xref: /openbmc/linux/drivers/iommu/dma-iommu.c (revision 3c6ee770)
1 /*
2  * A fairly generic DMA-API to IOMMU-API glue layer.
3  *
4  * Copyright (C) 2014-2015 ARM Ltd.
5  *
6  * based in part on arch/arm/mm/dma-mapping.c:
7  * Copyright (C) 2000-2004 Russell King
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #include <linux/acpi_iort.h>
23 #include <linux/device.h>
24 #include <linux/dma-iommu.h>
25 #include <linux/gfp.h>
26 #include <linux/huge_mm.h>
27 #include <linux/iommu.h>
28 #include <linux/iova.h>
29 #include <linux/irq.h>
30 #include <linux/mm.h>
31 #include <linux/pci.h>
32 #include <linux/scatterlist.h>
33 #include <linux/vmalloc.h>
34 
35 struct iommu_dma_msi_page {
36 	struct list_head	list;
37 	dma_addr_t		iova;
38 	phys_addr_t		phys;
39 };
40 
41 enum iommu_dma_cookie_type {
42 	IOMMU_DMA_IOVA_COOKIE,
43 	IOMMU_DMA_MSI_COOKIE,
44 };
45 
46 struct iommu_dma_cookie {
47 	enum iommu_dma_cookie_type	type;
48 	union {
49 		/* Full allocator for IOMMU_DMA_IOVA_COOKIE */
50 		struct iova_domain	iovad;
51 		/* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
52 		dma_addr_t		msi_iova;
53 	};
54 	struct list_head		msi_page_list;
55 	spinlock_t			msi_lock;
56 
57 	/* Domain for flush queue callback; NULL if flush queue not in use */
58 	struct iommu_domain		*fq_domain;
59 };
60 
61 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
62 {
63 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
64 		return cookie->iovad.granule;
65 	return PAGE_SIZE;
66 }
67 
68 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
69 {
70 	struct iommu_dma_cookie *cookie;
71 
72 	cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
73 	if (cookie) {
74 		spin_lock_init(&cookie->msi_lock);
75 		INIT_LIST_HEAD(&cookie->msi_page_list);
76 		cookie->type = type;
77 	}
78 	return cookie;
79 }
80 
81 int iommu_dma_init(void)
82 {
83 	return iova_cache_get();
84 }
85 
86 /**
87  * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
88  * @domain: IOMMU domain to prepare for DMA-API usage
89  *
90  * IOMMU drivers should normally call this from their domain_alloc
91  * callback when domain->type == IOMMU_DOMAIN_DMA.
92  */
93 int iommu_get_dma_cookie(struct iommu_domain *domain)
94 {
95 	if (domain->iova_cookie)
96 		return -EEXIST;
97 
98 	domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
99 	if (!domain->iova_cookie)
100 		return -ENOMEM;
101 
102 	return 0;
103 }
104 EXPORT_SYMBOL(iommu_get_dma_cookie);
105 
106 /**
107  * iommu_get_msi_cookie - Acquire just MSI remapping resources
108  * @domain: IOMMU domain to prepare
109  * @base: Start address of IOVA region for MSI mappings
110  *
111  * Users who manage their own IOVA allocation and do not want DMA API support,
112  * but would still like to take advantage of automatic MSI remapping, can use
113  * this to initialise their own domain appropriately. Users should reserve a
114  * contiguous IOVA region, starting at @base, large enough to accommodate the
115  * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
116  * used by the devices attached to @domain.
117  */
118 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
119 {
120 	struct iommu_dma_cookie *cookie;
121 
122 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
123 		return -EINVAL;
124 
125 	if (domain->iova_cookie)
126 		return -EEXIST;
127 
128 	cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
129 	if (!cookie)
130 		return -ENOMEM;
131 
132 	cookie->msi_iova = base;
133 	domain->iova_cookie = cookie;
134 	return 0;
135 }
136 EXPORT_SYMBOL(iommu_get_msi_cookie);
137 
138 /**
139  * iommu_put_dma_cookie - Release a domain's DMA mapping resources
140  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
141  *          iommu_get_msi_cookie()
142  *
143  * IOMMU drivers should normally call this from their domain_free callback.
144  */
145 void iommu_put_dma_cookie(struct iommu_domain *domain)
146 {
147 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
148 	struct iommu_dma_msi_page *msi, *tmp;
149 
150 	if (!cookie)
151 		return;
152 
153 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule)
154 		put_iova_domain(&cookie->iovad);
155 
156 	list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
157 		list_del(&msi->list);
158 		kfree(msi);
159 	}
160 	kfree(cookie);
161 	domain->iova_cookie = NULL;
162 }
163 EXPORT_SYMBOL(iommu_put_dma_cookie);
164 
165 /**
166  * iommu_dma_get_resv_regions - Reserved region driver helper
167  * @dev: Device from iommu_get_resv_regions()
168  * @list: Reserved region list from iommu_get_resv_regions()
169  *
170  * IOMMU drivers can use this to implement their .get_resv_regions callback
171  * for general non-IOMMU-specific reservations. Currently, this covers GICv3
172  * ITS region reservation on ACPI based ARM platforms that may require HW MSI
173  * reservation.
174  */
175 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
176 {
177 
178 	if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode))
179 		iort_iommu_msi_get_resv_regions(dev, list);
180 
181 }
182 EXPORT_SYMBOL(iommu_dma_get_resv_regions);
183 
184 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
185 		phys_addr_t start, phys_addr_t end)
186 {
187 	struct iova_domain *iovad = &cookie->iovad;
188 	struct iommu_dma_msi_page *msi_page;
189 	int i, num_pages;
190 
191 	start -= iova_offset(iovad, start);
192 	num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
193 
194 	msi_page = kcalloc(num_pages, sizeof(*msi_page), GFP_KERNEL);
195 	if (!msi_page)
196 		return -ENOMEM;
197 
198 	for (i = 0; i < num_pages; i++) {
199 		msi_page[i].phys = start;
200 		msi_page[i].iova = start;
201 		INIT_LIST_HEAD(&msi_page[i].list);
202 		list_add(&msi_page[i].list, &cookie->msi_page_list);
203 		start += iovad->granule;
204 	}
205 
206 	return 0;
207 }
208 
209 static void iova_reserve_pci_windows(struct pci_dev *dev,
210 		struct iova_domain *iovad)
211 {
212 	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
213 	struct resource_entry *window;
214 	unsigned long lo, hi;
215 
216 	resource_list_for_each_entry(window, &bridge->windows) {
217 		if (resource_type(window->res) != IORESOURCE_MEM)
218 			continue;
219 
220 		lo = iova_pfn(iovad, window->res->start - window->offset);
221 		hi = iova_pfn(iovad, window->res->end - window->offset);
222 		reserve_iova(iovad, lo, hi);
223 	}
224 }
225 
226 static int iova_reserve_iommu_regions(struct device *dev,
227 		struct iommu_domain *domain)
228 {
229 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
230 	struct iova_domain *iovad = &cookie->iovad;
231 	struct iommu_resv_region *region;
232 	LIST_HEAD(resv_regions);
233 	int ret = 0;
234 
235 	if (dev_is_pci(dev))
236 		iova_reserve_pci_windows(to_pci_dev(dev), iovad);
237 
238 	iommu_get_resv_regions(dev, &resv_regions);
239 	list_for_each_entry(region, &resv_regions, list) {
240 		unsigned long lo, hi;
241 
242 		/* We ARE the software that manages these! */
243 		if (region->type == IOMMU_RESV_SW_MSI)
244 			continue;
245 
246 		lo = iova_pfn(iovad, region->start);
247 		hi = iova_pfn(iovad, region->start + region->length - 1);
248 		reserve_iova(iovad, lo, hi);
249 
250 		if (region->type == IOMMU_RESV_MSI)
251 			ret = cookie_init_hw_msi_region(cookie, region->start,
252 					region->start + region->length);
253 		if (ret)
254 			break;
255 	}
256 	iommu_put_resv_regions(dev, &resv_regions);
257 
258 	return ret;
259 }
260 
261 static void iommu_dma_flush_iotlb_all(struct iova_domain *iovad)
262 {
263 	struct iommu_dma_cookie *cookie;
264 	struct iommu_domain *domain;
265 
266 	cookie = container_of(iovad, struct iommu_dma_cookie, iovad);
267 	domain = cookie->fq_domain;
268 	/*
269 	 * The IOMMU driver supporting DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE
270 	 * implies that ops->flush_iotlb_all must be non-NULL.
271 	 */
272 	domain->ops->flush_iotlb_all(domain);
273 }
274 
275 /**
276  * iommu_dma_init_domain - Initialise a DMA mapping domain
277  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
278  * @base: IOVA at which the mappable address space starts
279  * @size: Size of IOVA space
280  * @dev: Device the domain is being initialised for
281  *
282  * @base and @size should be exact multiples of IOMMU page granularity to
283  * avoid rounding surprises. If necessary, we reserve the page at address 0
284  * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
285  * any change which could make prior IOVAs invalid will fail.
286  */
287 int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
288 		u64 size, struct device *dev)
289 {
290 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
291 	struct iova_domain *iovad = &cookie->iovad;
292 	unsigned long order, base_pfn, end_pfn;
293 	int attr;
294 
295 	if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
296 		return -EINVAL;
297 
298 	/* Use the smallest supported page size for IOVA granularity */
299 	order = __ffs(domain->pgsize_bitmap);
300 	base_pfn = max_t(unsigned long, 1, base >> order);
301 	end_pfn = (base + size - 1) >> order;
302 
303 	/* Check the domain allows at least some access to the device... */
304 	if (domain->geometry.force_aperture) {
305 		if (base > domain->geometry.aperture_end ||
306 		    base + size <= domain->geometry.aperture_start) {
307 			pr_warn("specified DMA range outside IOMMU capability\n");
308 			return -EFAULT;
309 		}
310 		/* ...then finally give it a kicking to make sure it fits */
311 		base_pfn = max_t(unsigned long, base_pfn,
312 				domain->geometry.aperture_start >> order);
313 	}
314 
315 	/* start_pfn is always nonzero for an already-initialised domain */
316 	if (iovad->start_pfn) {
317 		if (1UL << order != iovad->granule ||
318 		    base_pfn != iovad->start_pfn) {
319 			pr_warn("Incompatible range for DMA domain\n");
320 			return -EFAULT;
321 		}
322 
323 		return 0;
324 	}
325 
326 	init_iova_domain(iovad, 1UL << order, base_pfn);
327 
328 	if (!cookie->fq_domain && !iommu_domain_get_attr(domain,
329 			DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE, &attr) && attr) {
330 		cookie->fq_domain = domain;
331 		init_iova_flush_queue(iovad, iommu_dma_flush_iotlb_all, NULL);
332 	}
333 
334 	if (!dev)
335 		return 0;
336 
337 	return iova_reserve_iommu_regions(dev, domain);
338 }
339 EXPORT_SYMBOL(iommu_dma_init_domain);
340 
341 /**
342  * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
343  *                    page flags.
344  * @dir: Direction of DMA transfer
345  * @coherent: Is the DMA master cache-coherent?
346  * @attrs: DMA attributes for the mapping
347  *
348  * Return: corresponding IOMMU API page protection flags
349  */
350 int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
351 		     unsigned long attrs)
352 {
353 	int prot = coherent ? IOMMU_CACHE : 0;
354 
355 	if (attrs & DMA_ATTR_PRIVILEGED)
356 		prot |= IOMMU_PRIV;
357 
358 	switch (dir) {
359 	case DMA_BIDIRECTIONAL:
360 		return prot | IOMMU_READ | IOMMU_WRITE;
361 	case DMA_TO_DEVICE:
362 		return prot | IOMMU_READ;
363 	case DMA_FROM_DEVICE:
364 		return prot | IOMMU_WRITE;
365 	default:
366 		return 0;
367 	}
368 }
369 
370 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
371 		size_t size, dma_addr_t dma_limit, struct device *dev)
372 {
373 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
374 	struct iova_domain *iovad = &cookie->iovad;
375 	unsigned long shift, iova_len, iova = 0;
376 
377 	if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
378 		cookie->msi_iova += size;
379 		return cookie->msi_iova - size;
380 	}
381 
382 	shift = iova_shift(iovad);
383 	iova_len = size >> shift;
384 	/*
385 	 * Freeing non-power-of-two-sized allocations back into the IOVA caches
386 	 * will come back to bite us badly, so we have to waste a bit of space
387 	 * rounding up anything cacheable to make sure that can't happen. The
388 	 * order of the unadjusted size will still match upon freeing.
389 	 */
390 	if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1)))
391 		iova_len = roundup_pow_of_two(iova_len);
392 
393 	if (dev->bus_dma_mask)
394 		dma_limit &= dev->bus_dma_mask;
395 
396 	if (domain->geometry.force_aperture)
397 		dma_limit = min(dma_limit, domain->geometry.aperture_end);
398 
399 	/* Try to get PCI devices a SAC address */
400 	if (dma_limit > DMA_BIT_MASK(32) && dev_is_pci(dev))
401 		iova = alloc_iova_fast(iovad, iova_len,
402 				       DMA_BIT_MASK(32) >> shift, false);
403 
404 	if (!iova)
405 		iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift,
406 				       true);
407 
408 	return (dma_addr_t)iova << shift;
409 }
410 
411 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
412 		dma_addr_t iova, size_t size)
413 {
414 	struct iova_domain *iovad = &cookie->iovad;
415 
416 	/* The MSI case is only ever cleaning up its most recent allocation */
417 	if (cookie->type == IOMMU_DMA_MSI_COOKIE)
418 		cookie->msi_iova -= size;
419 	else if (cookie->fq_domain)	/* non-strict mode */
420 		queue_iova(iovad, iova_pfn(iovad, iova),
421 				size >> iova_shift(iovad), 0);
422 	else
423 		free_iova_fast(iovad, iova_pfn(iovad, iova),
424 				size >> iova_shift(iovad));
425 }
426 
427 static void __iommu_dma_unmap(struct iommu_domain *domain, dma_addr_t dma_addr,
428 		size_t size)
429 {
430 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
431 	struct iova_domain *iovad = &cookie->iovad;
432 	size_t iova_off = iova_offset(iovad, dma_addr);
433 
434 	dma_addr -= iova_off;
435 	size = iova_align(iovad, size + iova_off);
436 
437 	WARN_ON(iommu_unmap_fast(domain, dma_addr, size) != size);
438 	if (!cookie->fq_domain)
439 		iommu_tlb_sync(domain);
440 	iommu_dma_free_iova(cookie, dma_addr, size);
441 }
442 
443 static void __iommu_dma_free_pages(struct page **pages, int count)
444 {
445 	while (count--)
446 		__free_page(pages[count]);
447 	kvfree(pages);
448 }
449 
450 static struct page **__iommu_dma_alloc_pages(struct device *dev,
451 		unsigned int count, unsigned long order_mask, gfp_t gfp)
452 {
453 	struct page **pages;
454 	unsigned int i = 0, nid = dev_to_node(dev);
455 
456 	order_mask &= (2U << MAX_ORDER) - 1;
457 	if (!order_mask)
458 		return NULL;
459 
460 	pages = kvzalloc(count * sizeof(*pages), GFP_KERNEL);
461 	if (!pages)
462 		return NULL;
463 
464 	/* IOMMU can map any pages, so himem can also be used here */
465 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
466 
467 	while (count) {
468 		struct page *page = NULL;
469 		unsigned int order_size;
470 
471 		/*
472 		 * Higher-order allocations are a convenience rather
473 		 * than a necessity, hence using __GFP_NORETRY until
474 		 * falling back to minimum-order allocations.
475 		 */
476 		for (order_mask &= (2U << __fls(count)) - 1;
477 		     order_mask; order_mask &= ~order_size) {
478 			unsigned int order = __fls(order_mask);
479 			gfp_t alloc_flags = gfp;
480 
481 			order_size = 1U << order;
482 			if (order_mask > order_size)
483 				alloc_flags |= __GFP_NORETRY;
484 			page = alloc_pages_node(nid, alloc_flags, order);
485 			if (!page)
486 				continue;
487 			if (!order)
488 				break;
489 			if (!PageCompound(page)) {
490 				split_page(page, order);
491 				break;
492 			} else if (!split_huge_page(page)) {
493 				break;
494 			}
495 			__free_pages(page, order);
496 		}
497 		if (!page) {
498 			__iommu_dma_free_pages(pages, i);
499 			return NULL;
500 		}
501 		count -= order_size;
502 		while (order_size--)
503 			pages[i++] = page++;
504 	}
505 	return pages;
506 }
507 
508 /**
509  * iommu_dma_free - Free a buffer allocated by iommu_dma_alloc()
510  * @dev: Device which owns this buffer
511  * @pages: Array of buffer pages as returned by iommu_dma_alloc()
512  * @size: Size of buffer in bytes
513  * @handle: DMA address of buffer
514  *
515  * Frees both the pages associated with the buffer, and the array
516  * describing them
517  */
518 void iommu_dma_free(struct device *dev, struct page **pages, size_t size,
519 		dma_addr_t *handle)
520 {
521 	__iommu_dma_unmap(iommu_get_dma_domain(dev), *handle, size);
522 	__iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
523 	*handle = DMA_MAPPING_ERROR;
524 }
525 
526 /**
527  * iommu_dma_alloc - Allocate and map a buffer contiguous in IOVA space
528  * @dev: Device to allocate memory for. Must be a real device
529  *	 attached to an iommu_dma_domain
530  * @size: Size of buffer in bytes
531  * @gfp: Allocation flags
532  * @attrs: DMA attributes for this allocation
533  * @prot: IOMMU mapping flags
534  * @handle: Out argument for allocated DMA handle
535  * @flush_page: Arch callback which must ensure PAGE_SIZE bytes from the
536  *		given VA/PA are visible to the given non-coherent device.
537  *
538  * If @size is less than PAGE_SIZE, then a full CPU page will be allocated,
539  * but an IOMMU which supports smaller pages might not map the whole thing.
540  *
541  * Return: Array of struct page pointers describing the buffer,
542  *	   or NULL on failure.
543  */
544 struct page **iommu_dma_alloc(struct device *dev, size_t size, gfp_t gfp,
545 		unsigned long attrs, int prot, dma_addr_t *handle,
546 		void (*flush_page)(struct device *, const void *, phys_addr_t))
547 {
548 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
549 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
550 	struct iova_domain *iovad = &cookie->iovad;
551 	struct page **pages;
552 	struct sg_table sgt;
553 	dma_addr_t iova;
554 	unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
555 
556 	*handle = DMA_MAPPING_ERROR;
557 
558 	min_size = alloc_sizes & -alloc_sizes;
559 	if (min_size < PAGE_SIZE) {
560 		min_size = PAGE_SIZE;
561 		alloc_sizes |= PAGE_SIZE;
562 	} else {
563 		size = ALIGN(size, min_size);
564 	}
565 	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
566 		alloc_sizes = min_size;
567 
568 	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
569 	pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT,
570 					gfp);
571 	if (!pages)
572 		return NULL;
573 
574 	size = iova_align(iovad, size);
575 	iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
576 	if (!iova)
577 		goto out_free_pages;
578 
579 	if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL))
580 		goto out_free_iova;
581 
582 	if (!(prot & IOMMU_CACHE)) {
583 		struct sg_mapping_iter miter;
584 		/*
585 		 * The CPU-centric flushing implied by SG_MITER_TO_SG isn't
586 		 * sufficient here, so skip it by using the "wrong" direction.
587 		 */
588 		sg_miter_start(&miter, sgt.sgl, sgt.orig_nents, SG_MITER_FROM_SG);
589 		while (sg_miter_next(&miter))
590 			flush_page(dev, miter.addr, page_to_phys(miter.page));
591 		sg_miter_stop(&miter);
592 	}
593 
594 	if (iommu_map_sg(domain, iova, sgt.sgl, sgt.orig_nents, prot)
595 			< size)
596 		goto out_free_sg;
597 
598 	*handle = iova;
599 	sg_free_table(&sgt);
600 	return pages;
601 
602 out_free_sg:
603 	sg_free_table(&sgt);
604 out_free_iova:
605 	iommu_dma_free_iova(cookie, iova, size);
606 out_free_pages:
607 	__iommu_dma_free_pages(pages, count);
608 	return NULL;
609 }
610 
611 /**
612  * iommu_dma_mmap - Map a buffer into provided user VMA
613  * @pages: Array representing buffer from iommu_dma_alloc()
614  * @size: Size of buffer in bytes
615  * @vma: VMA describing requested userspace mapping
616  *
617  * Maps the pages of the buffer in @pages into @vma. The caller is responsible
618  * for verifying the correct size and protection of @vma beforehand.
619  */
620 
621 int iommu_dma_mmap(struct page **pages, size_t size, struct vm_area_struct *vma)
622 {
623 	unsigned long uaddr = vma->vm_start;
624 	unsigned int i, count = PAGE_ALIGN(size) >> PAGE_SHIFT;
625 	int ret = -ENXIO;
626 
627 	for (i = vma->vm_pgoff; i < count && uaddr < vma->vm_end; i++) {
628 		ret = vm_insert_page(vma, uaddr, pages[i]);
629 		if (ret)
630 			break;
631 		uaddr += PAGE_SIZE;
632 	}
633 	return ret;
634 }
635 
636 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
637 		size_t size, int prot, struct iommu_domain *domain)
638 {
639 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
640 	size_t iova_off = 0;
641 	dma_addr_t iova;
642 
643 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE) {
644 		iova_off = iova_offset(&cookie->iovad, phys);
645 		size = iova_align(&cookie->iovad, size + iova_off);
646 	}
647 
648 	iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
649 	if (!iova)
650 		return DMA_MAPPING_ERROR;
651 
652 	if (iommu_map(domain, iova, phys - iova_off, size, prot)) {
653 		iommu_dma_free_iova(cookie, iova, size);
654 		return DMA_MAPPING_ERROR;
655 	}
656 	return iova + iova_off;
657 }
658 
659 dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
660 		unsigned long offset, size_t size, int prot)
661 {
662 	return __iommu_dma_map(dev, page_to_phys(page) + offset, size, prot,
663 			iommu_get_dma_domain(dev));
664 }
665 
666 void iommu_dma_unmap_page(struct device *dev, dma_addr_t handle, size_t size,
667 		enum dma_data_direction dir, unsigned long attrs)
668 {
669 	__iommu_dma_unmap(iommu_get_dma_domain(dev), handle, size);
670 }
671 
672 /*
673  * Prepare a successfully-mapped scatterlist to give back to the caller.
674  *
675  * At this point the segments are already laid out by iommu_dma_map_sg() to
676  * avoid individually crossing any boundaries, so we merely need to check a
677  * segment's start address to avoid concatenating across one.
678  */
679 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
680 		dma_addr_t dma_addr)
681 {
682 	struct scatterlist *s, *cur = sg;
683 	unsigned long seg_mask = dma_get_seg_boundary(dev);
684 	unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
685 	int i, count = 0;
686 
687 	for_each_sg(sg, s, nents, i) {
688 		/* Restore this segment's original unaligned fields first */
689 		unsigned int s_iova_off = sg_dma_address(s);
690 		unsigned int s_length = sg_dma_len(s);
691 		unsigned int s_iova_len = s->length;
692 
693 		s->offset += s_iova_off;
694 		s->length = s_length;
695 		sg_dma_address(s) = DMA_MAPPING_ERROR;
696 		sg_dma_len(s) = 0;
697 
698 		/*
699 		 * Now fill in the real DMA data. If...
700 		 * - there is a valid output segment to append to
701 		 * - and this segment starts on an IOVA page boundary
702 		 * - but doesn't fall at a segment boundary
703 		 * - and wouldn't make the resulting output segment too long
704 		 */
705 		if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
706 		    (cur_len + s_length <= max_len)) {
707 			/* ...then concatenate it with the previous one */
708 			cur_len += s_length;
709 		} else {
710 			/* Otherwise start the next output segment */
711 			if (i > 0)
712 				cur = sg_next(cur);
713 			cur_len = s_length;
714 			count++;
715 
716 			sg_dma_address(cur) = dma_addr + s_iova_off;
717 		}
718 
719 		sg_dma_len(cur) = cur_len;
720 		dma_addr += s_iova_len;
721 
722 		if (s_length + s_iova_off < s_iova_len)
723 			cur_len = 0;
724 	}
725 	return count;
726 }
727 
728 /*
729  * If mapping failed, then just restore the original list,
730  * but making sure the DMA fields are invalidated.
731  */
732 static void __invalidate_sg(struct scatterlist *sg, int nents)
733 {
734 	struct scatterlist *s;
735 	int i;
736 
737 	for_each_sg(sg, s, nents, i) {
738 		if (sg_dma_address(s) != DMA_MAPPING_ERROR)
739 			s->offset += sg_dma_address(s);
740 		if (sg_dma_len(s))
741 			s->length = sg_dma_len(s);
742 		sg_dma_address(s) = DMA_MAPPING_ERROR;
743 		sg_dma_len(s) = 0;
744 	}
745 }
746 
747 /*
748  * The DMA API client is passing in a scatterlist which could describe
749  * any old buffer layout, but the IOMMU API requires everything to be
750  * aligned to IOMMU pages. Hence the need for this complicated bit of
751  * impedance-matching, to be able to hand off a suitably-aligned list,
752  * but still preserve the original offsets and sizes for the caller.
753  */
754 int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
755 		int nents, int prot)
756 {
757 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
758 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
759 	struct iova_domain *iovad = &cookie->iovad;
760 	struct scatterlist *s, *prev = NULL;
761 	dma_addr_t iova;
762 	size_t iova_len = 0;
763 	unsigned long mask = dma_get_seg_boundary(dev);
764 	int i;
765 
766 	/*
767 	 * Work out how much IOVA space we need, and align the segments to
768 	 * IOVA granules for the IOMMU driver to handle. With some clever
769 	 * trickery we can modify the list in-place, but reversibly, by
770 	 * stashing the unaligned parts in the as-yet-unused DMA fields.
771 	 */
772 	for_each_sg(sg, s, nents, i) {
773 		size_t s_iova_off = iova_offset(iovad, s->offset);
774 		size_t s_length = s->length;
775 		size_t pad_len = (mask - iova_len + 1) & mask;
776 
777 		sg_dma_address(s) = s_iova_off;
778 		sg_dma_len(s) = s_length;
779 		s->offset -= s_iova_off;
780 		s_length = iova_align(iovad, s_length + s_iova_off);
781 		s->length = s_length;
782 
783 		/*
784 		 * Due to the alignment of our single IOVA allocation, we can
785 		 * depend on these assumptions about the segment boundary mask:
786 		 * - If mask size >= IOVA size, then the IOVA range cannot
787 		 *   possibly fall across a boundary, so we don't care.
788 		 * - If mask size < IOVA size, then the IOVA range must start
789 		 *   exactly on a boundary, therefore we can lay things out
790 		 *   based purely on segment lengths without needing to know
791 		 *   the actual addresses beforehand.
792 		 * - The mask must be a power of 2, so pad_len == 0 if
793 		 *   iova_len == 0, thus we cannot dereference prev the first
794 		 *   time through here (i.e. before it has a meaningful value).
795 		 */
796 		if (pad_len && pad_len < s_length - 1) {
797 			prev->length += pad_len;
798 			iova_len += pad_len;
799 		}
800 
801 		iova_len += s_length;
802 		prev = s;
803 	}
804 
805 	iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
806 	if (!iova)
807 		goto out_restore_sg;
808 
809 	/*
810 	 * We'll leave any physical concatenation to the IOMMU driver's
811 	 * implementation - it knows better than we do.
812 	 */
813 	if (iommu_map_sg(domain, iova, sg, nents, prot) < iova_len)
814 		goto out_free_iova;
815 
816 	return __finalise_sg(dev, sg, nents, iova);
817 
818 out_free_iova:
819 	iommu_dma_free_iova(cookie, iova, iova_len);
820 out_restore_sg:
821 	__invalidate_sg(sg, nents);
822 	return 0;
823 }
824 
825 void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
826 		enum dma_data_direction dir, unsigned long attrs)
827 {
828 	dma_addr_t start, end;
829 	struct scatterlist *tmp;
830 	int i;
831 	/*
832 	 * The scatterlist segments are mapped into a single
833 	 * contiguous IOVA allocation, so this is incredibly easy.
834 	 */
835 	start = sg_dma_address(sg);
836 	for_each_sg(sg_next(sg), tmp, nents - 1, i) {
837 		if (sg_dma_len(tmp) == 0)
838 			break;
839 		sg = tmp;
840 	}
841 	end = sg_dma_address(sg) + sg_dma_len(sg);
842 	__iommu_dma_unmap(iommu_get_dma_domain(dev), start, end - start);
843 }
844 
845 dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
846 		size_t size, enum dma_data_direction dir, unsigned long attrs)
847 {
848 	return __iommu_dma_map(dev, phys, size,
849 			dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO,
850 			iommu_get_dma_domain(dev));
851 }
852 
853 void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
854 		size_t size, enum dma_data_direction dir, unsigned long attrs)
855 {
856 	__iommu_dma_unmap(iommu_get_dma_domain(dev), handle, size);
857 }
858 
859 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
860 		phys_addr_t msi_addr, struct iommu_domain *domain)
861 {
862 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
863 	struct iommu_dma_msi_page *msi_page;
864 	dma_addr_t iova;
865 	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
866 	size_t size = cookie_msi_granule(cookie);
867 
868 	msi_addr &= ~(phys_addr_t)(size - 1);
869 	list_for_each_entry(msi_page, &cookie->msi_page_list, list)
870 		if (msi_page->phys == msi_addr)
871 			return msi_page;
872 
873 	msi_page = kzalloc(sizeof(*msi_page), GFP_ATOMIC);
874 	if (!msi_page)
875 		return NULL;
876 
877 	iova = __iommu_dma_map(dev, msi_addr, size, prot, domain);
878 	if (iova == DMA_MAPPING_ERROR)
879 		goto out_free_page;
880 
881 	INIT_LIST_HEAD(&msi_page->list);
882 	msi_page->phys = msi_addr;
883 	msi_page->iova = iova;
884 	list_add(&msi_page->list, &cookie->msi_page_list);
885 	return msi_page;
886 
887 out_free_page:
888 	kfree(msi_page);
889 	return NULL;
890 }
891 
892 void iommu_dma_map_msi_msg(int irq, struct msi_msg *msg)
893 {
894 	struct device *dev = msi_desc_to_dev(irq_get_msi_desc(irq));
895 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
896 	struct iommu_dma_cookie *cookie;
897 	struct iommu_dma_msi_page *msi_page;
898 	phys_addr_t msi_addr = (u64)msg->address_hi << 32 | msg->address_lo;
899 	unsigned long flags;
900 
901 	if (!domain || !domain->iova_cookie)
902 		return;
903 
904 	cookie = domain->iova_cookie;
905 
906 	/*
907 	 * We disable IRQs to rule out a possible inversion against
908 	 * irq_desc_lock if, say, someone tries to retarget the affinity
909 	 * of an MSI from within an IPI handler.
910 	 */
911 	spin_lock_irqsave(&cookie->msi_lock, flags);
912 	msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
913 	spin_unlock_irqrestore(&cookie->msi_lock, flags);
914 
915 	if (WARN_ON(!msi_page)) {
916 		/*
917 		 * We're called from a void callback, so the best we can do is
918 		 * 'fail' by filling the message with obviously bogus values.
919 		 * Since we got this far due to an IOMMU being present, it's
920 		 * not like the existing address would have worked anyway...
921 		 */
922 		msg->address_hi = ~0U;
923 		msg->address_lo = ~0U;
924 		msg->data = ~0U;
925 	} else {
926 		msg->address_hi = upper_32_bits(msi_page->iova);
927 		msg->address_lo &= cookie_msi_granule(cookie) - 1;
928 		msg->address_lo += lower_32_bits(msi_page->iova);
929 	}
930 }
931