xref: /openbmc/linux/drivers/iommu/dma-iommu.c (revision 5f66f73b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * A fairly generic DMA-API to IOMMU-API glue layer.
4  *
5  * Copyright (C) 2014-2015 ARM Ltd.
6  *
7  * based in part on arch/arm/mm/dma-mapping.c:
8  * Copyright (C) 2000-2004 Russell King
9  */
10 
11 #include <linux/acpi_iort.h>
12 #include <linux/device.h>
13 #include <linux/dma-map-ops.h>
14 #include <linux/dma-iommu.h>
15 #include <linux/gfp.h>
16 #include <linux/huge_mm.h>
17 #include <linux/iommu.h>
18 #include <linux/iova.h>
19 #include <linux/irq.h>
20 #include <linux/mm.h>
21 #include <linux/mutex.h>
22 #include <linux/pci.h>
23 #include <linux/swiotlb.h>
24 #include <linux/scatterlist.h>
25 #include <linux/vmalloc.h>
26 #include <linux/crash_dump.h>
27 #include <linux/dma-direct.h>
28 
29 struct iommu_dma_msi_page {
30 	struct list_head	list;
31 	dma_addr_t		iova;
32 	phys_addr_t		phys;
33 };
34 
35 enum iommu_dma_cookie_type {
36 	IOMMU_DMA_IOVA_COOKIE,
37 	IOMMU_DMA_MSI_COOKIE,
38 };
39 
40 struct iommu_dma_cookie {
41 	enum iommu_dma_cookie_type	type;
42 	union {
43 		/* Full allocator for IOMMU_DMA_IOVA_COOKIE */
44 		struct iova_domain	iovad;
45 		/* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
46 		dma_addr_t		msi_iova;
47 	};
48 	struct list_head		msi_page_list;
49 
50 	/* Domain for flush queue callback; NULL if flush queue not in use */
51 	struct iommu_domain		*fq_domain;
52 };
53 
54 static DEFINE_STATIC_KEY_FALSE(iommu_deferred_attach_enabled);
55 bool iommu_dma_forcedac __read_mostly;
56 
57 static int __init iommu_dma_forcedac_setup(char *str)
58 {
59 	int ret = kstrtobool(str, &iommu_dma_forcedac);
60 
61 	if (!ret && iommu_dma_forcedac)
62 		pr_info("Forcing DAC for PCI devices\n");
63 	return ret;
64 }
65 early_param("iommu.forcedac", iommu_dma_forcedac_setup);
66 
67 static void iommu_dma_entry_dtor(unsigned long data)
68 {
69 	struct page *freelist = (struct page *)data;
70 
71 	while (freelist) {
72 		unsigned long p = (unsigned long)page_address(freelist);
73 
74 		freelist = freelist->freelist;
75 		free_page(p);
76 	}
77 }
78 
79 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
80 {
81 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
82 		return cookie->iovad.granule;
83 	return PAGE_SIZE;
84 }
85 
86 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
87 {
88 	struct iommu_dma_cookie *cookie;
89 
90 	cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
91 	if (cookie) {
92 		INIT_LIST_HEAD(&cookie->msi_page_list);
93 		cookie->type = type;
94 	}
95 	return cookie;
96 }
97 
98 /**
99  * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
100  * @domain: IOMMU domain to prepare for DMA-API usage
101  *
102  * IOMMU drivers should normally call this from their domain_alloc
103  * callback when domain->type == IOMMU_DOMAIN_DMA.
104  */
105 int iommu_get_dma_cookie(struct iommu_domain *domain)
106 {
107 	if (domain->iova_cookie)
108 		return -EEXIST;
109 
110 	domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
111 	if (!domain->iova_cookie)
112 		return -ENOMEM;
113 
114 	return 0;
115 }
116 EXPORT_SYMBOL(iommu_get_dma_cookie);
117 
118 /**
119  * iommu_get_msi_cookie - Acquire just MSI remapping resources
120  * @domain: IOMMU domain to prepare
121  * @base: Start address of IOVA region for MSI mappings
122  *
123  * Users who manage their own IOVA allocation and do not want DMA API support,
124  * but would still like to take advantage of automatic MSI remapping, can use
125  * this to initialise their own domain appropriately. Users should reserve a
126  * contiguous IOVA region, starting at @base, large enough to accommodate the
127  * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
128  * used by the devices attached to @domain.
129  */
130 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
131 {
132 	struct iommu_dma_cookie *cookie;
133 
134 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
135 		return -EINVAL;
136 
137 	if (domain->iova_cookie)
138 		return -EEXIST;
139 
140 	cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
141 	if (!cookie)
142 		return -ENOMEM;
143 
144 	cookie->msi_iova = base;
145 	domain->iova_cookie = cookie;
146 	return 0;
147 }
148 EXPORT_SYMBOL(iommu_get_msi_cookie);
149 
150 /**
151  * iommu_put_dma_cookie - Release a domain's DMA mapping resources
152  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
153  *          iommu_get_msi_cookie()
154  *
155  * IOMMU drivers should normally call this from their domain_free callback.
156  */
157 void iommu_put_dma_cookie(struct iommu_domain *domain)
158 {
159 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
160 	struct iommu_dma_msi_page *msi, *tmp;
161 
162 	if (!cookie)
163 		return;
164 
165 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule)
166 		put_iova_domain(&cookie->iovad);
167 
168 	list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
169 		list_del(&msi->list);
170 		kfree(msi);
171 	}
172 	kfree(cookie);
173 	domain->iova_cookie = NULL;
174 }
175 EXPORT_SYMBOL(iommu_put_dma_cookie);
176 
177 /**
178  * iommu_dma_get_resv_regions - Reserved region driver helper
179  * @dev: Device from iommu_get_resv_regions()
180  * @list: Reserved region list from iommu_get_resv_regions()
181  *
182  * IOMMU drivers can use this to implement their .get_resv_regions callback
183  * for general non-IOMMU-specific reservations. Currently, this covers GICv3
184  * ITS region reservation on ACPI based ARM platforms that may require HW MSI
185  * reservation.
186  */
187 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
188 {
189 
190 	if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode))
191 		iort_iommu_msi_get_resv_regions(dev, list);
192 
193 }
194 EXPORT_SYMBOL(iommu_dma_get_resv_regions);
195 
196 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
197 		phys_addr_t start, phys_addr_t end)
198 {
199 	struct iova_domain *iovad = &cookie->iovad;
200 	struct iommu_dma_msi_page *msi_page;
201 	int i, num_pages;
202 
203 	start -= iova_offset(iovad, start);
204 	num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
205 
206 	for (i = 0; i < num_pages; i++) {
207 		msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL);
208 		if (!msi_page)
209 			return -ENOMEM;
210 
211 		msi_page->phys = start;
212 		msi_page->iova = start;
213 		INIT_LIST_HEAD(&msi_page->list);
214 		list_add(&msi_page->list, &cookie->msi_page_list);
215 		start += iovad->granule;
216 	}
217 
218 	return 0;
219 }
220 
221 static int iova_reserve_pci_windows(struct pci_dev *dev,
222 		struct iova_domain *iovad)
223 {
224 	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
225 	struct resource_entry *window;
226 	unsigned long lo, hi;
227 	phys_addr_t start = 0, end;
228 
229 	resource_list_for_each_entry(window, &bridge->windows) {
230 		if (resource_type(window->res) != IORESOURCE_MEM)
231 			continue;
232 
233 		lo = iova_pfn(iovad, window->res->start - window->offset);
234 		hi = iova_pfn(iovad, window->res->end - window->offset);
235 		reserve_iova(iovad, lo, hi);
236 	}
237 
238 	/* Get reserved DMA windows from host bridge */
239 	resource_list_for_each_entry(window, &bridge->dma_ranges) {
240 		end = window->res->start - window->offset;
241 resv_iova:
242 		if (end > start) {
243 			lo = iova_pfn(iovad, start);
244 			hi = iova_pfn(iovad, end);
245 			reserve_iova(iovad, lo, hi);
246 		} else {
247 			/* dma_ranges list should be sorted */
248 			dev_err(&dev->dev, "Failed to reserve IOVA\n");
249 			return -EINVAL;
250 		}
251 
252 		start = window->res->end - window->offset + 1;
253 		/* If window is last entry */
254 		if (window->node.next == &bridge->dma_ranges &&
255 		    end != ~(phys_addr_t)0) {
256 			end = ~(phys_addr_t)0;
257 			goto resv_iova;
258 		}
259 	}
260 
261 	return 0;
262 }
263 
264 static int iova_reserve_iommu_regions(struct device *dev,
265 		struct iommu_domain *domain)
266 {
267 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
268 	struct iova_domain *iovad = &cookie->iovad;
269 	struct iommu_resv_region *region;
270 	LIST_HEAD(resv_regions);
271 	int ret = 0;
272 
273 	if (dev_is_pci(dev)) {
274 		ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad);
275 		if (ret)
276 			return ret;
277 	}
278 
279 	iommu_get_resv_regions(dev, &resv_regions);
280 	list_for_each_entry(region, &resv_regions, list) {
281 		unsigned long lo, hi;
282 
283 		/* We ARE the software that manages these! */
284 		if (region->type == IOMMU_RESV_SW_MSI)
285 			continue;
286 
287 		lo = iova_pfn(iovad, region->start);
288 		hi = iova_pfn(iovad, region->start + region->length - 1);
289 		reserve_iova(iovad, lo, hi);
290 
291 		if (region->type == IOMMU_RESV_MSI)
292 			ret = cookie_init_hw_msi_region(cookie, region->start,
293 					region->start + region->length);
294 		if (ret)
295 			break;
296 	}
297 	iommu_put_resv_regions(dev, &resv_regions);
298 
299 	return ret;
300 }
301 
302 static void iommu_dma_flush_iotlb_all(struct iova_domain *iovad)
303 {
304 	struct iommu_dma_cookie *cookie;
305 	struct iommu_domain *domain;
306 
307 	cookie = container_of(iovad, struct iommu_dma_cookie, iovad);
308 	domain = cookie->fq_domain;
309 
310 	domain->ops->flush_iotlb_all(domain);
311 }
312 
313 static bool dev_is_untrusted(struct device *dev)
314 {
315 	return dev_is_pci(dev) && to_pci_dev(dev)->untrusted;
316 }
317 
318 /**
319  * iommu_dma_init_domain - Initialise a DMA mapping domain
320  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
321  * @base: IOVA at which the mappable address space starts
322  * @size: Size of IOVA space
323  * @dev: Device the domain is being initialised for
324  *
325  * @base and @size should be exact multiples of IOMMU page granularity to
326  * avoid rounding surprises. If necessary, we reserve the page at address 0
327  * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
328  * any change which could make prior IOVAs invalid will fail.
329  */
330 static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
331 		u64 size, struct device *dev)
332 {
333 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
334 	unsigned long order, base_pfn;
335 	struct iova_domain *iovad;
336 
337 	if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
338 		return -EINVAL;
339 
340 	iovad = &cookie->iovad;
341 
342 	/* Use the smallest supported page size for IOVA granularity */
343 	order = __ffs(domain->pgsize_bitmap);
344 	base_pfn = max_t(unsigned long, 1, base >> order);
345 
346 	/* Check the domain allows at least some access to the device... */
347 	if (domain->geometry.force_aperture) {
348 		if (base > domain->geometry.aperture_end ||
349 		    base + size <= domain->geometry.aperture_start) {
350 			pr_warn("specified DMA range outside IOMMU capability\n");
351 			return -EFAULT;
352 		}
353 		/* ...then finally give it a kicking to make sure it fits */
354 		base_pfn = max_t(unsigned long, base_pfn,
355 				domain->geometry.aperture_start >> order);
356 	}
357 
358 	/* start_pfn is always nonzero for an already-initialised domain */
359 	if (iovad->start_pfn) {
360 		if (1UL << order != iovad->granule ||
361 		    base_pfn != iovad->start_pfn) {
362 			pr_warn("Incompatible range for DMA domain\n");
363 			return -EFAULT;
364 		}
365 
366 		return 0;
367 	}
368 
369 	init_iova_domain(iovad, 1UL << order, base_pfn);
370 
371 	if (!cookie->fq_domain && (!dev || !dev_is_untrusted(dev)) &&
372 	    domain->ops->flush_iotlb_all && !iommu_get_dma_strict(domain)) {
373 		if (init_iova_flush_queue(iovad, iommu_dma_flush_iotlb_all,
374 					  iommu_dma_entry_dtor))
375 			pr_warn("iova flush queue initialization failed\n");
376 		else
377 			cookie->fq_domain = domain;
378 	}
379 
380 	if (!dev)
381 		return 0;
382 
383 	return iova_reserve_iommu_regions(dev, domain);
384 }
385 
386 /**
387  * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
388  *                    page flags.
389  * @dir: Direction of DMA transfer
390  * @coherent: Is the DMA master cache-coherent?
391  * @attrs: DMA attributes for the mapping
392  *
393  * Return: corresponding IOMMU API page protection flags
394  */
395 static int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
396 		     unsigned long attrs)
397 {
398 	int prot = coherent ? IOMMU_CACHE : 0;
399 
400 	if (attrs & DMA_ATTR_PRIVILEGED)
401 		prot |= IOMMU_PRIV;
402 
403 	switch (dir) {
404 	case DMA_BIDIRECTIONAL:
405 		return prot | IOMMU_READ | IOMMU_WRITE;
406 	case DMA_TO_DEVICE:
407 		return prot | IOMMU_READ;
408 	case DMA_FROM_DEVICE:
409 		return prot | IOMMU_WRITE;
410 	default:
411 		return 0;
412 	}
413 }
414 
415 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
416 		size_t size, u64 dma_limit, struct device *dev)
417 {
418 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
419 	struct iova_domain *iovad = &cookie->iovad;
420 	unsigned long shift, iova_len, iova = 0;
421 
422 	if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
423 		cookie->msi_iova += size;
424 		return cookie->msi_iova - size;
425 	}
426 
427 	shift = iova_shift(iovad);
428 	iova_len = size >> shift;
429 	/*
430 	 * Freeing non-power-of-two-sized allocations back into the IOVA caches
431 	 * will come back to bite us badly, so we have to waste a bit of space
432 	 * rounding up anything cacheable to make sure that can't happen. The
433 	 * order of the unadjusted size will still match upon freeing.
434 	 */
435 	if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1)))
436 		iova_len = roundup_pow_of_two(iova_len);
437 
438 	dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit);
439 
440 	if (domain->geometry.force_aperture)
441 		dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end);
442 
443 	/* Try to get PCI devices a SAC address */
444 	if (dma_limit > DMA_BIT_MASK(32) && !iommu_dma_forcedac && dev_is_pci(dev))
445 		iova = alloc_iova_fast(iovad, iova_len,
446 				       DMA_BIT_MASK(32) >> shift, false);
447 
448 	if (!iova)
449 		iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift,
450 				       true);
451 
452 	return (dma_addr_t)iova << shift;
453 }
454 
455 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
456 		dma_addr_t iova, size_t size, struct page *freelist)
457 {
458 	struct iova_domain *iovad = &cookie->iovad;
459 
460 	/* The MSI case is only ever cleaning up its most recent allocation */
461 	if (cookie->type == IOMMU_DMA_MSI_COOKIE)
462 		cookie->msi_iova -= size;
463 	else if (cookie->fq_domain)	/* non-strict mode */
464 		queue_iova(iovad, iova_pfn(iovad, iova),
465 				size >> iova_shift(iovad),
466 				(unsigned long)freelist);
467 	else
468 		free_iova_fast(iovad, iova_pfn(iovad, iova),
469 				size >> iova_shift(iovad));
470 }
471 
472 static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr,
473 		size_t size)
474 {
475 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
476 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
477 	struct iova_domain *iovad = &cookie->iovad;
478 	size_t iova_off = iova_offset(iovad, dma_addr);
479 	struct iommu_iotlb_gather iotlb_gather;
480 	size_t unmapped;
481 
482 	dma_addr -= iova_off;
483 	size = iova_align(iovad, size + iova_off);
484 	iommu_iotlb_gather_init(&iotlb_gather);
485 
486 	unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather);
487 	WARN_ON(unmapped != size);
488 
489 	if (!cookie->fq_domain)
490 		iommu_iotlb_sync(domain, &iotlb_gather);
491 	iommu_dma_free_iova(cookie, dma_addr, size, iotlb_gather.freelist);
492 }
493 
494 static void __iommu_dma_unmap_swiotlb(struct device *dev, dma_addr_t dma_addr,
495 		size_t size, enum dma_data_direction dir,
496 		unsigned long attrs)
497 {
498 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
499 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
500 	struct iova_domain *iovad = &cookie->iovad;
501 	phys_addr_t phys;
502 
503 	phys = iommu_iova_to_phys(domain, dma_addr);
504 	if (WARN_ON(!phys))
505 		return;
506 
507 	__iommu_dma_unmap(dev, dma_addr, size);
508 
509 	if (unlikely(is_swiotlb_buffer(phys)))
510 		swiotlb_tbl_unmap_single(dev, phys, size,
511 				iova_align(iovad, size), dir, attrs);
512 }
513 
514 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
515 		size_t size, int prot, u64 dma_mask)
516 {
517 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
518 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
519 	struct iova_domain *iovad = &cookie->iovad;
520 	size_t iova_off = iova_offset(iovad, phys);
521 	dma_addr_t iova;
522 
523 	if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
524 	    iommu_deferred_attach(dev, domain))
525 		return DMA_MAPPING_ERROR;
526 
527 	size = iova_align(iovad, size + iova_off);
528 
529 	iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev);
530 	if (!iova)
531 		return DMA_MAPPING_ERROR;
532 
533 	if (iommu_map_atomic(domain, iova, phys - iova_off, size, prot)) {
534 		iommu_dma_free_iova(cookie, iova, size, NULL);
535 		return DMA_MAPPING_ERROR;
536 	}
537 	return iova + iova_off;
538 }
539 
540 static dma_addr_t __iommu_dma_map_swiotlb(struct device *dev, phys_addr_t phys,
541 		size_t org_size, dma_addr_t dma_mask, bool coherent,
542 		enum dma_data_direction dir, unsigned long attrs)
543 {
544 	int prot = dma_info_to_prot(dir, coherent, attrs);
545 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
546 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
547 	struct iova_domain *iovad = &cookie->iovad;
548 	size_t aligned_size = org_size;
549 	void *padding_start;
550 	size_t padding_size;
551 	dma_addr_t iova;
552 
553 	/*
554 	 * If both the physical buffer start address and size are
555 	 * page aligned, we don't need to use a bounce page.
556 	 */
557 	if (IS_ENABLED(CONFIG_SWIOTLB) && dev_is_untrusted(dev) &&
558 	    iova_offset(iovad, phys | org_size)) {
559 		aligned_size = iova_align(iovad, org_size);
560 		phys = swiotlb_tbl_map_single(dev, phys, org_size,
561 					      aligned_size, dir, attrs);
562 
563 		if (phys == DMA_MAPPING_ERROR)
564 			return DMA_MAPPING_ERROR;
565 
566 		/* Cleanup the padding area. */
567 		padding_start = phys_to_virt(phys);
568 		padding_size = aligned_size;
569 
570 		if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
571 		    (dir == DMA_TO_DEVICE ||
572 		     dir == DMA_BIDIRECTIONAL)) {
573 			padding_start += org_size;
574 			padding_size -= org_size;
575 		}
576 
577 		memset(padding_start, 0, padding_size);
578 	}
579 
580 	iova = __iommu_dma_map(dev, phys, aligned_size, prot, dma_mask);
581 	if ((iova == DMA_MAPPING_ERROR) && is_swiotlb_buffer(phys))
582 		swiotlb_tbl_unmap_single(dev, phys, org_size,
583 				aligned_size, dir, attrs);
584 
585 	return iova;
586 }
587 
588 static void __iommu_dma_free_pages(struct page **pages, int count)
589 {
590 	while (count--)
591 		__free_page(pages[count]);
592 	kvfree(pages);
593 }
594 
595 static struct page **__iommu_dma_alloc_pages(struct device *dev,
596 		unsigned int count, unsigned long order_mask, gfp_t gfp)
597 {
598 	struct page **pages;
599 	unsigned int i = 0, nid = dev_to_node(dev);
600 
601 	order_mask &= (2U << MAX_ORDER) - 1;
602 	if (!order_mask)
603 		return NULL;
604 
605 	pages = kvzalloc(count * sizeof(*pages), GFP_KERNEL);
606 	if (!pages)
607 		return NULL;
608 
609 	/* IOMMU can map any pages, so himem can also be used here */
610 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
611 
612 	/* It makes no sense to muck about with huge pages */
613 	gfp &= ~__GFP_COMP;
614 
615 	while (count) {
616 		struct page *page = NULL;
617 		unsigned int order_size;
618 
619 		/*
620 		 * Higher-order allocations are a convenience rather
621 		 * than a necessity, hence using __GFP_NORETRY until
622 		 * falling back to minimum-order allocations.
623 		 */
624 		for (order_mask &= (2U << __fls(count)) - 1;
625 		     order_mask; order_mask &= ~order_size) {
626 			unsigned int order = __fls(order_mask);
627 			gfp_t alloc_flags = gfp;
628 
629 			order_size = 1U << order;
630 			if (order_mask > order_size)
631 				alloc_flags |= __GFP_NORETRY;
632 			page = alloc_pages_node(nid, alloc_flags, order);
633 			if (!page)
634 				continue;
635 			if (order)
636 				split_page(page, order);
637 			break;
638 		}
639 		if (!page) {
640 			__iommu_dma_free_pages(pages, i);
641 			return NULL;
642 		}
643 		count -= order_size;
644 		while (order_size--)
645 			pages[i++] = page++;
646 	}
647 	return pages;
648 }
649 
650 /**
651  * iommu_dma_alloc_remap - Allocate and map a buffer contiguous in IOVA space
652  * @dev: Device to allocate memory for. Must be a real device
653  *	 attached to an iommu_dma_domain
654  * @size: Size of buffer in bytes
655  * @dma_handle: Out argument for allocated DMA handle
656  * @gfp: Allocation flags
657  * @prot: pgprot_t to use for the remapped mapping
658  * @attrs: DMA attributes for this allocation
659  *
660  * If @size is less than PAGE_SIZE, then a full CPU page will be allocated,
661  * but an IOMMU which supports smaller pages might not map the whole thing.
662  *
663  * Return: Mapped virtual address, or NULL on failure.
664  */
665 static void *iommu_dma_alloc_remap(struct device *dev, size_t size,
666 		dma_addr_t *dma_handle, gfp_t gfp, pgprot_t prot,
667 		unsigned long attrs)
668 {
669 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
670 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
671 	struct iova_domain *iovad = &cookie->iovad;
672 	bool coherent = dev_is_dma_coherent(dev);
673 	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
674 	unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
675 	struct page **pages;
676 	struct sg_table sgt;
677 	dma_addr_t iova;
678 	void *vaddr;
679 
680 	*dma_handle = DMA_MAPPING_ERROR;
681 
682 	if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
683 	    iommu_deferred_attach(dev, domain))
684 		return NULL;
685 
686 	min_size = alloc_sizes & -alloc_sizes;
687 	if (min_size < PAGE_SIZE) {
688 		min_size = PAGE_SIZE;
689 		alloc_sizes |= PAGE_SIZE;
690 	} else {
691 		size = ALIGN(size, min_size);
692 	}
693 	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
694 		alloc_sizes = min_size;
695 
696 	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
697 	pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT,
698 					gfp);
699 	if (!pages)
700 		return NULL;
701 
702 	size = iova_align(iovad, size);
703 	iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
704 	if (!iova)
705 		goto out_free_pages;
706 
707 	if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL))
708 		goto out_free_iova;
709 
710 	if (!(ioprot & IOMMU_CACHE)) {
711 		struct scatterlist *sg;
712 		int i;
713 
714 		for_each_sg(sgt.sgl, sg, sgt.orig_nents, i)
715 			arch_dma_prep_coherent(sg_page(sg), sg->length);
716 	}
717 
718 	if (iommu_map_sg_atomic(domain, iova, sgt.sgl, sgt.orig_nents, ioprot)
719 			< size)
720 		goto out_free_sg;
721 
722 	vaddr = dma_common_pages_remap(pages, size, prot,
723 			__builtin_return_address(0));
724 	if (!vaddr)
725 		goto out_unmap;
726 
727 	*dma_handle = iova;
728 	sg_free_table(&sgt);
729 	return vaddr;
730 
731 out_unmap:
732 	__iommu_dma_unmap(dev, iova, size);
733 out_free_sg:
734 	sg_free_table(&sgt);
735 out_free_iova:
736 	iommu_dma_free_iova(cookie, iova, size, NULL);
737 out_free_pages:
738 	__iommu_dma_free_pages(pages, count);
739 	return NULL;
740 }
741 
742 static void iommu_dma_sync_single_for_cpu(struct device *dev,
743 		dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
744 {
745 	phys_addr_t phys;
746 
747 	if (dev_is_dma_coherent(dev) && !dev_is_untrusted(dev))
748 		return;
749 
750 	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
751 	if (!dev_is_dma_coherent(dev))
752 		arch_sync_dma_for_cpu(phys, size, dir);
753 
754 	if (is_swiotlb_buffer(phys))
755 		swiotlb_tbl_sync_single(dev, phys, size, dir, SYNC_FOR_CPU);
756 }
757 
758 static void iommu_dma_sync_single_for_device(struct device *dev,
759 		dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
760 {
761 	phys_addr_t phys;
762 
763 	if (dev_is_dma_coherent(dev) && !dev_is_untrusted(dev))
764 		return;
765 
766 	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
767 	if (is_swiotlb_buffer(phys))
768 		swiotlb_tbl_sync_single(dev, phys, size, dir, SYNC_FOR_DEVICE);
769 
770 	if (!dev_is_dma_coherent(dev))
771 		arch_sync_dma_for_device(phys, size, dir);
772 }
773 
774 static void iommu_dma_sync_sg_for_cpu(struct device *dev,
775 		struct scatterlist *sgl, int nelems,
776 		enum dma_data_direction dir)
777 {
778 	struct scatterlist *sg;
779 	int i;
780 
781 	if (dev_is_dma_coherent(dev) && !dev_is_untrusted(dev))
782 		return;
783 
784 	for_each_sg(sgl, sg, nelems, i) {
785 		if (!dev_is_dma_coherent(dev))
786 			arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir);
787 
788 		if (is_swiotlb_buffer(sg_phys(sg)))
789 			swiotlb_tbl_sync_single(dev, sg_phys(sg), sg->length,
790 						dir, SYNC_FOR_CPU);
791 	}
792 }
793 
794 static void iommu_dma_sync_sg_for_device(struct device *dev,
795 		struct scatterlist *sgl, int nelems,
796 		enum dma_data_direction dir)
797 {
798 	struct scatterlist *sg;
799 	int i;
800 
801 	if (dev_is_dma_coherent(dev) && !dev_is_untrusted(dev))
802 		return;
803 
804 	for_each_sg(sgl, sg, nelems, i) {
805 		if (is_swiotlb_buffer(sg_phys(sg)))
806 			swiotlb_tbl_sync_single(dev, sg_phys(sg), sg->length,
807 						dir, SYNC_FOR_DEVICE);
808 
809 		if (!dev_is_dma_coherent(dev))
810 			arch_sync_dma_for_device(sg_phys(sg), sg->length, dir);
811 	}
812 }
813 
814 static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
815 		unsigned long offset, size_t size, enum dma_data_direction dir,
816 		unsigned long attrs)
817 {
818 	phys_addr_t phys = page_to_phys(page) + offset;
819 	bool coherent = dev_is_dma_coherent(dev);
820 	dma_addr_t dma_handle;
821 
822 	dma_handle = __iommu_dma_map_swiotlb(dev, phys, size, dma_get_mask(dev),
823 			coherent, dir, attrs);
824 	if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
825 	    dma_handle != DMA_MAPPING_ERROR)
826 		arch_sync_dma_for_device(phys, size, dir);
827 	return dma_handle;
828 }
829 
830 static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle,
831 		size_t size, enum dma_data_direction dir, unsigned long attrs)
832 {
833 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
834 		iommu_dma_sync_single_for_cpu(dev, dma_handle, size, dir);
835 	__iommu_dma_unmap_swiotlb(dev, dma_handle, size, dir, attrs);
836 }
837 
838 /*
839  * Prepare a successfully-mapped scatterlist to give back to the caller.
840  *
841  * At this point the segments are already laid out by iommu_dma_map_sg() to
842  * avoid individually crossing any boundaries, so we merely need to check a
843  * segment's start address to avoid concatenating across one.
844  */
845 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
846 		dma_addr_t dma_addr)
847 {
848 	struct scatterlist *s, *cur = sg;
849 	unsigned long seg_mask = dma_get_seg_boundary(dev);
850 	unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
851 	int i, count = 0;
852 
853 	for_each_sg(sg, s, nents, i) {
854 		/* Restore this segment's original unaligned fields first */
855 		unsigned int s_iova_off = sg_dma_address(s);
856 		unsigned int s_length = sg_dma_len(s);
857 		unsigned int s_iova_len = s->length;
858 
859 		s->offset += s_iova_off;
860 		s->length = s_length;
861 		sg_dma_address(s) = DMA_MAPPING_ERROR;
862 		sg_dma_len(s) = 0;
863 
864 		/*
865 		 * Now fill in the real DMA data. If...
866 		 * - there is a valid output segment to append to
867 		 * - and this segment starts on an IOVA page boundary
868 		 * - but doesn't fall at a segment boundary
869 		 * - and wouldn't make the resulting output segment too long
870 		 */
871 		if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
872 		    (max_len - cur_len >= s_length)) {
873 			/* ...then concatenate it with the previous one */
874 			cur_len += s_length;
875 		} else {
876 			/* Otherwise start the next output segment */
877 			if (i > 0)
878 				cur = sg_next(cur);
879 			cur_len = s_length;
880 			count++;
881 
882 			sg_dma_address(cur) = dma_addr + s_iova_off;
883 		}
884 
885 		sg_dma_len(cur) = cur_len;
886 		dma_addr += s_iova_len;
887 
888 		if (s_length + s_iova_off < s_iova_len)
889 			cur_len = 0;
890 	}
891 	return count;
892 }
893 
894 /*
895  * If mapping failed, then just restore the original list,
896  * but making sure the DMA fields are invalidated.
897  */
898 static void __invalidate_sg(struct scatterlist *sg, int nents)
899 {
900 	struct scatterlist *s;
901 	int i;
902 
903 	for_each_sg(sg, s, nents, i) {
904 		if (sg_dma_address(s) != DMA_MAPPING_ERROR)
905 			s->offset += sg_dma_address(s);
906 		if (sg_dma_len(s))
907 			s->length = sg_dma_len(s);
908 		sg_dma_address(s) = DMA_MAPPING_ERROR;
909 		sg_dma_len(s) = 0;
910 	}
911 }
912 
913 static void iommu_dma_unmap_sg_swiotlb(struct device *dev, struct scatterlist *sg,
914 		int nents, enum dma_data_direction dir, unsigned long attrs)
915 {
916 	struct scatterlist *s;
917 	int i;
918 
919 	for_each_sg(sg, s, nents, i)
920 		__iommu_dma_unmap_swiotlb(dev, sg_dma_address(s),
921 				sg_dma_len(s), dir, attrs);
922 }
923 
924 static int iommu_dma_map_sg_swiotlb(struct device *dev, struct scatterlist *sg,
925 		int nents, enum dma_data_direction dir, unsigned long attrs)
926 {
927 	struct scatterlist *s;
928 	int i;
929 
930 	for_each_sg(sg, s, nents, i) {
931 		sg_dma_address(s) = __iommu_dma_map_swiotlb(dev, sg_phys(s),
932 				s->length, dma_get_mask(dev),
933 				dev_is_dma_coherent(dev), dir, attrs);
934 		if (sg_dma_address(s) == DMA_MAPPING_ERROR)
935 			goto out_unmap;
936 		sg_dma_len(s) = s->length;
937 	}
938 
939 	return nents;
940 
941 out_unmap:
942 	iommu_dma_unmap_sg_swiotlb(dev, sg, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
943 	return 0;
944 }
945 
946 /*
947  * The DMA API client is passing in a scatterlist which could describe
948  * any old buffer layout, but the IOMMU API requires everything to be
949  * aligned to IOMMU pages. Hence the need for this complicated bit of
950  * impedance-matching, to be able to hand off a suitably-aligned list,
951  * but still preserve the original offsets and sizes for the caller.
952  */
953 static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
954 		int nents, enum dma_data_direction dir, unsigned long attrs)
955 {
956 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
957 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
958 	struct iova_domain *iovad = &cookie->iovad;
959 	struct scatterlist *s, *prev = NULL;
960 	int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs);
961 	dma_addr_t iova;
962 	size_t iova_len = 0;
963 	unsigned long mask = dma_get_seg_boundary(dev);
964 	int i;
965 
966 	if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
967 	    iommu_deferred_attach(dev, domain))
968 		return 0;
969 
970 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
971 		iommu_dma_sync_sg_for_device(dev, sg, nents, dir);
972 
973 	if (dev_is_untrusted(dev))
974 		return iommu_dma_map_sg_swiotlb(dev, sg, nents, dir, attrs);
975 
976 	/*
977 	 * Work out how much IOVA space we need, and align the segments to
978 	 * IOVA granules for the IOMMU driver to handle. With some clever
979 	 * trickery we can modify the list in-place, but reversibly, by
980 	 * stashing the unaligned parts in the as-yet-unused DMA fields.
981 	 */
982 	for_each_sg(sg, s, nents, i) {
983 		size_t s_iova_off = iova_offset(iovad, s->offset);
984 		size_t s_length = s->length;
985 		size_t pad_len = (mask - iova_len + 1) & mask;
986 
987 		sg_dma_address(s) = s_iova_off;
988 		sg_dma_len(s) = s_length;
989 		s->offset -= s_iova_off;
990 		s_length = iova_align(iovad, s_length + s_iova_off);
991 		s->length = s_length;
992 
993 		/*
994 		 * Due to the alignment of our single IOVA allocation, we can
995 		 * depend on these assumptions about the segment boundary mask:
996 		 * - If mask size >= IOVA size, then the IOVA range cannot
997 		 *   possibly fall across a boundary, so we don't care.
998 		 * - If mask size < IOVA size, then the IOVA range must start
999 		 *   exactly on a boundary, therefore we can lay things out
1000 		 *   based purely on segment lengths without needing to know
1001 		 *   the actual addresses beforehand.
1002 		 * - The mask must be a power of 2, so pad_len == 0 if
1003 		 *   iova_len == 0, thus we cannot dereference prev the first
1004 		 *   time through here (i.e. before it has a meaningful value).
1005 		 */
1006 		if (pad_len && pad_len < s_length - 1) {
1007 			prev->length += pad_len;
1008 			iova_len += pad_len;
1009 		}
1010 
1011 		iova_len += s_length;
1012 		prev = s;
1013 	}
1014 
1015 	iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
1016 	if (!iova)
1017 		goto out_restore_sg;
1018 
1019 	/*
1020 	 * We'll leave any physical concatenation to the IOMMU driver's
1021 	 * implementation - it knows better than we do.
1022 	 */
1023 	if (iommu_map_sg_atomic(domain, iova, sg, nents, prot) < iova_len)
1024 		goto out_free_iova;
1025 
1026 	return __finalise_sg(dev, sg, nents, iova);
1027 
1028 out_free_iova:
1029 	iommu_dma_free_iova(cookie, iova, iova_len, NULL);
1030 out_restore_sg:
1031 	__invalidate_sg(sg, nents);
1032 	return 0;
1033 }
1034 
1035 static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
1036 		int nents, enum dma_data_direction dir, unsigned long attrs)
1037 {
1038 	dma_addr_t start, end;
1039 	struct scatterlist *tmp;
1040 	int i;
1041 
1042 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1043 		iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir);
1044 
1045 	if (dev_is_untrusted(dev)) {
1046 		iommu_dma_unmap_sg_swiotlb(dev, sg, nents, dir, attrs);
1047 		return;
1048 	}
1049 
1050 	/*
1051 	 * The scatterlist segments are mapped into a single
1052 	 * contiguous IOVA allocation, so this is incredibly easy.
1053 	 */
1054 	start = sg_dma_address(sg);
1055 	for_each_sg(sg_next(sg), tmp, nents - 1, i) {
1056 		if (sg_dma_len(tmp) == 0)
1057 			break;
1058 		sg = tmp;
1059 	}
1060 	end = sg_dma_address(sg) + sg_dma_len(sg);
1061 	__iommu_dma_unmap(dev, start, end - start);
1062 }
1063 
1064 static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
1065 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1066 {
1067 	return __iommu_dma_map(dev, phys, size,
1068 			dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO,
1069 			dma_get_mask(dev));
1070 }
1071 
1072 static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
1073 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1074 {
1075 	__iommu_dma_unmap(dev, handle, size);
1076 }
1077 
1078 static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr)
1079 {
1080 	size_t alloc_size = PAGE_ALIGN(size);
1081 	int count = alloc_size >> PAGE_SHIFT;
1082 	struct page *page = NULL, **pages = NULL;
1083 
1084 	/* Non-coherent atomic allocation? Easy */
1085 	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1086 	    dma_free_from_pool(dev, cpu_addr, alloc_size))
1087 		return;
1088 
1089 	if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1090 		/*
1091 		 * If it the address is remapped, then it's either non-coherent
1092 		 * or highmem CMA, or an iommu_dma_alloc_remap() construction.
1093 		 */
1094 		pages = dma_common_find_pages(cpu_addr);
1095 		if (!pages)
1096 			page = vmalloc_to_page(cpu_addr);
1097 		dma_common_free_remap(cpu_addr, alloc_size);
1098 	} else {
1099 		/* Lowmem means a coherent atomic or CMA allocation */
1100 		page = virt_to_page(cpu_addr);
1101 	}
1102 
1103 	if (pages)
1104 		__iommu_dma_free_pages(pages, count);
1105 	if (page)
1106 		dma_free_contiguous(dev, page, alloc_size);
1107 }
1108 
1109 static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr,
1110 		dma_addr_t handle, unsigned long attrs)
1111 {
1112 	__iommu_dma_unmap(dev, handle, size);
1113 	__iommu_dma_free(dev, size, cpu_addr);
1114 }
1115 
1116 static void *iommu_dma_alloc_pages(struct device *dev, size_t size,
1117 		struct page **pagep, gfp_t gfp, unsigned long attrs)
1118 {
1119 	bool coherent = dev_is_dma_coherent(dev);
1120 	size_t alloc_size = PAGE_ALIGN(size);
1121 	int node = dev_to_node(dev);
1122 	struct page *page = NULL;
1123 	void *cpu_addr;
1124 
1125 	page = dma_alloc_contiguous(dev, alloc_size, gfp);
1126 	if (!page)
1127 		page = alloc_pages_node(node, gfp, get_order(alloc_size));
1128 	if (!page)
1129 		return NULL;
1130 
1131 	if (IS_ENABLED(CONFIG_DMA_REMAP) && (!coherent || PageHighMem(page))) {
1132 		pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
1133 
1134 		cpu_addr = dma_common_contiguous_remap(page, alloc_size,
1135 				prot, __builtin_return_address(0));
1136 		if (!cpu_addr)
1137 			goto out_free_pages;
1138 
1139 		if (!coherent)
1140 			arch_dma_prep_coherent(page, size);
1141 	} else {
1142 		cpu_addr = page_address(page);
1143 	}
1144 
1145 	*pagep = page;
1146 	memset(cpu_addr, 0, alloc_size);
1147 	return cpu_addr;
1148 out_free_pages:
1149 	dma_free_contiguous(dev, page, alloc_size);
1150 	return NULL;
1151 }
1152 
1153 static void *iommu_dma_alloc(struct device *dev, size_t size,
1154 		dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1155 {
1156 	bool coherent = dev_is_dma_coherent(dev);
1157 	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
1158 	struct page *page = NULL;
1159 	void *cpu_addr;
1160 
1161 	gfp |= __GFP_ZERO;
1162 
1163 	if (IS_ENABLED(CONFIG_DMA_REMAP) && gfpflags_allow_blocking(gfp) &&
1164 	    !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) {
1165 		return iommu_dma_alloc_remap(dev, size, handle, gfp,
1166 				dma_pgprot(dev, PAGE_KERNEL, attrs), attrs);
1167 	}
1168 
1169 	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1170 	    !gfpflags_allow_blocking(gfp) && !coherent)
1171 		page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr,
1172 					       gfp, NULL);
1173 	else
1174 		cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs);
1175 	if (!cpu_addr)
1176 		return NULL;
1177 
1178 	*handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot,
1179 			dev->coherent_dma_mask);
1180 	if (*handle == DMA_MAPPING_ERROR) {
1181 		__iommu_dma_free(dev, size, cpu_addr);
1182 		return NULL;
1183 	}
1184 
1185 	return cpu_addr;
1186 }
1187 
1188 static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma,
1189 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
1190 		unsigned long attrs)
1191 {
1192 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1193 	unsigned long pfn, off = vma->vm_pgoff;
1194 	int ret;
1195 
1196 	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
1197 
1198 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
1199 		return ret;
1200 
1201 	if (off >= nr_pages || vma_pages(vma) > nr_pages - off)
1202 		return -ENXIO;
1203 
1204 	if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1205 		struct page **pages = dma_common_find_pages(cpu_addr);
1206 
1207 		if (pages)
1208 			return vm_map_pages(vma, pages, nr_pages);
1209 		pfn = vmalloc_to_pfn(cpu_addr);
1210 	} else {
1211 		pfn = page_to_pfn(virt_to_page(cpu_addr));
1212 	}
1213 
1214 	return remap_pfn_range(vma, vma->vm_start, pfn + off,
1215 			       vma->vm_end - vma->vm_start,
1216 			       vma->vm_page_prot);
1217 }
1218 
1219 static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
1220 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
1221 		unsigned long attrs)
1222 {
1223 	struct page *page;
1224 	int ret;
1225 
1226 	if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1227 		struct page **pages = dma_common_find_pages(cpu_addr);
1228 
1229 		if (pages) {
1230 			return sg_alloc_table_from_pages(sgt, pages,
1231 					PAGE_ALIGN(size) >> PAGE_SHIFT,
1232 					0, size, GFP_KERNEL);
1233 		}
1234 
1235 		page = vmalloc_to_page(cpu_addr);
1236 	} else {
1237 		page = virt_to_page(cpu_addr);
1238 	}
1239 
1240 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
1241 	if (!ret)
1242 		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
1243 	return ret;
1244 }
1245 
1246 static unsigned long iommu_dma_get_merge_boundary(struct device *dev)
1247 {
1248 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1249 
1250 	return (1UL << __ffs(domain->pgsize_bitmap)) - 1;
1251 }
1252 
1253 static const struct dma_map_ops iommu_dma_ops = {
1254 	.alloc			= iommu_dma_alloc,
1255 	.free			= iommu_dma_free,
1256 	.alloc_pages		= dma_common_alloc_pages,
1257 	.free_pages		= dma_common_free_pages,
1258 	.mmap			= iommu_dma_mmap,
1259 	.get_sgtable		= iommu_dma_get_sgtable,
1260 	.map_page		= iommu_dma_map_page,
1261 	.unmap_page		= iommu_dma_unmap_page,
1262 	.map_sg			= iommu_dma_map_sg,
1263 	.unmap_sg		= iommu_dma_unmap_sg,
1264 	.sync_single_for_cpu	= iommu_dma_sync_single_for_cpu,
1265 	.sync_single_for_device	= iommu_dma_sync_single_for_device,
1266 	.sync_sg_for_cpu	= iommu_dma_sync_sg_for_cpu,
1267 	.sync_sg_for_device	= iommu_dma_sync_sg_for_device,
1268 	.map_resource		= iommu_dma_map_resource,
1269 	.unmap_resource		= iommu_dma_unmap_resource,
1270 	.get_merge_boundary	= iommu_dma_get_merge_boundary,
1271 };
1272 
1273 /*
1274  * The IOMMU core code allocates the default DMA domain, which the underlying
1275  * IOMMU driver needs to support via the dma-iommu layer.
1276  */
1277 void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size)
1278 {
1279 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1280 
1281 	if (!domain)
1282 		goto out_err;
1283 
1284 	/*
1285 	 * The IOMMU core code allocates the default DMA domain, which the
1286 	 * underlying IOMMU driver needs to support via the dma-iommu layer.
1287 	 */
1288 	if (domain->type == IOMMU_DOMAIN_DMA) {
1289 		if (iommu_dma_init_domain(domain, dma_base, size, dev))
1290 			goto out_err;
1291 		dev->dma_ops = &iommu_dma_ops;
1292 	}
1293 
1294 	return;
1295 out_err:
1296 	 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
1297 		 dev_name(dev));
1298 }
1299 
1300 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
1301 		phys_addr_t msi_addr, struct iommu_domain *domain)
1302 {
1303 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
1304 	struct iommu_dma_msi_page *msi_page;
1305 	dma_addr_t iova;
1306 	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1307 	size_t size = cookie_msi_granule(cookie);
1308 
1309 	msi_addr &= ~(phys_addr_t)(size - 1);
1310 	list_for_each_entry(msi_page, &cookie->msi_page_list, list)
1311 		if (msi_page->phys == msi_addr)
1312 			return msi_page;
1313 
1314 	msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL);
1315 	if (!msi_page)
1316 		return NULL;
1317 
1318 	iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
1319 	if (!iova)
1320 		goto out_free_page;
1321 
1322 	if (iommu_map(domain, iova, msi_addr, size, prot))
1323 		goto out_free_iova;
1324 
1325 	INIT_LIST_HEAD(&msi_page->list);
1326 	msi_page->phys = msi_addr;
1327 	msi_page->iova = iova;
1328 	list_add(&msi_page->list, &cookie->msi_page_list);
1329 	return msi_page;
1330 
1331 out_free_iova:
1332 	iommu_dma_free_iova(cookie, iova, size, NULL);
1333 out_free_page:
1334 	kfree(msi_page);
1335 	return NULL;
1336 }
1337 
1338 int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)
1339 {
1340 	struct device *dev = msi_desc_to_dev(desc);
1341 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1342 	struct iommu_dma_msi_page *msi_page;
1343 	static DEFINE_MUTEX(msi_prepare_lock); /* see below */
1344 
1345 	if (!domain || !domain->iova_cookie) {
1346 		desc->iommu_cookie = NULL;
1347 		return 0;
1348 	}
1349 
1350 	/*
1351 	 * In fact the whole prepare operation should already be serialised by
1352 	 * irq_domain_mutex further up the callchain, but that's pretty subtle
1353 	 * on its own, so consider this locking as failsafe documentation...
1354 	 */
1355 	mutex_lock(&msi_prepare_lock);
1356 	msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
1357 	mutex_unlock(&msi_prepare_lock);
1358 
1359 	msi_desc_set_iommu_cookie(desc, msi_page);
1360 
1361 	if (!msi_page)
1362 		return -ENOMEM;
1363 	return 0;
1364 }
1365 
1366 void iommu_dma_compose_msi_msg(struct msi_desc *desc,
1367 			       struct msi_msg *msg)
1368 {
1369 	struct device *dev = msi_desc_to_dev(desc);
1370 	const struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1371 	const struct iommu_dma_msi_page *msi_page;
1372 
1373 	msi_page = msi_desc_get_iommu_cookie(desc);
1374 
1375 	if (!domain || !domain->iova_cookie || WARN_ON(!msi_page))
1376 		return;
1377 
1378 	msg->address_hi = upper_32_bits(msi_page->iova);
1379 	msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1;
1380 	msg->address_lo += lower_32_bits(msi_page->iova);
1381 }
1382 
1383 static int iommu_dma_init(void)
1384 {
1385 	if (is_kdump_kernel())
1386 		static_branch_enable(&iommu_deferred_attach_enabled);
1387 
1388 	return iova_cache_get();
1389 }
1390 arch_initcall(iommu_dma_init);
1391