1 /* 2 * A fairly generic DMA-API to IOMMU-API glue layer. 3 * 4 * Copyright (C) 2014-2015 ARM Ltd. 5 * 6 * based in part on arch/arm/mm/dma-mapping.c: 7 * Copyright (C) 2000-2004 Russell King 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program. If not, see <http://www.gnu.org/licenses/>. 20 */ 21 22 #include <linux/acpi_iort.h> 23 #include <linux/device.h> 24 #include <linux/dma-iommu.h> 25 #include <linux/gfp.h> 26 #include <linux/huge_mm.h> 27 #include <linux/iommu.h> 28 #include <linux/iova.h> 29 #include <linux/irq.h> 30 #include <linux/mm.h> 31 #include <linux/pci.h> 32 #include <linux/scatterlist.h> 33 #include <linux/vmalloc.h> 34 35 struct iommu_dma_msi_page { 36 struct list_head list; 37 dma_addr_t iova; 38 phys_addr_t phys; 39 }; 40 41 enum iommu_dma_cookie_type { 42 IOMMU_DMA_IOVA_COOKIE, 43 IOMMU_DMA_MSI_COOKIE, 44 }; 45 46 struct iommu_dma_cookie { 47 enum iommu_dma_cookie_type type; 48 union { 49 /* Full allocator for IOMMU_DMA_IOVA_COOKIE */ 50 struct iova_domain iovad; 51 /* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */ 52 dma_addr_t msi_iova; 53 }; 54 struct list_head msi_page_list; 55 spinlock_t msi_lock; 56 57 /* Domain for flush queue callback; NULL if flush queue not in use */ 58 struct iommu_domain *fq_domain; 59 }; 60 61 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie) 62 { 63 if (cookie->type == IOMMU_DMA_IOVA_COOKIE) 64 return cookie->iovad.granule; 65 return PAGE_SIZE; 66 } 67 68 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type) 69 { 70 struct iommu_dma_cookie *cookie; 71 72 cookie = kzalloc(sizeof(*cookie), GFP_KERNEL); 73 if (cookie) { 74 spin_lock_init(&cookie->msi_lock); 75 INIT_LIST_HEAD(&cookie->msi_page_list); 76 cookie->type = type; 77 } 78 return cookie; 79 } 80 81 int iommu_dma_init(void) 82 { 83 return iova_cache_get(); 84 } 85 86 /** 87 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain 88 * @domain: IOMMU domain to prepare for DMA-API usage 89 * 90 * IOMMU drivers should normally call this from their domain_alloc 91 * callback when domain->type == IOMMU_DOMAIN_DMA. 92 */ 93 int iommu_get_dma_cookie(struct iommu_domain *domain) 94 { 95 if (domain->iova_cookie) 96 return -EEXIST; 97 98 domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE); 99 if (!domain->iova_cookie) 100 return -ENOMEM; 101 102 return 0; 103 } 104 EXPORT_SYMBOL(iommu_get_dma_cookie); 105 106 /** 107 * iommu_get_msi_cookie - Acquire just MSI remapping resources 108 * @domain: IOMMU domain to prepare 109 * @base: Start address of IOVA region for MSI mappings 110 * 111 * Users who manage their own IOVA allocation and do not want DMA API support, 112 * but would still like to take advantage of automatic MSI remapping, can use 113 * this to initialise their own domain appropriately. Users should reserve a 114 * contiguous IOVA region, starting at @base, large enough to accommodate the 115 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address 116 * used by the devices attached to @domain. 117 */ 118 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base) 119 { 120 struct iommu_dma_cookie *cookie; 121 122 if (domain->type != IOMMU_DOMAIN_UNMANAGED) 123 return -EINVAL; 124 125 if (domain->iova_cookie) 126 return -EEXIST; 127 128 cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE); 129 if (!cookie) 130 return -ENOMEM; 131 132 cookie->msi_iova = base; 133 domain->iova_cookie = cookie; 134 return 0; 135 } 136 EXPORT_SYMBOL(iommu_get_msi_cookie); 137 138 /** 139 * iommu_put_dma_cookie - Release a domain's DMA mapping resources 140 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or 141 * iommu_get_msi_cookie() 142 * 143 * IOMMU drivers should normally call this from their domain_free callback. 144 */ 145 void iommu_put_dma_cookie(struct iommu_domain *domain) 146 { 147 struct iommu_dma_cookie *cookie = domain->iova_cookie; 148 struct iommu_dma_msi_page *msi, *tmp; 149 150 if (!cookie) 151 return; 152 153 if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule) 154 put_iova_domain(&cookie->iovad); 155 156 list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) { 157 list_del(&msi->list); 158 kfree(msi); 159 } 160 kfree(cookie); 161 domain->iova_cookie = NULL; 162 } 163 EXPORT_SYMBOL(iommu_put_dma_cookie); 164 165 /** 166 * iommu_dma_get_resv_regions - Reserved region driver helper 167 * @dev: Device from iommu_get_resv_regions() 168 * @list: Reserved region list from iommu_get_resv_regions() 169 * 170 * IOMMU drivers can use this to implement their .get_resv_regions callback 171 * for general non-IOMMU-specific reservations. Currently, this covers GICv3 172 * ITS region reservation on ACPI based ARM platforms that may require HW MSI 173 * reservation. 174 */ 175 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list) 176 { 177 178 if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode)) 179 iort_iommu_msi_get_resv_regions(dev, list); 180 181 } 182 EXPORT_SYMBOL(iommu_dma_get_resv_regions); 183 184 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie, 185 phys_addr_t start, phys_addr_t end) 186 { 187 struct iova_domain *iovad = &cookie->iovad; 188 struct iommu_dma_msi_page *msi_page; 189 int i, num_pages; 190 191 start -= iova_offset(iovad, start); 192 num_pages = iova_align(iovad, end - start) >> iova_shift(iovad); 193 194 msi_page = kcalloc(num_pages, sizeof(*msi_page), GFP_KERNEL); 195 if (!msi_page) 196 return -ENOMEM; 197 198 for (i = 0; i < num_pages; i++) { 199 msi_page[i].phys = start; 200 msi_page[i].iova = start; 201 INIT_LIST_HEAD(&msi_page[i].list); 202 list_add(&msi_page[i].list, &cookie->msi_page_list); 203 start += iovad->granule; 204 } 205 206 return 0; 207 } 208 209 static int iova_reserve_pci_windows(struct pci_dev *dev, 210 struct iova_domain *iovad) 211 { 212 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus); 213 struct resource_entry *window; 214 unsigned long lo, hi; 215 phys_addr_t start = 0, end; 216 217 resource_list_for_each_entry(window, &bridge->windows) { 218 if (resource_type(window->res) != IORESOURCE_MEM) 219 continue; 220 221 lo = iova_pfn(iovad, window->res->start - window->offset); 222 hi = iova_pfn(iovad, window->res->end - window->offset); 223 reserve_iova(iovad, lo, hi); 224 } 225 226 /* Get reserved DMA windows from host bridge */ 227 resource_list_for_each_entry(window, &bridge->dma_ranges) { 228 end = window->res->start - window->offset; 229 resv_iova: 230 if (end > start) { 231 lo = iova_pfn(iovad, start); 232 hi = iova_pfn(iovad, end); 233 reserve_iova(iovad, lo, hi); 234 } else { 235 /* dma_ranges list should be sorted */ 236 dev_err(&dev->dev, "Failed to reserve IOVA\n"); 237 return -EINVAL; 238 } 239 240 start = window->res->end - window->offset + 1; 241 /* If window is last entry */ 242 if (window->node.next == &bridge->dma_ranges && 243 end != ~(dma_addr_t)0) { 244 end = ~(dma_addr_t)0; 245 goto resv_iova; 246 } 247 } 248 249 return 0; 250 } 251 252 static int iova_reserve_iommu_regions(struct device *dev, 253 struct iommu_domain *domain) 254 { 255 struct iommu_dma_cookie *cookie = domain->iova_cookie; 256 struct iova_domain *iovad = &cookie->iovad; 257 struct iommu_resv_region *region; 258 LIST_HEAD(resv_regions); 259 int ret = 0; 260 261 if (dev_is_pci(dev)) { 262 ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad); 263 if (ret) 264 return ret; 265 } 266 267 iommu_get_resv_regions(dev, &resv_regions); 268 list_for_each_entry(region, &resv_regions, list) { 269 unsigned long lo, hi; 270 271 /* We ARE the software that manages these! */ 272 if (region->type == IOMMU_RESV_SW_MSI) 273 continue; 274 275 lo = iova_pfn(iovad, region->start); 276 hi = iova_pfn(iovad, region->start + region->length - 1); 277 reserve_iova(iovad, lo, hi); 278 279 if (region->type == IOMMU_RESV_MSI) 280 ret = cookie_init_hw_msi_region(cookie, region->start, 281 region->start + region->length); 282 if (ret) 283 break; 284 } 285 iommu_put_resv_regions(dev, &resv_regions); 286 287 return ret; 288 } 289 290 static void iommu_dma_flush_iotlb_all(struct iova_domain *iovad) 291 { 292 struct iommu_dma_cookie *cookie; 293 struct iommu_domain *domain; 294 295 cookie = container_of(iovad, struct iommu_dma_cookie, iovad); 296 domain = cookie->fq_domain; 297 /* 298 * The IOMMU driver supporting DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE 299 * implies that ops->flush_iotlb_all must be non-NULL. 300 */ 301 domain->ops->flush_iotlb_all(domain); 302 } 303 304 /** 305 * iommu_dma_init_domain - Initialise a DMA mapping domain 306 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() 307 * @base: IOVA at which the mappable address space starts 308 * @size: Size of IOVA space 309 * @dev: Device the domain is being initialised for 310 * 311 * @base and @size should be exact multiples of IOMMU page granularity to 312 * avoid rounding surprises. If necessary, we reserve the page at address 0 313 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but 314 * any change which could make prior IOVAs invalid will fail. 315 */ 316 int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base, 317 u64 size, struct device *dev) 318 { 319 struct iommu_dma_cookie *cookie = domain->iova_cookie; 320 struct iova_domain *iovad = &cookie->iovad; 321 unsigned long order, base_pfn; 322 int attr; 323 324 if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE) 325 return -EINVAL; 326 327 /* Use the smallest supported page size for IOVA granularity */ 328 order = __ffs(domain->pgsize_bitmap); 329 base_pfn = max_t(unsigned long, 1, base >> order); 330 331 /* Check the domain allows at least some access to the device... */ 332 if (domain->geometry.force_aperture) { 333 if (base > domain->geometry.aperture_end || 334 base + size <= domain->geometry.aperture_start) { 335 pr_warn("specified DMA range outside IOMMU capability\n"); 336 return -EFAULT; 337 } 338 /* ...then finally give it a kicking to make sure it fits */ 339 base_pfn = max_t(unsigned long, base_pfn, 340 domain->geometry.aperture_start >> order); 341 } 342 343 /* start_pfn is always nonzero for an already-initialised domain */ 344 if (iovad->start_pfn) { 345 if (1UL << order != iovad->granule || 346 base_pfn != iovad->start_pfn) { 347 pr_warn("Incompatible range for DMA domain\n"); 348 return -EFAULT; 349 } 350 351 return 0; 352 } 353 354 init_iova_domain(iovad, 1UL << order, base_pfn); 355 356 if (!cookie->fq_domain && !iommu_domain_get_attr(domain, 357 DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE, &attr) && attr) { 358 cookie->fq_domain = domain; 359 init_iova_flush_queue(iovad, iommu_dma_flush_iotlb_all, NULL); 360 } 361 362 if (!dev) 363 return 0; 364 365 return iova_reserve_iommu_regions(dev, domain); 366 } 367 EXPORT_SYMBOL(iommu_dma_init_domain); 368 369 /** 370 * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API 371 * page flags. 372 * @dir: Direction of DMA transfer 373 * @coherent: Is the DMA master cache-coherent? 374 * @attrs: DMA attributes for the mapping 375 * 376 * Return: corresponding IOMMU API page protection flags 377 */ 378 int dma_info_to_prot(enum dma_data_direction dir, bool coherent, 379 unsigned long attrs) 380 { 381 int prot = coherent ? IOMMU_CACHE : 0; 382 383 if (attrs & DMA_ATTR_PRIVILEGED) 384 prot |= IOMMU_PRIV; 385 386 switch (dir) { 387 case DMA_BIDIRECTIONAL: 388 return prot | IOMMU_READ | IOMMU_WRITE; 389 case DMA_TO_DEVICE: 390 return prot | IOMMU_READ; 391 case DMA_FROM_DEVICE: 392 return prot | IOMMU_WRITE; 393 default: 394 return 0; 395 } 396 } 397 398 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain, 399 size_t size, dma_addr_t dma_limit, struct device *dev) 400 { 401 struct iommu_dma_cookie *cookie = domain->iova_cookie; 402 struct iova_domain *iovad = &cookie->iovad; 403 unsigned long shift, iova_len, iova = 0; 404 405 if (cookie->type == IOMMU_DMA_MSI_COOKIE) { 406 cookie->msi_iova += size; 407 return cookie->msi_iova - size; 408 } 409 410 shift = iova_shift(iovad); 411 iova_len = size >> shift; 412 /* 413 * Freeing non-power-of-two-sized allocations back into the IOVA caches 414 * will come back to bite us badly, so we have to waste a bit of space 415 * rounding up anything cacheable to make sure that can't happen. The 416 * order of the unadjusted size will still match upon freeing. 417 */ 418 if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1))) 419 iova_len = roundup_pow_of_two(iova_len); 420 421 if (dev->bus_dma_mask) 422 dma_limit &= dev->bus_dma_mask; 423 424 if (domain->geometry.force_aperture) 425 dma_limit = min(dma_limit, domain->geometry.aperture_end); 426 427 /* Try to get PCI devices a SAC address */ 428 if (dma_limit > DMA_BIT_MASK(32) && dev_is_pci(dev)) 429 iova = alloc_iova_fast(iovad, iova_len, 430 DMA_BIT_MASK(32) >> shift, false); 431 432 if (!iova) 433 iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift, 434 true); 435 436 return (dma_addr_t)iova << shift; 437 } 438 439 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie, 440 dma_addr_t iova, size_t size) 441 { 442 struct iova_domain *iovad = &cookie->iovad; 443 444 /* The MSI case is only ever cleaning up its most recent allocation */ 445 if (cookie->type == IOMMU_DMA_MSI_COOKIE) 446 cookie->msi_iova -= size; 447 else if (cookie->fq_domain) /* non-strict mode */ 448 queue_iova(iovad, iova_pfn(iovad, iova), 449 size >> iova_shift(iovad), 0); 450 else 451 free_iova_fast(iovad, iova_pfn(iovad, iova), 452 size >> iova_shift(iovad)); 453 } 454 455 static void __iommu_dma_unmap(struct iommu_domain *domain, dma_addr_t dma_addr, 456 size_t size) 457 { 458 struct iommu_dma_cookie *cookie = domain->iova_cookie; 459 struct iova_domain *iovad = &cookie->iovad; 460 size_t iova_off = iova_offset(iovad, dma_addr); 461 462 dma_addr -= iova_off; 463 size = iova_align(iovad, size + iova_off); 464 465 WARN_ON(iommu_unmap_fast(domain, dma_addr, size) != size); 466 if (!cookie->fq_domain) 467 iommu_tlb_sync(domain); 468 iommu_dma_free_iova(cookie, dma_addr, size); 469 } 470 471 static void __iommu_dma_free_pages(struct page **pages, int count) 472 { 473 while (count--) 474 __free_page(pages[count]); 475 kvfree(pages); 476 } 477 478 static struct page **__iommu_dma_alloc_pages(struct device *dev, 479 unsigned int count, unsigned long order_mask, gfp_t gfp) 480 { 481 struct page **pages; 482 unsigned int i = 0, nid = dev_to_node(dev); 483 484 order_mask &= (2U << MAX_ORDER) - 1; 485 if (!order_mask) 486 return NULL; 487 488 pages = kvzalloc(count * sizeof(*pages), GFP_KERNEL); 489 if (!pages) 490 return NULL; 491 492 /* IOMMU can map any pages, so himem can also be used here */ 493 gfp |= __GFP_NOWARN | __GFP_HIGHMEM; 494 495 while (count) { 496 struct page *page = NULL; 497 unsigned int order_size; 498 499 /* 500 * Higher-order allocations are a convenience rather 501 * than a necessity, hence using __GFP_NORETRY until 502 * falling back to minimum-order allocations. 503 */ 504 for (order_mask &= (2U << __fls(count)) - 1; 505 order_mask; order_mask &= ~order_size) { 506 unsigned int order = __fls(order_mask); 507 gfp_t alloc_flags = gfp; 508 509 order_size = 1U << order; 510 if (order_mask > order_size) 511 alloc_flags |= __GFP_NORETRY; 512 page = alloc_pages_node(nid, alloc_flags, order); 513 if (!page) 514 continue; 515 if (!order) 516 break; 517 if (!PageCompound(page)) { 518 split_page(page, order); 519 break; 520 } else if (!split_huge_page(page)) { 521 break; 522 } 523 __free_pages(page, order); 524 } 525 if (!page) { 526 __iommu_dma_free_pages(pages, i); 527 return NULL; 528 } 529 count -= order_size; 530 while (order_size--) 531 pages[i++] = page++; 532 } 533 return pages; 534 } 535 536 /** 537 * iommu_dma_free - Free a buffer allocated by iommu_dma_alloc() 538 * @dev: Device which owns this buffer 539 * @pages: Array of buffer pages as returned by iommu_dma_alloc() 540 * @size: Size of buffer in bytes 541 * @handle: DMA address of buffer 542 * 543 * Frees both the pages associated with the buffer, and the array 544 * describing them 545 */ 546 void iommu_dma_free(struct device *dev, struct page **pages, size_t size, 547 dma_addr_t *handle) 548 { 549 __iommu_dma_unmap(iommu_get_dma_domain(dev), *handle, size); 550 __iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT); 551 *handle = DMA_MAPPING_ERROR; 552 } 553 554 /** 555 * iommu_dma_alloc - Allocate and map a buffer contiguous in IOVA space 556 * @dev: Device to allocate memory for. Must be a real device 557 * attached to an iommu_dma_domain 558 * @size: Size of buffer in bytes 559 * @gfp: Allocation flags 560 * @attrs: DMA attributes for this allocation 561 * @prot: IOMMU mapping flags 562 * @handle: Out argument for allocated DMA handle 563 * @flush_page: Arch callback which must ensure PAGE_SIZE bytes from the 564 * given VA/PA are visible to the given non-coherent device. 565 * 566 * If @size is less than PAGE_SIZE, then a full CPU page will be allocated, 567 * but an IOMMU which supports smaller pages might not map the whole thing. 568 * 569 * Return: Array of struct page pointers describing the buffer, 570 * or NULL on failure. 571 */ 572 struct page **iommu_dma_alloc(struct device *dev, size_t size, gfp_t gfp, 573 unsigned long attrs, int prot, dma_addr_t *handle, 574 void (*flush_page)(struct device *, const void *, phys_addr_t)) 575 { 576 struct iommu_domain *domain = iommu_get_dma_domain(dev); 577 struct iommu_dma_cookie *cookie = domain->iova_cookie; 578 struct iova_domain *iovad = &cookie->iovad; 579 struct page **pages; 580 struct sg_table sgt; 581 dma_addr_t iova; 582 unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap; 583 584 *handle = DMA_MAPPING_ERROR; 585 586 min_size = alloc_sizes & -alloc_sizes; 587 if (min_size < PAGE_SIZE) { 588 min_size = PAGE_SIZE; 589 alloc_sizes |= PAGE_SIZE; 590 } else { 591 size = ALIGN(size, min_size); 592 } 593 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES) 594 alloc_sizes = min_size; 595 596 count = PAGE_ALIGN(size) >> PAGE_SHIFT; 597 pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT, 598 gfp); 599 if (!pages) 600 return NULL; 601 602 size = iova_align(iovad, size); 603 iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev); 604 if (!iova) 605 goto out_free_pages; 606 607 if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL)) 608 goto out_free_iova; 609 610 if (!(prot & IOMMU_CACHE)) { 611 struct sg_mapping_iter miter; 612 /* 613 * The CPU-centric flushing implied by SG_MITER_TO_SG isn't 614 * sufficient here, so skip it by using the "wrong" direction. 615 */ 616 sg_miter_start(&miter, sgt.sgl, sgt.orig_nents, SG_MITER_FROM_SG); 617 while (sg_miter_next(&miter)) 618 flush_page(dev, miter.addr, page_to_phys(miter.page)); 619 sg_miter_stop(&miter); 620 } 621 622 if (iommu_map_sg(domain, iova, sgt.sgl, sgt.orig_nents, prot) 623 < size) 624 goto out_free_sg; 625 626 *handle = iova; 627 sg_free_table(&sgt); 628 return pages; 629 630 out_free_sg: 631 sg_free_table(&sgt); 632 out_free_iova: 633 iommu_dma_free_iova(cookie, iova, size); 634 out_free_pages: 635 __iommu_dma_free_pages(pages, count); 636 return NULL; 637 } 638 639 /** 640 * iommu_dma_mmap - Map a buffer into provided user VMA 641 * @pages: Array representing buffer from iommu_dma_alloc() 642 * @size: Size of buffer in bytes 643 * @vma: VMA describing requested userspace mapping 644 * 645 * Maps the pages of the buffer in @pages into @vma. The caller is responsible 646 * for verifying the correct size and protection of @vma beforehand. 647 */ 648 649 int iommu_dma_mmap(struct page **pages, size_t size, struct vm_area_struct *vma) 650 { 651 return vm_map_pages(vma, pages, PAGE_ALIGN(size) >> PAGE_SHIFT); 652 } 653 654 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys, 655 size_t size, int prot, struct iommu_domain *domain) 656 { 657 struct iommu_dma_cookie *cookie = domain->iova_cookie; 658 size_t iova_off = 0; 659 dma_addr_t iova; 660 661 if (cookie->type == IOMMU_DMA_IOVA_COOKIE) { 662 iova_off = iova_offset(&cookie->iovad, phys); 663 size = iova_align(&cookie->iovad, size + iova_off); 664 } 665 666 iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev); 667 if (!iova) 668 return DMA_MAPPING_ERROR; 669 670 if (iommu_map(domain, iova, phys - iova_off, size, prot)) { 671 iommu_dma_free_iova(cookie, iova, size); 672 return DMA_MAPPING_ERROR; 673 } 674 return iova + iova_off; 675 } 676 677 dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page, 678 unsigned long offset, size_t size, int prot) 679 { 680 return __iommu_dma_map(dev, page_to_phys(page) + offset, size, prot, 681 iommu_get_dma_domain(dev)); 682 } 683 684 void iommu_dma_unmap_page(struct device *dev, dma_addr_t handle, size_t size, 685 enum dma_data_direction dir, unsigned long attrs) 686 { 687 __iommu_dma_unmap(iommu_get_dma_domain(dev), handle, size); 688 } 689 690 /* 691 * Prepare a successfully-mapped scatterlist to give back to the caller. 692 * 693 * At this point the segments are already laid out by iommu_dma_map_sg() to 694 * avoid individually crossing any boundaries, so we merely need to check a 695 * segment's start address to avoid concatenating across one. 696 */ 697 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents, 698 dma_addr_t dma_addr) 699 { 700 struct scatterlist *s, *cur = sg; 701 unsigned long seg_mask = dma_get_seg_boundary(dev); 702 unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev); 703 int i, count = 0; 704 705 for_each_sg(sg, s, nents, i) { 706 /* Restore this segment's original unaligned fields first */ 707 unsigned int s_iova_off = sg_dma_address(s); 708 unsigned int s_length = sg_dma_len(s); 709 unsigned int s_iova_len = s->length; 710 711 s->offset += s_iova_off; 712 s->length = s_length; 713 sg_dma_address(s) = DMA_MAPPING_ERROR; 714 sg_dma_len(s) = 0; 715 716 /* 717 * Now fill in the real DMA data. If... 718 * - there is a valid output segment to append to 719 * - and this segment starts on an IOVA page boundary 720 * - but doesn't fall at a segment boundary 721 * - and wouldn't make the resulting output segment too long 722 */ 723 if (cur_len && !s_iova_off && (dma_addr & seg_mask) && 724 (cur_len + s_length <= max_len)) { 725 /* ...then concatenate it with the previous one */ 726 cur_len += s_length; 727 } else { 728 /* Otherwise start the next output segment */ 729 if (i > 0) 730 cur = sg_next(cur); 731 cur_len = s_length; 732 count++; 733 734 sg_dma_address(cur) = dma_addr + s_iova_off; 735 } 736 737 sg_dma_len(cur) = cur_len; 738 dma_addr += s_iova_len; 739 740 if (s_length + s_iova_off < s_iova_len) 741 cur_len = 0; 742 } 743 return count; 744 } 745 746 /* 747 * If mapping failed, then just restore the original list, 748 * but making sure the DMA fields are invalidated. 749 */ 750 static void __invalidate_sg(struct scatterlist *sg, int nents) 751 { 752 struct scatterlist *s; 753 int i; 754 755 for_each_sg(sg, s, nents, i) { 756 if (sg_dma_address(s) != DMA_MAPPING_ERROR) 757 s->offset += sg_dma_address(s); 758 if (sg_dma_len(s)) 759 s->length = sg_dma_len(s); 760 sg_dma_address(s) = DMA_MAPPING_ERROR; 761 sg_dma_len(s) = 0; 762 } 763 } 764 765 /* 766 * The DMA API client is passing in a scatterlist which could describe 767 * any old buffer layout, but the IOMMU API requires everything to be 768 * aligned to IOMMU pages. Hence the need for this complicated bit of 769 * impedance-matching, to be able to hand off a suitably-aligned list, 770 * but still preserve the original offsets and sizes for the caller. 771 */ 772 int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg, 773 int nents, int prot) 774 { 775 struct iommu_domain *domain = iommu_get_dma_domain(dev); 776 struct iommu_dma_cookie *cookie = domain->iova_cookie; 777 struct iova_domain *iovad = &cookie->iovad; 778 struct scatterlist *s, *prev = NULL; 779 dma_addr_t iova; 780 size_t iova_len = 0; 781 unsigned long mask = dma_get_seg_boundary(dev); 782 int i; 783 784 /* 785 * Work out how much IOVA space we need, and align the segments to 786 * IOVA granules for the IOMMU driver to handle. With some clever 787 * trickery we can modify the list in-place, but reversibly, by 788 * stashing the unaligned parts in the as-yet-unused DMA fields. 789 */ 790 for_each_sg(sg, s, nents, i) { 791 size_t s_iova_off = iova_offset(iovad, s->offset); 792 size_t s_length = s->length; 793 size_t pad_len = (mask - iova_len + 1) & mask; 794 795 sg_dma_address(s) = s_iova_off; 796 sg_dma_len(s) = s_length; 797 s->offset -= s_iova_off; 798 s_length = iova_align(iovad, s_length + s_iova_off); 799 s->length = s_length; 800 801 /* 802 * Due to the alignment of our single IOVA allocation, we can 803 * depend on these assumptions about the segment boundary mask: 804 * - If mask size >= IOVA size, then the IOVA range cannot 805 * possibly fall across a boundary, so we don't care. 806 * - If mask size < IOVA size, then the IOVA range must start 807 * exactly on a boundary, therefore we can lay things out 808 * based purely on segment lengths without needing to know 809 * the actual addresses beforehand. 810 * - The mask must be a power of 2, so pad_len == 0 if 811 * iova_len == 0, thus we cannot dereference prev the first 812 * time through here (i.e. before it has a meaningful value). 813 */ 814 if (pad_len && pad_len < s_length - 1) { 815 prev->length += pad_len; 816 iova_len += pad_len; 817 } 818 819 iova_len += s_length; 820 prev = s; 821 } 822 823 iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev); 824 if (!iova) 825 goto out_restore_sg; 826 827 /* 828 * We'll leave any physical concatenation to the IOMMU driver's 829 * implementation - it knows better than we do. 830 */ 831 if (iommu_map_sg(domain, iova, sg, nents, prot) < iova_len) 832 goto out_free_iova; 833 834 return __finalise_sg(dev, sg, nents, iova); 835 836 out_free_iova: 837 iommu_dma_free_iova(cookie, iova, iova_len); 838 out_restore_sg: 839 __invalidate_sg(sg, nents); 840 return 0; 841 } 842 843 void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 844 enum dma_data_direction dir, unsigned long attrs) 845 { 846 dma_addr_t start, end; 847 struct scatterlist *tmp; 848 int i; 849 /* 850 * The scatterlist segments are mapped into a single 851 * contiguous IOVA allocation, so this is incredibly easy. 852 */ 853 start = sg_dma_address(sg); 854 for_each_sg(sg_next(sg), tmp, nents - 1, i) { 855 if (sg_dma_len(tmp) == 0) 856 break; 857 sg = tmp; 858 } 859 end = sg_dma_address(sg) + sg_dma_len(sg); 860 __iommu_dma_unmap(iommu_get_dma_domain(dev), start, end - start); 861 } 862 863 dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys, 864 size_t size, enum dma_data_direction dir, unsigned long attrs) 865 { 866 return __iommu_dma_map(dev, phys, size, 867 dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO, 868 iommu_get_dma_domain(dev)); 869 } 870 871 void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle, 872 size_t size, enum dma_data_direction dir, unsigned long attrs) 873 { 874 __iommu_dma_unmap(iommu_get_dma_domain(dev), handle, size); 875 } 876 877 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev, 878 phys_addr_t msi_addr, struct iommu_domain *domain) 879 { 880 struct iommu_dma_cookie *cookie = domain->iova_cookie; 881 struct iommu_dma_msi_page *msi_page; 882 dma_addr_t iova; 883 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO; 884 size_t size = cookie_msi_granule(cookie); 885 886 msi_addr &= ~(phys_addr_t)(size - 1); 887 list_for_each_entry(msi_page, &cookie->msi_page_list, list) 888 if (msi_page->phys == msi_addr) 889 return msi_page; 890 891 msi_page = kzalloc(sizeof(*msi_page), GFP_ATOMIC); 892 if (!msi_page) 893 return NULL; 894 895 iova = __iommu_dma_map(dev, msi_addr, size, prot, domain); 896 if (iova == DMA_MAPPING_ERROR) 897 goto out_free_page; 898 899 INIT_LIST_HEAD(&msi_page->list); 900 msi_page->phys = msi_addr; 901 msi_page->iova = iova; 902 list_add(&msi_page->list, &cookie->msi_page_list); 903 return msi_page; 904 905 out_free_page: 906 kfree(msi_page); 907 return NULL; 908 } 909 910 int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr) 911 { 912 struct device *dev = msi_desc_to_dev(desc); 913 struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 914 struct iommu_dma_cookie *cookie; 915 struct iommu_dma_msi_page *msi_page; 916 unsigned long flags; 917 918 if (!domain || !domain->iova_cookie) { 919 desc->iommu_cookie = NULL; 920 return 0; 921 } 922 923 cookie = domain->iova_cookie; 924 925 /* 926 * We disable IRQs to rule out a possible inversion against 927 * irq_desc_lock if, say, someone tries to retarget the affinity 928 * of an MSI from within an IPI handler. 929 */ 930 spin_lock_irqsave(&cookie->msi_lock, flags); 931 msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain); 932 spin_unlock_irqrestore(&cookie->msi_lock, flags); 933 934 msi_desc_set_iommu_cookie(desc, msi_page); 935 936 if (!msi_page) 937 return -ENOMEM; 938 return 0; 939 } 940 941 void iommu_dma_compose_msi_msg(struct msi_desc *desc, 942 struct msi_msg *msg) 943 { 944 struct device *dev = msi_desc_to_dev(desc); 945 const struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 946 const struct iommu_dma_msi_page *msi_page; 947 948 msi_page = msi_desc_get_iommu_cookie(desc); 949 950 if (!domain || !domain->iova_cookie || WARN_ON(!msi_page)) 951 return; 952 953 msg->address_hi = upper_32_bits(msi_page->iova); 954 msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1; 955 msg->address_lo += lower_32_bits(msi_page->iova); 956 } 957