xref: /openbmc/linux/drivers/iommu/dma-iommu.c (revision 28efb0046512e8a13ed9f9bdf0d68d10bbfbe9cf)
1 /*
2  * A fairly generic DMA-API to IOMMU-API glue layer.
3  *
4  * Copyright (C) 2014-2015 ARM Ltd.
5  *
6  * based in part on arch/arm/mm/dma-mapping.c:
7  * Copyright (C) 2000-2004 Russell King
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #include <linux/device.h>
23 #include <linux/dma-iommu.h>
24 #include <linux/gfp.h>
25 #include <linux/huge_mm.h>
26 #include <linux/iommu.h>
27 #include <linux/iova.h>
28 #include <linux/irq.h>
29 #include <linux/mm.h>
30 #include <linux/pci.h>
31 #include <linux/scatterlist.h>
32 #include <linux/vmalloc.h>
33 
34 #define IOMMU_MAPPING_ERROR	0
35 
36 struct iommu_dma_msi_page {
37 	struct list_head	list;
38 	dma_addr_t		iova;
39 	phys_addr_t		phys;
40 };
41 
42 enum iommu_dma_cookie_type {
43 	IOMMU_DMA_IOVA_COOKIE,
44 	IOMMU_DMA_MSI_COOKIE,
45 };
46 
47 struct iommu_dma_cookie {
48 	enum iommu_dma_cookie_type	type;
49 	union {
50 		/* Full allocator for IOMMU_DMA_IOVA_COOKIE */
51 		struct iova_domain	iovad;
52 		/* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
53 		dma_addr_t		msi_iova;
54 	};
55 	struct list_head		msi_page_list;
56 	spinlock_t			msi_lock;
57 };
58 
59 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
60 {
61 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
62 		return cookie->iovad.granule;
63 	return PAGE_SIZE;
64 }
65 
66 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
67 {
68 	struct iommu_dma_cookie *cookie;
69 
70 	cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
71 	if (cookie) {
72 		spin_lock_init(&cookie->msi_lock);
73 		INIT_LIST_HEAD(&cookie->msi_page_list);
74 		cookie->type = type;
75 	}
76 	return cookie;
77 }
78 
79 int iommu_dma_init(void)
80 {
81 	return iova_cache_get();
82 }
83 
84 /**
85  * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
86  * @domain: IOMMU domain to prepare for DMA-API usage
87  *
88  * IOMMU drivers should normally call this from their domain_alloc
89  * callback when domain->type == IOMMU_DOMAIN_DMA.
90  */
91 int iommu_get_dma_cookie(struct iommu_domain *domain)
92 {
93 	if (domain->iova_cookie)
94 		return -EEXIST;
95 
96 	domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
97 	if (!domain->iova_cookie)
98 		return -ENOMEM;
99 
100 	return 0;
101 }
102 EXPORT_SYMBOL(iommu_get_dma_cookie);
103 
104 /**
105  * iommu_get_msi_cookie - Acquire just MSI remapping resources
106  * @domain: IOMMU domain to prepare
107  * @base: Start address of IOVA region for MSI mappings
108  *
109  * Users who manage their own IOVA allocation and do not want DMA API support,
110  * but would still like to take advantage of automatic MSI remapping, can use
111  * this to initialise their own domain appropriately. Users should reserve a
112  * contiguous IOVA region, starting at @base, large enough to accommodate the
113  * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
114  * used by the devices attached to @domain.
115  */
116 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
117 {
118 	struct iommu_dma_cookie *cookie;
119 
120 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
121 		return -EINVAL;
122 
123 	if (domain->iova_cookie)
124 		return -EEXIST;
125 
126 	cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
127 	if (!cookie)
128 		return -ENOMEM;
129 
130 	cookie->msi_iova = base;
131 	domain->iova_cookie = cookie;
132 	return 0;
133 }
134 EXPORT_SYMBOL(iommu_get_msi_cookie);
135 
136 /**
137  * iommu_put_dma_cookie - Release a domain's DMA mapping resources
138  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
139  *          iommu_get_msi_cookie()
140  *
141  * IOMMU drivers should normally call this from their domain_free callback.
142  */
143 void iommu_put_dma_cookie(struct iommu_domain *domain)
144 {
145 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
146 	struct iommu_dma_msi_page *msi, *tmp;
147 
148 	if (!cookie)
149 		return;
150 
151 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule)
152 		put_iova_domain(&cookie->iovad);
153 
154 	list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
155 		list_del(&msi->list);
156 		kfree(msi);
157 	}
158 	kfree(cookie);
159 	domain->iova_cookie = NULL;
160 }
161 EXPORT_SYMBOL(iommu_put_dma_cookie);
162 
163 /**
164  * iommu_dma_get_resv_regions - Reserved region driver helper
165  * @dev: Device from iommu_get_resv_regions()
166  * @list: Reserved region list from iommu_get_resv_regions()
167  *
168  * IOMMU drivers can use this to implement their .get_resv_regions callback
169  * for general non-IOMMU-specific reservations. Currently, this covers host
170  * bridge windows for PCI devices.
171  */
172 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
173 {
174 	struct pci_host_bridge *bridge;
175 	struct resource_entry *window;
176 
177 	if (!dev_is_pci(dev))
178 		return;
179 
180 	bridge = pci_find_host_bridge(to_pci_dev(dev)->bus);
181 	resource_list_for_each_entry(window, &bridge->windows) {
182 		struct iommu_resv_region *region;
183 		phys_addr_t start;
184 		size_t length;
185 
186 		if (resource_type(window->res) != IORESOURCE_MEM)
187 			continue;
188 
189 		start = window->res->start - window->offset;
190 		length = window->res->end - window->res->start + 1;
191 		region = iommu_alloc_resv_region(start, length, 0,
192 				IOMMU_RESV_RESERVED);
193 		if (!region)
194 			return;
195 
196 		list_add_tail(&region->list, list);
197 	}
198 }
199 EXPORT_SYMBOL(iommu_dma_get_resv_regions);
200 
201 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
202 		phys_addr_t start, phys_addr_t end)
203 {
204 	struct iova_domain *iovad = &cookie->iovad;
205 	struct iommu_dma_msi_page *msi_page;
206 	int i, num_pages;
207 
208 	start -= iova_offset(iovad, start);
209 	num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
210 
211 	msi_page = kcalloc(num_pages, sizeof(*msi_page), GFP_KERNEL);
212 	if (!msi_page)
213 		return -ENOMEM;
214 
215 	for (i = 0; i < num_pages; i++) {
216 		msi_page[i].phys = start;
217 		msi_page[i].iova = start;
218 		INIT_LIST_HEAD(&msi_page[i].list);
219 		list_add(&msi_page[i].list, &cookie->msi_page_list);
220 		start += iovad->granule;
221 	}
222 
223 	return 0;
224 }
225 
226 static int iova_reserve_iommu_regions(struct device *dev,
227 		struct iommu_domain *domain)
228 {
229 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
230 	struct iova_domain *iovad = &cookie->iovad;
231 	struct iommu_resv_region *region;
232 	LIST_HEAD(resv_regions);
233 	int ret = 0;
234 
235 	iommu_get_resv_regions(dev, &resv_regions);
236 	list_for_each_entry(region, &resv_regions, list) {
237 		unsigned long lo, hi;
238 
239 		/* We ARE the software that manages these! */
240 		if (region->type == IOMMU_RESV_SW_MSI)
241 			continue;
242 
243 		lo = iova_pfn(iovad, region->start);
244 		hi = iova_pfn(iovad, region->start + region->length - 1);
245 		reserve_iova(iovad, lo, hi);
246 
247 		if (region->type == IOMMU_RESV_MSI)
248 			ret = cookie_init_hw_msi_region(cookie, region->start,
249 					region->start + region->length);
250 		if (ret)
251 			break;
252 	}
253 	iommu_put_resv_regions(dev, &resv_regions);
254 
255 	return ret;
256 }
257 
258 /**
259  * iommu_dma_init_domain - Initialise a DMA mapping domain
260  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
261  * @base: IOVA at which the mappable address space starts
262  * @size: Size of IOVA space
263  * @dev: Device the domain is being initialised for
264  *
265  * @base and @size should be exact multiples of IOMMU page granularity to
266  * avoid rounding surprises. If necessary, we reserve the page at address 0
267  * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
268  * any change which could make prior IOVAs invalid will fail.
269  */
270 int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
271 		u64 size, struct device *dev)
272 {
273 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
274 	struct iova_domain *iovad = &cookie->iovad;
275 	unsigned long order, base_pfn, end_pfn;
276 
277 	if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
278 		return -EINVAL;
279 
280 	/* Use the smallest supported page size for IOVA granularity */
281 	order = __ffs(domain->pgsize_bitmap);
282 	base_pfn = max_t(unsigned long, 1, base >> order);
283 	end_pfn = (base + size - 1) >> order;
284 
285 	/* Check the domain allows at least some access to the device... */
286 	if (domain->geometry.force_aperture) {
287 		if (base > domain->geometry.aperture_end ||
288 		    base + size <= domain->geometry.aperture_start) {
289 			pr_warn("specified DMA range outside IOMMU capability\n");
290 			return -EFAULT;
291 		}
292 		/* ...then finally give it a kicking to make sure it fits */
293 		base_pfn = max_t(unsigned long, base_pfn,
294 				domain->geometry.aperture_start >> order);
295 		end_pfn = min_t(unsigned long, end_pfn,
296 				domain->geometry.aperture_end >> order);
297 	}
298 	/*
299 	 * PCI devices may have larger DMA masks, but still prefer allocating
300 	 * within a 32-bit mask to avoid DAC addressing. Such limitations don't
301 	 * apply to the typical platform device, so for those we may as well
302 	 * leave the cache limit at the top of their range to save an rb_last()
303 	 * traversal on every allocation.
304 	 */
305 	if (dev && dev_is_pci(dev))
306 		end_pfn &= DMA_BIT_MASK(32) >> order;
307 
308 	/* start_pfn is always nonzero for an already-initialised domain */
309 	if (iovad->start_pfn) {
310 		if (1UL << order != iovad->granule ||
311 		    base_pfn != iovad->start_pfn) {
312 			pr_warn("Incompatible range for DMA domain\n");
313 			return -EFAULT;
314 		}
315 		/*
316 		 * If we have devices with different DMA masks, move the free
317 		 * area cache limit down for the benefit of the smaller one.
318 		 */
319 		iovad->dma_32bit_pfn = min(end_pfn + 1, iovad->dma_32bit_pfn);
320 
321 		return 0;
322 	}
323 
324 	init_iova_domain(iovad, 1UL << order, base_pfn, end_pfn);
325 	if (!dev)
326 		return 0;
327 
328 	return iova_reserve_iommu_regions(dev, domain);
329 }
330 EXPORT_SYMBOL(iommu_dma_init_domain);
331 
332 /**
333  * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
334  *                    page flags.
335  * @dir: Direction of DMA transfer
336  * @coherent: Is the DMA master cache-coherent?
337  * @attrs: DMA attributes for the mapping
338  *
339  * Return: corresponding IOMMU API page protection flags
340  */
341 int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
342 		     unsigned long attrs)
343 {
344 	int prot = coherent ? IOMMU_CACHE : 0;
345 
346 	if (attrs & DMA_ATTR_PRIVILEGED)
347 		prot |= IOMMU_PRIV;
348 
349 	switch (dir) {
350 	case DMA_BIDIRECTIONAL:
351 		return prot | IOMMU_READ | IOMMU_WRITE;
352 	case DMA_TO_DEVICE:
353 		return prot | IOMMU_READ;
354 	case DMA_FROM_DEVICE:
355 		return prot | IOMMU_WRITE;
356 	default:
357 		return 0;
358 	}
359 }
360 
361 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
362 		size_t size, dma_addr_t dma_limit, struct device *dev)
363 {
364 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
365 	struct iova_domain *iovad = &cookie->iovad;
366 	unsigned long shift, iova_len, iova = 0;
367 
368 	if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
369 		cookie->msi_iova += size;
370 		return cookie->msi_iova - size;
371 	}
372 
373 	shift = iova_shift(iovad);
374 	iova_len = size >> shift;
375 	/*
376 	 * Freeing non-power-of-two-sized allocations back into the IOVA caches
377 	 * will come back to bite us badly, so we have to waste a bit of space
378 	 * rounding up anything cacheable to make sure that can't happen. The
379 	 * order of the unadjusted size will still match upon freeing.
380 	 */
381 	if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1)))
382 		iova_len = roundup_pow_of_two(iova_len);
383 
384 	if (domain->geometry.force_aperture)
385 		dma_limit = min(dma_limit, domain->geometry.aperture_end);
386 
387 	/* Try to get PCI devices a SAC address */
388 	if (dma_limit > DMA_BIT_MASK(32) && dev_is_pci(dev))
389 		iova = alloc_iova_fast(iovad, iova_len, DMA_BIT_MASK(32) >> shift);
390 
391 	if (!iova)
392 		iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift);
393 
394 	return (dma_addr_t)iova << shift;
395 }
396 
397 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
398 		dma_addr_t iova, size_t size)
399 {
400 	struct iova_domain *iovad = &cookie->iovad;
401 
402 	/* The MSI case is only ever cleaning up its most recent allocation */
403 	if (cookie->type == IOMMU_DMA_MSI_COOKIE)
404 		cookie->msi_iova -= size;
405 	else
406 		free_iova_fast(iovad, iova_pfn(iovad, iova),
407 				size >> iova_shift(iovad));
408 }
409 
410 static void __iommu_dma_unmap(struct iommu_domain *domain, dma_addr_t dma_addr,
411 		size_t size)
412 {
413 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
414 	struct iova_domain *iovad = &cookie->iovad;
415 	size_t iova_off = iova_offset(iovad, dma_addr);
416 
417 	dma_addr -= iova_off;
418 	size = iova_align(iovad, size + iova_off);
419 
420 	WARN_ON(iommu_unmap(domain, dma_addr, size) != size);
421 	iommu_dma_free_iova(cookie, dma_addr, size);
422 }
423 
424 static void __iommu_dma_free_pages(struct page **pages, int count)
425 {
426 	while (count--)
427 		__free_page(pages[count]);
428 	kvfree(pages);
429 }
430 
431 static struct page **__iommu_dma_alloc_pages(unsigned int count,
432 		unsigned long order_mask, gfp_t gfp)
433 {
434 	struct page **pages;
435 	unsigned int i = 0, array_size = count * sizeof(*pages);
436 
437 	order_mask &= (2U << MAX_ORDER) - 1;
438 	if (!order_mask)
439 		return NULL;
440 
441 	if (array_size <= PAGE_SIZE)
442 		pages = kzalloc(array_size, GFP_KERNEL);
443 	else
444 		pages = vzalloc(array_size);
445 	if (!pages)
446 		return NULL;
447 
448 	/* IOMMU can map any pages, so himem can also be used here */
449 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
450 
451 	while (count) {
452 		struct page *page = NULL;
453 		unsigned int order_size;
454 
455 		/*
456 		 * Higher-order allocations are a convenience rather
457 		 * than a necessity, hence using __GFP_NORETRY until
458 		 * falling back to minimum-order allocations.
459 		 */
460 		for (order_mask &= (2U << __fls(count)) - 1;
461 		     order_mask; order_mask &= ~order_size) {
462 			unsigned int order = __fls(order_mask);
463 
464 			order_size = 1U << order;
465 			page = alloc_pages((order_mask - order_size) ?
466 					   gfp | __GFP_NORETRY : gfp, order);
467 			if (!page)
468 				continue;
469 			if (!order)
470 				break;
471 			if (!PageCompound(page)) {
472 				split_page(page, order);
473 				break;
474 			} else if (!split_huge_page(page)) {
475 				break;
476 			}
477 			__free_pages(page, order);
478 		}
479 		if (!page) {
480 			__iommu_dma_free_pages(pages, i);
481 			return NULL;
482 		}
483 		count -= order_size;
484 		while (order_size--)
485 			pages[i++] = page++;
486 	}
487 	return pages;
488 }
489 
490 /**
491  * iommu_dma_free - Free a buffer allocated by iommu_dma_alloc()
492  * @dev: Device which owns this buffer
493  * @pages: Array of buffer pages as returned by iommu_dma_alloc()
494  * @size: Size of buffer in bytes
495  * @handle: DMA address of buffer
496  *
497  * Frees both the pages associated with the buffer, and the array
498  * describing them
499  */
500 void iommu_dma_free(struct device *dev, struct page **pages, size_t size,
501 		dma_addr_t *handle)
502 {
503 	__iommu_dma_unmap(iommu_get_domain_for_dev(dev), *handle, size);
504 	__iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
505 	*handle = IOMMU_MAPPING_ERROR;
506 }
507 
508 /**
509  * iommu_dma_alloc - Allocate and map a buffer contiguous in IOVA space
510  * @dev: Device to allocate memory for. Must be a real device
511  *	 attached to an iommu_dma_domain
512  * @size: Size of buffer in bytes
513  * @gfp: Allocation flags
514  * @attrs: DMA attributes for this allocation
515  * @prot: IOMMU mapping flags
516  * @handle: Out argument for allocated DMA handle
517  * @flush_page: Arch callback which must ensure PAGE_SIZE bytes from the
518  *		given VA/PA are visible to the given non-coherent device.
519  *
520  * If @size is less than PAGE_SIZE, then a full CPU page will be allocated,
521  * but an IOMMU which supports smaller pages might not map the whole thing.
522  *
523  * Return: Array of struct page pointers describing the buffer,
524  *	   or NULL on failure.
525  */
526 struct page **iommu_dma_alloc(struct device *dev, size_t size, gfp_t gfp,
527 		unsigned long attrs, int prot, dma_addr_t *handle,
528 		void (*flush_page)(struct device *, const void *, phys_addr_t))
529 {
530 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
531 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
532 	struct iova_domain *iovad = &cookie->iovad;
533 	struct page **pages;
534 	struct sg_table sgt;
535 	dma_addr_t iova;
536 	unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
537 
538 	*handle = IOMMU_MAPPING_ERROR;
539 
540 	min_size = alloc_sizes & -alloc_sizes;
541 	if (min_size < PAGE_SIZE) {
542 		min_size = PAGE_SIZE;
543 		alloc_sizes |= PAGE_SIZE;
544 	} else {
545 		size = ALIGN(size, min_size);
546 	}
547 	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
548 		alloc_sizes = min_size;
549 
550 	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
551 	pages = __iommu_dma_alloc_pages(count, alloc_sizes >> PAGE_SHIFT, gfp);
552 	if (!pages)
553 		return NULL;
554 
555 	size = iova_align(iovad, size);
556 	iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
557 	if (!iova)
558 		goto out_free_pages;
559 
560 	if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL))
561 		goto out_free_iova;
562 
563 	if (!(prot & IOMMU_CACHE)) {
564 		struct sg_mapping_iter miter;
565 		/*
566 		 * The CPU-centric flushing implied by SG_MITER_TO_SG isn't
567 		 * sufficient here, so skip it by using the "wrong" direction.
568 		 */
569 		sg_miter_start(&miter, sgt.sgl, sgt.orig_nents, SG_MITER_FROM_SG);
570 		while (sg_miter_next(&miter))
571 			flush_page(dev, miter.addr, page_to_phys(miter.page));
572 		sg_miter_stop(&miter);
573 	}
574 
575 	if (iommu_map_sg(domain, iova, sgt.sgl, sgt.orig_nents, prot)
576 			< size)
577 		goto out_free_sg;
578 
579 	*handle = iova;
580 	sg_free_table(&sgt);
581 	return pages;
582 
583 out_free_sg:
584 	sg_free_table(&sgt);
585 out_free_iova:
586 	iommu_dma_free_iova(cookie, iova, size);
587 out_free_pages:
588 	__iommu_dma_free_pages(pages, count);
589 	return NULL;
590 }
591 
592 /**
593  * iommu_dma_mmap - Map a buffer into provided user VMA
594  * @pages: Array representing buffer from iommu_dma_alloc()
595  * @size: Size of buffer in bytes
596  * @vma: VMA describing requested userspace mapping
597  *
598  * Maps the pages of the buffer in @pages into @vma. The caller is responsible
599  * for verifying the correct size and protection of @vma beforehand.
600  */
601 
602 int iommu_dma_mmap(struct page **pages, size_t size, struct vm_area_struct *vma)
603 {
604 	unsigned long uaddr = vma->vm_start;
605 	unsigned int i, count = PAGE_ALIGN(size) >> PAGE_SHIFT;
606 	int ret = -ENXIO;
607 
608 	for (i = vma->vm_pgoff; i < count && uaddr < vma->vm_end; i++) {
609 		ret = vm_insert_page(vma, uaddr, pages[i]);
610 		if (ret)
611 			break;
612 		uaddr += PAGE_SIZE;
613 	}
614 	return ret;
615 }
616 
617 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
618 		size_t size, int prot)
619 {
620 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
621 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
622 	size_t iova_off = 0;
623 	dma_addr_t iova;
624 
625 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE) {
626 		iova_off = iova_offset(&cookie->iovad, phys);
627 		size = iova_align(&cookie->iovad, size + iova_off);
628 	}
629 
630 	iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
631 	if (!iova)
632 		return IOMMU_MAPPING_ERROR;
633 
634 	if (iommu_map(domain, iova, phys - iova_off, size, prot)) {
635 		iommu_dma_free_iova(cookie, iova, size);
636 		return IOMMU_MAPPING_ERROR;
637 	}
638 	return iova + iova_off;
639 }
640 
641 dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
642 		unsigned long offset, size_t size, int prot)
643 {
644 	return __iommu_dma_map(dev, page_to_phys(page) + offset, size, prot);
645 }
646 
647 void iommu_dma_unmap_page(struct device *dev, dma_addr_t handle, size_t size,
648 		enum dma_data_direction dir, unsigned long attrs)
649 {
650 	__iommu_dma_unmap(iommu_get_domain_for_dev(dev), handle, size);
651 }
652 
653 /*
654  * Prepare a successfully-mapped scatterlist to give back to the caller.
655  *
656  * At this point the segments are already laid out by iommu_dma_map_sg() to
657  * avoid individually crossing any boundaries, so we merely need to check a
658  * segment's start address to avoid concatenating across one.
659  */
660 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
661 		dma_addr_t dma_addr)
662 {
663 	struct scatterlist *s, *cur = sg;
664 	unsigned long seg_mask = dma_get_seg_boundary(dev);
665 	unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
666 	int i, count = 0;
667 
668 	for_each_sg(sg, s, nents, i) {
669 		/* Restore this segment's original unaligned fields first */
670 		unsigned int s_iova_off = sg_dma_address(s);
671 		unsigned int s_length = sg_dma_len(s);
672 		unsigned int s_iova_len = s->length;
673 
674 		s->offset += s_iova_off;
675 		s->length = s_length;
676 		sg_dma_address(s) = IOMMU_MAPPING_ERROR;
677 		sg_dma_len(s) = 0;
678 
679 		/*
680 		 * Now fill in the real DMA data. If...
681 		 * - there is a valid output segment to append to
682 		 * - and this segment starts on an IOVA page boundary
683 		 * - but doesn't fall at a segment boundary
684 		 * - and wouldn't make the resulting output segment too long
685 		 */
686 		if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
687 		    (cur_len + s_length <= max_len)) {
688 			/* ...then concatenate it with the previous one */
689 			cur_len += s_length;
690 		} else {
691 			/* Otherwise start the next output segment */
692 			if (i > 0)
693 				cur = sg_next(cur);
694 			cur_len = s_length;
695 			count++;
696 
697 			sg_dma_address(cur) = dma_addr + s_iova_off;
698 		}
699 
700 		sg_dma_len(cur) = cur_len;
701 		dma_addr += s_iova_len;
702 
703 		if (s_length + s_iova_off < s_iova_len)
704 			cur_len = 0;
705 	}
706 	return count;
707 }
708 
709 /*
710  * If mapping failed, then just restore the original list,
711  * but making sure the DMA fields are invalidated.
712  */
713 static void __invalidate_sg(struct scatterlist *sg, int nents)
714 {
715 	struct scatterlist *s;
716 	int i;
717 
718 	for_each_sg(sg, s, nents, i) {
719 		if (sg_dma_address(s) != IOMMU_MAPPING_ERROR)
720 			s->offset += sg_dma_address(s);
721 		if (sg_dma_len(s))
722 			s->length = sg_dma_len(s);
723 		sg_dma_address(s) = IOMMU_MAPPING_ERROR;
724 		sg_dma_len(s) = 0;
725 	}
726 }
727 
728 /*
729  * The DMA API client is passing in a scatterlist which could describe
730  * any old buffer layout, but the IOMMU API requires everything to be
731  * aligned to IOMMU pages. Hence the need for this complicated bit of
732  * impedance-matching, to be able to hand off a suitably-aligned list,
733  * but still preserve the original offsets and sizes for the caller.
734  */
735 int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
736 		int nents, int prot)
737 {
738 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
739 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
740 	struct iova_domain *iovad = &cookie->iovad;
741 	struct scatterlist *s, *prev = NULL;
742 	dma_addr_t iova;
743 	size_t iova_len = 0;
744 	unsigned long mask = dma_get_seg_boundary(dev);
745 	int i;
746 
747 	/*
748 	 * Work out how much IOVA space we need, and align the segments to
749 	 * IOVA granules for the IOMMU driver to handle. With some clever
750 	 * trickery we can modify the list in-place, but reversibly, by
751 	 * stashing the unaligned parts in the as-yet-unused DMA fields.
752 	 */
753 	for_each_sg(sg, s, nents, i) {
754 		size_t s_iova_off = iova_offset(iovad, s->offset);
755 		size_t s_length = s->length;
756 		size_t pad_len = (mask - iova_len + 1) & mask;
757 
758 		sg_dma_address(s) = s_iova_off;
759 		sg_dma_len(s) = s_length;
760 		s->offset -= s_iova_off;
761 		s_length = iova_align(iovad, s_length + s_iova_off);
762 		s->length = s_length;
763 
764 		/*
765 		 * Due to the alignment of our single IOVA allocation, we can
766 		 * depend on these assumptions about the segment boundary mask:
767 		 * - If mask size >= IOVA size, then the IOVA range cannot
768 		 *   possibly fall across a boundary, so we don't care.
769 		 * - If mask size < IOVA size, then the IOVA range must start
770 		 *   exactly on a boundary, therefore we can lay things out
771 		 *   based purely on segment lengths without needing to know
772 		 *   the actual addresses beforehand.
773 		 * - The mask must be a power of 2, so pad_len == 0 if
774 		 *   iova_len == 0, thus we cannot dereference prev the first
775 		 *   time through here (i.e. before it has a meaningful value).
776 		 */
777 		if (pad_len && pad_len < s_length - 1) {
778 			prev->length += pad_len;
779 			iova_len += pad_len;
780 		}
781 
782 		iova_len += s_length;
783 		prev = s;
784 	}
785 
786 	iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
787 	if (!iova)
788 		goto out_restore_sg;
789 
790 	/*
791 	 * We'll leave any physical concatenation to the IOMMU driver's
792 	 * implementation - it knows better than we do.
793 	 */
794 	if (iommu_map_sg(domain, iova, sg, nents, prot) < iova_len)
795 		goto out_free_iova;
796 
797 	return __finalise_sg(dev, sg, nents, iova);
798 
799 out_free_iova:
800 	iommu_dma_free_iova(cookie, iova, iova_len);
801 out_restore_sg:
802 	__invalidate_sg(sg, nents);
803 	return 0;
804 }
805 
806 void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
807 		enum dma_data_direction dir, unsigned long attrs)
808 {
809 	dma_addr_t start, end;
810 	struct scatterlist *tmp;
811 	int i;
812 	/*
813 	 * The scatterlist segments are mapped into a single
814 	 * contiguous IOVA allocation, so this is incredibly easy.
815 	 */
816 	start = sg_dma_address(sg);
817 	for_each_sg(sg_next(sg), tmp, nents - 1, i) {
818 		if (sg_dma_len(tmp) == 0)
819 			break;
820 		sg = tmp;
821 	}
822 	end = sg_dma_address(sg) + sg_dma_len(sg);
823 	__iommu_dma_unmap(iommu_get_domain_for_dev(dev), start, end - start);
824 }
825 
826 dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
827 		size_t size, enum dma_data_direction dir, unsigned long attrs)
828 {
829 	return __iommu_dma_map(dev, phys, size,
830 			dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO);
831 }
832 
833 void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
834 		size_t size, enum dma_data_direction dir, unsigned long attrs)
835 {
836 	__iommu_dma_unmap(iommu_get_domain_for_dev(dev), handle, size);
837 }
838 
839 int iommu_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
840 {
841 	return dma_addr == IOMMU_MAPPING_ERROR;
842 }
843 
844 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
845 		phys_addr_t msi_addr, struct iommu_domain *domain)
846 {
847 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
848 	struct iommu_dma_msi_page *msi_page;
849 	dma_addr_t iova;
850 	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
851 	size_t size = cookie_msi_granule(cookie);
852 
853 	msi_addr &= ~(phys_addr_t)(size - 1);
854 	list_for_each_entry(msi_page, &cookie->msi_page_list, list)
855 		if (msi_page->phys == msi_addr)
856 			return msi_page;
857 
858 	msi_page = kzalloc(sizeof(*msi_page), GFP_ATOMIC);
859 	if (!msi_page)
860 		return NULL;
861 
862 	iova = __iommu_dma_map(dev, msi_addr, size, prot);
863 	if (iommu_dma_mapping_error(dev, iova))
864 		goto out_free_page;
865 
866 	INIT_LIST_HEAD(&msi_page->list);
867 	msi_page->phys = msi_addr;
868 	msi_page->iova = iova;
869 	list_add(&msi_page->list, &cookie->msi_page_list);
870 	return msi_page;
871 
872 out_free_page:
873 	kfree(msi_page);
874 	return NULL;
875 }
876 
877 void iommu_dma_map_msi_msg(int irq, struct msi_msg *msg)
878 {
879 	struct device *dev = msi_desc_to_dev(irq_get_msi_desc(irq));
880 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
881 	struct iommu_dma_cookie *cookie;
882 	struct iommu_dma_msi_page *msi_page;
883 	phys_addr_t msi_addr = (u64)msg->address_hi << 32 | msg->address_lo;
884 	unsigned long flags;
885 
886 	if (!domain || !domain->iova_cookie)
887 		return;
888 
889 	cookie = domain->iova_cookie;
890 
891 	/*
892 	 * We disable IRQs to rule out a possible inversion against
893 	 * irq_desc_lock if, say, someone tries to retarget the affinity
894 	 * of an MSI from within an IPI handler.
895 	 */
896 	spin_lock_irqsave(&cookie->msi_lock, flags);
897 	msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
898 	spin_unlock_irqrestore(&cookie->msi_lock, flags);
899 
900 	if (WARN_ON(!msi_page)) {
901 		/*
902 		 * We're called from a void callback, so the best we can do is
903 		 * 'fail' by filling the message with obviously bogus values.
904 		 * Since we got this far due to an IOMMU being present, it's
905 		 * not like the existing address would have worked anyway...
906 		 */
907 		msg->address_hi = ~0U;
908 		msg->address_lo = ~0U;
909 		msg->data = ~0U;
910 	} else {
911 		msg->address_hi = upper_32_bits(msi_page->iova);
912 		msg->address_lo &= cookie_msi_granule(cookie) - 1;
913 		msg->address_lo += lower_32_bits(msi_page->iova);
914 	}
915 }
916