1 /* 2 * A fairly generic DMA-API to IOMMU-API glue layer. 3 * 4 * Copyright (C) 2014-2015 ARM Ltd. 5 * 6 * based in part on arch/arm/mm/dma-mapping.c: 7 * Copyright (C) 2000-2004 Russell King 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program. If not, see <http://www.gnu.org/licenses/>. 20 */ 21 22 #include <linux/device.h> 23 #include <linux/dma-iommu.h> 24 #include <linux/gfp.h> 25 #include <linux/huge_mm.h> 26 #include <linux/iommu.h> 27 #include <linux/iova.h> 28 #include <linux/mm.h> 29 #include <linux/scatterlist.h> 30 #include <linux/vmalloc.h> 31 32 int iommu_dma_init(void) 33 { 34 return iova_cache_get(); 35 } 36 37 /** 38 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain 39 * @domain: IOMMU domain to prepare for DMA-API usage 40 * 41 * IOMMU drivers should normally call this from their domain_alloc 42 * callback when domain->type == IOMMU_DOMAIN_DMA. 43 */ 44 int iommu_get_dma_cookie(struct iommu_domain *domain) 45 { 46 struct iova_domain *iovad; 47 48 if (domain->iova_cookie) 49 return -EEXIST; 50 51 iovad = kzalloc(sizeof(*iovad), GFP_KERNEL); 52 domain->iova_cookie = iovad; 53 54 return iovad ? 0 : -ENOMEM; 55 } 56 EXPORT_SYMBOL(iommu_get_dma_cookie); 57 58 /** 59 * iommu_put_dma_cookie - Release a domain's DMA mapping resources 60 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() 61 * 62 * IOMMU drivers should normally call this from their domain_free callback. 63 */ 64 void iommu_put_dma_cookie(struct iommu_domain *domain) 65 { 66 struct iova_domain *iovad = domain->iova_cookie; 67 68 if (!iovad) 69 return; 70 71 put_iova_domain(iovad); 72 kfree(iovad); 73 domain->iova_cookie = NULL; 74 } 75 EXPORT_SYMBOL(iommu_put_dma_cookie); 76 77 /** 78 * iommu_dma_init_domain - Initialise a DMA mapping domain 79 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() 80 * @base: IOVA at which the mappable address space starts 81 * @size: Size of IOVA space 82 * 83 * @base and @size should be exact multiples of IOMMU page granularity to 84 * avoid rounding surprises. If necessary, we reserve the page at address 0 85 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but 86 * any change which could make prior IOVAs invalid will fail. 87 */ 88 int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base, u64 size) 89 { 90 struct iova_domain *iovad = domain->iova_cookie; 91 unsigned long order, base_pfn, end_pfn; 92 93 if (!iovad) 94 return -ENODEV; 95 96 /* Use the smallest supported page size for IOVA granularity */ 97 order = __ffs(domain->ops->pgsize_bitmap); 98 base_pfn = max_t(unsigned long, 1, base >> order); 99 end_pfn = (base + size - 1) >> order; 100 101 /* Check the domain allows at least some access to the device... */ 102 if (domain->geometry.force_aperture) { 103 if (base > domain->geometry.aperture_end || 104 base + size <= domain->geometry.aperture_start) { 105 pr_warn("specified DMA range outside IOMMU capability\n"); 106 return -EFAULT; 107 } 108 /* ...then finally give it a kicking to make sure it fits */ 109 base_pfn = max_t(unsigned long, base_pfn, 110 domain->geometry.aperture_start >> order); 111 end_pfn = min_t(unsigned long, end_pfn, 112 domain->geometry.aperture_end >> order); 113 } 114 115 /* All we can safely do with an existing domain is enlarge it */ 116 if (iovad->start_pfn) { 117 if (1UL << order != iovad->granule || 118 base_pfn != iovad->start_pfn || 119 end_pfn < iovad->dma_32bit_pfn) { 120 pr_warn("Incompatible range for DMA domain\n"); 121 return -EFAULT; 122 } 123 iovad->dma_32bit_pfn = end_pfn; 124 } else { 125 init_iova_domain(iovad, 1UL << order, base_pfn, end_pfn); 126 } 127 return 0; 128 } 129 EXPORT_SYMBOL(iommu_dma_init_domain); 130 131 /** 132 * dma_direction_to_prot - Translate DMA API directions to IOMMU API page flags 133 * @dir: Direction of DMA transfer 134 * @coherent: Is the DMA master cache-coherent? 135 * 136 * Return: corresponding IOMMU API page protection flags 137 */ 138 int dma_direction_to_prot(enum dma_data_direction dir, bool coherent) 139 { 140 int prot = coherent ? IOMMU_CACHE : 0; 141 142 switch (dir) { 143 case DMA_BIDIRECTIONAL: 144 return prot | IOMMU_READ | IOMMU_WRITE; 145 case DMA_TO_DEVICE: 146 return prot | IOMMU_READ; 147 case DMA_FROM_DEVICE: 148 return prot | IOMMU_WRITE; 149 default: 150 return 0; 151 } 152 } 153 154 static struct iova *__alloc_iova(struct iova_domain *iovad, size_t size, 155 dma_addr_t dma_limit) 156 { 157 unsigned long shift = iova_shift(iovad); 158 unsigned long length = iova_align(iovad, size) >> shift; 159 160 /* 161 * Enforce size-alignment to be safe - there could perhaps be an 162 * attribute to control this per-device, or at least per-domain... 163 */ 164 return alloc_iova(iovad, length, dma_limit >> shift, true); 165 } 166 167 /* The IOVA allocator knows what we mapped, so just unmap whatever that was */ 168 static void __iommu_dma_unmap(struct iommu_domain *domain, dma_addr_t dma_addr) 169 { 170 struct iova_domain *iovad = domain->iova_cookie; 171 unsigned long shift = iova_shift(iovad); 172 unsigned long pfn = dma_addr >> shift; 173 struct iova *iova = find_iova(iovad, pfn); 174 size_t size; 175 176 if (WARN_ON(!iova)) 177 return; 178 179 size = iova_size(iova) << shift; 180 size -= iommu_unmap(domain, pfn << shift, size); 181 /* ...and if we can't, then something is horribly, horribly wrong */ 182 WARN_ON(size > 0); 183 __free_iova(iovad, iova); 184 } 185 186 static void __iommu_dma_free_pages(struct page **pages, int count) 187 { 188 while (count--) 189 __free_page(pages[count]); 190 kvfree(pages); 191 } 192 193 static struct page **__iommu_dma_alloc_pages(unsigned int count, gfp_t gfp) 194 { 195 struct page **pages; 196 unsigned int i = 0, array_size = count * sizeof(*pages); 197 unsigned int order = MAX_ORDER; 198 199 if (array_size <= PAGE_SIZE) 200 pages = kzalloc(array_size, GFP_KERNEL); 201 else 202 pages = vzalloc(array_size); 203 if (!pages) 204 return NULL; 205 206 /* IOMMU can map any pages, so himem can also be used here */ 207 gfp |= __GFP_NOWARN | __GFP_HIGHMEM; 208 209 while (count) { 210 struct page *page = NULL; 211 int j; 212 213 /* 214 * Higher-order allocations are a convenience rather 215 * than a necessity, hence using __GFP_NORETRY until 216 * falling back to single-page allocations. 217 */ 218 for (order = min_t(unsigned int, order, __fls(count)); 219 order > 0; order--) { 220 page = alloc_pages(gfp | __GFP_NORETRY, order); 221 if (!page) 222 continue; 223 if (PageCompound(page)) { 224 if (!split_huge_page(page)) 225 break; 226 __free_pages(page, order); 227 } else { 228 split_page(page, order); 229 break; 230 } 231 } 232 if (!page) 233 page = alloc_page(gfp); 234 if (!page) { 235 __iommu_dma_free_pages(pages, i); 236 return NULL; 237 } 238 j = 1 << order; 239 count -= j; 240 while (j--) 241 pages[i++] = page++; 242 } 243 return pages; 244 } 245 246 /** 247 * iommu_dma_free - Free a buffer allocated by iommu_dma_alloc() 248 * @dev: Device which owns this buffer 249 * @pages: Array of buffer pages as returned by iommu_dma_alloc() 250 * @size: Size of buffer in bytes 251 * @handle: DMA address of buffer 252 * 253 * Frees both the pages associated with the buffer, and the array 254 * describing them 255 */ 256 void iommu_dma_free(struct device *dev, struct page **pages, size_t size, 257 dma_addr_t *handle) 258 { 259 __iommu_dma_unmap(iommu_get_domain_for_dev(dev), *handle); 260 __iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT); 261 *handle = DMA_ERROR_CODE; 262 } 263 264 /** 265 * iommu_dma_alloc - Allocate and map a buffer contiguous in IOVA space 266 * @dev: Device to allocate memory for. Must be a real device 267 * attached to an iommu_dma_domain 268 * @size: Size of buffer in bytes 269 * @gfp: Allocation flags 270 * @prot: IOMMU mapping flags 271 * @handle: Out argument for allocated DMA handle 272 * @flush_page: Arch callback which must ensure PAGE_SIZE bytes from the 273 * given VA/PA are visible to the given non-coherent device. 274 * 275 * If @size is less than PAGE_SIZE, then a full CPU page will be allocated, 276 * but an IOMMU which supports smaller pages might not map the whole thing. 277 * 278 * Return: Array of struct page pointers describing the buffer, 279 * or NULL on failure. 280 */ 281 struct page **iommu_dma_alloc(struct device *dev, size_t size, 282 gfp_t gfp, int prot, dma_addr_t *handle, 283 void (*flush_page)(struct device *, const void *, phys_addr_t)) 284 { 285 struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 286 struct iova_domain *iovad = domain->iova_cookie; 287 struct iova *iova; 288 struct page **pages; 289 struct sg_table sgt; 290 dma_addr_t dma_addr; 291 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 292 293 *handle = DMA_ERROR_CODE; 294 295 pages = __iommu_dma_alloc_pages(count, gfp); 296 if (!pages) 297 return NULL; 298 299 iova = __alloc_iova(iovad, size, dev->coherent_dma_mask); 300 if (!iova) 301 goto out_free_pages; 302 303 size = iova_align(iovad, size); 304 if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL)) 305 goto out_free_iova; 306 307 if (!(prot & IOMMU_CACHE)) { 308 struct sg_mapping_iter miter; 309 /* 310 * The CPU-centric flushing implied by SG_MITER_TO_SG isn't 311 * sufficient here, so skip it by using the "wrong" direction. 312 */ 313 sg_miter_start(&miter, sgt.sgl, sgt.orig_nents, SG_MITER_FROM_SG); 314 while (sg_miter_next(&miter)) 315 flush_page(dev, miter.addr, page_to_phys(miter.page)); 316 sg_miter_stop(&miter); 317 } 318 319 dma_addr = iova_dma_addr(iovad, iova); 320 if (iommu_map_sg(domain, dma_addr, sgt.sgl, sgt.orig_nents, prot) 321 < size) 322 goto out_free_sg; 323 324 *handle = dma_addr; 325 sg_free_table(&sgt); 326 return pages; 327 328 out_free_sg: 329 sg_free_table(&sgt); 330 out_free_iova: 331 __free_iova(iovad, iova); 332 out_free_pages: 333 __iommu_dma_free_pages(pages, count); 334 return NULL; 335 } 336 337 /** 338 * iommu_dma_mmap - Map a buffer into provided user VMA 339 * @pages: Array representing buffer from iommu_dma_alloc() 340 * @size: Size of buffer in bytes 341 * @vma: VMA describing requested userspace mapping 342 * 343 * Maps the pages of the buffer in @pages into @vma. The caller is responsible 344 * for verifying the correct size and protection of @vma beforehand. 345 */ 346 347 int iommu_dma_mmap(struct page **pages, size_t size, struct vm_area_struct *vma) 348 { 349 unsigned long uaddr = vma->vm_start; 350 unsigned int i, count = PAGE_ALIGN(size) >> PAGE_SHIFT; 351 int ret = -ENXIO; 352 353 for (i = vma->vm_pgoff; i < count && uaddr < vma->vm_end; i++) { 354 ret = vm_insert_page(vma, uaddr, pages[i]); 355 if (ret) 356 break; 357 uaddr += PAGE_SIZE; 358 } 359 return ret; 360 } 361 362 dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page, 363 unsigned long offset, size_t size, int prot) 364 { 365 dma_addr_t dma_addr; 366 struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 367 struct iova_domain *iovad = domain->iova_cookie; 368 phys_addr_t phys = page_to_phys(page) + offset; 369 size_t iova_off = iova_offset(iovad, phys); 370 size_t len = iova_align(iovad, size + iova_off); 371 struct iova *iova = __alloc_iova(iovad, len, dma_get_mask(dev)); 372 373 if (!iova) 374 return DMA_ERROR_CODE; 375 376 dma_addr = iova_dma_addr(iovad, iova); 377 if (iommu_map(domain, dma_addr, phys - iova_off, len, prot)) { 378 __free_iova(iovad, iova); 379 return DMA_ERROR_CODE; 380 } 381 return dma_addr + iova_off; 382 } 383 384 void iommu_dma_unmap_page(struct device *dev, dma_addr_t handle, size_t size, 385 enum dma_data_direction dir, struct dma_attrs *attrs) 386 { 387 __iommu_dma_unmap(iommu_get_domain_for_dev(dev), handle); 388 } 389 390 /* 391 * Prepare a successfully-mapped scatterlist to give back to the caller. 392 * Handling IOVA concatenation can come later, if needed 393 */ 394 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents, 395 dma_addr_t dma_addr) 396 { 397 struct scatterlist *s; 398 int i; 399 400 for_each_sg(sg, s, nents, i) { 401 /* Un-swizzling the fields here, hence the naming mismatch */ 402 unsigned int s_offset = sg_dma_address(s); 403 unsigned int s_length = sg_dma_len(s); 404 unsigned int s_dma_len = s->length; 405 406 s->offset = s_offset; 407 s->length = s_length; 408 sg_dma_address(s) = dma_addr + s_offset; 409 dma_addr += s_dma_len; 410 } 411 return i; 412 } 413 414 /* 415 * If mapping failed, then just restore the original list, 416 * but making sure the DMA fields are invalidated. 417 */ 418 static void __invalidate_sg(struct scatterlist *sg, int nents) 419 { 420 struct scatterlist *s; 421 int i; 422 423 for_each_sg(sg, s, nents, i) { 424 if (sg_dma_address(s) != DMA_ERROR_CODE) 425 s->offset = sg_dma_address(s); 426 if (sg_dma_len(s)) 427 s->length = sg_dma_len(s); 428 sg_dma_address(s) = DMA_ERROR_CODE; 429 sg_dma_len(s) = 0; 430 } 431 } 432 433 /* 434 * The DMA API client is passing in a scatterlist which could describe 435 * any old buffer layout, but the IOMMU API requires everything to be 436 * aligned to IOMMU pages. Hence the need for this complicated bit of 437 * impedance-matching, to be able to hand off a suitably-aligned list, 438 * but still preserve the original offsets and sizes for the caller. 439 */ 440 int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg, 441 int nents, int prot) 442 { 443 struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 444 struct iova_domain *iovad = domain->iova_cookie; 445 struct iova *iova; 446 struct scatterlist *s, *prev = NULL; 447 dma_addr_t dma_addr; 448 size_t iova_len = 0; 449 int i; 450 451 /* 452 * Work out how much IOVA space we need, and align the segments to 453 * IOVA granules for the IOMMU driver to handle. With some clever 454 * trickery we can modify the list in-place, but reversibly, by 455 * hiding the original data in the as-yet-unused DMA fields. 456 */ 457 for_each_sg(sg, s, nents, i) { 458 size_t s_offset = iova_offset(iovad, s->offset); 459 size_t s_length = s->length; 460 461 sg_dma_address(s) = s_offset; 462 sg_dma_len(s) = s_length; 463 s->offset -= s_offset; 464 s_length = iova_align(iovad, s_length + s_offset); 465 s->length = s_length; 466 467 /* 468 * The simple way to avoid the rare case of a segment 469 * crossing the boundary mask is to pad the previous one 470 * to end at a naturally-aligned IOVA for this one's size, 471 * at the cost of potentially over-allocating a little. 472 */ 473 if (prev) { 474 size_t pad_len = roundup_pow_of_two(s_length); 475 476 pad_len = (pad_len - iova_len) & (pad_len - 1); 477 prev->length += pad_len; 478 iova_len += pad_len; 479 } 480 481 iova_len += s_length; 482 prev = s; 483 } 484 485 iova = __alloc_iova(iovad, iova_len, dma_get_mask(dev)); 486 if (!iova) 487 goto out_restore_sg; 488 489 /* 490 * We'll leave any physical concatenation to the IOMMU driver's 491 * implementation - it knows better than we do. 492 */ 493 dma_addr = iova_dma_addr(iovad, iova); 494 if (iommu_map_sg(domain, dma_addr, sg, nents, prot) < iova_len) 495 goto out_free_iova; 496 497 return __finalise_sg(dev, sg, nents, dma_addr); 498 499 out_free_iova: 500 __free_iova(iovad, iova); 501 out_restore_sg: 502 __invalidate_sg(sg, nents); 503 return 0; 504 } 505 506 void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 507 enum dma_data_direction dir, struct dma_attrs *attrs) 508 { 509 /* 510 * The scatterlist segments are mapped into a single 511 * contiguous IOVA allocation, so this is incredibly easy. 512 */ 513 __iommu_dma_unmap(iommu_get_domain_for_dev(dev), sg_dma_address(sg)); 514 } 515 516 int iommu_dma_supported(struct device *dev, u64 mask) 517 { 518 /* 519 * 'Special' IOMMUs which don't have the same addressing capability 520 * as the CPU will have to wait until we have some way to query that 521 * before they'll be able to use this framework. 522 */ 523 return 1; 524 } 525 526 int iommu_dma_mapping_error(struct device *dev, dma_addr_t dma_addr) 527 { 528 return dma_addr == DMA_ERROR_CODE; 529 } 530