1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * A fairly generic DMA-API to IOMMU-API glue layer. 4 * 5 * Copyright (C) 2014-2015 ARM Ltd. 6 * 7 * based in part on arch/arm/mm/dma-mapping.c: 8 * Copyright (C) 2000-2004 Russell King 9 */ 10 11 #include <linux/acpi_iort.h> 12 #include <linux/device.h> 13 #include <linux/dma-map-ops.h> 14 #include <linux/dma-iommu.h> 15 #include <linux/gfp.h> 16 #include <linux/huge_mm.h> 17 #include <linux/iommu.h> 18 #include <linux/iova.h> 19 #include <linux/irq.h> 20 #include <linux/mm.h> 21 #include <linux/mutex.h> 22 #include <linux/pci.h> 23 #include <linux/swiotlb.h> 24 #include <linux/scatterlist.h> 25 #include <linux/vmalloc.h> 26 #include <linux/crash_dump.h> 27 #include <linux/dma-direct.h> 28 29 struct iommu_dma_msi_page { 30 struct list_head list; 31 dma_addr_t iova; 32 phys_addr_t phys; 33 }; 34 35 enum iommu_dma_cookie_type { 36 IOMMU_DMA_IOVA_COOKIE, 37 IOMMU_DMA_MSI_COOKIE, 38 }; 39 40 struct iommu_dma_cookie { 41 enum iommu_dma_cookie_type type; 42 union { 43 /* Full allocator for IOMMU_DMA_IOVA_COOKIE */ 44 struct iova_domain iovad; 45 /* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */ 46 dma_addr_t msi_iova; 47 }; 48 struct list_head msi_page_list; 49 50 /* Domain for flush queue callback; NULL if flush queue not in use */ 51 struct iommu_domain *fq_domain; 52 }; 53 54 static DEFINE_STATIC_KEY_FALSE(iommu_deferred_attach_enabled); 55 bool iommu_dma_forcedac __read_mostly; 56 57 static int __init iommu_dma_forcedac_setup(char *str) 58 { 59 int ret = kstrtobool(str, &iommu_dma_forcedac); 60 61 if (!ret && iommu_dma_forcedac) 62 pr_info("Forcing DAC for PCI devices\n"); 63 return ret; 64 } 65 early_param("iommu.forcedac", iommu_dma_forcedac_setup); 66 67 static void iommu_dma_entry_dtor(unsigned long data) 68 { 69 struct page *freelist = (struct page *)data; 70 71 while (freelist) { 72 unsigned long p = (unsigned long)page_address(freelist); 73 74 freelist = freelist->freelist; 75 free_page(p); 76 } 77 } 78 79 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie) 80 { 81 if (cookie->type == IOMMU_DMA_IOVA_COOKIE) 82 return cookie->iovad.granule; 83 return PAGE_SIZE; 84 } 85 86 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type) 87 { 88 struct iommu_dma_cookie *cookie; 89 90 cookie = kzalloc(sizeof(*cookie), GFP_KERNEL); 91 if (cookie) { 92 INIT_LIST_HEAD(&cookie->msi_page_list); 93 cookie->type = type; 94 } 95 return cookie; 96 } 97 98 /** 99 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain 100 * @domain: IOMMU domain to prepare for DMA-API usage 101 * 102 * IOMMU drivers should normally call this from their domain_alloc 103 * callback when domain->type == IOMMU_DOMAIN_DMA. 104 */ 105 int iommu_get_dma_cookie(struct iommu_domain *domain) 106 { 107 if (domain->iova_cookie) 108 return -EEXIST; 109 110 domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE); 111 if (!domain->iova_cookie) 112 return -ENOMEM; 113 114 return 0; 115 } 116 EXPORT_SYMBOL(iommu_get_dma_cookie); 117 118 /** 119 * iommu_get_msi_cookie - Acquire just MSI remapping resources 120 * @domain: IOMMU domain to prepare 121 * @base: Start address of IOVA region for MSI mappings 122 * 123 * Users who manage their own IOVA allocation and do not want DMA API support, 124 * but would still like to take advantage of automatic MSI remapping, can use 125 * this to initialise their own domain appropriately. Users should reserve a 126 * contiguous IOVA region, starting at @base, large enough to accommodate the 127 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address 128 * used by the devices attached to @domain. 129 */ 130 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base) 131 { 132 struct iommu_dma_cookie *cookie; 133 134 if (domain->type != IOMMU_DOMAIN_UNMANAGED) 135 return -EINVAL; 136 137 if (domain->iova_cookie) 138 return -EEXIST; 139 140 cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE); 141 if (!cookie) 142 return -ENOMEM; 143 144 cookie->msi_iova = base; 145 domain->iova_cookie = cookie; 146 return 0; 147 } 148 EXPORT_SYMBOL(iommu_get_msi_cookie); 149 150 /** 151 * iommu_put_dma_cookie - Release a domain's DMA mapping resources 152 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or 153 * iommu_get_msi_cookie() 154 * 155 * IOMMU drivers should normally call this from their domain_free callback. 156 */ 157 void iommu_put_dma_cookie(struct iommu_domain *domain) 158 { 159 struct iommu_dma_cookie *cookie = domain->iova_cookie; 160 struct iommu_dma_msi_page *msi, *tmp; 161 162 if (!cookie) 163 return; 164 165 if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule) 166 put_iova_domain(&cookie->iovad); 167 168 list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) { 169 list_del(&msi->list); 170 kfree(msi); 171 } 172 kfree(cookie); 173 domain->iova_cookie = NULL; 174 } 175 EXPORT_SYMBOL(iommu_put_dma_cookie); 176 177 /** 178 * iommu_dma_get_resv_regions - Reserved region driver helper 179 * @dev: Device from iommu_get_resv_regions() 180 * @list: Reserved region list from iommu_get_resv_regions() 181 * 182 * IOMMU drivers can use this to implement their .get_resv_regions callback 183 * for general non-IOMMU-specific reservations. Currently, this covers GICv3 184 * ITS region reservation on ACPI based ARM platforms that may require HW MSI 185 * reservation. 186 */ 187 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list) 188 { 189 190 if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode)) 191 iort_iommu_msi_get_resv_regions(dev, list); 192 193 } 194 EXPORT_SYMBOL(iommu_dma_get_resv_regions); 195 196 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie, 197 phys_addr_t start, phys_addr_t end) 198 { 199 struct iova_domain *iovad = &cookie->iovad; 200 struct iommu_dma_msi_page *msi_page; 201 int i, num_pages; 202 203 start -= iova_offset(iovad, start); 204 num_pages = iova_align(iovad, end - start) >> iova_shift(iovad); 205 206 for (i = 0; i < num_pages; i++) { 207 msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL); 208 if (!msi_page) 209 return -ENOMEM; 210 211 msi_page->phys = start; 212 msi_page->iova = start; 213 INIT_LIST_HEAD(&msi_page->list); 214 list_add(&msi_page->list, &cookie->msi_page_list); 215 start += iovad->granule; 216 } 217 218 return 0; 219 } 220 221 static int iova_reserve_pci_windows(struct pci_dev *dev, 222 struct iova_domain *iovad) 223 { 224 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus); 225 struct resource_entry *window; 226 unsigned long lo, hi; 227 phys_addr_t start = 0, end; 228 229 resource_list_for_each_entry(window, &bridge->windows) { 230 if (resource_type(window->res) != IORESOURCE_MEM) 231 continue; 232 233 lo = iova_pfn(iovad, window->res->start - window->offset); 234 hi = iova_pfn(iovad, window->res->end - window->offset); 235 reserve_iova(iovad, lo, hi); 236 } 237 238 /* Get reserved DMA windows from host bridge */ 239 resource_list_for_each_entry(window, &bridge->dma_ranges) { 240 end = window->res->start - window->offset; 241 resv_iova: 242 if (end > start) { 243 lo = iova_pfn(iovad, start); 244 hi = iova_pfn(iovad, end); 245 reserve_iova(iovad, lo, hi); 246 } else if (end < start) { 247 /* dma_ranges list should be sorted */ 248 dev_err(&dev->dev, 249 "Failed to reserve IOVA [%pa-%pa]\n", 250 &start, &end); 251 return -EINVAL; 252 } 253 254 start = window->res->end - window->offset + 1; 255 /* If window is last entry */ 256 if (window->node.next == &bridge->dma_ranges && 257 end != ~(phys_addr_t)0) { 258 end = ~(phys_addr_t)0; 259 goto resv_iova; 260 } 261 } 262 263 return 0; 264 } 265 266 static int iova_reserve_iommu_regions(struct device *dev, 267 struct iommu_domain *domain) 268 { 269 struct iommu_dma_cookie *cookie = domain->iova_cookie; 270 struct iova_domain *iovad = &cookie->iovad; 271 struct iommu_resv_region *region; 272 LIST_HEAD(resv_regions); 273 int ret = 0; 274 275 if (dev_is_pci(dev)) { 276 ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad); 277 if (ret) 278 return ret; 279 } 280 281 iommu_get_resv_regions(dev, &resv_regions); 282 list_for_each_entry(region, &resv_regions, list) { 283 unsigned long lo, hi; 284 285 /* We ARE the software that manages these! */ 286 if (region->type == IOMMU_RESV_SW_MSI) 287 continue; 288 289 lo = iova_pfn(iovad, region->start); 290 hi = iova_pfn(iovad, region->start + region->length - 1); 291 reserve_iova(iovad, lo, hi); 292 293 if (region->type == IOMMU_RESV_MSI) 294 ret = cookie_init_hw_msi_region(cookie, region->start, 295 region->start + region->length); 296 if (ret) 297 break; 298 } 299 iommu_put_resv_regions(dev, &resv_regions); 300 301 return ret; 302 } 303 304 static void iommu_dma_flush_iotlb_all(struct iova_domain *iovad) 305 { 306 struct iommu_dma_cookie *cookie; 307 struct iommu_domain *domain; 308 309 cookie = container_of(iovad, struct iommu_dma_cookie, iovad); 310 domain = cookie->fq_domain; 311 312 domain->ops->flush_iotlb_all(domain); 313 } 314 315 static bool dev_is_untrusted(struct device *dev) 316 { 317 return dev_is_pci(dev) && to_pci_dev(dev)->untrusted; 318 } 319 320 /** 321 * iommu_dma_init_domain - Initialise a DMA mapping domain 322 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() 323 * @base: IOVA at which the mappable address space starts 324 * @limit: Last address of the IOVA space 325 * @dev: Device the domain is being initialised for 326 * 327 * @base and @limit + 1 should be exact multiples of IOMMU page granularity to 328 * avoid rounding surprises. If necessary, we reserve the page at address 0 329 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but 330 * any change which could make prior IOVAs invalid will fail. 331 */ 332 static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base, 333 dma_addr_t limit, struct device *dev) 334 { 335 struct iommu_dma_cookie *cookie = domain->iova_cookie; 336 unsigned long order, base_pfn; 337 struct iova_domain *iovad; 338 339 if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE) 340 return -EINVAL; 341 342 iovad = &cookie->iovad; 343 344 /* Use the smallest supported page size for IOVA granularity */ 345 order = __ffs(domain->pgsize_bitmap); 346 base_pfn = max_t(unsigned long, 1, base >> order); 347 348 /* Check the domain allows at least some access to the device... */ 349 if (domain->geometry.force_aperture) { 350 if (base > domain->geometry.aperture_end || 351 limit < domain->geometry.aperture_start) { 352 pr_warn("specified DMA range outside IOMMU capability\n"); 353 return -EFAULT; 354 } 355 /* ...then finally give it a kicking to make sure it fits */ 356 base_pfn = max_t(unsigned long, base_pfn, 357 domain->geometry.aperture_start >> order); 358 } 359 360 /* start_pfn is always nonzero for an already-initialised domain */ 361 if (iovad->start_pfn) { 362 if (1UL << order != iovad->granule || 363 base_pfn != iovad->start_pfn) { 364 pr_warn("Incompatible range for DMA domain\n"); 365 return -EFAULT; 366 } 367 368 return 0; 369 } 370 371 init_iova_domain(iovad, 1UL << order, base_pfn); 372 373 if (!cookie->fq_domain && (!dev || !dev_is_untrusted(dev)) && 374 domain->ops->flush_iotlb_all && !iommu_get_dma_strict(domain)) { 375 if (init_iova_flush_queue(iovad, iommu_dma_flush_iotlb_all, 376 iommu_dma_entry_dtor)) 377 pr_warn("iova flush queue initialization failed\n"); 378 else 379 cookie->fq_domain = domain; 380 } 381 382 if (!dev) 383 return 0; 384 385 return iova_reserve_iommu_regions(dev, domain); 386 } 387 388 /** 389 * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API 390 * page flags. 391 * @dir: Direction of DMA transfer 392 * @coherent: Is the DMA master cache-coherent? 393 * @attrs: DMA attributes for the mapping 394 * 395 * Return: corresponding IOMMU API page protection flags 396 */ 397 static int dma_info_to_prot(enum dma_data_direction dir, bool coherent, 398 unsigned long attrs) 399 { 400 int prot = coherent ? IOMMU_CACHE : 0; 401 402 if (attrs & DMA_ATTR_PRIVILEGED) 403 prot |= IOMMU_PRIV; 404 405 switch (dir) { 406 case DMA_BIDIRECTIONAL: 407 return prot | IOMMU_READ | IOMMU_WRITE; 408 case DMA_TO_DEVICE: 409 return prot | IOMMU_READ; 410 case DMA_FROM_DEVICE: 411 return prot | IOMMU_WRITE; 412 default: 413 return 0; 414 } 415 } 416 417 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain, 418 size_t size, u64 dma_limit, struct device *dev) 419 { 420 struct iommu_dma_cookie *cookie = domain->iova_cookie; 421 struct iova_domain *iovad = &cookie->iovad; 422 unsigned long shift, iova_len, iova = 0; 423 424 if (cookie->type == IOMMU_DMA_MSI_COOKIE) { 425 cookie->msi_iova += size; 426 return cookie->msi_iova - size; 427 } 428 429 shift = iova_shift(iovad); 430 iova_len = size >> shift; 431 /* 432 * Freeing non-power-of-two-sized allocations back into the IOVA caches 433 * will come back to bite us badly, so we have to waste a bit of space 434 * rounding up anything cacheable to make sure that can't happen. The 435 * order of the unadjusted size will still match upon freeing. 436 */ 437 if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1))) 438 iova_len = roundup_pow_of_two(iova_len); 439 440 dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit); 441 442 if (domain->geometry.force_aperture) 443 dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end); 444 445 /* Try to get PCI devices a SAC address */ 446 if (dma_limit > DMA_BIT_MASK(32) && !iommu_dma_forcedac && dev_is_pci(dev)) 447 iova = alloc_iova_fast(iovad, iova_len, 448 DMA_BIT_MASK(32) >> shift, false); 449 450 if (!iova) 451 iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift, 452 true); 453 454 return (dma_addr_t)iova << shift; 455 } 456 457 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie, 458 dma_addr_t iova, size_t size, struct page *freelist) 459 { 460 struct iova_domain *iovad = &cookie->iovad; 461 462 /* The MSI case is only ever cleaning up its most recent allocation */ 463 if (cookie->type == IOMMU_DMA_MSI_COOKIE) 464 cookie->msi_iova -= size; 465 else if (cookie->fq_domain) /* non-strict mode */ 466 queue_iova(iovad, iova_pfn(iovad, iova), 467 size >> iova_shift(iovad), 468 (unsigned long)freelist); 469 else 470 free_iova_fast(iovad, iova_pfn(iovad, iova), 471 size >> iova_shift(iovad)); 472 } 473 474 static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr, 475 size_t size) 476 { 477 struct iommu_domain *domain = iommu_get_dma_domain(dev); 478 struct iommu_dma_cookie *cookie = domain->iova_cookie; 479 struct iova_domain *iovad = &cookie->iovad; 480 size_t iova_off = iova_offset(iovad, dma_addr); 481 struct iommu_iotlb_gather iotlb_gather; 482 size_t unmapped; 483 484 dma_addr -= iova_off; 485 size = iova_align(iovad, size + iova_off); 486 iommu_iotlb_gather_init(&iotlb_gather); 487 488 unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather); 489 WARN_ON(unmapped != size); 490 491 if (!cookie->fq_domain) 492 iommu_iotlb_sync(domain, &iotlb_gather); 493 iommu_dma_free_iova(cookie, dma_addr, size, iotlb_gather.freelist); 494 } 495 496 static void __iommu_dma_unmap_swiotlb(struct device *dev, dma_addr_t dma_addr, 497 size_t size, enum dma_data_direction dir, 498 unsigned long attrs) 499 { 500 struct iommu_domain *domain = iommu_get_dma_domain(dev); 501 phys_addr_t phys; 502 503 phys = iommu_iova_to_phys(domain, dma_addr); 504 if (WARN_ON(!phys)) 505 return; 506 507 __iommu_dma_unmap(dev, dma_addr, size); 508 509 if (unlikely(is_swiotlb_buffer(phys))) 510 swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs); 511 } 512 513 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys, 514 size_t size, int prot, u64 dma_mask) 515 { 516 struct iommu_domain *domain = iommu_get_dma_domain(dev); 517 struct iommu_dma_cookie *cookie = domain->iova_cookie; 518 struct iova_domain *iovad = &cookie->iovad; 519 size_t iova_off = iova_offset(iovad, phys); 520 dma_addr_t iova; 521 522 if (static_branch_unlikely(&iommu_deferred_attach_enabled) && 523 iommu_deferred_attach(dev, domain)) 524 return DMA_MAPPING_ERROR; 525 526 size = iova_align(iovad, size + iova_off); 527 528 iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev); 529 if (!iova) 530 return DMA_MAPPING_ERROR; 531 532 if (iommu_map_atomic(domain, iova, phys - iova_off, size, prot)) { 533 iommu_dma_free_iova(cookie, iova, size, NULL); 534 return DMA_MAPPING_ERROR; 535 } 536 return iova + iova_off; 537 } 538 539 static dma_addr_t __iommu_dma_map_swiotlb(struct device *dev, phys_addr_t phys, 540 size_t org_size, dma_addr_t dma_mask, bool coherent, 541 enum dma_data_direction dir, unsigned long attrs) 542 { 543 int prot = dma_info_to_prot(dir, coherent, attrs); 544 struct iommu_domain *domain = iommu_get_dma_domain(dev); 545 struct iommu_dma_cookie *cookie = domain->iova_cookie; 546 struct iova_domain *iovad = &cookie->iovad; 547 size_t aligned_size = org_size; 548 void *padding_start; 549 size_t padding_size; 550 dma_addr_t iova; 551 552 /* 553 * If both the physical buffer start address and size are 554 * page aligned, we don't need to use a bounce page. 555 */ 556 if (IS_ENABLED(CONFIG_SWIOTLB) && dev_is_untrusted(dev) && 557 iova_offset(iovad, phys | org_size)) { 558 aligned_size = iova_align(iovad, org_size); 559 phys = swiotlb_tbl_map_single(dev, phys, org_size, 560 aligned_size, dir, attrs); 561 562 if (phys == DMA_MAPPING_ERROR) 563 return DMA_MAPPING_ERROR; 564 565 /* Cleanup the padding area. */ 566 padding_start = phys_to_virt(phys); 567 padding_size = aligned_size; 568 569 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && 570 (dir == DMA_TO_DEVICE || 571 dir == DMA_BIDIRECTIONAL)) { 572 padding_start += org_size; 573 padding_size -= org_size; 574 } 575 576 memset(padding_start, 0, padding_size); 577 } 578 579 iova = __iommu_dma_map(dev, phys, aligned_size, prot, dma_mask); 580 if (iova == DMA_MAPPING_ERROR && is_swiotlb_buffer(phys)) 581 swiotlb_tbl_unmap_single(dev, phys, org_size, dir, attrs); 582 return iova; 583 } 584 585 static void __iommu_dma_free_pages(struct page **pages, int count) 586 { 587 while (count--) 588 __free_page(pages[count]); 589 kvfree(pages); 590 } 591 592 static struct page **__iommu_dma_alloc_pages(struct device *dev, 593 unsigned int count, unsigned long order_mask, gfp_t gfp) 594 { 595 struct page **pages; 596 unsigned int i = 0, nid = dev_to_node(dev); 597 598 order_mask &= (2U << MAX_ORDER) - 1; 599 if (!order_mask) 600 return NULL; 601 602 pages = kvzalloc(count * sizeof(*pages), GFP_KERNEL); 603 if (!pages) 604 return NULL; 605 606 /* IOMMU can map any pages, so himem can also be used here */ 607 gfp |= __GFP_NOWARN | __GFP_HIGHMEM; 608 609 /* It makes no sense to muck about with huge pages */ 610 gfp &= ~__GFP_COMP; 611 612 while (count) { 613 struct page *page = NULL; 614 unsigned int order_size; 615 616 /* 617 * Higher-order allocations are a convenience rather 618 * than a necessity, hence using __GFP_NORETRY until 619 * falling back to minimum-order allocations. 620 */ 621 for (order_mask &= (2U << __fls(count)) - 1; 622 order_mask; order_mask &= ~order_size) { 623 unsigned int order = __fls(order_mask); 624 gfp_t alloc_flags = gfp; 625 626 order_size = 1U << order; 627 if (order_mask > order_size) 628 alloc_flags |= __GFP_NORETRY; 629 page = alloc_pages_node(nid, alloc_flags, order); 630 if (!page) 631 continue; 632 if (order) 633 split_page(page, order); 634 break; 635 } 636 if (!page) { 637 __iommu_dma_free_pages(pages, i); 638 return NULL; 639 } 640 count -= order_size; 641 while (order_size--) 642 pages[i++] = page++; 643 } 644 return pages; 645 } 646 647 /* 648 * If size is less than PAGE_SIZE, then a full CPU page will be allocated, 649 * but an IOMMU which supports smaller pages might not map the whole thing. 650 */ 651 static struct page **__iommu_dma_alloc_noncontiguous(struct device *dev, 652 size_t size, struct sg_table *sgt, gfp_t gfp, pgprot_t prot, 653 unsigned long attrs) 654 { 655 struct iommu_domain *domain = iommu_get_dma_domain(dev); 656 struct iommu_dma_cookie *cookie = domain->iova_cookie; 657 struct iova_domain *iovad = &cookie->iovad; 658 bool coherent = dev_is_dma_coherent(dev); 659 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs); 660 unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap; 661 struct page **pages; 662 dma_addr_t iova; 663 664 if (static_branch_unlikely(&iommu_deferred_attach_enabled) && 665 iommu_deferred_attach(dev, domain)) 666 return NULL; 667 668 min_size = alloc_sizes & -alloc_sizes; 669 if (min_size < PAGE_SIZE) { 670 min_size = PAGE_SIZE; 671 alloc_sizes |= PAGE_SIZE; 672 } else { 673 size = ALIGN(size, min_size); 674 } 675 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES) 676 alloc_sizes = min_size; 677 678 count = PAGE_ALIGN(size) >> PAGE_SHIFT; 679 pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT, 680 gfp); 681 if (!pages) 682 return NULL; 683 684 size = iova_align(iovad, size); 685 iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev); 686 if (!iova) 687 goto out_free_pages; 688 689 if (sg_alloc_table_from_pages(sgt, pages, count, 0, size, GFP_KERNEL)) 690 goto out_free_iova; 691 692 if (!(ioprot & IOMMU_CACHE)) { 693 struct scatterlist *sg; 694 int i; 695 696 for_each_sg(sgt->sgl, sg, sgt->orig_nents, i) 697 arch_dma_prep_coherent(sg_page(sg), sg->length); 698 } 699 700 if (iommu_map_sg_atomic(domain, iova, sgt->sgl, sgt->orig_nents, ioprot) 701 < size) 702 goto out_free_sg; 703 704 sgt->sgl->dma_address = iova; 705 sgt->sgl->dma_length = size; 706 return pages; 707 708 out_free_sg: 709 sg_free_table(sgt); 710 out_free_iova: 711 iommu_dma_free_iova(cookie, iova, size, NULL); 712 out_free_pages: 713 __iommu_dma_free_pages(pages, count); 714 return NULL; 715 } 716 717 static void *iommu_dma_alloc_remap(struct device *dev, size_t size, 718 dma_addr_t *dma_handle, gfp_t gfp, pgprot_t prot, 719 unsigned long attrs) 720 { 721 struct page **pages; 722 struct sg_table sgt; 723 void *vaddr; 724 725 pages = __iommu_dma_alloc_noncontiguous(dev, size, &sgt, gfp, prot, 726 attrs); 727 if (!pages) 728 return NULL; 729 *dma_handle = sgt.sgl->dma_address; 730 sg_free_table(&sgt); 731 vaddr = dma_common_pages_remap(pages, size, prot, 732 __builtin_return_address(0)); 733 if (!vaddr) 734 goto out_unmap; 735 return vaddr; 736 737 out_unmap: 738 __iommu_dma_unmap(dev, *dma_handle, size); 739 __iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT); 740 return NULL; 741 } 742 743 #ifdef CONFIG_DMA_REMAP 744 static struct sg_table *iommu_dma_alloc_noncontiguous(struct device *dev, 745 size_t size, enum dma_data_direction dir, gfp_t gfp, 746 unsigned long attrs) 747 { 748 struct dma_sgt_handle *sh; 749 750 sh = kmalloc(sizeof(*sh), gfp); 751 if (!sh) 752 return NULL; 753 754 sh->pages = __iommu_dma_alloc_noncontiguous(dev, size, &sh->sgt, gfp, 755 PAGE_KERNEL, attrs); 756 if (!sh->pages) { 757 kfree(sh); 758 return NULL; 759 } 760 return &sh->sgt; 761 } 762 763 static void iommu_dma_free_noncontiguous(struct device *dev, size_t size, 764 struct sg_table *sgt, enum dma_data_direction dir) 765 { 766 struct dma_sgt_handle *sh = sgt_handle(sgt); 767 768 __iommu_dma_unmap(dev, sgt->sgl->dma_address, size); 769 __iommu_dma_free_pages(sh->pages, PAGE_ALIGN(size) >> PAGE_SHIFT); 770 sg_free_table(&sh->sgt); 771 } 772 #endif /* CONFIG_DMA_REMAP */ 773 774 static void iommu_dma_sync_single_for_cpu(struct device *dev, 775 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir) 776 { 777 phys_addr_t phys; 778 779 if (dev_is_dma_coherent(dev) && !dev_is_untrusted(dev)) 780 return; 781 782 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle); 783 if (!dev_is_dma_coherent(dev)) 784 arch_sync_dma_for_cpu(phys, size, dir); 785 786 if (is_swiotlb_buffer(phys)) 787 swiotlb_sync_single_for_cpu(dev, phys, size, dir); 788 } 789 790 static void iommu_dma_sync_single_for_device(struct device *dev, 791 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir) 792 { 793 phys_addr_t phys; 794 795 if (dev_is_dma_coherent(dev) && !dev_is_untrusted(dev)) 796 return; 797 798 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle); 799 if (is_swiotlb_buffer(phys)) 800 swiotlb_sync_single_for_device(dev, phys, size, dir); 801 802 if (!dev_is_dma_coherent(dev)) 803 arch_sync_dma_for_device(phys, size, dir); 804 } 805 806 static void iommu_dma_sync_sg_for_cpu(struct device *dev, 807 struct scatterlist *sgl, int nelems, 808 enum dma_data_direction dir) 809 { 810 struct scatterlist *sg; 811 int i; 812 813 if (dev_is_dma_coherent(dev) && !dev_is_untrusted(dev)) 814 return; 815 816 for_each_sg(sgl, sg, nelems, i) { 817 if (!dev_is_dma_coherent(dev)) 818 arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir); 819 820 if (is_swiotlb_buffer(sg_phys(sg))) 821 swiotlb_sync_single_for_cpu(dev, sg_phys(sg), 822 sg->length, dir); 823 } 824 } 825 826 static void iommu_dma_sync_sg_for_device(struct device *dev, 827 struct scatterlist *sgl, int nelems, 828 enum dma_data_direction dir) 829 { 830 struct scatterlist *sg; 831 int i; 832 833 if (dev_is_dma_coherent(dev) && !dev_is_untrusted(dev)) 834 return; 835 836 for_each_sg(sgl, sg, nelems, i) { 837 if (is_swiotlb_buffer(sg_phys(sg))) 838 swiotlb_sync_single_for_device(dev, sg_phys(sg), 839 sg->length, dir); 840 841 if (!dev_is_dma_coherent(dev)) 842 arch_sync_dma_for_device(sg_phys(sg), sg->length, dir); 843 } 844 } 845 846 static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page, 847 unsigned long offset, size_t size, enum dma_data_direction dir, 848 unsigned long attrs) 849 { 850 phys_addr_t phys = page_to_phys(page) + offset; 851 bool coherent = dev_is_dma_coherent(dev); 852 dma_addr_t dma_handle; 853 854 dma_handle = __iommu_dma_map_swiotlb(dev, phys, size, dma_get_mask(dev), 855 coherent, dir, attrs); 856 if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC) && 857 dma_handle != DMA_MAPPING_ERROR) 858 arch_sync_dma_for_device(phys, size, dir); 859 return dma_handle; 860 } 861 862 static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle, 863 size_t size, enum dma_data_direction dir, unsigned long attrs) 864 { 865 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 866 iommu_dma_sync_single_for_cpu(dev, dma_handle, size, dir); 867 __iommu_dma_unmap_swiotlb(dev, dma_handle, size, dir, attrs); 868 } 869 870 /* 871 * Prepare a successfully-mapped scatterlist to give back to the caller. 872 * 873 * At this point the segments are already laid out by iommu_dma_map_sg() to 874 * avoid individually crossing any boundaries, so we merely need to check a 875 * segment's start address to avoid concatenating across one. 876 */ 877 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents, 878 dma_addr_t dma_addr) 879 { 880 struct scatterlist *s, *cur = sg; 881 unsigned long seg_mask = dma_get_seg_boundary(dev); 882 unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev); 883 int i, count = 0; 884 885 for_each_sg(sg, s, nents, i) { 886 /* Restore this segment's original unaligned fields first */ 887 unsigned int s_iova_off = sg_dma_address(s); 888 unsigned int s_length = sg_dma_len(s); 889 unsigned int s_iova_len = s->length; 890 891 s->offset += s_iova_off; 892 s->length = s_length; 893 sg_dma_address(s) = DMA_MAPPING_ERROR; 894 sg_dma_len(s) = 0; 895 896 /* 897 * Now fill in the real DMA data. If... 898 * - there is a valid output segment to append to 899 * - and this segment starts on an IOVA page boundary 900 * - but doesn't fall at a segment boundary 901 * - and wouldn't make the resulting output segment too long 902 */ 903 if (cur_len && !s_iova_off && (dma_addr & seg_mask) && 904 (max_len - cur_len >= s_length)) { 905 /* ...then concatenate it with the previous one */ 906 cur_len += s_length; 907 } else { 908 /* Otherwise start the next output segment */ 909 if (i > 0) 910 cur = sg_next(cur); 911 cur_len = s_length; 912 count++; 913 914 sg_dma_address(cur) = dma_addr + s_iova_off; 915 } 916 917 sg_dma_len(cur) = cur_len; 918 dma_addr += s_iova_len; 919 920 if (s_length + s_iova_off < s_iova_len) 921 cur_len = 0; 922 } 923 return count; 924 } 925 926 /* 927 * If mapping failed, then just restore the original list, 928 * but making sure the DMA fields are invalidated. 929 */ 930 static void __invalidate_sg(struct scatterlist *sg, int nents) 931 { 932 struct scatterlist *s; 933 int i; 934 935 for_each_sg(sg, s, nents, i) { 936 if (sg_dma_address(s) != DMA_MAPPING_ERROR) 937 s->offset += sg_dma_address(s); 938 if (sg_dma_len(s)) 939 s->length = sg_dma_len(s); 940 sg_dma_address(s) = DMA_MAPPING_ERROR; 941 sg_dma_len(s) = 0; 942 } 943 } 944 945 static void iommu_dma_unmap_sg_swiotlb(struct device *dev, struct scatterlist *sg, 946 int nents, enum dma_data_direction dir, unsigned long attrs) 947 { 948 struct scatterlist *s; 949 int i; 950 951 for_each_sg(sg, s, nents, i) 952 __iommu_dma_unmap_swiotlb(dev, sg_dma_address(s), 953 sg_dma_len(s), dir, attrs); 954 } 955 956 static int iommu_dma_map_sg_swiotlb(struct device *dev, struct scatterlist *sg, 957 int nents, enum dma_data_direction dir, unsigned long attrs) 958 { 959 struct scatterlist *s; 960 int i; 961 962 for_each_sg(sg, s, nents, i) { 963 sg_dma_address(s) = __iommu_dma_map_swiotlb(dev, sg_phys(s), 964 s->length, dma_get_mask(dev), 965 dev_is_dma_coherent(dev), dir, attrs); 966 if (sg_dma_address(s) == DMA_MAPPING_ERROR) 967 goto out_unmap; 968 sg_dma_len(s) = s->length; 969 } 970 971 return nents; 972 973 out_unmap: 974 iommu_dma_unmap_sg_swiotlb(dev, sg, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC); 975 return 0; 976 } 977 978 /* 979 * The DMA API client is passing in a scatterlist which could describe 980 * any old buffer layout, but the IOMMU API requires everything to be 981 * aligned to IOMMU pages. Hence the need for this complicated bit of 982 * impedance-matching, to be able to hand off a suitably-aligned list, 983 * but still preserve the original offsets and sizes for the caller. 984 */ 985 static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg, 986 int nents, enum dma_data_direction dir, unsigned long attrs) 987 { 988 struct iommu_domain *domain = iommu_get_dma_domain(dev); 989 struct iommu_dma_cookie *cookie = domain->iova_cookie; 990 struct iova_domain *iovad = &cookie->iovad; 991 struct scatterlist *s, *prev = NULL; 992 int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs); 993 dma_addr_t iova; 994 size_t iova_len = 0; 995 unsigned long mask = dma_get_seg_boundary(dev); 996 int i; 997 998 if (static_branch_unlikely(&iommu_deferred_attach_enabled) && 999 iommu_deferred_attach(dev, domain)) 1000 return 0; 1001 1002 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 1003 iommu_dma_sync_sg_for_device(dev, sg, nents, dir); 1004 1005 if (dev_is_untrusted(dev)) 1006 return iommu_dma_map_sg_swiotlb(dev, sg, nents, dir, attrs); 1007 1008 /* 1009 * Work out how much IOVA space we need, and align the segments to 1010 * IOVA granules for the IOMMU driver to handle. With some clever 1011 * trickery we can modify the list in-place, but reversibly, by 1012 * stashing the unaligned parts in the as-yet-unused DMA fields. 1013 */ 1014 for_each_sg(sg, s, nents, i) { 1015 size_t s_iova_off = iova_offset(iovad, s->offset); 1016 size_t s_length = s->length; 1017 size_t pad_len = (mask - iova_len + 1) & mask; 1018 1019 sg_dma_address(s) = s_iova_off; 1020 sg_dma_len(s) = s_length; 1021 s->offset -= s_iova_off; 1022 s_length = iova_align(iovad, s_length + s_iova_off); 1023 s->length = s_length; 1024 1025 /* 1026 * Due to the alignment of our single IOVA allocation, we can 1027 * depend on these assumptions about the segment boundary mask: 1028 * - If mask size >= IOVA size, then the IOVA range cannot 1029 * possibly fall across a boundary, so we don't care. 1030 * - If mask size < IOVA size, then the IOVA range must start 1031 * exactly on a boundary, therefore we can lay things out 1032 * based purely on segment lengths without needing to know 1033 * the actual addresses beforehand. 1034 * - The mask must be a power of 2, so pad_len == 0 if 1035 * iova_len == 0, thus we cannot dereference prev the first 1036 * time through here (i.e. before it has a meaningful value). 1037 */ 1038 if (pad_len && pad_len < s_length - 1) { 1039 prev->length += pad_len; 1040 iova_len += pad_len; 1041 } 1042 1043 iova_len += s_length; 1044 prev = s; 1045 } 1046 1047 iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev); 1048 if (!iova) 1049 goto out_restore_sg; 1050 1051 /* 1052 * We'll leave any physical concatenation to the IOMMU driver's 1053 * implementation - it knows better than we do. 1054 */ 1055 if (iommu_map_sg_atomic(domain, iova, sg, nents, prot) < iova_len) 1056 goto out_free_iova; 1057 1058 return __finalise_sg(dev, sg, nents, iova); 1059 1060 out_free_iova: 1061 iommu_dma_free_iova(cookie, iova, iova_len, NULL); 1062 out_restore_sg: 1063 __invalidate_sg(sg, nents); 1064 return 0; 1065 } 1066 1067 static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, 1068 int nents, enum dma_data_direction dir, unsigned long attrs) 1069 { 1070 dma_addr_t start, end; 1071 struct scatterlist *tmp; 1072 int i; 1073 1074 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 1075 iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir); 1076 1077 if (dev_is_untrusted(dev)) { 1078 iommu_dma_unmap_sg_swiotlb(dev, sg, nents, dir, attrs); 1079 return; 1080 } 1081 1082 /* 1083 * The scatterlist segments are mapped into a single 1084 * contiguous IOVA allocation, so this is incredibly easy. 1085 */ 1086 start = sg_dma_address(sg); 1087 for_each_sg(sg_next(sg), tmp, nents - 1, i) { 1088 if (sg_dma_len(tmp) == 0) 1089 break; 1090 sg = tmp; 1091 } 1092 end = sg_dma_address(sg) + sg_dma_len(sg); 1093 __iommu_dma_unmap(dev, start, end - start); 1094 } 1095 1096 static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys, 1097 size_t size, enum dma_data_direction dir, unsigned long attrs) 1098 { 1099 return __iommu_dma_map(dev, phys, size, 1100 dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO, 1101 dma_get_mask(dev)); 1102 } 1103 1104 static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle, 1105 size_t size, enum dma_data_direction dir, unsigned long attrs) 1106 { 1107 __iommu_dma_unmap(dev, handle, size); 1108 } 1109 1110 static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr) 1111 { 1112 size_t alloc_size = PAGE_ALIGN(size); 1113 int count = alloc_size >> PAGE_SHIFT; 1114 struct page *page = NULL, **pages = NULL; 1115 1116 /* Non-coherent atomic allocation? Easy */ 1117 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && 1118 dma_free_from_pool(dev, cpu_addr, alloc_size)) 1119 return; 1120 1121 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) { 1122 /* 1123 * If it the address is remapped, then it's either non-coherent 1124 * or highmem CMA, or an iommu_dma_alloc_remap() construction. 1125 */ 1126 pages = dma_common_find_pages(cpu_addr); 1127 if (!pages) 1128 page = vmalloc_to_page(cpu_addr); 1129 dma_common_free_remap(cpu_addr, alloc_size); 1130 } else { 1131 /* Lowmem means a coherent atomic or CMA allocation */ 1132 page = virt_to_page(cpu_addr); 1133 } 1134 1135 if (pages) 1136 __iommu_dma_free_pages(pages, count); 1137 if (page) 1138 dma_free_contiguous(dev, page, alloc_size); 1139 } 1140 1141 static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr, 1142 dma_addr_t handle, unsigned long attrs) 1143 { 1144 __iommu_dma_unmap(dev, handle, size); 1145 __iommu_dma_free(dev, size, cpu_addr); 1146 } 1147 1148 static void *iommu_dma_alloc_pages(struct device *dev, size_t size, 1149 struct page **pagep, gfp_t gfp, unsigned long attrs) 1150 { 1151 bool coherent = dev_is_dma_coherent(dev); 1152 size_t alloc_size = PAGE_ALIGN(size); 1153 int node = dev_to_node(dev); 1154 struct page *page = NULL; 1155 void *cpu_addr; 1156 1157 page = dma_alloc_contiguous(dev, alloc_size, gfp); 1158 if (!page) 1159 page = alloc_pages_node(node, gfp, get_order(alloc_size)); 1160 if (!page) 1161 return NULL; 1162 1163 if (IS_ENABLED(CONFIG_DMA_REMAP) && (!coherent || PageHighMem(page))) { 1164 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs); 1165 1166 cpu_addr = dma_common_contiguous_remap(page, alloc_size, 1167 prot, __builtin_return_address(0)); 1168 if (!cpu_addr) 1169 goto out_free_pages; 1170 1171 if (!coherent) 1172 arch_dma_prep_coherent(page, size); 1173 } else { 1174 cpu_addr = page_address(page); 1175 } 1176 1177 *pagep = page; 1178 memset(cpu_addr, 0, alloc_size); 1179 return cpu_addr; 1180 out_free_pages: 1181 dma_free_contiguous(dev, page, alloc_size); 1182 return NULL; 1183 } 1184 1185 static void *iommu_dma_alloc(struct device *dev, size_t size, 1186 dma_addr_t *handle, gfp_t gfp, unsigned long attrs) 1187 { 1188 bool coherent = dev_is_dma_coherent(dev); 1189 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs); 1190 struct page *page = NULL; 1191 void *cpu_addr; 1192 1193 gfp |= __GFP_ZERO; 1194 1195 if (IS_ENABLED(CONFIG_DMA_REMAP) && gfpflags_allow_blocking(gfp) && 1196 !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) { 1197 return iommu_dma_alloc_remap(dev, size, handle, gfp, 1198 dma_pgprot(dev, PAGE_KERNEL, attrs), attrs); 1199 } 1200 1201 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && 1202 !gfpflags_allow_blocking(gfp) && !coherent) 1203 page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr, 1204 gfp, NULL); 1205 else 1206 cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs); 1207 if (!cpu_addr) 1208 return NULL; 1209 1210 *handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot, 1211 dev->coherent_dma_mask); 1212 if (*handle == DMA_MAPPING_ERROR) { 1213 __iommu_dma_free(dev, size, cpu_addr); 1214 return NULL; 1215 } 1216 1217 return cpu_addr; 1218 } 1219 1220 static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma, 1221 void *cpu_addr, dma_addr_t dma_addr, size_t size, 1222 unsigned long attrs) 1223 { 1224 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 1225 unsigned long pfn, off = vma->vm_pgoff; 1226 int ret; 1227 1228 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs); 1229 1230 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) 1231 return ret; 1232 1233 if (off >= nr_pages || vma_pages(vma) > nr_pages - off) 1234 return -ENXIO; 1235 1236 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) { 1237 struct page **pages = dma_common_find_pages(cpu_addr); 1238 1239 if (pages) 1240 return vm_map_pages(vma, pages, nr_pages); 1241 pfn = vmalloc_to_pfn(cpu_addr); 1242 } else { 1243 pfn = page_to_pfn(virt_to_page(cpu_addr)); 1244 } 1245 1246 return remap_pfn_range(vma, vma->vm_start, pfn + off, 1247 vma->vm_end - vma->vm_start, 1248 vma->vm_page_prot); 1249 } 1250 1251 static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt, 1252 void *cpu_addr, dma_addr_t dma_addr, size_t size, 1253 unsigned long attrs) 1254 { 1255 struct page *page; 1256 int ret; 1257 1258 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) { 1259 struct page **pages = dma_common_find_pages(cpu_addr); 1260 1261 if (pages) { 1262 return sg_alloc_table_from_pages(sgt, pages, 1263 PAGE_ALIGN(size) >> PAGE_SHIFT, 1264 0, size, GFP_KERNEL); 1265 } 1266 1267 page = vmalloc_to_page(cpu_addr); 1268 } else { 1269 page = virt_to_page(cpu_addr); 1270 } 1271 1272 ret = sg_alloc_table(sgt, 1, GFP_KERNEL); 1273 if (!ret) 1274 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); 1275 return ret; 1276 } 1277 1278 static unsigned long iommu_dma_get_merge_boundary(struct device *dev) 1279 { 1280 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1281 1282 return (1UL << __ffs(domain->pgsize_bitmap)) - 1; 1283 } 1284 1285 static const struct dma_map_ops iommu_dma_ops = { 1286 .alloc = iommu_dma_alloc, 1287 .free = iommu_dma_free, 1288 .alloc_pages = dma_common_alloc_pages, 1289 .free_pages = dma_common_free_pages, 1290 #ifdef CONFIG_DMA_REMAP 1291 .alloc_noncontiguous = iommu_dma_alloc_noncontiguous, 1292 .free_noncontiguous = iommu_dma_free_noncontiguous, 1293 #endif 1294 .mmap = iommu_dma_mmap, 1295 .get_sgtable = iommu_dma_get_sgtable, 1296 .map_page = iommu_dma_map_page, 1297 .unmap_page = iommu_dma_unmap_page, 1298 .map_sg = iommu_dma_map_sg, 1299 .unmap_sg = iommu_dma_unmap_sg, 1300 .sync_single_for_cpu = iommu_dma_sync_single_for_cpu, 1301 .sync_single_for_device = iommu_dma_sync_single_for_device, 1302 .sync_sg_for_cpu = iommu_dma_sync_sg_for_cpu, 1303 .sync_sg_for_device = iommu_dma_sync_sg_for_device, 1304 .map_resource = iommu_dma_map_resource, 1305 .unmap_resource = iommu_dma_unmap_resource, 1306 .get_merge_boundary = iommu_dma_get_merge_boundary, 1307 }; 1308 1309 /* 1310 * The IOMMU core code allocates the default DMA domain, which the underlying 1311 * IOMMU driver needs to support via the dma-iommu layer. 1312 */ 1313 void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 dma_limit) 1314 { 1315 struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 1316 1317 if (!domain) 1318 goto out_err; 1319 1320 /* 1321 * The IOMMU core code allocates the default DMA domain, which the 1322 * underlying IOMMU driver needs to support via the dma-iommu layer. 1323 */ 1324 if (domain->type == IOMMU_DOMAIN_DMA) { 1325 if (iommu_dma_init_domain(domain, dma_base, dma_limit, dev)) 1326 goto out_err; 1327 dev->dma_ops = &iommu_dma_ops; 1328 } 1329 1330 return; 1331 out_err: 1332 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n", 1333 dev_name(dev)); 1334 } 1335 EXPORT_SYMBOL_GPL(iommu_setup_dma_ops); 1336 1337 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev, 1338 phys_addr_t msi_addr, struct iommu_domain *domain) 1339 { 1340 struct iommu_dma_cookie *cookie = domain->iova_cookie; 1341 struct iommu_dma_msi_page *msi_page; 1342 dma_addr_t iova; 1343 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO; 1344 size_t size = cookie_msi_granule(cookie); 1345 1346 msi_addr &= ~(phys_addr_t)(size - 1); 1347 list_for_each_entry(msi_page, &cookie->msi_page_list, list) 1348 if (msi_page->phys == msi_addr) 1349 return msi_page; 1350 1351 msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL); 1352 if (!msi_page) 1353 return NULL; 1354 1355 iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev); 1356 if (!iova) 1357 goto out_free_page; 1358 1359 if (iommu_map(domain, iova, msi_addr, size, prot)) 1360 goto out_free_iova; 1361 1362 INIT_LIST_HEAD(&msi_page->list); 1363 msi_page->phys = msi_addr; 1364 msi_page->iova = iova; 1365 list_add(&msi_page->list, &cookie->msi_page_list); 1366 return msi_page; 1367 1368 out_free_iova: 1369 iommu_dma_free_iova(cookie, iova, size, NULL); 1370 out_free_page: 1371 kfree(msi_page); 1372 return NULL; 1373 } 1374 1375 int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr) 1376 { 1377 struct device *dev = msi_desc_to_dev(desc); 1378 struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 1379 struct iommu_dma_msi_page *msi_page; 1380 static DEFINE_MUTEX(msi_prepare_lock); /* see below */ 1381 1382 if (!domain || !domain->iova_cookie) { 1383 desc->iommu_cookie = NULL; 1384 return 0; 1385 } 1386 1387 /* 1388 * In fact the whole prepare operation should already be serialised by 1389 * irq_domain_mutex further up the callchain, but that's pretty subtle 1390 * on its own, so consider this locking as failsafe documentation... 1391 */ 1392 mutex_lock(&msi_prepare_lock); 1393 msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain); 1394 mutex_unlock(&msi_prepare_lock); 1395 1396 msi_desc_set_iommu_cookie(desc, msi_page); 1397 1398 if (!msi_page) 1399 return -ENOMEM; 1400 return 0; 1401 } 1402 1403 void iommu_dma_compose_msi_msg(struct msi_desc *desc, 1404 struct msi_msg *msg) 1405 { 1406 struct device *dev = msi_desc_to_dev(desc); 1407 const struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 1408 const struct iommu_dma_msi_page *msi_page; 1409 1410 msi_page = msi_desc_get_iommu_cookie(desc); 1411 1412 if (!domain || !domain->iova_cookie || WARN_ON(!msi_page)) 1413 return; 1414 1415 msg->address_hi = upper_32_bits(msi_page->iova); 1416 msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1; 1417 msg->address_lo += lower_32_bits(msi_page->iova); 1418 } 1419 1420 static int iommu_dma_init(void) 1421 { 1422 if (is_kdump_kernel()) 1423 static_branch_enable(&iommu_deferred_attach_enabled); 1424 1425 return iova_cache_get(); 1426 } 1427 arch_initcall(iommu_dma_init); 1428