xref: /openbmc/linux/drivers/iommu/dma-iommu.c (revision 4b4f3acc)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * A fairly generic DMA-API to IOMMU-API glue layer.
4  *
5  * Copyright (C) 2014-2015 ARM Ltd.
6  *
7  * based in part on arch/arm/mm/dma-mapping.c:
8  * Copyright (C) 2000-2004 Russell King
9  */
10 
11 #include <linux/acpi_iort.h>
12 #include <linux/device.h>
13 #include <linux/dma-iommu.h>
14 #include <linux/gfp.h>
15 #include <linux/huge_mm.h>
16 #include <linux/iommu.h>
17 #include <linux/iova.h>
18 #include <linux/irq.h>
19 #include <linux/mm.h>
20 #include <linux/pci.h>
21 #include <linux/scatterlist.h>
22 #include <linux/vmalloc.h>
23 
24 struct iommu_dma_msi_page {
25 	struct list_head	list;
26 	dma_addr_t		iova;
27 	phys_addr_t		phys;
28 };
29 
30 enum iommu_dma_cookie_type {
31 	IOMMU_DMA_IOVA_COOKIE,
32 	IOMMU_DMA_MSI_COOKIE,
33 };
34 
35 struct iommu_dma_cookie {
36 	enum iommu_dma_cookie_type	type;
37 	union {
38 		/* Full allocator for IOMMU_DMA_IOVA_COOKIE */
39 		struct iova_domain	iovad;
40 		/* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
41 		dma_addr_t		msi_iova;
42 	};
43 	struct list_head		msi_page_list;
44 	spinlock_t			msi_lock;
45 
46 	/* Domain for flush queue callback; NULL if flush queue not in use */
47 	struct iommu_domain		*fq_domain;
48 };
49 
50 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
51 {
52 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
53 		return cookie->iovad.granule;
54 	return PAGE_SIZE;
55 }
56 
57 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
58 {
59 	struct iommu_dma_cookie *cookie;
60 
61 	cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
62 	if (cookie) {
63 		spin_lock_init(&cookie->msi_lock);
64 		INIT_LIST_HEAD(&cookie->msi_page_list);
65 		cookie->type = type;
66 	}
67 	return cookie;
68 }
69 
70 int iommu_dma_init(void)
71 {
72 	return iova_cache_get();
73 }
74 
75 /**
76  * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
77  * @domain: IOMMU domain to prepare for DMA-API usage
78  *
79  * IOMMU drivers should normally call this from their domain_alloc
80  * callback when domain->type == IOMMU_DOMAIN_DMA.
81  */
82 int iommu_get_dma_cookie(struct iommu_domain *domain)
83 {
84 	if (domain->iova_cookie)
85 		return -EEXIST;
86 
87 	domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
88 	if (!domain->iova_cookie)
89 		return -ENOMEM;
90 
91 	return 0;
92 }
93 EXPORT_SYMBOL(iommu_get_dma_cookie);
94 
95 /**
96  * iommu_get_msi_cookie - Acquire just MSI remapping resources
97  * @domain: IOMMU domain to prepare
98  * @base: Start address of IOVA region for MSI mappings
99  *
100  * Users who manage their own IOVA allocation and do not want DMA API support,
101  * but would still like to take advantage of automatic MSI remapping, can use
102  * this to initialise their own domain appropriately. Users should reserve a
103  * contiguous IOVA region, starting at @base, large enough to accommodate the
104  * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
105  * used by the devices attached to @domain.
106  */
107 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
108 {
109 	struct iommu_dma_cookie *cookie;
110 
111 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
112 		return -EINVAL;
113 
114 	if (domain->iova_cookie)
115 		return -EEXIST;
116 
117 	cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
118 	if (!cookie)
119 		return -ENOMEM;
120 
121 	cookie->msi_iova = base;
122 	domain->iova_cookie = cookie;
123 	return 0;
124 }
125 EXPORT_SYMBOL(iommu_get_msi_cookie);
126 
127 /**
128  * iommu_put_dma_cookie - Release a domain's DMA mapping resources
129  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
130  *          iommu_get_msi_cookie()
131  *
132  * IOMMU drivers should normally call this from their domain_free callback.
133  */
134 void iommu_put_dma_cookie(struct iommu_domain *domain)
135 {
136 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
137 	struct iommu_dma_msi_page *msi, *tmp;
138 
139 	if (!cookie)
140 		return;
141 
142 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule)
143 		put_iova_domain(&cookie->iovad);
144 
145 	list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
146 		list_del(&msi->list);
147 		kfree(msi);
148 	}
149 	kfree(cookie);
150 	domain->iova_cookie = NULL;
151 }
152 EXPORT_SYMBOL(iommu_put_dma_cookie);
153 
154 /**
155  * iommu_dma_get_resv_regions - Reserved region driver helper
156  * @dev: Device from iommu_get_resv_regions()
157  * @list: Reserved region list from iommu_get_resv_regions()
158  *
159  * IOMMU drivers can use this to implement their .get_resv_regions callback
160  * for general non-IOMMU-specific reservations. Currently, this covers GICv3
161  * ITS region reservation on ACPI based ARM platforms that may require HW MSI
162  * reservation.
163  */
164 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
165 {
166 
167 	if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode))
168 		iort_iommu_msi_get_resv_regions(dev, list);
169 
170 }
171 EXPORT_SYMBOL(iommu_dma_get_resv_regions);
172 
173 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
174 		phys_addr_t start, phys_addr_t end)
175 {
176 	struct iova_domain *iovad = &cookie->iovad;
177 	struct iommu_dma_msi_page *msi_page;
178 	int i, num_pages;
179 
180 	start -= iova_offset(iovad, start);
181 	num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
182 
183 	msi_page = kcalloc(num_pages, sizeof(*msi_page), GFP_KERNEL);
184 	if (!msi_page)
185 		return -ENOMEM;
186 
187 	for (i = 0; i < num_pages; i++) {
188 		msi_page[i].phys = start;
189 		msi_page[i].iova = start;
190 		INIT_LIST_HEAD(&msi_page[i].list);
191 		list_add(&msi_page[i].list, &cookie->msi_page_list);
192 		start += iovad->granule;
193 	}
194 
195 	return 0;
196 }
197 
198 static int iova_reserve_pci_windows(struct pci_dev *dev,
199 		struct iova_domain *iovad)
200 {
201 	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
202 	struct resource_entry *window;
203 	unsigned long lo, hi;
204 	phys_addr_t start = 0, end;
205 
206 	resource_list_for_each_entry(window, &bridge->windows) {
207 		if (resource_type(window->res) != IORESOURCE_MEM)
208 			continue;
209 
210 		lo = iova_pfn(iovad, window->res->start - window->offset);
211 		hi = iova_pfn(iovad, window->res->end - window->offset);
212 		reserve_iova(iovad, lo, hi);
213 	}
214 
215 	/* Get reserved DMA windows from host bridge */
216 	resource_list_for_each_entry(window, &bridge->dma_ranges) {
217 		end = window->res->start - window->offset;
218 resv_iova:
219 		if (end > start) {
220 			lo = iova_pfn(iovad, start);
221 			hi = iova_pfn(iovad, end);
222 			reserve_iova(iovad, lo, hi);
223 		} else {
224 			/* dma_ranges list should be sorted */
225 			dev_err(&dev->dev, "Failed to reserve IOVA\n");
226 			return -EINVAL;
227 		}
228 
229 		start = window->res->end - window->offset + 1;
230 		/* If window is last entry */
231 		if (window->node.next == &bridge->dma_ranges &&
232 		    end != ~(dma_addr_t)0) {
233 			end = ~(dma_addr_t)0;
234 			goto resv_iova;
235 		}
236 	}
237 
238 	return 0;
239 }
240 
241 static int iova_reserve_iommu_regions(struct device *dev,
242 		struct iommu_domain *domain)
243 {
244 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
245 	struct iova_domain *iovad = &cookie->iovad;
246 	struct iommu_resv_region *region;
247 	LIST_HEAD(resv_regions);
248 	int ret = 0;
249 
250 	if (dev_is_pci(dev)) {
251 		ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad);
252 		if (ret)
253 			return ret;
254 	}
255 
256 	iommu_get_resv_regions(dev, &resv_regions);
257 	list_for_each_entry(region, &resv_regions, list) {
258 		unsigned long lo, hi;
259 
260 		/* We ARE the software that manages these! */
261 		if (region->type == IOMMU_RESV_SW_MSI)
262 			continue;
263 
264 		lo = iova_pfn(iovad, region->start);
265 		hi = iova_pfn(iovad, region->start + region->length - 1);
266 		reserve_iova(iovad, lo, hi);
267 
268 		if (region->type == IOMMU_RESV_MSI)
269 			ret = cookie_init_hw_msi_region(cookie, region->start,
270 					region->start + region->length);
271 		if (ret)
272 			break;
273 	}
274 	iommu_put_resv_regions(dev, &resv_regions);
275 
276 	return ret;
277 }
278 
279 static void iommu_dma_flush_iotlb_all(struct iova_domain *iovad)
280 {
281 	struct iommu_dma_cookie *cookie;
282 	struct iommu_domain *domain;
283 
284 	cookie = container_of(iovad, struct iommu_dma_cookie, iovad);
285 	domain = cookie->fq_domain;
286 	/*
287 	 * The IOMMU driver supporting DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE
288 	 * implies that ops->flush_iotlb_all must be non-NULL.
289 	 */
290 	domain->ops->flush_iotlb_all(domain);
291 }
292 
293 /**
294  * iommu_dma_init_domain - Initialise a DMA mapping domain
295  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
296  * @base: IOVA at which the mappable address space starts
297  * @size: Size of IOVA space
298  * @dev: Device the domain is being initialised for
299  *
300  * @base and @size should be exact multiples of IOMMU page granularity to
301  * avoid rounding surprises. If necessary, we reserve the page at address 0
302  * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
303  * any change which could make prior IOVAs invalid will fail.
304  */
305 int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
306 		u64 size, struct device *dev)
307 {
308 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
309 	struct iova_domain *iovad = &cookie->iovad;
310 	unsigned long order, base_pfn;
311 	int attr;
312 
313 	if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
314 		return -EINVAL;
315 
316 	/* Use the smallest supported page size for IOVA granularity */
317 	order = __ffs(domain->pgsize_bitmap);
318 	base_pfn = max_t(unsigned long, 1, base >> order);
319 
320 	/* Check the domain allows at least some access to the device... */
321 	if (domain->geometry.force_aperture) {
322 		if (base > domain->geometry.aperture_end ||
323 		    base + size <= domain->geometry.aperture_start) {
324 			pr_warn("specified DMA range outside IOMMU capability\n");
325 			return -EFAULT;
326 		}
327 		/* ...then finally give it a kicking to make sure it fits */
328 		base_pfn = max_t(unsigned long, base_pfn,
329 				domain->geometry.aperture_start >> order);
330 	}
331 
332 	/* start_pfn is always nonzero for an already-initialised domain */
333 	if (iovad->start_pfn) {
334 		if (1UL << order != iovad->granule ||
335 		    base_pfn != iovad->start_pfn) {
336 			pr_warn("Incompatible range for DMA domain\n");
337 			return -EFAULT;
338 		}
339 
340 		return 0;
341 	}
342 
343 	init_iova_domain(iovad, 1UL << order, base_pfn);
344 
345 	if (!cookie->fq_domain && !iommu_domain_get_attr(domain,
346 			DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE, &attr) && attr) {
347 		cookie->fq_domain = domain;
348 		init_iova_flush_queue(iovad, iommu_dma_flush_iotlb_all, NULL);
349 	}
350 
351 	if (!dev)
352 		return 0;
353 
354 	return iova_reserve_iommu_regions(dev, domain);
355 }
356 EXPORT_SYMBOL(iommu_dma_init_domain);
357 
358 /**
359  * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
360  *                    page flags.
361  * @dir: Direction of DMA transfer
362  * @coherent: Is the DMA master cache-coherent?
363  * @attrs: DMA attributes for the mapping
364  *
365  * Return: corresponding IOMMU API page protection flags
366  */
367 int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
368 		     unsigned long attrs)
369 {
370 	int prot = coherent ? IOMMU_CACHE : 0;
371 
372 	if (attrs & DMA_ATTR_PRIVILEGED)
373 		prot |= IOMMU_PRIV;
374 
375 	switch (dir) {
376 	case DMA_BIDIRECTIONAL:
377 		return prot | IOMMU_READ | IOMMU_WRITE;
378 	case DMA_TO_DEVICE:
379 		return prot | IOMMU_READ;
380 	case DMA_FROM_DEVICE:
381 		return prot | IOMMU_WRITE;
382 	default:
383 		return 0;
384 	}
385 }
386 
387 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
388 		size_t size, dma_addr_t dma_limit, struct device *dev)
389 {
390 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
391 	struct iova_domain *iovad = &cookie->iovad;
392 	unsigned long shift, iova_len, iova = 0;
393 
394 	if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
395 		cookie->msi_iova += size;
396 		return cookie->msi_iova - size;
397 	}
398 
399 	shift = iova_shift(iovad);
400 	iova_len = size >> shift;
401 	/*
402 	 * Freeing non-power-of-two-sized allocations back into the IOVA caches
403 	 * will come back to bite us badly, so we have to waste a bit of space
404 	 * rounding up anything cacheable to make sure that can't happen. The
405 	 * order of the unadjusted size will still match upon freeing.
406 	 */
407 	if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1)))
408 		iova_len = roundup_pow_of_two(iova_len);
409 
410 	if (dev->bus_dma_mask)
411 		dma_limit &= dev->bus_dma_mask;
412 
413 	if (domain->geometry.force_aperture)
414 		dma_limit = min(dma_limit, domain->geometry.aperture_end);
415 
416 	/* Try to get PCI devices a SAC address */
417 	if (dma_limit > DMA_BIT_MASK(32) && dev_is_pci(dev))
418 		iova = alloc_iova_fast(iovad, iova_len,
419 				       DMA_BIT_MASK(32) >> shift, false);
420 
421 	if (!iova)
422 		iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift,
423 				       true);
424 
425 	return (dma_addr_t)iova << shift;
426 }
427 
428 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
429 		dma_addr_t iova, size_t size)
430 {
431 	struct iova_domain *iovad = &cookie->iovad;
432 
433 	/* The MSI case is only ever cleaning up its most recent allocation */
434 	if (cookie->type == IOMMU_DMA_MSI_COOKIE)
435 		cookie->msi_iova -= size;
436 	else if (cookie->fq_domain)	/* non-strict mode */
437 		queue_iova(iovad, iova_pfn(iovad, iova),
438 				size >> iova_shift(iovad), 0);
439 	else
440 		free_iova_fast(iovad, iova_pfn(iovad, iova),
441 				size >> iova_shift(iovad));
442 }
443 
444 static void __iommu_dma_unmap(struct iommu_domain *domain, dma_addr_t dma_addr,
445 		size_t size)
446 {
447 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
448 	struct iova_domain *iovad = &cookie->iovad;
449 	size_t iova_off = iova_offset(iovad, dma_addr);
450 
451 	dma_addr -= iova_off;
452 	size = iova_align(iovad, size + iova_off);
453 
454 	WARN_ON(iommu_unmap_fast(domain, dma_addr, size) != size);
455 	if (!cookie->fq_domain)
456 		iommu_tlb_sync(domain);
457 	iommu_dma_free_iova(cookie, dma_addr, size);
458 }
459 
460 static void __iommu_dma_free_pages(struct page **pages, int count)
461 {
462 	while (count--)
463 		__free_page(pages[count]);
464 	kvfree(pages);
465 }
466 
467 static struct page **__iommu_dma_alloc_pages(struct device *dev,
468 		unsigned int count, unsigned long order_mask, gfp_t gfp)
469 {
470 	struct page **pages;
471 	unsigned int i = 0, nid = dev_to_node(dev);
472 
473 	order_mask &= (2U << MAX_ORDER) - 1;
474 	if (!order_mask)
475 		return NULL;
476 
477 	pages = kvzalloc(count * sizeof(*pages), GFP_KERNEL);
478 	if (!pages)
479 		return NULL;
480 
481 	/* IOMMU can map any pages, so himem can also be used here */
482 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
483 
484 	while (count) {
485 		struct page *page = NULL;
486 		unsigned int order_size;
487 
488 		/*
489 		 * Higher-order allocations are a convenience rather
490 		 * than a necessity, hence using __GFP_NORETRY until
491 		 * falling back to minimum-order allocations.
492 		 */
493 		for (order_mask &= (2U << __fls(count)) - 1;
494 		     order_mask; order_mask &= ~order_size) {
495 			unsigned int order = __fls(order_mask);
496 			gfp_t alloc_flags = gfp;
497 
498 			order_size = 1U << order;
499 			if (order_mask > order_size)
500 				alloc_flags |= __GFP_NORETRY;
501 			page = alloc_pages_node(nid, alloc_flags, order);
502 			if (!page)
503 				continue;
504 			if (!order)
505 				break;
506 			if (!PageCompound(page)) {
507 				split_page(page, order);
508 				break;
509 			} else if (!split_huge_page(page)) {
510 				break;
511 			}
512 			__free_pages(page, order);
513 		}
514 		if (!page) {
515 			__iommu_dma_free_pages(pages, i);
516 			return NULL;
517 		}
518 		count -= order_size;
519 		while (order_size--)
520 			pages[i++] = page++;
521 	}
522 	return pages;
523 }
524 
525 /**
526  * iommu_dma_free - Free a buffer allocated by iommu_dma_alloc()
527  * @dev: Device which owns this buffer
528  * @pages: Array of buffer pages as returned by iommu_dma_alloc()
529  * @size: Size of buffer in bytes
530  * @handle: DMA address of buffer
531  *
532  * Frees both the pages associated with the buffer, and the array
533  * describing them
534  */
535 void iommu_dma_free(struct device *dev, struct page **pages, size_t size,
536 		dma_addr_t *handle)
537 {
538 	__iommu_dma_unmap(iommu_get_dma_domain(dev), *handle, size);
539 	__iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
540 	*handle = DMA_MAPPING_ERROR;
541 }
542 
543 /**
544  * iommu_dma_alloc - Allocate and map a buffer contiguous in IOVA space
545  * @dev: Device to allocate memory for. Must be a real device
546  *	 attached to an iommu_dma_domain
547  * @size: Size of buffer in bytes
548  * @gfp: Allocation flags
549  * @attrs: DMA attributes for this allocation
550  * @prot: IOMMU mapping flags
551  * @handle: Out argument for allocated DMA handle
552  * @flush_page: Arch callback which must ensure PAGE_SIZE bytes from the
553  *		given VA/PA are visible to the given non-coherent device.
554  *
555  * If @size is less than PAGE_SIZE, then a full CPU page will be allocated,
556  * but an IOMMU which supports smaller pages might not map the whole thing.
557  *
558  * Return: Array of struct page pointers describing the buffer,
559  *	   or NULL on failure.
560  */
561 struct page **iommu_dma_alloc(struct device *dev, size_t size, gfp_t gfp,
562 		unsigned long attrs, int prot, dma_addr_t *handle,
563 		void (*flush_page)(struct device *, const void *, phys_addr_t))
564 {
565 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
566 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
567 	struct iova_domain *iovad = &cookie->iovad;
568 	struct page **pages;
569 	struct sg_table sgt;
570 	dma_addr_t iova;
571 	unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
572 
573 	*handle = DMA_MAPPING_ERROR;
574 
575 	min_size = alloc_sizes & -alloc_sizes;
576 	if (min_size < PAGE_SIZE) {
577 		min_size = PAGE_SIZE;
578 		alloc_sizes |= PAGE_SIZE;
579 	} else {
580 		size = ALIGN(size, min_size);
581 	}
582 	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
583 		alloc_sizes = min_size;
584 
585 	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
586 	pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT,
587 					gfp);
588 	if (!pages)
589 		return NULL;
590 
591 	size = iova_align(iovad, size);
592 	iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
593 	if (!iova)
594 		goto out_free_pages;
595 
596 	if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL))
597 		goto out_free_iova;
598 
599 	if (!(prot & IOMMU_CACHE)) {
600 		struct sg_mapping_iter miter;
601 		/*
602 		 * The CPU-centric flushing implied by SG_MITER_TO_SG isn't
603 		 * sufficient here, so skip it by using the "wrong" direction.
604 		 */
605 		sg_miter_start(&miter, sgt.sgl, sgt.orig_nents, SG_MITER_FROM_SG);
606 		while (sg_miter_next(&miter))
607 			flush_page(dev, miter.addr, page_to_phys(miter.page));
608 		sg_miter_stop(&miter);
609 	}
610 
611 	if (iommu_map_sg(domain, iova, sgt.sgl, sgt.orig_nents, prot)
612 			< size)
613 		goto out_free_sg;
614 
615 	*handle = iova;
616 	sg_free_table(&sgt);
617 	return pages;
618 
619 out_free_sg:
620 	sg_free_table(&sgt);
621 out_free_iova:
622 	iommu_dma_free_iova(cookie, iova, size);
623 out_free_pages:
624 	__iommu_dma_free_pages(pages, count);
625 	return NULL;
626 }
627 
628 /**
629  * iommu_dma_mmap - Map a buffer into provided user VMA
630  * @pages: Array representing buffer from iommu_dma_alloc()
631  * @size: Size of buffer in bytes
632  * @vma: VMA describing requested userspace mapping
633  *
634  * Maps the pages of the buffer in @pages into @vma. The caller is responsible
635  * for verifying the correct size and protection of @vma beforehand.
636  */
637 
638 int iommu_dma_mmap(struct page **pages, size_t size, struct vm_area_struct *vma)
639 {
640 	return vm_map_pages(vma, pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
641 }
642 
643 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
644 		size_t size, int prot, struct iommu_domain *domain)
645 {
646 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
647 	size_t iova_off = 0;
648 	dma_addr_t iova;
649 
650 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE) {
651 		iova_off = iova_offset(&cookie->iovad, phys);
652 		size = iova_align(&cookie->iovad, size + iova_off);
653 	}
654 
655 	iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
656 	if (!iova)
657 		return DMA_MAPPING_ERROR;
658 
659 	if (iommu_map(domain, iova, phys - iova_off, size, prot)) {
660 		iommu_dma_free_iova(cookie, iova, size);
661 		return DMA_MAPPING_ERROR;
662 	}
663 	return iova + iova_off;
664 }
665 
666 dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
667 		unsigned long offset, size_t size, int prot)
668 {
669 	return __iommu_dma_map(dev, page_to_phys(page) + offset, size, prot,
670 			iommu_get_dma_domain(dev));
671 }
672 
673 void iommu_dma_unmap_page(struct device *dev, dma_addr_t handle, size_t size,
674 		enum dma_data_direction dir, unsigned long attrs)
675 {
676 	__iommu_dma_unmap(iommu_get_dma_domain(dev), handle, size);
677 }
678 
679 /*
680  * Prepare a successfully-mapped scatterlist to give back to the caller.
681  *
682  * At this point the segments are already laid out by iommu_dma_map_sg() to
683  * avoid individually crossing any boundaries, so we merely need to check a
684  * segment's start address to avoid concatenating across one.
685  */
686 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
687 		dma_addr_t dma_addr)
688 {
689 	struct scatterlist *s, *cur = sg;
690 	unsigned long seg_mask = dma_get_seg_boundary(dev);
691 	unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
692 	int i, count = 0;
693 
694 	for_each_sg(sg, s, nents, i) {
695 		/* Restore this segment's original unaligned fields first */
696 		unsigned int s_iova_off = sg_dma_address(s);
697 		unsigned int s_length = sg_dma_len(s);
698 		unsigned int s_iova_len = s->length;
699 
700 		s->offset += s_iova_off;
701 		s->length = s_length;
702 		sg_dma_address(s) = DMA_MAPPING_ERROR;
703 		sg_dma_len(s) = 0;
704 
705 		/*
706 		 * Now fill in the real DMA data. If...
707 		 * - there is a valid output segment to append to
708 		 * - and this segment starts on an IOVA page boundary
709 		 * - but doesn't fall at a segment boundary
710 		 * - and wouldn't make the resulting output segment too long
711 		 */
712 		if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
713 		    (cur_len + s_length <= max_len)) {
714 			/* ...then concatenate it with the previous one */
715 			cur_len += s_length;
716 		} else {
717 			/* Otherwise start the next output segment */
718 			if (i > 0)
719 				cur = sg_next(cur);
720 			cur_len = s_length;
721 			count++;
722 
723 			sg_dma_address(cur) = dma_addr + s_iova_off;
724 		}
725 
726 		sg_dma_len(cur) = cur_len;
727 		dma_addr += s_iova_len;
728 
729 		if (s_length + s_iova_off < s_iova_len)
730 			cur_len = 0;
731 	}
732 	return count;
733 }
734 
735 /*
736  * If mapping failed, then just restore the original list,
737  * but making sure the DMA fields are invalidated.
738  */
739 static void __invalidate_sg(struct scatterlist *sg, int nents)
740 {
741 	struct scatterlist *s;
742 	int i;
743 
744 	for_each_sg(sg, s, nents, i) {
745 		if (sg_dma_address(s) != DMA_MAPPING_ERROR)
746 			s->offset += sg_dma_address(s);
747 		if (sg_dma_len(s))
748 			s->length = sg_dma_len(s);
749 		sg_dma_address(s) = DMA_MAPPING_ERROR;
750 		sg_dma_len(s) = 0;
751 	}
752 }
753 
754 /*
755  * The DMA API client is passing in a scatterlist which could describe
756  * any old buffer layout, but the IOMMU API requires everything to be
757  * aligned to IOMMU pages. Hence the need for this complicated bit of
758  * impedance-matching, to be able to hand off a suitably-aligned list,
759  * but still preserve the original offsets and sizes for the caller.
760  */
761 int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
762 		int nents, int prot)
763 {
764 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
765 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
766 	struct iova_domain *iovad = &cookie->iovad;
767 	struct scatterlist *s, *prev = NULL;
768 	dma_addr_t iova;
769 	size_t iova_len = 0;
770 	unsigned long mask = dma_get_seg_boundary(dev);
771 	int i;
772 
773 	/*
774 	 * Work out how much IOVA space we need, and align the segments to
775 	 * IOVA granules for the IOMMU driver to handle. With some clever
776 	 * trickery we can modify the list in-place, but reversibly, by
777 	 * stashing the unaligned parts in the as-yet-unused DMA fields.
778 	 */
779 	for_each_sg(sg, s, nents, i) {
780 		size_t s_iova_off = iova_offset(iovad, s->offset);
781 		size_t s_length = s->length;
782 		size_t pad_len = (mask - iova_len + 1) & mask;
783 
784 		sg_dma_address(s) = s_iova_off;
785 		sg_dma_len(s) = s_length;
786 		s->offset -= s_iova_off;
787 		s_length = iova_align(iovad, s_length + s_iova_off);
788 		s->length = s_length;
789 
790 		/*
791 		 * Due to the alignment of our single IOVA allocation, we can
792 		 * depend on these assumptions about the segment boundary mask:
793 		 * - If mask size >= IOVA size, then the IOVA range cannot
794 		 *   possibly fall across a boundary, so we don't care.
795 		 * - If mask size < IOVA size, then the IOVA range must start
796 		 *   exactly on a boundary, therefore we can lay things out
797 		 *   based purely on segment lengths without needing to know
798 		 *   the actual addresses beforehand.
799 		 * - The mask must be a power of 2, so pad_len == 0 if
800 		 *   iova_len == 0, thus we cannot dereference prev the first
801 		 *   time through here (i.e. before it has a meaningful value).
802 		 */
803 		if (pad_len && pad_len < s_length - 1) {
804 			prev->length += pad_len;
805 			iova_len += pad_len;
806 		}
807 
808 		iova_len += s_length;
809 		prev = s;
810 	}
811 
812 	iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
813 	if (!iova)
814 		goto out_restore_sg;
815 
816 	/*
817 	 * We'll leave any physical concatenation to the IOMMU driver's
818 	 * implementation - it knows better than we do.
819 	 */
820 	if (iommu_map_sg(domain, iova, sg, nents, prot) < iova_len)
821 		goto out_free_iova;
822 
823 	return __finalise_sg(dev, sg, nents, iova);
824 
825 out_free_iova:
826 	iommu_dma_free_iova(cookie, iova, iova_len);
827 out_restore_sg:
828 	__invalidate_sg(sg, nents);
829 	return 0;
830 }
831 
832 void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
833 		enum dma_data_direction dir, unsigned long attrs)
834 {
835 	dma_addr_t start, end;
836 	struct scatterlist *tmp;
837 	int i;
838 	/*
839 	 * The scatterlist segments are mapped into a single
840 	 * contiguous IOVA allocation, so this is incredibly easy.
841 	 */
842 	start = sg_dma_address(sg);
843 	for_each_sg(sg_next(sg), tmp, nents - 1, i) {
844 		if (sg_dma_len(tmp) == 0)
845 			break;
846 		sg = tmp;
847 	}
848 	end = sg_dma_address(sg) + sg_dma_len(sg);
849 	__iommu_dma_unmap(iommu_get_dma_domain(dev), start, end - start);
850 }
851 
852 dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
853 		size_t size, enum dma_data_direction dir, unsigned long attrs)
854 {
855 	return __iommu_dma_map(dev, phys, size,
856 			dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO,
857 			iommu_get_dma_domain(dev));
858 }
859 
860 void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
861 		size_t size, enum dma_data_direction dir, unsigned long attrs)
862 {
863 	__iommu_dma_unmap(iommu_get_dma_domain(dev), handle, size);
864 }
865 
866 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
867 		phys_addr_t msi_addr, struct iommu_domain *domain)
868 {
869 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
870 	struct iommu_dma_msi_page *msi_page;
871 	dma_addr_t iova;
872 	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
873 	size_t size = cookie_msi_granule(cookie);
874 
875 	msi_addr &= ~(phys_addr_t)(size - 1);
876 	list_for_each_entry(msi_page, &cookie->msi_page_list, list)
877 		if (msi_page->phys == msi_addr)
878 			return msi_page;
879 
880 	msi_page = kzalloc(sizeof(*msi_page), GFP_ATOMIC);
881 	if (!msi_page)
882 		return NULL;
883 
884 	iova = __iommu_dma_map(dev, msi_addr, size, prot, domain);
885 	if (iova == DMA_MAPPING_ERROR)
886 		goto out_free_page;
887 
888 	INIT_LIST_HEAD(&msi_page->list);
889 	msi_page->phys = msi_addr;
890 	msi_page->iova = iova;
891 	list_add(&msi_page->list, &cookie->msi_page_list);
892 	return msi_page;
893 
894 out_free_page:
895 	kfree(msi_page);
896 	return NULL;
897 }
898 
899 int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)
900 {
901 	struct device *dev = msi_desc_to_dev(desc);
902 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
903 	struct iommu_dma_cookie *cookie;
904 	struct iommu_dma_msi_page *msi_page;
905 	unsigned long flags;
906 
907 	if (!domain || !domain->iova_cookie) {
908 		desc->iommu_cookie = NULL;
909 		return 0;
910 	}
911 
912 	cookie = domain->iova_cookie;
913 
914 	/*
915 	 * We disable IRQs to rule out a possible inversion against
916 	 * irq_desc_lock if, say, someone tries to retarget the affinity
917 	 * of an MSI from within an IPI handler.
918 	 */
919 	spin_lock_irqsave(&cookie->msi_lock, flags);
920 	msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
921 	spin_unlock_irqrestore(&cookie->msi_lock, flags);
922 
923 	msi_desc_set_iommu_cookie(desc, msi_page);
924 
925 	if (!msi_page)
926 		return -ENOMEM;
927 	return 0;
928 }
929 
930 void iommu_dma_compose_msi_msg(struct msi_desc *desc,
931 			       struct msi_msg *msg)
932 {
933 	struct device *dev = msi_desc_to_dev(desc);
934 	const struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
935 	const struct iommu_dma_msi_page *msi_page;
936 
937 	msi_page = msi_desc_get_iommu_cookie(desc);
938 
939 	if (!domain || !domain->iova_cookie || WARN_ON(!msi_page))
940 		return;
941 
942 	msg->address_hi = upper_32_bits(msi_page->iova);
943 	msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1;
944 	msg->address_lo += lower_32_bits(msi_page->iova);
945 }
946