoherent	= iommu_dma_alloc_noncoherent,
1299 	.free_noncoherent	= iommu_dma_free_noncoherent,
1300 	.mmap			= iommu_dma_mmap,
1301 	.get_sgtable		= iommu_dma_get_sgtable,
1302 	.map_page		= iommu_dma_map_page,
1303 	.unmap_page		= iommu_dma_unmap_page,
1304 	.map_sg			= iommu_dma_map_sg,
1305 	.unmap_sg		= iommu_dma_unmap_sg,
1306 	.sync_single_for_cpu	= iommu_dma_sync_single_for_cpu,
1307 	.sync_single_for_device	= iommu_dma_sync_single_for_device,
1308 	.sync_sg_for_cpu	= iommu_dma_sync_sg_for_cpu,
1309 	.sync_sg_for_device	= iommu_dma_sync_sg_for_device,
1310 	.map_resource		= iommu_dma_map_resource,
1311 	.unmap_resource		= iommu_dma_unmap_resource,
1312 	.get_merge_boundary	= iommu_dma_get_merge_boundary,
1313 };
1314 
1315 /*
1316  * The IOMMU core code allocates the default DMA domain, which the underlying
1317  * IOMMU driver needs to support via the dma-iommu layer.
1318  */
1319 void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size)
1320 {
1321 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1322 
1323 	if (!domain)
1324 		goto out_err;
1325 
1326 	/*
1327 	 * The IOMMU core code allocates the default DMA domain, which the
1328 	 * underlying IOMMU driver needs to support via the dma-iommu layer.
1329 	 */
1330 	if (domain->type == IOMMU_DOMAIN_DMA) {
1331 		if (iommu_dma_init_domain(domain, dma_base, size, dev))
1332 			goto out_err;
1333 		dev->dma_ops = &iommu_dma_ops;
1334 	}
1335 
1336 	return;
1337 out_err:
1338 	 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
1339 		 dev_name(dev));
1340 }
1341 
1342 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
1343 		phys_addr_t msi_addr, struct iommu_domain *domain)
1344 {
1345 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
1346 	struct iommu_dma_msi_page *msi_page;
1347 	dma_addr_t iova;
1348 	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1349 	size_t size = cookie_msi_granule(cookie);
1350 
1351 	msi_addr &= ~(phys_addr_t)(size - 1);
1352 	list_for_each_entry(msi_page, &cookie->msi_page_list, list)
1353 		if (msi_page->phys == msi_addr)
1354 			return msi_page;
1355 
1356 	msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL);
1357 	if (!msi_page)
1358 		return NULL;
1359 
1360 	iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
1361 	if (!iova)
1362 		goto out_free_page;
1363 
1364 	if (iommu_map(domain, iova, msi_addr, size, prot))
1365 		goto out_free_iova;
1366 
1367 	INIT_LIST_HEAD(&msi_page->list);
1368 	msi_page->phys = msi_addr;
1369 	msi_page->iova = iova;
1370 	list_add(&msi_page->list, &cookie->msi_page_list);
1371 	return msi_page;
1372 
1373 out_free_iova:
1374 	iommu_dma_free_iova(cookie, iova, size, NULL);
1375 out_free_page:
1376 	kfree(msi_page);
1377 	return NULL;
1378 }
1379 
1380 int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)
1381 {
1382 	struct device *dev = msi_desc_to_dev(desc);
1383 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1384 	struct iommu_dma_msi_page *msi_page;
1385 	static DEFINE_MUTEX(msi_prepare_lock); /* see below */
1386 
1387 	if (!domain || !domain->iova_cookie) {
1388 		desc->iommu_cookie = NULL;
1389 		return 0;
1390 	}
1391 
1392 	/*
1393 	 * In fact the whole prepare operation should already be serialised by
1394 	 * irq_domain_mutex further up the callchain, but that's pretty subtle
1395 	 * on its own, so consider this locking as failsafe documentation...
1396 	 */
1397 	mutex_lock(&msi_prepare_lock);
1398 	msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
1399 	mutex_unlock(&msi_prepare_lock);
1400 
1401 	msi_desc_set_iommu_cookie(desc, msi_page);
1402 
1403 	if (!msi_page)
1404 		return -ENOMEM;
1405 	return 0;
1406 }
1407 
1408 void iommu_dma_compose_msi_msg(struct msi_desc *desc,
1409 			       struct msi_msg *msg)
1410 {
1411 	struct device *dev = msi_desc_to_dev(desc);
1412 	const struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1413 	const struct iommu_dma_msi_page *msi_page;
1414 
1415 	msi_page = msi_desc_get_iommu_cookie(desc);
1416 
1417 	if (!domain || !domain->iova_cookie || WARN_ON(!msi_page))
1418 		return;
1419 
1420 	msg->address_hi = upper_32_bits(msi_page->iova);
1421 	msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1;
1422 	msg->address_lo += lower_32_bits(msi_page->iova);
1423 }
1424 
1425 static int iommu_dma_init(void)
1426 {
1427 	return iova_cache_get();
1428 }
1429 arch_initcall(iommu_dma_init);
1430