1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * A fairly generic DMA-API to IOMMU-API glue layer. 4 * 5 * Copyright (C) 2014-2015 ARM Ltd. 6 * 7 * based in part on arch/arm/mm/dma-mapping.c: 8 * Copyright (C) 2000-2004 Russell King 9 */ 10 11 #include <linux/acpi_iort.h> 12 #include <linux/device.h> 13 #include <linux/dma-iommu.h> 14 #include <linux/gfp.h> 15 #include <linux/huge_mm.h> 16 #include <linux/iommu.h> 17 #include <linux/iova.h> 18 #include <linux/irq.h> 19 #include <linux/mm.h> 20 #include <linux/pci.h> 21 #include <linux/scatterlist.h> 22 #include <linux/vmalloc.h> 23 24 struct iommu_dma_msi_page { 25 struct list_head list; 26 dma_addr_t iova; 27 phys_addr_t phys; 28 }; 29 30 enum iommu_dma_cookie_type { 31 IOMMU_DMA_IOVA_COOKIE, 32 IOMMU_DMA_MSI_COOKIE, 33 }; 34 35 struct iommu_dma_cookie { 36 enum iommu_dma_cookie_type type; 37 union { 38 /* Full allocator for IOMMU_DMA_IOVA_COOKIE */ 39 struct iova_domain iovad; 40 /* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */ 41 dma_addr_t msi_iova; 42 }; 43 struct list_head msi_page_list; 44 spinlock_t msi_lock; 45 46 /* Domain for flush queue callback; NULL if flush queue not in use */ 47 struct iommu_domain *fq_domain; 48 }; 49 50 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie) 51 { 52 if (cookie->type == IOMMU_DMA_IOVA_COOKIE) 53 return cookie->iovad.granule; 54 return PAGE_SIZE; 55 } 56 57 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type) 58 { 59 struct iommu_dma_cookie *cookie; 60 61 cookie = kzalloc(sizeof(*cookie), GFP_KERNEL); 62 if (cookie) { 63 spin_lock_init(&cookie->msi_lock); 64 INIT_LIST_HEAD(&cookie->msi_page_list); 65 cookie->type = type; 66 } 67 return cookie; 68 } 69 70 int iommu_dma_init(void) 71 { 72 return iova_cache_get(); 73 } 74 75 /** 76 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain 77 * @domain: IOMMU domain to prepare for DMA-API usage 78 * 79 * IOMMU drivers should normally call this from their domain_alloc 80 * callback when domain->type == IOMMU_DOMAIN_DMA. 81 */ 82 int iommu_get_dma_cookie(struct iommu_domain *domain) 83 { 84 if (domain->iova_cookie) 85 return -EEXIST; 86 87 domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE); 88 if (!domain->iova_cookie) 89 return -ENOMEM; 90 91 return 0; 92 } 93 EXPORT_SYMBOL(iommu_get_dma_cookie); 94 95 /** 96 * iommu_get_msi_cookie - Acquire just MSI remapping resources 97 * @domain: IOMMU domain to prepare 98 * @base: Start address of IOVA region for MSI mappings 99 * 100 * Users who manage their own IOVA allocation and do not want DMA API support, 101 * but would still like to take advantage of automatic MSI remapping, can use 102 * this to initialise their own domain appropriately. Users should reserve a 103 * contiguous IOVA region, starting at @base, large enough to accommodate the 104 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address 105 * used by the devices attached to @domain. 106 */ 107 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base) 108 { 109 struct iommu_dma_cookie *cookie; 110 111 if (domain->type != IOMMU_DOMAIN_UNMANAGED) 112 return -EINVAL; 113 114 if (domain->iova_cookie) 115 return -EEXIST; 116 117 cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE); 118 if (!cookie) 119 return -ENOMEM; 120 121 cookie->msi_iova = base; 122 domain->iova_cookie = cookie; 123 return 0; 124 } 125 EXPORT_SYMBOL(iommu_get_msi_cookie); 126 127 /** 128 * iommu_put_dma_cookie - Release a domain's DMA mapping resources 129 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or 130 * iommu_get_msi_cookie() 131 * 132 * IOMMU drivers should normally call this from their domain_free callback. 133 */ 134 void iommu_put_dma_cookie(struct iommu_domain *domain) 135 { 136 struct iommu_dma_cookie *cookie = domain->iova_cookie; 137 struct iommu_dma_msi_page *msi, *tmp; 138 139 if (!cookie) 140 return; 141 142 if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule) 143 put_iova_domain(&cookie->iovad); 144 145 list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) { 146 list_del(&msi->list); 147 kfree(msi); 148 } 149 kfree(cookie); 150 domain->iova_cookie = NULL; 151 } 152 EXPORT_SYMBOL(iommu_put_dma_cookie); 153 154 /** 155 * iommu_dma_get_resv_regions - Reserved region driver helper 156 * @dev: Device from iommu_get_resv_regions() 157 * @list: Reserved region list from iommu_get_resv_regions() 158 * 159 * IOMMU drivers can use this to implement their .get_resv_regions callback 160 * for general non-IOMMU-specific reservations. Currently, this covers GICv3 161 * ITS region reservation on ACPI based ARM platforms that may require HW MSI 162 * reservation. 163 */ 164 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list) 165 { 166 167 if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode)) 168 iort_iommu_msi_get_resv_regions(dev, list); 169 170 } 171 EXPORT_SYMBOL(iommu_dma_get_resv_regions); 172 173 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie, 174 phys_addr_t start, phys_addr_t end) 175 { 176 struct iova_domain *iovad = &cookie->iovad; 177 struct iommu_dma_msi_page *msi_page; 178 int i, num_pages; 179 180 start -= iova_offset(iovad, start); 181 num_pages = iova_align(iovad, end - start) >> iova_shift(iovad); 182 183 msi_page = kcalloc(num_pages, sizeof(*msi_page), GFP_KERNEL); 184 if (!msi_page) 185 return -ENOMEM; 186 187 for (i = 0; i < num_pages; i++) { 188 msi_page[i].phys = start; 189 msi_page[i].iova = start; 190 INIT_LIST_HEAD(&msi_page[i].list); 191 list_add(&msi_page[i].list, &cookie->msi_page_list); 192 start += iovad->granule; 193 } 194 195 return 0; 196 } 197 198 static int iova_reserve_pci_windows(struct pci_dev *dev, 199 struct iova_domain *iovad) 200 { 201 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus); 202 struct resource_entry *window; 203 unsigned long lo, hi; 204 phys_addr_t start = 0, end; 205 206 resource_list_for_each_entry(window, &bridge->windows) { 207 if (resource_type(window->res) != IORESOURCE_MEM) 208 continue; 209 210 lo = iova_pfn(iovad, window->res->start - window->offset); 211 hi = iova_pfn(iovad, window->res->end - window->offset); 212 reserve_iova(iovad, lo, hi); 213 } 214 215 /* Get reserved DMA windows from host bridge */ 216 resource_list_for_each_entry(window, &bridge->dma_ranges) { 217 end = window->res->start - window->offset; 218 resv_iova: 219 if (end > start) { 220 lo = iova_pfn(iovad, start); 221 hi = iova_pfn(iovad, end); 222 reserve_iova(iovad, lo, hi); 223 } else { 224 /* dma_ranges list should be sorted */ 225 dev_err(&dev->dev, "Failed to reserve IOVA\n"); 226 return -EINVAL; 227 } 228 229 start = window->res->end - window->offset + 1; 230 /* If window is last entry */ 231 if (window->node.next == &bridge->dma_ranges && 232 end != ~(dma_addr_t)0) { 233 end = ~(dma_addr_t)0; 234 goto resv_iova; 235 } 236 } 237 238 return 0; 239 } 240 241 static int iova_reserve_iommu_regions(struct device *dev, 242 struct iommu_domain *domain) 243 { 244 struct iommu_dma_cookie *cookie = domain->iova_cookie; 245 struct iova_domain *iovad = &cookie->iovad; 246 struct iommu_resv_region *region; 247 LIST_HEAD(resv_regions); 248 int ret = 0; 249 250 if (dev_is_pci(dev)) { 251 ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad); 252 if (ret) 253 return ret; 254 } 255 256 iommu_get_resv_regions(dev, &resv_regions); 257 list_for_each_entry(region, &resv_regions, list) { 258 unsigned long lo, hi; 259 260 /* We ARE the software that manages these! */ 261 if (region->type == IOMMU_RESV_SW_MSI) 262 continue; 263 264 lo = iova_pfn(iovad, region->start); 265 hi = iova_pfn(iovad, region->start + region->length - 1); 266 reserve_iova(iovad, lo, hi); 267 268 if (region->type == IOMMU_RESV_MSI) 269 ret = cookie_init_hw_msi_region(cookie, region->start, 270 region->start + region->length); 271 if (ret) 272 break; 273 } 274 iommu_put_resv_regions(dev, &resv_regions); 275 276 return ret; 277 } 278 279 static void iommu_dma_flush_iotlb_all(struct iova_domain *iovad) 280 { 281 struct iommu_dma_cookie *cookie; 282 struct iommu_domain *domain; 283 284 cookie = container_of(iovad, struct iommu_dma_cookie, iovad); 285 domain = cookie->fq_domain; 286 /* 287 * The IOMMU driver supporting DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE 288 * implies that ops->flush_iotlb_all must be non-NULL. 289 */ 290 domain->ops->flush_iotlb_all(domain); 291 } 292 293 /** 294 * iommu_dma_init_domain - Initialise a DMA mapping domain 295 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() 296 * @base: IOVA at which the mappable address space starts 297 * @size: Size of IOVA space 298 * @dev: Device the domain is being initialised for 299 * 300 * @base and @size should be exact multiples of IOMMU page granularity to 301 * avoid rounding surprises. If necessary, we reserve the page at address 0 302 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but 303 * any change which could make prior IOVAs invalid will fail. 304 */ 305 int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base, 306 u64 size, struct device *dev) 307 { 308 struct iommu_dma_cookie *cookie = domain->iova_cookie; 309 struct iova_domain *iovad = &cookie->iovad; 310 unsigned long order, base_pfn; 311 int attr; 312 313 if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE) 314 return -EINVAL; 315 316 /* Use the smallest supported page size for IOVA granularity */ 317 order = __ffs(domain->pgsize_bitmap); 318 base_pfn = max_t(unsigned long, 1, base >> order); 319 320 /* Check the domain allows at least some access to the device... */ 321 if (domain->geometry.force_aperture) { 322 if (base > domain->geometry.aperture_end || 323 base + size <= domain->geometry.aperture_start) { 324 pr_warn("specified DMA range outside IOMMU capability\n"); 325 return -EFAULT; 326 } 327 /* ...then finally give it a kicking to make sure it fits */ 328 base_pfn = max_t(unsigned long, base_pfn, 329 domain->geometry.aperture_start >> order); 330 } 331 332 /* start_pfn is always nonzero for an already-initialised domain */ 333 if (iovad->start_pfn) { 334 if (1UL << order != iovad->granule || 335 base_pfn != iovad->start_pfn) { 336 pr_warn("Incompatible range for DMA domain\n"); 337 return -EFAULT; 338 } 339 340 return 0; 341 } 342 343 init_iova_domain(iovad, 1UL << order, base_pfn); 344 345 if (!cookie->fq_domain && !iommu_domain_get_attr(domain, 346 DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE, &attr) && attr) { 347 cookie->fq_domain = domain; 348 init_iova_flush_queue(iovad, iommu_dma_flush_iotlb_all, NULL); 349 } 350 351 if (!dev) 352 return 0; 353 354 return iova_reserve_iommu_regions(dev, domain); 355 } 356 EXPORT_SYMBOL(iommu_dma_init_domain); 357 358 /** 359 * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API 360 * page flags. 361 * @dir: Direction of DMA transfer 362 * @coherent: Is the DMA master cache-coherent? 363 * @attrs: DMA attributes for the mapping 364 * 365 * Return: corresponding IOMMU API page protection flags 366 */ 367 int dma_info_to_prot(enum dma_data_direction dir, bool coherent, 368 unsigned long attrs) 369 { 370 int prot = coherent ? IOMMU_CACHE : 0; 371 372 if (attrs & DMA_ATTR_PRIVILEGED) 373 prot |= IOMMU_PRIV; 374 375 switch (dir) { 376 case DMA_BIDIRECTIONAL: 377 return prot | IOMMU_READ | IOMMU_WRITE; 378 case DMA_TO_DEVICE: 379 return prot | IOMMU_READ; 380 case DMA_FROM_DEVICE: 381 return prot | IOMMU_WRITE; 382 default: 383 return 0; 384 } 385 } 386 387 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain, 388 size_t size, dma_addr_t dma_limit, struct device *dev) 389 { 390 struct iommu_dma_cookie *cookie = domain->iova_cookie; 391 struct iova_domain *iovad = &cookie->iovad; 392 unsigned long shift, iova_len, iova = 0; 393 394 if (cookie->type == IOMMU_DMA_MSI_COOKIE) { 395 cookie->msi_iova += size; 396 return cookie->msi_iova - size; 397 } 398 399 shift = iova_shift(iovad); 400 iova_len = size >> shift; 401 /* 402 * Freeing non-power-of-two-sized allocations back into the IOVA caches 403 * will come back to bite us badly, so we have to waste a bit of space 404 * rounding up anything cacheable to make sure that can't happen. The 405 * order of the unadjusted size will still match upon freeing. 406 */ 407 if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1))) 408 iova_len = roundup_pow_of_two(iova_len); 409 410 if (dev->bus_dma_mask) 411 dma_limit &= dev->bus_dma_mask; 412 413 if (domain->geometry.force_aperture) 414 dma_limit = min(dma_limit, domain->geometry.aperture_end); 415 416 /* Try to get PCI devices a SAC address */ 417 if (dma_limit > DMA_BIT_MASK(32) && dev_is_pci(dev)) 418 iova = alloc_iova_fast(iovad, iova_len, 419 DMA_BIT_MASK(32) >> shift, false); 420 421 if (!iova) 422 iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift, 423 true); 424 425 return (dma_addr_t)iova << shift; 426 } 427 428 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie, 429 dma_addr_t iova, size_t size) 430 { 431 struct iova_domain *iovad = &cookie->iovad; 432 433 /* The MSI case is only ever cleaning up its most recent allocation */ 434 if (cookie->type == IOMMU_DMA_MSI_COOKIE) 435 cookie->msi_iova -= size; 436 else if (cookie->fq_domain) /* non-strict mode */ 437 queue_iova(iovad, iova_pfn(iovad, iova), 438 size >> iova_shift(iovad), 0); 439 else 440 free_iova_fast(iovad, iova_pfn(iovad, iova), 441 size >> iova_shift(iovad)); 442 } 443 444 static void __iommu_dma_unmap(struct iommu_domain *domain, dma_addr_t dma_addr, 445 size_t size) 446 { 447 struct iommu_dma_cookie *cookie = domain->iova_cookie; 448 struct iova_domain *iovad = &cookie->iovad; 449 size_t iova_off = iova_offset(iovad, dma_addr); 450 451 dma_addr -= iova_off; 452 size = iova_align(iovad, size + iova_off); 453 454 WARN_ON(iommu_unmap_fast(domain, dma_addr, size) != size); 455 if (!cookie->fq_domain) 456 iommu_tlb_sync(domain); 457 iommu_dma_free_iova(cookie, dma_addr, size); 458 } 459 460 static void __iommu_dma_free_pages(struct page **pages, int count) 461 { 462 while (count--) 463 __free_page(pages[count]); 464 kvfree(pages); 465 } 466 467 static struct page **__iommu_dma_alloc_pages(struct device *dev, 468 unsigned int count, unsigned long order_mask, gfp_t gfp) 469 { 470 struct page **pages; 471 unsigned int i = 0, nid = dev_to_node(dev); 472 473 order_mask &= (2U << MAX_ORDER) - 1; 474 if (!order_mask) 475 return NULL; 476 477 pages = kvzalloc(count * sizeof(*pages), GFP_KERNEL); 478 if (!pages) 479 return NULL; 480 481 /* IOMMU can map any pages, so himem can also be used here */ 482 gfp |= __GFP_NOWARN | __GFP_HIGHMEM; 483 484 while (count) { 485 struct page *page = NULL; 486 unsigned int order_size; 487 488 /* 489 * Higher-order allocations are a convenience rather 490 * than a necessity, hence using __GFP_NORETRY until 491 * falling back to minimum-order allocations. 492 */ 493 for (order_mask &= (2U << __fls(count)) - 1; 494 order_mask; order_mask &= ~order_size) { 495 unsigned int order = __fls(order_mask); 496 gfp_t alloc_flags = gfp; 497 498 order_size = 1U << order; 499 if (order_mask > order_size) 500 alloc_flags |= __GFP_NORETRY; 501 page = alloc_pages_node(nid, alloc_flags, order); 502 if (!page) 503 continue; 504 if (!order) 505 break; 506 if (!PageCompound(page)) { 507 split_page(page, order); 508 break; 509 } else if (!split_huge_page(page)) { 510 break; 511 } 512 __free_pages(page, order); 513 } 514 if (!page) { 515 __iommu_dma_free_pages(pages, i); 516 return NULL; 517 } 518 count -= order_size; 519 while (order_size--) 520 pages[i++] = page++; 521 } 522 return pages; 523 } 524 525 /** 526 * iommu_dma_free - Free a buffer allocated by iommu_dma_alloc() 527 * @dev: Device which owns this buffer 528 * @pages: Array of buffer pages as returned by iommu_dma_alloc() 529 * @size: Size of buffer in bytes 530 * @handle: DMA address of buffer 531 * 532 * Frees both the pages associated with the buffer, and the array 533 * describing them 534 */ 535 void iommu_dma_free(struct device *dev, struct page **pages, size_t size, 536 dma_addr_t *handle) 537 { 538 __iommu_dma_unmap(iommu_get_dma_domain(dev), *handle, size); 539 __iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT); 540 *handle = DMA_MAPPING_ERROR; 541 } 542 543 /** 544 * iommu_dma_alloc - Allocate and map a buffer contiguous in IOVA space 545 * @dev: Device to allocate memory for. Must be a real device 546 * attached to an iommu_dma_domain 547 * @size: Size of buffer in bytes 548 * @gfp: Allocation flags 549 * @attrs: DMA attributes for this allocation 550 * @prot: IOMMU mapping flags 551 * @handle: Out argument for allocated DMA handle 552 * @flush_page: Arch callback which must ensure PAGE_SIZE bytes from the 553 * given VA/PA are visible to the given non-coherent device. 554 * 555 * If @size is less than PAGE_SIZE, then a full CPU page will be allocated, 556 * but an IOMMU which supports smaller pages might not map the whole thing. 557 * 558 * Return: Array of struct page pointers describing the buffer, 559 * or NULL on failure. 560 */ 561 struct page **iommu_dma_alloc(struct device *dev, size_t size, gfp_t gfp, 562 unsigned long attrs, int prot, dma_addr_t *handle, 563 void (*flush_page)(struct device *, const void *, phys_addr_t)) 564 { 565 struct iommu_domain *domain = iommu_get_dma_domain(dev); 566 struct iommu_dma_cookie *cookie = domain->iova_cookie; 567 struct iova_domain *iovad = &cookie->iovad; 568 struct page **pages; 569 struct sg_table sgt; 570 dma_addr_t iova; 571 unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap; 572 573 *handle = DMA_MAPPING_ERROR; 574 575 min_size = alloc_sizes & -alloc_sizes; 576 if (min_size < PAGE_SIZE) { 577 min_size = PAGE_SIZE; 578 alloc_sizes |= PAGE_SIZE; 579 } else { 580 size = ALIGN(size, min_size); 581 } 582 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES) 583 alloc_sizes = min_size; 584 585 count = PAGE_ALIGN(size) >> PAGE_SHIFT; 586 pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT, 587 gfp); 588 if (!pages) 589 return NULL; 590 591 size = iova_align(iovad, size); 592 iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev); 593 if (!iova) 594 goto out_free_pages; 595 596 if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL)) 597 goto out_free_iova; 598 599 if (!(prot & IOMMU_CACHE)) { 600 struct sg_mapping_iter miter; 601 /* 602 * The CPU-centric flushing implied by SG_MITER_TO_SG isn't 603 * sufficient here, so skip it by using the "wrong" direction. 604 */ 605 sg_miter_start(&miter, sgt.sgl, sgt.orig_nents, SG_MITER_FROM_SG); 606 while (sg_miter_next(&miter)) 607 flush_page(dev, miter.addr, page_to_phys(miter.page)); 608 sg_miter_stop(&miter); 609 } 610 611 if (iommu_map_sg(domain, iova, sgt.sgl, sgt.orig_nents, prot) 612 < size) 613 goto out_free_sg; 614 615 *handle = iova; 616 sg_free_table(&sgt); 617 return pages; 618 619 out_free_sg: 620 sg_free_table(&sgt); 621 out_free_iova: 622 iommu_dma_free_iova(cookie, iova, size); 623 out_free_pages: 624 __iommu_dma_free_pages(pages, count); 625 return NULL; 626 } 627 628 /** 629 * iommu_dma_mmap - Map a buffer into provided user VMA 630 * @pages: Array representing buffer from iommu_dma_alloc() 631 * @size: Size of buffer in bytes 632 * @vma: VMA describing requested userspace mapping 633 * 634 * Maps the pages of the buffer in @pages into @vma. The caller is responsible 635 * for verifying the correct size and protection of @vma beforehand. 636 */ 637 638 int iommu_dma_mmap(struct page **pages, size_t size, struct vm_area_struct *vma) 639 { 640 return vm_map_pages(vma, pages, PAGE_ALIGN(size) >> PAGE_SHIFT); 641 } 642 643 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys, 644 size_t size, int prot, struct iommu_domain *domain) 645 { 646 struct iommu_dma_cookie *cookie = domain->iova_cookie; 647 size_t iova_off = 0; 648 dma_addr_t iova; 649 650 if (cookie->type == IOMMU_DMA_IOVA_COOKIE) { 651 iova_off = iova_offset(&cookie->iovad, phys); 652 size = iova_align(&cookie->iovad, size + iova_off); 653 } 654 655 iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev); 656 if (!iova) 657 return DMA_MAPPING_ERROR; 658 659 if (iommu_map(domain, iova, phys - iova_off, size, prot)) { 660 iommu_dma_free_iova(cookie, iova, size); 661 return DMA_MAPPING_ERROR; 662 } 663 return iova + iova_off; 664 } 665 666 dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page, 667 unsigned long offset, size_t size, int prot) 668 { 669 return __iommu_dma_map(dev, page_to_phys(page) + offset, size, prot, 670 iommu_get_dma_domain(dev)); 671 } 672 673 void iommu_dma_unmap_page(struct device *dev, dma_addr_t handle, size_t size, 674 enum dma_data_direction dir, unsigned long attrs) 675 { 676 __iommu_dma_unmap(iommu_get_dma_domain(dev), handle, size); 677 } 678 679 /* 680 * Prepare a successfully-mapped scatterlist to give back to the caller. 681 * 682 * At this point the segments are already laid out by iommu_dma_map_sg() to 683 * avoid individually crossing any boundaries, so we merely need to check a 684 * segment's start address to avoid concatenating across one. 685 */ 686 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents, 687 dma_addr_t dma_addr) 688 { 689 struct scatterlist *s, *cur = sg; 690 unsigned long seg_mask = dma_get_seg_boundary(dev); 691 unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev); 692 int i, count = 0; 693 694 for_each_sg(sg, s, nents, i) { 695 /* Restore this segment's original unaligned fields first */ 696 unsigned int s_iova_off = sg_dma_address(s); 697 unsigned int s_length = sg_dma_len(s); 698 unsigned int s_iova_len = s->length; 699 700 s->offset += s_iova_off; 701 s->length = s_length; 702 sg_dma_address(s) = DMA_MAPPING_ERROR; 703 sg_dma_len(s) = 0; 704 705 /* 706 * Now fill in the real DMA data. If... 707 * - there is a valid output segment to append to 708 * - and this segment starts on an IOVA page boundary 709 * - but doesn't fall at a segment boundary 710 * - and wouldn't make the resulting output segment too long 711 */ 712 if (cur_len && !s_iova_off && (dma_addr & seg_mask) && 713 (cur_len + s_length <= max_len)) { 714 /* ...then concatenate it with the previous one */ 715 cur_len += s_length; 716 } else { 717 /* Otherwise start the next output segment */ 718 if (i > 0) 719 cur = sg_next(cur); 720 cur_len = s_length; 721 count++; 722 723 sg_dma_address(cur) = dma_addr + s_iova_off; 724 } 725 726 sg_dma_len(cur) = cur_len; 727 dma_addr += s_iova_len; 728 729 if (s_length + s_iova_off < s_iova_len) 730 cur_len = 0; 731 } 732 return count; 733 } 734 735 /* 736 * If mapping failed, then just restore the original list, 737 * but making sure the DMA fields are invalidated. 738 */ 739 static void __invalidate_sg(struct scatterlist *sg, int nents) 740 { 741 struct scatterlist *s; 742 int i; 743 744 for_each_sg(sg, s, nents, i) { 745 if (sg_dma_address(s) != DMA_MAPPING_ERROR) 746 s->offset += sg_dma_address(s); 747 if (sg_dma_len(s)) 748 s->length = sg_dma_len(s); 749 sg_dma_address(s) = DMA_MAPPING_ERROR; 750 sg_dma_len(s) = 0; 751 } 752 } 753 754 /* 755 * The DMA API client is passing in a scatterlist which could describe 756 * any old buffer layout, but the IOMMU API requires everything to be 757 * aligned to IOMMU pages. Hence the need for this complicated bit of 758 * impedance-matching, to be able to hand off a suitably-aligned list, 759 * but still preserve the original offsets and sizes for the caller. 760 */ 761 int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg, 762 int nents, int prot) 763 { 764 struct iommu_domain *domain = iommu_get_dma_domain(dev); 765 struct iommu_dma_cookie *cookie = domain->iova_cookie; 766 struct iova_domain *iovad = &cookie->iovad; 767 struct scatterlist *s, *prev = NULL; 768 dma_addr_t iova; 769 size_t iova_len = 0; 770 unsigned long mask = dma_get_seg_boundary(dev); 771 int i; 772 773 /* 774 * Work out how much IOVA space we need, and align the segments to 775 * IOVA granules for the IOMMU driver to handle. With some clever 776 * trickery we can modify the list in-place, but reversibly, by 777 * stashing the unaligned parts in the as-yet-unused DMA fields. 778 */ 779 for_each_sg(sg, s, nents, i) { 780 size_t s_iova_off = iova_offset(iovad, s->offset); 781 size_t s_length = s->length; 782 size_t pad_len = (mask - iova_len + 1) & mask; 783 784 sg_dma_address(s) = s_iova_off; 785 sg_dma_len(s) = s_length; 786 s->offset -= s_iova_off; 787 s_length = iova_align(iovad, s_length + s_iova_off); 788 s->length = s_length; 789 790 /* 791 * Due to the alignment of our single IOVA allocation, we can 792 * depend on these assumptions about the segment boundary mask: 793 * - If mask size >= IOVA size, then the IOVA range cannot 794 * possibly fall across a boundary, so we don't care. 795 * - If mask size < IOVA size, then the IOVA range must start 796 * exactly on a boundary, therefore we can lay things out 797 * based purely on segment lengths without needing to know 798 * the actual addresses beforehand. 799 * - The mask must be a power of 2, so pad_len == 0 if 800 * iova_len == 0, thus we cannot dereference prev the first 801 * time through here (i.e. before it has a meaningful value). 802 */ 803 if (pad_len && pad_len < s_length - 1) { 804 prev->length += pad_len; 805 iova_len += pad_len; 806 } 807 808 iova_len += s_length; 809 prev = s; 810 } 811 812 iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev); 813 if (!iova) 814 goto out_restore_sg; 815 816 /* 817 * We'll leave any physical concatenation to the IOMMU driver's 818 * implementation - it knows better than we do. 819 */ 820 if (iommu_map_sg(domain, iova, sg, nents, prot) < iova_len) 821 goto out_free_iova; 822 823 return __finalise_sg(dev, sg, nents, iova); 824 825 out_free_iova: 826 iommu_dma_free_iova(cookie, iova, iova_len); 827 out_restore_sg: 828 __invalidate_sg(sg, nents); 829 return 0; 830 } 831 832 void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 833 enum dma_data_direction dir, unsigned long attrs) 834 { 835 dma_addr_t start, end; 836 struct scatterlist *tmp; 837 int i; 838 /* 839 * The scatterlist segments are mapped into a single 840 * contiguous IOVA allocation, so this is incredibly easy. 841 */ 842 start = sg_dma_address(sg); 843 for_each_sg(sg_next(sg), tmp, nents - 1, i) { 844 if (sg_dma_len(tmp) == 0) 845 break; 846 sg = tmp; 847 } 848 end = sg_dma_address(sg) + sg_dma_len(sg); 849 __iommu_dma_unmap(iommu_get_dma_domain(dev), start, end - start); 850 } 851 852 dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys, 853 size_t size, enum dma_data_direction dir, unsigned long attrs) 854 { 855 return __iommu_dma_map(dev, phys, size, 856 dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO, 857 iommu_get_dma_domain(dev)); 858 } 859 860 void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle, 861 size_t size, enum dma_data_direction dir, unsigned long attrs) 862 { 863 __iommu_dma_unmap(iommu_get_dma_domain(dev), handle, size); 864 } 865 866 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev, 867 phys_addr_t msi_addr, struct iommu_domain *domain) 868 { 869 struct iommu_dma_cookie *cookie = domain->iova_cookie; 870 struct iommu_dma_msi_page *msi_page; 871 dma_addr_t iova; 872 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO; 873 size_t size = cookie_msi_granule(cookie); 874 875 msi_addr &= ~(phys_addr_t)(size - 1); 876 list_for_each_entry(msi_page, &cookie->msi_page_list, list) 877 if (msi_page->phys == msi_addr) 878 return msi_page; 879 880 msi_page = kzalloc(sizeof(*msi_page), GFP_ATOMIC); 881 if (!msi_page) 882 return NULL; 883 884 iova = __iommu_dma_map(dev, msi_addr, size, prot, domain); 885 if (iova == DMA_MAPPING_ERROR) 886 goto out_free_page; 887 888 INIT_LIST_HEAD(&msi_page->list); 889 msi_page->phys = msi_addr; 890 msi_page->iova = iova; 891 list_add(&msi_page->list, &cookie->msi_page_list); 892 return msi_page; 893 894 out_free_page: 895 kfree(msi_page); 896 return NULL; 897 } 898 899 int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr) 900 { 901 struct device *dev = msi_desc_to_dev(desc); 902 struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 903 struct iommu_dma_cookie *cookie; 904 struct iommu_dma_msi_page *msi_page; 905 unsigned long flags; 906 907 if (!domain || !domain->iova_cookie) { 908 desc->iommu_cookie = NULL; 909 return 0; 910 } 911 912 cookie = domain->iova_cookie; 913 914 /* 915 * We disable IRQs to rule out a possible inversion against 916 * irq_desc_lock if, say, someone tries to retarget the affinity 917 * of an MSI from within an IPI handler. 918 */ 919 spin_lock_irqsave(&cookie->msi_lock, flags); 920 msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain); 921 spin_unlock_irqrestore(&cookie->msi_lock, flags); 922 923 msi_desc_set_iommu_cookie(desc, msi_page); 924 925 if (!msi_page) 926 return -ENOMEM; 927 return 0; 928 } 929 930 void iommu_dma_compose_msi_msg(struct msi_desc *desc, 931 struct msi_msg *msg) 932 { 933 struct device *dev = msi_desc_to_dev(desc); 934 const struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 935 const struct iommu_dma_msi_page *msi_page; 936 937 msi_page = msi_desc_get_iommu_cookie(desc); 938 939 if (!domain || !domain->iova_cookie || WARN_ON(!msi_page)) 940 return; 941 942 msg->address_hi = upper_32_bits(msi_page->iova); 943 msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1; 944 msg->address_lo += lower_32_bits(msi_page->iova); 945 } 946