1 /* 2 * A fairly generic DMA-API to IOMMU-API glue layer. 3 * 4 * Copyright (C) 2014-2015 ARM Ltd. 5 * 6 * based in part on arch/arm/mm/dma-mapping.c: 7 * Copyright (C) 2000-2004 Russell King 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program. If not, see <http://www.gnu.org/licenses/>. 20 */ 21 22 #include <linux/acpi_iort.h> 23 #include <linux/device.h> 24 #include <linux/dma-iommu.h> 25 #include <linux/gfp.h> 26 #include <linux/huge_mm.h> 27 #include <linux/iommu.h> 28 #include <linux/iova.h> 29 #include <linux/irq.h> 30 #include <linux/mm.h> 31 #include <linux/pci.h> 32 #include <linux/scatterlist.h> 33 #include <linux/vmalloc.h> 34 35 struct iommu_dma_msi_page { 36 struct list_head list; 37 dma_addr_t iova; 38 phys_addr_t phys; 39 }; 40 41 enum iommu_dma_cookie_type { 42 IOMMU_DMA_IOVA_COOKIE, 43 IOMMU_DMA_MSI_COOKIE, 44 }; 45 46 struct iommu_dma_cookie { 47 enum iommu_dma_cookie_type type; 48 union { 49 /* Full allocator for IOMMU_DMA_IOVA_COOKIE */ 50 struct iova_domain iovad; 51 /* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */ 52 dma_addr_t msi_iova; 53 }; 54 struct list_head msi_page_list; 55 spinlock_t msi_lock; 56 57 /* Domain for flush queue callback; NULL if flush queue not in use */ 58 struct iommu_domain *fq_domain; 59 }; 60 61 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie) 62 { 63 if (cookie->type == IOMMU_DMA_IOVA_COOKIE) 64 return cookie->iovad.granule; 65 return PAGE_SIZE; 66 } 67 68 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type) 69 { 70 struct iommu_dma_cookie *cookie; 71 72 cookie = kzalloc(sizeof(*cookie), GFP_KERNEL); 73 if (cookie) { 74 spin_lock_init(&cookie->msi_lock); 75 INIT_LIST_HEAD(&cookie->msi_page_list); 76 cookie->type = type; 77 } 78 return cookie; 79 } 80 81 int iommu_dma_init(void) 82 { 83 return iova_cache_get(); 84 } 85 86 /** 87 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain 88 * @domain: IOMMU domain to prepare for DMA-API usage 89 * 90 * IOMMU drivers should normally call this from their domain_alloc 91 * callback when domain->type == IOMMU_DOMAIN_DMA. 92 */ 93 int iommu_get_dma_cookie(struct iommu_domain *domain) 94 { 95 if (domain->iova_cookie) 96 return -EEXIST; 97 98 domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE); 99 if (!domain->iova_cookie) 100 return -ENOMEM; 101 102 return 0; 103 } 104 EXPORT_SYMBOL(iommu_get_dma_cookie); 105 106 /** 107 * iommu_get_msi_cookie - Acquire just MSI remapping resources 108 * @domain: IOMMU domain to prepare 109 * @base: Start address of IOVA region for MSI mappings 110 * 111 * Users who manage their own IOVA allocation and do not want DMA API support, 112 * but would still like to take advantage of automatic MSI remapping, can use 113 * this to initialise their own domain appropriately. Users should reserve a 114 * contiguous IOVA region, starting at @base, large enough to accommodate the 115 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address 116 * used by the devices attached to @domain. 117 */ 118 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base) 119 { 120 struct iommu_dma_cookie *cookie; 121 122 if (domain->type != IOMMU_DOMAIN_UNMANAGED) 123 return -EINVAL; 124 125 if (domain->iova_cookie) 126 return -EEXIST; 127 128 cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE); 129 if (!cookie) 130 return -ENOMEM; 131 132 cookie->msi_iova = base; 133 domain->iova_cookie = cookie; 134 return 0; 135 } 136 EXPORT_SYMBOL(iommu_get_msi_cookie); 137 138 /** 139 * iommu_put_dma_cookie - Release a domain's DMA mapping resources 140 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or 141 * iommu_get_msi_cookie() 142 * 143 * IOMMU drivers should normally call this from their domain_free callback. 144 */ 145 void iommu_put_dma_cookie(struct iommu_domain *domain) 146 { 147 struct iommu_dma_cookie *cookie = domain->iova_cookie; 148 struct iommu_dma_msi_page *msi, *tmp; 149 150 if (!cookie) 151 return; 152 153 if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule) 154 put_iova_domain(&cookie->iovad); 155 156 list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) { 157 list_del(&msi->list); 158 kfree(msi); 159 } 160 kfree(cookie); 161 domain->iova_cookie = NULL; 162 } 163 EXPORT_SYMBOL(iommu_put_dma_cookie); 164 165 /** 166 * iommu_dma_get_resv_regions - Reserved region driver helper 167 * @dev: Device from iommu_get_resv_regions() 168 * @list: Reserved region list from iommu_get_resv_regions() 169 * 170 * IOMMU drivers can use this to implement their .get_resv_regions callback 171 * for general non-IOMMU-specific reservations. Currently, this covers GICv3 172 * ITS region reservation on ACPI based ARM platforms that may require HW MSI 173 * reservation. 174 */ 175 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list) 176 { 177 178 if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode)) 179 iort_iommu_msi_get_resv_regions(dev, list); 180 181 } 182 EXPORT_SYMBOL(iommu_dma_get_resv_regions); 183 184 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie, 185 phys_addr_t start, phys_addr_t end) 186 { 187 struct iova_domain *iovad = &cookie->iovad; 188 struct iommu_dma_msi_page *msi_page; 189 int i, num_pages; 190 191 start -= iova_offset(iovad, start); 192 num_pages = iova_align(iovad, end - start) >> iova_shift(iovad); 193 194 msi_page = kcalloc(num_pages, sizeof(*msi_page), GFP_KERNEL); 195 if (!msi_page) 196 return -ENOMEM; 197 198 for (i = 0; i < num_pages; i++) { 199 msi_page[i].phys = start; 200 msi_page[i].iova = start; 201 INIT_LIST_HEAD(&msi_page[i].list); 202 list_add(&msi_page[i].list, &cookie->msi_page_list); 203 start += iovad->granule; 204 } 205 206 return 0; 207 } 208 209 static void iova_reserve_pci_windows(struct pci_dev *dev, 210 struct iova_domain *iovad) 211 { 212 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus); 213 struct resource_entry *window; 214 unsigned long lo, hi; 215 216 resource_list_for_each_entry(window, &bridge->windows) { 217 if (resource_type(window->res) != IORESOURCE_MEM) 218 continue; 219 220 lo = iova_pfn(iovad, window->res->start - window->offset); 221 hi = iova_pfn(iovad, window->res->end - window->offset); 222 reserve_iova(iovad, lo, hi); 223 } 224 } 225 226 static int iova_reserve_iommu_regions(struct device *dev, 227 struct iommu_domain *domain) 228 { 229 struct iommu_dma_cookie *cookie = domain->iova_cookie; 230 struct iova_domain *iovad = &cookie->iovad; 231 struct iommu_resv_region *region; 232 LIST_HEAD(resv_regions); 233 int ret = 0; 234 235 if (dev_is_pci(dev)) 236 iova_reserve_pci_windows(to_pci_dev(dev), iovad); 237 238 iommu_get_resv_regions(dev, &resv_regions); 239 list_for_each_entry(region, &resv_regions, list) { 240 unsigned long lo, hi; 241 242 /* We ARE the software that manages these! */ 243 if (region->type == IOMMU_RESV_SW_MSI) 244 continue; 245 246 lo = iova_pfn(iovad, region->start); 247 hi = iova_pfn(iovad, region->start + region->length - 1); 248 reserve_iova(iovad, lo, hi); 249 250 if (region->type == IOMMU_RESV_MSI) 251 ret = cookie_init_hw_msi_region(cookie, region->start, 252 region->start + region->length); 253 if (ret) 254 break; 255 } 256 iommu_put_resv_regions(dev, &resv_regions); 257 258 return ret; 259 } 260 261 static void iommu_dma_flush_iotlb_all(struct iova_domain *iovad) 262 { 263 struct iommu_dma_cookie *cookie; 264 struct iommu_domain *domain; 265 266 cookie = container_of(iovad, struct iommu_dma_cookie, iovad); 267 domain = cookie->fq_domain; 268 /* 269 * The IOMMU driver supporting DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE 270 * implies that ops->flush_iotlb_all must be non-NULL. 271 */ 272 domain->ops->flush_iotlb_all(domain); 273 } 274 275 /** 276 * iommu_dma_init_domain - Initialise a DMA mapping domain 277 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() 278 * @base: IOVA at which the mappable address space starts 279 * @size: Size of IOVA space 280 * @dev: Device the domain is being initialised for 281 * 282 * @base and @size should be exact multiples of IOMMU page granularity to 283 * avoid rounding surprises. If necessary, we reserve the page at address 0 284 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but 285 * any change which could make prior IOVAs invalid will fail. 286 */ 287 int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base, 288 u64 size, struct device *dev) 289 { 290 struct iommu_dma_cookie *cookie = domain->iova_cookie; 291 struct iova_domain *iovad = &cookie->iovad; 292 unsigned long order, base_pfn, end_pfn; 293 int attr; 294 295 if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE) 296 return -EINVAL; 297 298 /* Use the smallest supported page size for IOVA granularity */ 299 order = __ffs(domain->pgsize_bitmap); 300 base_pfn = max_t(unsigned long, 1, base >> order); 301 end_pfn = (base + size - 1) >> order; 302 303 /* Check the domain allows at least some access to the device... */ 304 if (domain->geometry.force_aperture) { 305 if (base > domain->geometry.aperture_end || 306 base + size <= domain->geometry.aperture_start) { 307 pr_warn("specified DMA range outside IOMMU capability\n"); 308 return -EFAULT; 309 } 310 /* ...then finally give it a kicking to make sure it fits */ 311 base_pfn = max_t(unsigned long, base_pfn, 312 domain->geometry.aperture_start >> order); 313 } 314 315 /* start_pfn is always nonzero for an already-initialised domain */ 316 if (iovad->start_pfn) { 317 if (1UL << order != iovad->granule || 318 base_pfn != iovad->start_pfn) { 319 pr_warn("Incompatible range for DMA domain\n"); 320 return -EFAULT; 321 } 322 323 return 0; 324 } 325 326 init_iova_domain(iovad, 1UL << order, base_pfn); 327 328 if (!cookie->fq_domain && !iommu_domain_get_attr(domain, 329 DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE, &attr) && attr) { 330 cookie->fq_domain = domain; 331 init_iova_flush_queue(iovad, iommu_dma_flush_iotlb_all, NULL); 332 } 333 334 if (!dev) 335 return 0; 336 337 return iova_reserve_iommu_regions(dev, domain); 338 } 339 EXPORT_SYMBOL(iommu_dma_init_domain); 340 341 /** 342 * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API 343 * page flags. 344 * @dir: Direction of DMA transfer 345 * @coherent: Is the DMA master cache-coherent? 346 * @attrs: DMA attributes for the mapping 347 * 348 * Return: corresponding IOMMU API page protection flags 349 */ 350 int dma_info_to_prot(enum dma_data_direction dir, bool coherent, 351 unsigned long attrs) 352 { 353 int prot = coherent ? IOMMU_CACHE : 0; 354 355 if (attrs & DMA_ATTR_PRIVILEGED) 356 prot |= IOMMU_PRIV; 357 358 switch (dir) { 359 case DMA_BIDIRECTIONAL: 360 return prot | IOMMU_READ | IOMMU_WRITE; 361 case DMA_TO_DEVICE: 362 return prot | IOMMU_READ; 363 case DMA_FROM_DEVICE: 364 return prot | IOMMU_WRITE; 365 default: 366 return 0; 367 } 368 } 369 370 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain, 371 size_t size, dma_addr_t dma_limit, struct device *dev) 372 { 373 struct iommu_dma_cookie *cookie = domain->iova_cookie; 374 struct iova_domain *iovad = &cookie->iovad; 375 unsigned long shift, iova_len, iova = 0; 376 377 if (cookie->type == IOMMU_DMA_MSI_COOKIE) { 378 cookie->msi_iova += size; 379 return cookie->msi_iova - size; 380 } 381 382 shift = iova_shift(iovad); 383 iova_len = size >> shift; 384 /* 385 * Freeing non-power-of-two-sized allocations back into the IOVA caches 386 * will come back to bite us badly, so we have to waste a bit of space 387 * rounding up anything cacheable to make sure that can't happen. The 388 * order of the unadjusted size will still match upon freeing. 389 */ 390 if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1))) 391 iova_len = roundup_pow_of_two(iova_len); 392 393 if (dev->bus_dma_mask) 394 dma_limit &= dev->bus_dma_mask; 395 396 if (domain->geometry.force_aperture) 397 dma_limit = min(dma_limit, domain->geometry.aperture_end); 398 399 /* Try to get PCI devices a SAC address */ 400 if (dma_limit > DMA_BIT_MASK(32) && dev_is_pci(dev)) 401 iova = alloc_iova_fast(iovad, iova_len, 402 DMA_BIT_MASK(32) >> shift, false); 403 404 if (!iova) 405 iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift, 406 true); 407 408 return (dma_addr_t)iova << shift; 409 } 410 411 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie, 412 dma_addr_t iova, size_t size) 413 { 414 struct iova_domain *iovad = &cookie->iovad; 415 416 /* The MSI case is only ever cleaning up its most recent allocation */ 417 if (cookie->type == IOMMU_DMA_MSI_COOKIE) 418 cookie->msi_iova -= size; 419 else if (cookie->fq_domain) /* non-strict mode */ 420 queue_iova(iovad, iova_pfn(iovad, iova), 421 size >> iova_shift(iovad), 0); 422 else 423 free_iova_fast(iovad, iova_pfn(iovad, iova), 424 size >> iova_shift(iovad)); 425 } 426 427 static void __iommu_dma_unmap(struct iommu_domain *domain, dma_addr_t dma_addr, 428 size_t size) 429 { 430 struct iommu_dma_cookie *cookie = domain->iova_cookie; 431 struct iova_domain *iovad = &cookie->iovad; 432 size_t iova_off = iova_offset(iovad, dma_addr); 433 434 dma_addr -= iova_off; 435 size = iova_align(iovad, size + iova_off); 436 437 WARN_ON(iommu_unmap_fast(domain, dma_addr, size) != size); 438 if (!cookie->fq_domain) 439 iommu_tlb_sync(domain); 440 iommu_dma_free_iova(cookie, dma_addr, size); 441 } 442 443 static void __iommu_dma_free_pages(struct page **pages, int count) 444 { 445 while (count--) 446 __free_page(pages[count]); 447 kvfree(pages); 448 } 449 450 static struct page **__iommu_dma_alloc_pages(struct device *dev, 451 unsigned int count, unsigned long order_mask, gfp_t gfp) 452 { 453 struct page **pages; 454 unsigned int i = 0, nid = dev_to_node(dev); 455 456 order_mask &= (2U << MAX_ORDER) - 1; 457 if (!order_mask) 458 return NULL; 459 460 pages = kvzalloc(count * sizeof(*pages), GFP_KERNEL); 461 if (!pages) 462 return NULL; 463 464 /* IOMMU can map any pages, so himem can also be used here */ 465 gfp |= __GFP_NOWARN | __GFP_HIGHMEM; 466 467 while (count) { 468 struct page *page = NULL; 469 unsigned int order_size; 470 471 /* 472 * Higher-order allocations are a convenience rather 473 * than a necessity, hence using __GFP_NORETRY until 474 * falling back to minimum-order allocations. 475 */ 476 for (order_mask &= (2U << __fls(count)) - 1; 477 order_mask; order_mask &= ~order_size) { 478 unsigned int order = __fls(order_mask); 479 gfp_t alloc_flags = gfp; 480 481 order_size = 1U << order; 482 if (order_mask > order_size) 483 alloc_flags |= __GFP_NORETRY; 484 page = alloc_pages_node(nid, alloc_flags, order); 485 if (!page) 486 continue; 487 if (!order) 488 break; 489 if (!PageCompound(page)) { 490 split_page(page, order); 491 break; 492 } else if (!split_huge_page(page)) { 493 break; 494 } 495 __free_pages(page, order); 496 } 497 if (!page) { 498 __iommu_dma_free_pages(pages, i); 499 return NULL; 500 } 501 count -= order_size; 502 while (order_size--) 503 pages[i++] = page++; 504 } 505 return pages; 506 } 507 508 /** 509 * iommu_dma_free - Free a buffer allocated by iommu_dma_alloc() 510 * @dev: Device which owns this buffer 511 * @pages: Array of buffer pages as returned by iommu_dma_alloc() 512 * @size: Size of buffer in bytes 513 * @handle: DMA address of buffer 514 * 515 * Frees both the pages associated with the buffer, and the array 516 * describing them 517 */ 518 void iommu_dma_free(struct device *dev, struct page **pages, size_t size, 519 dma_addr_t *handle) 520 { 521 __iommu_dma_unmap(iommu_get_dma_domain(dev), *handle, size); 522 __iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT); 523 *handle = DMA_MAPPING_ERROR; 524 } 525 526 /** 527 * iommu_dma_alloc - Allocate and map a buffer contiguous in IOVA space 528 * @dev: Device to allocate memory for. Must be a real device 529 * attached to an iommu_dma_domain 530 * @size: Size of buffer in bytes 531 * @gfp: Allocation flags 532 * @attrs: DMA attributes for this allocation 533 * @prot: IOMMU mapping flags 534 * @handle: Out argument for allocated DMA handle 535 * @flush_page: Arch callback which must ensure PAGE_SIZE bytes from the 536 * given VA/PA are visible to the given non-coherent device. 537 * 538 * If @size is less than PAGE_SIZE, then a full CPU page will be allocated, 539 * but an IOMMU which supports smaller pages might not map the whole thing. 540 * 541 * Return: Array of struct page pointers describing the buffer, 542 * or NULL on failure. 543 */ 544 struct page **iommu_dma_alloc(struct device *dev, size_t size, gfp_t gfp, 545 unsigned long attrs, int prot, dma_addr_t *handle, 546 void (*flush_page)(struct device *, const void *, phys_addr_t)) 547 { 548 struct iommu_domain *domain = iommu_get_dma_domain(dev); 549 struct iommu_dma_cookie *cookie = domain->iova_cookie; 550 struct iova_domain *iovad = &cookie->iovad; 551 struct page **pages; 552 struct sg_table sgt; 553 dma_addr_t iova; 554 unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap; 555 556 *handle = DMA_MAPPING_ERROR; 557 558 min_size = alloc_sizes & -alloc_sizes; 559 if (min_size < PAGE_SIZE) { 560 min_size = PAGE_SIZE; 561 alloc_sizes |= PAGE_SIZE; 562 } else { 563 size = ALIGN(size, min_size); 564 } 565 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES) 566 alloc_sizes = min_size; 567 568 count = PAGE_ALIGN(size) >> PAGE_SHIFT; 569 pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT, 570 gfp); 571 if (!pages) 572 return NULL; 573 574 size = iova_align(iovad, size); 575 iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev); 576 if (!iova) 577 goto out_free_pages; 578 579 if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL)) 580 goto out_free_iova; 581 582 if (!(prot & IOMMU_CACHE)) { 583 struct sg_mapping_iter miter; 584 /* 585 * The CPU-centric flushing implied by SG_MITER_TO_SG isn't 586 * sufficient here, so skip it by using the "wrong" direction. 587 */ 588 sg_miter_start(&miter, sgt.sgl, sgt.orig_nents, SG_MITER_FROM_SG); 589 while (sg_miter_next(&miter)) 590 flush_page(dev, miter.addr, page_to_phys(miter.page)); 591 sg_miter_stop(&miter); 592 } 593 594 if (iommu_map_sg(domain, iova, sgt.sgl, sgt.orig_nents, prot) 595 < size) 596 goto out_free_sg; 597 598 *handle = iova; 599 sg_free_table(&sgt); 600 return pages; 601 602 out_free_sg: 603 sg_free_table(&sgt); 604 out_free_iova: 605 iommu_dma_free_iova(cookie, iova, size); 606 out_free_pages: 607 __iommu_dma_free_pages(pages, count); 608 return NULL; 609 } 610 611 /** 612 * iommu_dma_mmap - Map a buffer into provided user VMA 613 * @pages: Array representing buffer from iommu_dma_alloc() 614 * @size: Size of buffer in bytes 615 * @vma: VMA describing requested userspace mapping 616 * 617 * Maps the pages of the buffer in @pages into @vma. The caller is responsible 618 * for verifying the correct size and protection of @vma beforehand. 619 */ 620 621 int iommu_dma_mmap(struct page **pages, size_t size, struct vm_area_struct *vma) 622 { 623 unsigned long uaddr = vma->vm_start; 624 unsigned int i, count = PAGE_ALIGN(size) >> PAGE_SHIFT; 625 int ret = -ENXIO; 626 627 for (i = vma->vm_pgoff; i < count && uaddr < vma->vm_end; i++) { 628 ret = vm_insert_page(vma, uaddr, pages[i]); 629 if (ret) 630 break; 631 uaddr += PAGE_SIZE; 632 } 633 return ret; 634 } 635 636 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys, 637 size_t size, int prot, struct iommu_domain *domain) 638 { 639 struct iommu_dma_cookie *cookie = domain->iova_cookie; 640 size_t iova_off = 0; 641 dma_addr_t iova; 642 643 if (cookie->type == IOMMU_DMA_IOVA_COOKIE) { 644 iova_off = iova_offset(&cookie->iovad, phys); 645 size = iova_align(&cookie->iovad, size + iova_off); 646 } 647 648 iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev); 649 if (!iova) 650 return DMA_MAPPING_ERROR; 651 652 if (iommu_map(domain, iova, phys - iova_off, size, prot)) { 653 iommu_dma_free_iova(cookie, iova, size); 654 return DMA_MAPPING_ERROR; 655 } 656 return iova + iova_off; 657 } 658 659 dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page, 660 unsigned long offset, size_t size, int prot) 661 { 662 return __iommu_dma_map(dev, page_to_phys(page) + offset, size, prot, 663 iommu_get_dma_domain(dev)); 664 } 665 666 void iommu_dma_unmap_page(struct device *dev, dma_addr_t handle, size_t size, 667 enum dma_data_direction dir, unsigned long attrs) 668 { 669 __iommu_dma_unmap(iommu_get_dma_domain(dev), handle, size); 670 } 671 672 /* 673 * Prepare a successfully-mapped scatterlist to give back to the caller. 674 * 675 * At this point the segments are already laid out by iommu_dma_map_sg() to 676 * avoid individually crossing any boundaries, so we merely need to check a 677 * segment's start address to avoid concatenating across one. 678 */ 679 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents, 680 dma_addr_t dma_addr) 681 { 682 struct scatterlist *s, *cur = sg; 683 unsigned long seg_mask = dma_get_seg_boundary(dev); 684 unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev); 685 int i, count = 0; 686 687 for_each_sg(sg, s, nents, i) { 688 /* Restore this segment's original unaligned fields first */ 689 unsigned int s_iova_off = sg_dma_address(s); 690 unsigned int s_length = sg_dma_len(s); 691 unsigned int s_iova_len = s->length; 692 693 s->offset += s_iova_off; 694 s->length = s_length; 695 sg_dma_address(s) = DMA_MAPPING_ERROR; 696 sg_dma_len(s) = 0; 697 698 /* 699 * Now fill in the real DMA data. If... 700 * - there is a valid output segment to append to 701 * - and this segment starts on an IOVA page boundary 702 * - but doesn't fall at a segment boundary 703 * - and wouldn't make the resulting output segment too long 704 */ 705 if (cur_len && !s_iova_off && (dma_addr & seg_mask) && 706 (cur_len + s_length <= max_len)) { 707 /* ...then concatenate it with the previous one */ 708 cur_len += s_length; 709 } else { 710 /* Otherwise start the next output segment */ 711 if (i > 0) 712 cur = sg_next(cur); 713 cur_len = s_length; 714 count++; 715 716 sg_dma_address(cur) = dma_addr + s_iova_off; 717 } 718 719 sg_dma_len(cur) = cur_len; 720 dma_addr += s_iova_len; 721 722 if (s_length + s_iova_off < s_iova_len) 723 cur_len = 0; 724 } 725 return count; 726 } 727 728 /* 729 * If mapping failed, then just restore the original list, 730 * but making sure the DMA fields are invalidated. 731 */ 732 static void __invalidate_sg(struct scatterlist *sg, int nents) 733 { 734 struct scatterlist *s; 735 int i; 736 737 for_each_sg(sg, s, nents, i) { 738 if (sg_dma_address(s) != DMA_MAPPING_ERROR) 739 s->offset += sg_dma_address(s); 740 if (sg_dma_len(s)) 741 s->length = sg_dma_len(s); 742 sg_dma_address(s) = DMA_MAPPING_ERROR; 743 sg_dma_len(s) = 0; 744 } 745 } 746 747 /* 748 * The DMA API client is passing in a scatterlist which could describe 749 * any old buffer layout, but the IOMMU API requires everything to be 750 * aligned to IOMMU pages. Hence the need for this complicated bit of 751 * impedance-matching, to be able to hand off a suitably-aligned list, 752 * but still preserve the original offsets and sizes for the caller. 753 */ 754 int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg, 755 int nents, int prot) 756 { 757 struct iommu_domain *domain = iommu_get_dma_domain(dev); 758 struct iommu_dma_cookie *cookie = domain->iova_cookie; 759 struct iova_domain *iovad = &cookie->iovad; 760 struct scatterlist *s, *prev = NULL; 761 dma_addr_t iova; 762 size_t iova_len = 0; 763 unsigned long mask = dma_get_seg_boundary(dev); 764 int i; 765 766 /* 767 * Work out how much IOVA space we need, and align the segments to 768 * IOVA granules for the IOMMU driver to handle. With some clever 769 * trickery we can modify the list in-place, but reversibly, by 770 * stashing the unaligned parts in the as-yet-unused DMA fields. 771 */ 772 for_each_sg(sg, s, nents, i) { 773 size_t s_iova_off = iova_offset(iovad, s->offset); 774 size_t s_length = s->length; 775 size_t pad_len = (mask - iova_len + 1) & mask; 776 777 sg_dma_address(s) = s_iova_off; 778 sg_dma_len(s) = s_length; 779 s->offset -= s_iova_off; 780 s_length = iova_align(iovad, s_length + s_iova_off); 781 s->length = s_length; 782 783 /* 784 * Due to the alignment of our single IOVA allocation, we can 785 * depend on these assumptions about the segment boundary mask: 786 * - If mask size >= IOVA size, then the IOVA range cannot 787 * possibly fall across a boundary, so we don't care. 788 * - If mask size < IOVA size, then the IOVA range must start 789 * exactly on a boundary, therefore we can lay things out 790 * based purely on segment lengths without needing to know 791 * the actual addresses beforehand. 792 * - The mask must be a power of 2, so pad_len == 0 if 793 * iova_len == 0, thus we cannot dereference prev the first 794 * time through here (i.e. before it has a meaningful value). 795 */ 796 if (pad_len && pad_len < s_length - 1) { 797 prev->length += pad_len; 798 iova_len += pad_len; 799 } 800 801 iova_len += s_length; 802 prev = s; 803 } 804 805 iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev); 806 if (!iova) 807 goto out_restore_sg; 808 809 /* 810 * We'll leave any physical concatenation to the IOMMU driver's 811 * implementation - it knows better than we do. 812 */ 813 if (iommu_map_sg(domain, iova, sg, nents, prot) < iova_len) 814 goto out_free_iova; 815 816 return __finalise_sg(dev, sg, nents, iova); 817 818 out_free_iova: 819 iommu_dma_free_iova(cookie, iova, iova_len); 820 out_restore_sg: 821 __invalidate_sg(sg, nents); 822 return 0; 823 } 824 825 void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 826 enum dma_data_direction dir, unsigned long attrs) 827 { 828 dma_addr_t start, end; 829 struct scatterlist *tmp; 830 int i; 831 /* 832 * The scatterlist segments are mapped into a single 833 * contiguous IOVA allocation, so this is incredibly easy. 834 */ 835 start = sg_dma_address(sg); 836 for_each_sg(sg_next(sg), tmp, nents - 1, i) { 837 if (sg_dma_len(tmp) == 0) 838 break; 839 sg = tmp; 840 } 841 end = sg_dma_address(sg) + sg_dma_len(sg); 842 __iommu_dma_unmap(iommu_get_dma_domain(dev), start, end - start); 843 } 844 845 dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys, 846 size_t size, enum dma_data_direction dir, unsigned long attrs) 847 { 848 return __iommu_dma_map(dev, phys, size, 849 dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO, 850 iommu_get_dma_domain(dev)); 851 } 852 853 void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle, 854 size_t size, enum dma_data_direction dir, unsigned long attrs) 855 { 856 __iommu_dma_unmap(iommu_get_dma_domain(dev), handle, size); 857 } 858 859 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev, 860 phys_addr_t msi_addr, struct iommu_domain *domain) 861 { 862 struct iommu_dma_cookie *cookie = domain->iova_cookie; 863 struct iommu_dma_msi_page *msi_page; 864 dma_addr_t iova; 865 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO; 866 size_t size = cookie_msi_granule(cookie); 867 868 msi_addr &= ~(phys_addr_t)(size - 1); 869 list_for_each_entry(msi_page, &cookie->msi_page_list, list) 870 if (msi_page->phys == msi_addr) 871 return msi_page; 872 873 msi_page = kzalloc(sizeof(*msi_page), GFP_ATOMIC); 874 if (!msi_page) 875 return NULL; 876 877 iova = __iommu_dma_map(dev, msi_addr, size, prot, domain); 878 if (iova == DMA_MAPPING_ERROR) 879 goto out_free_page; 880 881 INIT_LIST_HEAD(&msi_page->list); 882 msi_page->phys = msi_addr; 883 msi_page->iova = iova; 884 list_add(&msi_page->list, &cookie->msi_page_list); 885 return msi_page; 886 887 out_free_page: 888 kfree(msi_page); 889 return NULL; 890 } 891 892 void iommu_dma_map_msi_msg(int irq, struct msi_msg *msg) 893 { 894 struct device *dev = msi_desc_to_dev(irq_get_msi_desc(irq)); 895 struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 896 struct iommu_dma_cookie *cookie; 897 struct iommu_dma_msi_page *msi_page; 898 phys_addr_t msi_addr = (u64)msg->address_hi << 32 | msg->address_lo; 899 unsigned long flags; 900 901 if (!domain || !domain->iova_cookie) 902 return; 903 904 cookie = domain->iova_cookie; 905 906 /* 907 * We disable IRQs to rule out a possible inversion against 908 * irq_desc_lock if, say, someone tries to retarget the affinity 909 * of an MSI from within an IPI handler. 910 */ 911 spin_lock_irqsave(&cookie->msi_lock, flags); 912 msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain); 913 spin_unlock_irqrestore(&cookie->msi_lock, flags); 914 915 if (WARN_ON(!msi_page)) { 916 /* 917 * We're called from a void callback, so the best we can do is 918 * 'fail' by filling the message with obviously bogus values. 919 * Since we got this far due to an IOMMU being present, it's 920 * not like the existing address would have worked anyway... 921 */ 922 msg->address_hi = ~0U; 923 msg->address_lo = ~0U; 924 msg->data = ~0U; 925 } else { 926 msg->address_hi = upper_32_bits(msi_page->iova); 927 msg->address_lo &= cookie_msi_granule(cookie) - 1; 928 msg->address_lo += lower_32_bits(msi_page->iova); 929 } 930 } 931