1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * A fairly generic DMA-API to IOMMU-API glue layer. 4 * 5 * Copyright (C) 2014-2015 ARM Ltd. 6 * 7 * based in part on arch/arm/mm/dma-mapping.c: 8 * Copyright (C) 2000-2004 Russell King 9 */ 10 11 #include <linux/acpi_iort.h> 12 #include <linux/device.h> 13 #include <linux/dma-map-ops.h> 14 #include <linux/dma-iommu.h> 15 #include <linux/gfp.h> 16 #include <linux/huge_mm.h> 17 #include <linux/iommu.h> 18 #include <linux/iova.h> 19 #include <linux/irq.h> 20 #include <linux/mm.h> 21 #include <linux/mutex.h> 22 #include <linux/pci.h> 23 #include <linux/scatterlist.h> 24 #include <linux/vmalloc.h> 25 #include <linux/crash_dump.h> 26 27 struct iommu_dma_msi_page { 28 struct list_head list; 29 dma_addr_t iova; 30 phys_addr_t phys; 31 }; 32 33 enum iommu_dma_cookie_type { 34 IOMMU_DMA_IOVA_COOKIE, 35 IOMMU_DMA_MSI_COOKIE, 36 }; 37 38 struct iommu_dma_cookie { 39 enum iommu_dma_cookie_type type; 40 union { 41 /* Full allocator for IOMMU_DMA_IOVA_COOKIE */ 42 struct iova_domain iovad; 43 /* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */ 44 dma_addr_t msi_iova; 45 }; 46 struct list_head msi_page_list; 47 48 /* Domain for flush queue callback; NULL if flush queue not in use */ 49 struct iommu_domain *fq_domain; 50 }; 51 52 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie) 53 { 54 if (cookie->type == IOMMU_DMA_IOVA_COOKIE) 55 return cookie->iovad.granule; 56 return PAGE_SIZE; 57 } 58 59 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type) 60 { 61 struct iommu_dma_cookie *cookie; 62 63 cookie = kzalloc(sizeof(*cookie), GFP_KERNEL); 64 if (cookie) { 65 INIT_LIST_HEAD(&cookie->msi_page_list); 66 cookie->type = type; 67 } 68 return cookie; 69 } 70 71 /** 72 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain 73 * @domain: IOMMU domain to prepare for DMA-API usage 74 * 75 * IOMMU drivers should normally call this from their domain_alloc 76 * callback when domain->type == IOMMU_DOMAIN_DMA. 77 */ 78 int iommu_get_dma_cookie(struct iommu_domain *domain) 79 { 80 if (domain->iova_cookie) 81 return -EEXIST; 82 83 domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE); 84 if (!domain->iova_cookie) 85 return -ENOMEM; 86 87 return 0; 88 } 89 EXPORT_SYMBOL(iommu_get_dma_cookie); 90 91 /** 92 * iommu_get_msi_cookie - Acquire just MSI remapping resources 93 * @domain: IOMMU domain to prepare 94 * @base: Start address of IOVA region for MSI mappings 95 * 96 * Users who manage their own IOVA allocation and do not want DMA API support, 97 * but would still like to take advantage of automatic MSI remapping, can use 98 * this to initialise their own domain appropriately. Users should reserve a 99 * contiguous IOVA region, starting at @base, large enough to accommodate the 100 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address 101 * used by the devices attached to @domain. 102 */ 103 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base) 104 { 105 struct iommu_dma_cookie *cookie; 106 107 if (domain->type != IOMMU_DOMAIN_UNMANAGED) 108 return -EINVAL; 109 110 if (domain->iova_cookie) 111 return -EEXIST; 112 113 cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE); 114 if (!cookie) 115 return -ENOMEM; 116 117 cookie->msi_iova = base; 118 domain->iova_cookie = cookie; 119 return 0; 120 } 121 EXPORT_SYMBOL(iommu_get_msi_cookie); 122 123 /** 124 * iommu_put_dma_cookie - Release a domain's DMA mapping resources 125 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or 126 * iommu_get_msi_cookie() 127 * 128 * IOMMU drivers should normally call this from their domain_free callback. 129 */ 130 void iommu_put_dma_cookie(struct iommu_domain *domain) 131 { 132 struct iommu_dma_cookie *cookie = domain->iova_cookie; 133 struct iommu_dma_msi_page *msi, *tmp; 134 135 if (!cookie) 136 return; 137 138 if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule) 139 put_iova_domain(&cookie->iovad); 140 141 list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) { 142 list_del(&msi->list); 143 kfree(msi); 144 } 145 kfree(cookie); 146 domain->iova_cookie = NULL; 147 } 148 EXPORT_SYMBOL(iommu_put_dma_cookie); 149 150 /** 151 * iommu_dma_get_resv_regions - Reserved region driver helper 152 * @dev: Device from iommu_get_resv_regions() 153 * @list: Reserved region list from iommu_get_resv_regions() 154 * 155 * IOMMU drivers can use this to implement their .get_resv_regions callback 156 * for general non-IOMMU-specific reservations. Currently, this covers GICv3 157 * ITS region reservation on ACPI based ARM platforms that may require HW MSI 158 * reservation. 159 */ 160 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list) 161 { 162 163 if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode)) 164 iort_iommu_msi_get_resv_regions(dev, list); 165 166 } 167 EXPORT_SYMBOL(iommu_dma_get_resv_regions); 168 169 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie, 170 phys_addr_t start, phys_addr_t end) 171 { 172 struct iova_domain *iovad = &cookie->iovad; 173 struct iommu_dma_msi_page *msi_page; 174 int i, num_pages; 175 176 start -= iova_offset(iovad, start); 177 num_pages = iova_align(iovad, end - start) >> iova_shift(iovad); 178 179 for (i = 0; i < num_pages; i++) { 180 msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL); 181 if (!msi_page) 182 return -ENOMEM; 183 184 msi_page->phys = start; 185 msi_page->iova = start; 186 INIT_LIST_HEAD(&msi_page->list); 187 list_add(&msi_page->list, &cookie->msi_page_list); 188 start += iovad->granule; 189 } 190 191 return 0; 192 } 193 194 static int iova_reserve_pci_windows(struct pci_dev *dev, 195 struct iova_domain *iovad) 196 { 197 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus); 198 struct resource_entry *window; 199 unsigned long lo, hi; 200 phys_addr_t start = 0, end; 201 202 resource_list_for_each_entry(window, &bridge->windows) { 203 if (resource_type(window->res) != IORESOURCE_MEM) 204 continue; 205 206 lo = iova_pfn(iovad, window->res->start - window->offset); 207 hi = iova_pfn(iovad, window->res->end - window->offset); 208 reserve_iova(iovad, lo, hi); 209 } 210 211 /* Get reserved DMA windows from host bridge */ 212 resource_list_for_each_entry(window, &bridge->dma_ranges) { 213 end = window->res->start - window->offset; 214 resv_iova: 215 if (end > start) { 216 lo = iova_pfn(iovad, start); 217 hi = iova_pfn(iovad, end); 218 reserve_iova(iovad, lo, hi); 219 } else { 220 /* dma_ranges list should be sorted */ 221 dev_err(&dev->dev, "Failed to reserve IOVA\n"); 222 return -EINVAL; 223 } 224 225 start = window->res->end - window->offset + 1; 226 /* If window is last entry */ 227 if (window->node.next == &bridge->dma_ranges && 228 end != ~(phys_addr_t)0) { 229 end = ~(phys_addr_t)0; 230 goto resv_iova; 231 } 232 } 233 234 return 0; 235 } 236 237 static int iova_reserve_iommu_regions(struct device *dev, 238 struct iommu_domain *domain) 239 { 240 struct iommu_dma_cookie *cookie = domain->iova_cookie; 241 struct iova_domain *iovad = &cookie->iovad; 242 struct iommu_resv_region *region; 243 LIST_HEAD(resv_regions); 244 int ret = 0; 245 246 if (dev_is_pci(dev)) { 247 ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad); 248 if (ret) 249 return ret; 250 } 251 252 iommu_get_resv_regions(dev, &resv_regions); 253 list_for_each_entry(region, &resv_regions, list) { 254 unsigned long lo, hi; 255 256 /* We ARE the software that manages these! */ 257 if (region->type == IOMMU_RESV_SW_MSI) 258 continue; 259 260 lo = iova_pfn(iovad, region->start); 261 hi = iova_pfn(iovad, region->start + region->length - 1); 262 reserve_iova(iovad, lo, hi); 263 264 if (region->type == IOMMU_RESV_MSI) 265 ret = cookie_init_hw_msi_region(cookie, region->start, 266 region->start + region->length); 267 if (ret) 268 break; 269 } 270 iommu_put_resv_regions(dev, &resv_regions); 271 272 return ret; 273 } 274 275 static void iommu_dma_flush_iotlb_all(struct iova_domain *iovad) 276 { 277 struct iommu_dma_cookie *cookie; 278 struct iommu_domain *domain; 279 280 cookie = container_of(iovad, struct iommu_dma_cookie, iovad); 281 domain = cookie->fq_domain; 282 /* 283 * The IOMMU driver supporting DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE 284 * implies that ops->flush_iotlb_all must be non-NULL. 285 */ 286 domain->ops->flush_iotlb_all(domain); 287 } 288 289 /** 290 * iommu_dma_init_domain - Initialise a DMA mapping domain 291 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() 292 * @base: IOVA at which the mappable address space starts 293 * @size: Size of IOVA space 294 * @dev: Device the domain is being initialised for 295 * 296 * @base and @size should be exact multiples of IOMMU page granularity to 297 * avoid rounding surprises. If necessary, we reserve the page at address 0 298 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but 299 * any change which could make prior IOVAs invalid will fail. 300 */ 301 static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base, 302 u64 size, struct device *dev) 303 { 304 struct iommu_dma_cookie *cookie = domain->iova_cookie; 305 unsigned long order, base_pfn; 306 struct iova_domain *iovad; 307 int attr; 308 309 if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE) 310 return -EINVAL; 311 312 iovad = &cookie->iovad; 313 314 /* Use the smallest supported page size for IOVA granularity */ 315 order = __ffs(domain->pgsize_bitmap); 316 base_pfn = max_t(unsigned long, 1, base >> order); 317 318 /* Check the domain allows at least some access to the device... */ 319 if (domain->geometry.force_aperture) { 320 if (base > domain->geometry.aperture_end || 321 base + size <= domain->geometry.aperture_start) { 322 pr_warn("specified DMA range outside IOMMU capability\n"); 323 return -EFAULT; 324 } 325 /* ...then finally give it a kicking to make sure it fits */ 326 base_pfn = max_t(unsigned long, base_pfn, 327 domain->geometry.aperture_start >> order); 328 } 329 330 /* start_pfn is always nonzero for an already-initialised domain */ 331 if (iovad->start_pfn) { 332 if (1UL << order != iovad->granule || 333 base_pfn != iovad->start_pfn) { 334 pr_warn("Incompatible range for DMA domain\n"); 335 return -EFAULT; 336 } 337 338 return 0; 339 } 340 341 init_iova_domain(iovad, 1UL << order, base_pfn); 342 343 if (!cookie->fq_domain && !iommu_domain_get_attr(domain, 344 DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE, &attr) && attr) { 345 if (init_iova_flush_queue(iovad, iommu_dma_flush_iotlb_all, 346 NULL)) 347 pr_warn("iova flush queue initialization failed\n"); 348 else 349 cookie->fq_domain = domain; 350 } 351 352 if (!dev) 353 return 0; 354 355 return iova_reserve_iommu_regions(dev, domain); 356 } 357 358 static int iommu_dma_deferred_attach(struct device *dev, 359 struct iommu_domain *domain) 360 { 361 const struct iommu_ops *ops = domain->ops; 362 363 if (!is_kdump_kernel()) 364 return 0; 365 366 if (unlikely(ops->is_attach_deferred && 367 ops->is_attach_deferred(domain, dev))) 368 return iommu_attach_device(domain, dev); 369 370 return 0; 371 } 372 373 /** 374 * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API 375 * page flags. 376 * @dir: Direction of DMA transfer 377 * @coherent: Is the DMA master cache-coherent? 378 * @attrs: DMA attributes for the mapping 379 * 380 * Return: corresponding IOMMU API page protection flags 381 */ 382 static int dma_info_to_prot(enum dma_data_direction dir, bool coherent, 383 unsigned long attrs) 384 { 385 int prot = coherent ? IOMMU_CACHE : 0; 386 387 if (attrs & DMA_ATTR_PRIVILEGED) 388 prot |= IOMMU_PRIV; 389 390 switch (dir) { 391 case DMA_BIDIRECTIONAL: 392 return prot | IOMMU_READ | IOMMU_WRITE; 393 case DMA_TO_DEVICE: 394 return prot | IOMMU_READ; 395 case DMA_FROM_DEVICE: 396 return prot | IOMMU_WRITE; 397 default: 398 return 0; 399 } 400 } 401 402 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain, 403 size_t size, u64 dma_limit, struct device *dev) 404 { 405 struct iommu_dma_cookie *cookie = domain->iova_cookie; 406 struct iova_domain *iovad = &cookie->iovad; 407 unsigned long shift, iova_len, iova = 0; 408 409 if (cookie->type == IOMMU_DMA_MSI_COOKIE) { 410 cookie->msi_iova += size; 411 return cookie->msi_iova - size; 412 } 413 414 shift = iova_shift(iovad); 415 iova_len = size >> shift; 416 /* 417 * Freeing non-power-of-two-sized allocations back into the IOVA caches 418 * will come back to bite us badly, so we have to waste a bit of space 419 * rounding up anything cacheable to make sure that can't happen. The 420 * order of the unadjusted size will still match upon freeing. 421 */ 422 if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1))) 423 iova_len = roundup_pow_of_two(iova_len); 424 425 dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit); 426 427 if (domain->geometry.force_aperture) 428 dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end); 429 430 /* Try to get PCI devices a SAC address */ 431 if (dma_limit > DMA_BIT_MASK(32) && dev_is_pci(dev)) 432 iova = alloc_iova_fast(iovad, iova_len, 433 DMA_BIT_MASK(32) >> shift, false); 434 435 if (!iova) 436 iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift, 437 true); 438 439 return (dma_addr_t)iova << shift; 440 } 441 442 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie, 443 dma_addr_t iova, size_t size) 444 { 445 struct iova_domain *iovad = &cookie->iovad; 446 447 /* The MSI case is only ever cleaning up its most recent allocation */ 448 if (cookie->type == IOMMU_DMA_MSI_COOKIE) 449 cookie->msi_iova -= size; 450 else if (cookie->fq_domain) /* non-strict mode */ 451 queue_iova(iovad, iova_pfn(iovad, iova), 452 size >> iova_shift(iovad), 0); 453 else 454 free_iova_fast(iovad, iova_pfn(iovad, iova), 455 size >> iova_shift(iovad)); 456 } 457 458 static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr, 459 size_t size) 460 { 461 struct iommu_domain *domain = iommu_get_dma_domain(dev); 462 struct iommu_dma_cookie *cookie = domain->iova_cookie; 463 struct iova_domain *iovad = &cookie->iovad; 464 size_t iova_off = iova_offset(iovad, dma_addr); 465 struct iommu_iotlb_gather iotlb_gather; 466 size_t unmapped; 467 468 dma_addr -= iova_off; 469 size = iova_align(iovad, size + iova_off); 470 iommu_iotlb_gather_init(&iotlb_gather); 471 472 unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather); 473 WARN_ON(unmapped != size); 474 475 if (!cookie->fq_domain) 476 iommu_iotlb_sync(domain, &iotlb_gather); 477 iommu_dma_free_iova(cookie, dma_addr, size); 478 } 479 480 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys, 481 size_t size, int prot, u64 dma_mask) 482 { 483 struct iommu_domain *domain = iommu_get_dma_domain(dev); 484 struct iommu_dma_cookie *cookie = domain->iova_cookie; 485 struct iova_domain *iovad = &cookie->iovad; 486 size_t iova_off = iova_offset(iovad, phys); 487 dma_addr_t iova; 488 489 if (unlikely(iommu_dma_deferred_attach(dev, domain))) 490 return DMA_MAPPING_ERROR; 491 492 size = iova_align(iovad, size + iova_off); 493 494 iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev); 495 if (!iova) 496 return DMA_MAPPING_ERROR; 497 498 if (iommu_map_atomic(domain, iova, phys - iova_off, size, prot)) { 499 iommu_dma_free_iova(cookie, iova, size); 500 return DMA_MAPPING_ERROR; 501 } 502 return iova + iova_off; 503 } 504 505 static void __iommu_dma_free_pages(struct page **pages, int count) 506 { 507 while (count--) 508 __free_page(pages[count]); 509 kvfree(pages); 510 } 511 512 static struct page **__iommu_dma_alloc_pages(struct device *dev, 513 unsigned int count, unsigned long order_mask, gfp_t gfp) 514 { 515 struct page **pages; 516 unsigned int i = 0, nid = dev_to_node(dev); 517 518 order_mask &= (2U << MAX_ORDER) - 1; 519 if (!order_mask) 520 return NULL; 521 522 pages = kvzalloc(count * sizeof(*pages), GFP_KERNEL); 523 if (!pages) 524 return NULL; 525 526 /* IOMMU can map any pages, so himem can also be used here */ 527 gfp |= __GFP_NOWARN | __GFP_HIGHMEM; 528 529 /* It makes no sense to muck about with huge pages */ 530 gfp &= ~__GFP_COMP; 531 532 while (count) { 533 struct page *page = NULL; 534 unsigned int order_size; 535 536 /* 537 * Higher-order allocations are a convenience rather 538 * than a necessity, hence using __GFP_NORETRY until 539 * falling back to minimum-order allocations. 540 */ 541 for (order_mask &= (2U << __fls(count)) - 1; 542 order_mask; order_mask &= ~order_size) { 543 unsigned int order = __fls(order_mask); 544 gfp_t alloc_flags = gfp; 545 546 order_size = 1U << order; 547 if (order_mask > order_size) 548 alloc_flags |= __GFP_NORETRY; 549 page = alloc_pages_node(nid, alloc_flags, order); 550 if (!page) 551 continue; 552 if (order) 553 split_page(page, order); 554 break; 555 } 556 if (!page) { 557 __iommu_dma_free_pages(pages, i); 558 return NULL; 559 } 560 count -= order_size; 561 while (order_size--) 562 pages[i++] = page++; 563 } 564 return pages; 565 } 566 567 /** 568 * iommu_dma_alloc_remap - Allocate and map a buffer contiguous in IOVA space 569 * @dev: Device to allocate memory for. Must be a real device 570 * attached to an iommu_dma_domain 571 * @size: Size of buffer in bytes 572 * @dma_handle: Out argument for allocated DMA handle 573 * @gfp: Allocation flags 574 * @prot: pgprot_t to use for the remapped mapping 575 * @attrs: DMA attributes for this allocation 576 * 577 * If @size is less than PAGE_SIZE, then a full CPU page will be allocated, 578 * but an IOMMU which supports smaller pages might not map the whole thing. 579 * 580 * Return: Mapped virtual address, or NULL on failure. 581 */ 582 static void *iommu_dma_alloc_remap(struct device *dev, size_t size, 583 dma_addr_t *dma_handle, gfp_t gfp, pgprot_t prot, 584 unsigned long attrs) 585 { 586 struct iommu_domain *domain = iommu_get_dma_domain(dev); 587 struct iommu_dma_cookie *cookie = domain->iova_cookie; 588 struct iova_domain *iovad = &cookie->iovad; 589 bool coherent = dev_is_dma_coherent(dev); 590 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs); 591 unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap; 592 struct page **pages; 593 struct sg_table sgt; 594 dma_addr_t iova; 595 void *vaddr; 596 597 *dma_handle = DMA_MAPPING_ERROR; 598 599 if (unlikely(iommu_dma_deferred_attach(dev, domain))) 600 return NULL; 601 602 min_size = alloc_sizes & -alloc_sizes; 603 if (min_size < PAGE_SIZE) { 604 min_size = PAGE_SIZE; 605 alloc_sizes |= PAGE_SIZE; 606 } else { 607 size = ALIGN(size, min_size); 608 } 609 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES) 610 alloc_sizes = min_size; 611 612 count = PAGE_ALIGN(size) >> PAGE_SHIFT; 613 pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT, 614 gfp); 615 if (!pages) 616 return NULL; 617 618 size = iova_align(iovad, size); 619 iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev); 620 if (!iova) 621 goto out_free_pages; 622 623 if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL)) 624 goto out_free_iova; 625 626 if (!(ioprot & IOMMU_CACHE)) { 627 struct scatterlist *sg; 628 int i; 629 630 for_each_sg(sgt.sgl, sg, sgt.orig_nents, i) 631 arch_dma_prep_coherent(sg_page(sg), sg->length); 632 } 633 634 if (iommu_map_sg_atomic(domain, iova, sgt.sgl, sgt.orig_nents, ioprot) 635 < size) 636 goto out_free_sg; 637 638 vaddr = dma_common_pages_remap(pages, size, prot, 639 __builtin_return_address(0)); 640 if (!vaddr) 641 goto out_unmap; 642 643 *dma_handle = iova; 644 sg_free_table(&sgt); 645 return vaddr; 646 647 out_unmap: 648 __iommu_dma_unmap(dev, iova, size); 649 out_free_sg: 650 sg_free_table(&sgt); 651 out_free_iova: 652 iommu_dma_free_iova(cookie, iova, size); 653 out_free_pages: 654 __iommu_dma_free_pages(pages, count); 655 return NULL; 656 } 657 658 /** 659 * __iommu_dma_mmap - Map a buffer into provided user VMA 660 * @pages: Array representing buffer from __iommu_dma_alloc() 661 * @size: Size of buffer in bytes 662 * @vma: VMA describing requested userspace mapping 663 * 664 * Maps the pages of the buffer in @pages into @vma. The caller is responsible 665 * for verifying the correct size and protection of @vma beforehand. 666 */ 667 static int __iommu_dma_mmap(struct page **pages, size_t size, 668 struct vm_area_struct *vma) 669 { 670 return vm_map_pages(vma, pages, PAGE_ALIGN(size) >> PAGE_SHIFT); 671 } 672 673 static void iommu_dma_sync_single_for_cpu(struct device *dev, 674 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir) 675 { 676 phys_addr_t phys; 677 678 if (dev_is_dma_coherent(dev)) 679 return; 680 681 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle); 682 arch_sync_dma_for_cpu(phys, size, dir); 683 } 684 685 static void iommu_dma_sync_single_for_device(struct device *dev, 686 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir) 687 { 688 phys_addr_t phys; 689 690 if (dev_is_dma_coherent(dev)) 691 return; 692 693 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle); 694 arch_sync_dma_for_device(phys, size, dir); 695 } 696 697 static void iommu_dma_sync_sg_for_cpu(struct device *dev, 698 struct scatterlist *sgl, int nelems, 699 enum dma_data_direction dir) 700 { 701 struct scatterlist *sg; 702 int i; 703 704 if (dev_is_dma_coherent(dev)) 705 return; 706 707 for_each_sg(sgl, sg, nelems, i) 708 arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir); 709 } 710 711 static void iommu_dma_sync_sg_for_device(struct device *dev, 712 struct scatterlist *sgl, int nelems, 713 enum dma_data_direction dir) 714 { 715 struct scatterlist *sg; 716 int i; 717 718 if (dev_is_dma_coherent(dev)) 719 return; 720 721 for_each_sg(sgl, sg, nelems, i) 722 arch_sync_dma_for_device(sg_phys(sg), sg->length, dir); 723 } 724 725 static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page, 726 unsigned long offset, size_t size, enum dma_data_direction dir, 727 unsigned long attrs) 728 { 729 phys_addr_t phys = page_to_phys(page) + offset; 730 bool coherent = dev_is_dma_coherent(dev); 731 int prot = dma_info_to_prot(dir, coherent, attrs); 732 dma_addr_t dma_handle; 733 734 dma_handle = __iommu_dma_map(dev, phys, size, prot, dma_get_mask(dev)); 735 if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC) && 736 dma_handle != DMA_MAPPING_ERROR) 737 arch_sync_dma_for_device(phys, size, dir); 738 return dma_handle; 739 } 740 741 static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle, 742 size_t size, enum dma_data_direction dir, unsigned long attrs) 743 { 744 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 745 iommu_dma_sync_single_for_cpu(dev, dma_handle, size, dir); 746 __iommu_dma_unmap(dev, dma_handle, size); 747 } 748 749 /* 750 * Prepare a successfully-mapped scatterlist to give back to the caller. 751 * 752 * At this point the segments are already laid out by iommu_dma_map_sg() to 753 * avoid individually crossing any boundaries, so we merely need to check a 754 * segment's start address to avoid concatenating across one. 755 */ 756 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents, 757 dma_addr_t dma_addr) 758 { 759 struct scatterlist *s, *cur = sg; 760 unsigned long seg_mask = dma_get_seg_boundary(dev); 761 unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev); 762 int i, count = 0; 763 764 for_each_sg(sg, s, nents, i) { 765 /* Restore this segment's original unaligned fields first */ 766 unsigned int s_iova_off = sg_dma_address(s); 767 unsigned int s_length = sg_dma_len(s); 768 unsigned int s_iova_len = s->length; 769 770 s->offset += s_iova_off; 771 s->length = s_length; 772 sg_dma_address(s) = DMA_MAPPING_ERROR; 773 sg_dma_len(s) = 0; 774 775 /* 776 * Now fill in the real DMA data. If... 777 * - there is a valid output segment to append to 778 * - and this segment starts on an IOVA page boundary 779 * - but doesn't fall at a segment boundary 780 * - and wouldn't make the resulting output segment too long 781 */ 782 if (cur_len && !s_iova_off && (dma_addr & seg_mask) && 783 (max_len - cur_len >= s_length)) { 784 /* ...then concatenate it with the previous one */ 785 cur_len += s_length; 786 } else { 787 /* Otherwise start the next output segment */ 788 if (i > 0) 789 cur = sg_next(cur); 790 cur_len = s_length; 791 count++; 792 793 sg_dma_address(cur) = dma_addr + s_iova_off; 794 } 795 796 sg_dma_len(cur) = cur_len; 797 dma_addr += s_iova_len; 798 799 if (s_length + s_iova_off < s_iova_len) 800 cur_len = 0; 801 } 802 return count; 803 } 804 805 /* 806 * If mapping failed, then just restore the original list, 807 * but making sure the DMA fields are invalidated. 808 */ 809 static void __invalidate_sg(struct scatterlist *sg, int nents) 810 { 811 struct scatterlist *s; 812 int i; 813 814 for_each_sg(sg, s, nents, i) { 815 if (sg_dma_address(s) != DMA_MAPPING_ERROR) 816 s->offset += sg_dma_address(s); 817 if (sg_dma_len(s)) 818 s->length = sg_dma_len(s); 819 sg_dma_address(s) = DMA_MAPPING_ERROR; 820 sg_dma_len(s) = 0; 821 } 822 } 823 824 /* 825 * The DMA API client is passing in a scatterlist which could describe 826 * any old buffer layout, but the IOMMU API requires everything to be 827 * aligned to IOMMU pages. Hence the need for this complicated bit of 828 * impedance-matching, to be able to hand off a suitably-aligned list, 829 * but still preserve the original offsets and sizes for the caller. 830 */ 831 static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg, 832 int nents, enum dma_data_direction dir, unsigned long attrs) 833 { 834 struct iommu_domain *domain = iommu_get_dma_domain(dev); 835 struct iommu_dma_cookie *cookie = domain->iova_cookie; 836 struct iova_domain *iovad = &cookie->iovad; 837 struct scatterlist *s, *prev = NULL; 838 int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs); 839 dma_addr_t iova; 840 size_t iova_len = 0; 841 unsigned long mask = dma_get_seg_boundary(dev); 842 int i; 843 844 if (unlikely(iommu_dma_deferred_attach(dev, domain))) 845 return 0; 846 847 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 848 iommu_dma_sync_sg_for_device(dev, sg, nents, dir); 849 850 /* 851 * Work out how much IOVA space we need, and align the segments to 852 * IOVA granules for the IOMMU driver to handle. With some clever 853 * trickery we can modify the list in-place, but reversibly, by 854 * stashing the unaligned parts in the as-yet-unused DMA fields. 855 */ 856 for_each_sg(sg, s, nents, i) { 857 size_t s_iova_off = iova_offset(iovad, s->offset); 858 size_t s_length = s->length; 859 size_t pad_len = (mask - iova_len + 1) & mask; 860 861 sg_dma_address(s) = s_iova_off; 862 sg_dma_len(s) = s_length; 863 s->offset -= s_iova_off; 864 s_length = iova_align(iovad, s_length + s_iova_off); 865 s->length = s_length; 866 867 /* 868 * Due to the alignment of our single IOVA allocation, we can 869 * depend on these assumptions about the segment boundary mask: 870 * - If mask size >= IOVA size, then the IOVA range cannot 871 * possibly fall across a boundary, so we don't care. 872 * - If mask size < IOVA size, then the IOVA range must start 873 * exactly on a boundary, therefore we can lay things out 874 * based purely on segment lengths without needing to know 875 * the actual addresses beforehand. 876 * - The mask must be a power of 2, so pad_len == 0 if 877 * iova_len == 0, thus we cannot dereference prev the first 878 * time through here (i.e. before it has a meaningful value). 879 */ 880 if (pad_len && pad_len < s_length - 1) { 881 prev->length += pad_len; 882 iova_len += pad_len; 883 } 884 885 iova_len += s_length; 886 prev = s; 887 } 888 889 iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev); 890 if (!iova) 891 goto out_restore_sg; 892 893 /* 894 * We'll leave any physical concatenation to the IOMMU driver's 895 * implementation - it knows better than we do. 896 */ 897 if (iommu_map_sg_atomic(domain, iova, sg, nents, prot) < iova_len) 898 goto out_free_iova; 899 900 return __finalise_sg(dev, sg, nents, iova); 901 902 out_free_iova: 903 iommu_dma_free_iova(cookie, iova, iova_len); 904 out_restore_sg: 905 __invalidate_sg(sg, nents); 906 return 0; 907 } 908 909 static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, 910 int nents, enum dma_data_direction dir, unsigned long attrs) 911 { 912 dma_addr_t start, end; 913 struct scatterlist *tmp; 914 int i; 915 916 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 917 iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir); 918 919 /* 920 * The scatterlist segments are mapped into a single 921 * contiguous IOVA allocation, so this is incredibly easy. 922 */ 923 start = sg_dma_address(sg); 924 for_each_sg(sg_next(sg), tmp, nents - 1, i) { 925 if (sg_dma_len(tmp) == 0) 926 break; 927 sg = tmp; 928 } 929 end = sg_dma_address(sg) + sg_dma_len(sg); 930 __iommu_dma_unmap(dev, start, end - start); 931 } 932 933 static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys, 934 size_t size, enum dma_data_direction dir, unsigned long attrs) 935 { 936 return __iommu_dma_map(dev, phys, size, 937 dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO, 938 dma_get_mask(dev)); 939 } 940 941 static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle, 942 size_t size, enum dma_data_direction dir, unsigned long attrs) 943 { 944 __iommu_dma_unmap(dev, handle, size); 945 } 946 947 static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr) 948 { 949 size_t alloc_size = PAGE_ALIGN(size); 950 int count = alloc_size >> PAGE_SHIFT; 951 struct page *page = NULL, **pages = NULL; 952 953 /* Non-coherent atomic allocation? Easy */ 954 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && 955 dma_free_from_pool(dev, cpu_addr, alloc_size)) 956 return; 957 958 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) { 959 /* 960 * If it the address is remapped, then it's either non-coherent 961 * or highmem CMA, or an iommu_dma_alloc_remap() construction. 962 */ 963 pages = dma_common_find_pages(cpu_addr); 964 if (!pages) 965 page = vmalloc_to_page(cpu_addr); 966 dma_common_free_remap(cpu_addr, alloc_size); 967 } else { 968 /* Lowmem means a coherent atomic or CMA allocation */ 969 page = virt_to_page(cpu_addr); 970 } 971 972 if (pages) 973 __iommu_dma_free_pages(pages, count); 974 if (page) 975 dma_free_contiguous(dev, page, alloc_size); 976 } 977 978 static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr, 979 dma_addr_t handle, unsigned long attrs) 980 { 981 __iommu_dma_unmap(dev, handle, size); 982 __iommu_dma_free(dev, size, cpu_addr); 983 } 984 985 static void *iommu_dma_alloc_pages(struct device *dev, size_t size, 986 struct page **pagep, gfp_t gfp, unsigned long attrs) 987 { 988 bool coherent = dev_is_dma_coherent(dev); 989 size_t alloc_size = PAGE_ALIGN(size); 990 int node = dev_to_node(dev); 991 struct page *page = NULL; 992 void *cpu_addr; 993 994 page = dma_alloc_contiguous(dev, alloc_size, gfp); 995 if (!page) 996 page = alloc_pages_node(node, gfp, get_order(alloc_size)); 997 if (!page) 998 return NULL; 999 1000 if (IS_ENABLED(CONFIG_DMA_REMAP) && (!coherent || PageHighMem(page))) { 1001 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs); 1002 1003 cpu_addr = dma_common_contiguous_remap(page, alloc_size, 1004 prot, __builtin_return_address(0)); 1005 if (!cpu_addr) 1006 goto out_free_pages; 1007 1008 if (!coherent) 1009 arch_dma_prep_coherent(page, size); 1010 } else { 1011 cpu_addr = page_address(page); 1012 } 1013 1014 *pagep = page; 1015 memset(cpu_addr, 0, alloc_size); 1016 return cpu_addr; 1017 out_free_pages: 1018 dma_free_contiguous(dev, page, alloc_size); 1019 return NULL; 1020 } 1021 1022 static void *iommu_dma_alloc(struct device *dev, size_t size, 1023 dma_addr_t *handle, gfp_t gfp, unsigned long attrs) 1024 { 1025 bool coherent = dev_is_dma_coherent(dev); 1026 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs); 1027 struct page *page = NULL; 1028 void *cpu_addr; 1029 1030 gfp |= __GFP_ZERO; 1031 1032 if (IS_ENABLED(CONFIG_DMA_REMAP) && gfpflags_allow_blocking(gfp) && 1033 !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) { 1034 return iommu_dma_alloc_remap(dev, size, handle, gfp, 1035 dma_pgprot(dev, PAGE_KERNEL, attrs), attrs); 1036 } 1037 1038 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && 1039 !gfpflags_allow_blocking(gfp) && !coherent) 1040 page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr, 1041 gfp, NULL); 1042 else 1043 cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs); 1044 if (!cpu_addr) 1045 return NULL; 1046 1047 *handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot, 1048 dev->coherent_dma_mask); 1049 if (*handle == DMA_MAPPING_ERROR) { 1050 __iommu_dma_free(dev, size, cpu_addr); 1051 return NULL; 1052 } 1053 1054 return cpu_addr; 1055 } 1056 1057 #ifdef CONFIG_DMA_REMAP 1058 static void *iommu_dma_alloc_noncoherent(struct device *dev, size_t size, 1059 dma_addr_t *handle, enum dma_data_direction dir, gfp_t gfp) 1060 { 1061 if (!gfpflags_allow_blocking(gfp)) { 1062 struct page *page; 1063 1064 page = dma_common_alloc_pages(dev, size, handle, dir, gfp); 1065 if (!page) 1066 return NULL; 1067 return page_address(page); 1068 } 1069 1070 return iommu_dma_alloc_remap(dev, size, handle, gfp | __GFP_ZERO, 1071 PAGE_KERNEL, 0); 1072 } 1073 1074 static void iommu_dma_free_noncoherent(struct device *dev, size_t size, 1075 void *cpu_addr, dma_addr_t handle, enum dma_data_direction dir) 1076 { 1077 __iommu_dma_unmap(dev, handle, size); 1078 __iommu_dma_free(dev, size, cpu_addr); 1079 } 1080 #else 1081 #define iommu_dma_alloc_noncoherent NULL 1082 #define iommu_dma_free_noncoherent NULL 1083 #endif /* CONFIG_DMA_REMAP */ 1084 1085 static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma, 1086 void *cpu_addr, dma_addr_t dma_addr, size_t size, 1087 unsigned long attrs) 1088 { 1089 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 1090 unsigned long pfn, off = vma->vm_pgoff; 1091 int ret; 1092 1093 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs); 1094 1095 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) 1096 return ret; 1097 1098 if (off >= nr_pages || vma_pages(vma) > nr_pages - off) 1099 return -ENXIO; 1100 1101 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) { 1102 struct page **pages = dma_common_find_pages(cpu_addr); 1103 1104 if (pages) 1105 return __iommu_dma_mmap(pages, size, vma); 1106 pfn = vmalloc_to_pfn(cpu_addr); 1107 } else { 1108 pfn = page_to_pfn(virt_to_page(cpu_addr)); 1109 } 1110 1111 return remap_pfn_range(vma, vma->vm_start, pfn + off, 1112 vma->vm_end - vma->vm_start, 1113 vma->vm_page_prot); 1114 } 1115 1116 static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt, 1117 void *cpu_addr, dma_addr_t dma_addr, size_t size, 1118 unsigned long attrs) 1119 { 1120 struct page *page; 1121 int ret; 1122 1123 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) { 1124 struct page **pages = dma_common_find_pages(cpu_addr); 1125 1126 if (pages) { 1127 return sg_alloc_table_from_pages(sgt, pages, 1128 PAGE_ALIGN(size) >> PAGE_SHIFT, 1129 0, size, GFP_KERNEL); 1130 } 1131 1132 page = vmalloc_to_page(cpu_addr); 1133 } else { 1134 page = virt_to_page(cpu_addr); 1135 } 1136 1137 ret = sg_alloc_table(sgt, 1, GFP_KERNEL); 1138 if (!ret) 1139 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); 1140 return ret; 1141 } 1142 1143 static unsigned long iommu_dma_get_merge_boundary(struct device *dev) 1144 { 1145 struct iommu_domain *domain = iommu_get_dma_domain(dev); 1146 1147 return (1UL << __ffs(domain->pgsize_bitmap)) - 1; 1148 } 1149 1150 static const struct dma_map_ops iommu_dma_ops = { 1151 .alloc = iommu_dma_alloc, 1152 .free = iommu_dma_free, 1153 .alloc_pages = dma_common_alloc_pages, 1154 .free_pages = dma_common_free_pages, 1155 .alloc_noncoherent = iommu_dma_alloc_noncoherent, 1156 .free_noncoherent = iommu_dma_free_noncoherent, 1157 .mmap = iommu_dma_mmap, 1158 .get_sgtable = iommu_dma_get_sgtable, 1159 .map_page = iommu_dma_map_page, 1160 .unmap_page = iommu_dma_unmap_page, 1161 .map_sg = iommu_dma_map_sg, 1162 .unmap_sg = iommu_dma_unmap_sg, 1163 .sync_single_for_cpu = iommu_dma_sync_single_for_cpu, 1164 .sync_single_for_device = iommu_dma_sync_single_for_device, 1165 .sync_sg_for_cpu = iommu_dma_sync_sg_for_cpu, 1166 .sync_sg_for_device = iommu_dma_sync_sg_for_device, 1167 .map_resource = iommu_dma_map_resource, 1168 .unmap_resource = iommu_dma_unmap_resource, 1169 .get_merge_boundary = iommu_dma_get_merge_boundary, 1170 }; 1171 1172 /* 1173 * The IOMMU core code allocates the default DMA domain, which the underlying 1174 * IOMMU driver needs to support via the dma-iommu layer. 1175 */ 1176 void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size) 1177 { 1178 struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 1179 1180 if (!domain) 1181 goto out_err; 1182 1183 /* 1184 * The IOMMU core code allocates the default DMA domain, which the 1185 * underlying IOMMU driver needs to support via the dma-iommu layer. 1186 */ 1187 if (domain->type == IOMMU_DOMAIN_DMA) { 1188 if (iommu_dma_init_domain(domain, dma_base, size, dev)) 1189 goto out_err; 1190 dev->dma_ops = &iommu_dma_ops; 1191 } 1192 1193 return; 1194 out_err: 1195 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n", 1196 dev_name(dev)); 1197 } 1198 1199 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev, 1200 phys_addr_t msi_addr, struct iommu_domain *domain) 1201 { 1202 struct iommu_dma_cookie *cookie = domain->iova_cookie; 1203 struct iommu_dma_msi_page *msi_page; 1204 dma_addr_t iova; 1205 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO; 1206 size_t size = cookie_msi_granule(cookie); 1207 1208 msi_addr &= ~(phys_addr_t)(size - 1); 1209 list_for_each_entry(msi_page, &cookie->msi_page_list, list) 1210 if (msi_page->phys == msi_addr) 1211 return msi_page; 1212 1213 msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL); 1214 if (!msi_page) 1215 return NULL; 1216 1217 iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev); 1218 if (!iova) 1219 goto out_free_page; 1220 1221 if (iommu_map(domain, iova, msi_addr, size, prot)) 1222 goto out_free_iova; 1223 1224 INIT_LIST_HEAD(&msi_page->list); 1225 msi_page->phys = msi_addr; 1226 msi_page->iova = iova; 1227 list_add(&msi_page->list, &cookie->msi_page_list); 1228 return msi_page; 1229 1230 out_free_iova: 1231 iommu_dma_free_iova(cookie, iova, size); 1232 out_free_page: 1233 kfree(msi_page); 1234 return NULL; 1235 } 1236 1237 int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr) 1238 { 1239 struct device *dev = msi_desc_to_dev(desc); 1240 struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 1241 struct iommu_dma_msi_page *msi_page; 1242 static DEFINE_MUTEX(msi_prepare_lock); /* see below */ 1243 1244 if (!domain || !domain->iova_cookie) { 1245 desc->iommu_cookie = NULL; 1246 return 0; 1247 } 1248 1249 /* 1250 * In fact the whole prepare operation should already be serialised by 1251 * irq_domain_mutex further up the callchain, but that's pretty subtle 1252 * on its own, so consider this locking as failsafe documentation... 1253 */ 1254 mutex_lock(&msi_prepare_lock); 1255 msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain); 1256 mutex_unlock(&msi_prepare_lock); 1257 1258 msi_desc_set_iommu_cookie(desc, msi_page); 1259 1260 if (!msi_page) 1261 return -ENOMEM; 1262 return 0; 1263 } 1264 1265 void iommu_dma_compose_msi_msg(struct msi_desc *desc, 1266 struct msi_msg *msg) 1267 { 1268 struct device *dev = msi_desc_to_dev(desc); 1269 const struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 1270 const struct iommu_dma_msi_page *msi_page; 1271 1272 msi_page = msi_desc_get_iommu_cookie(desc); 1273 1274 if (!domain || !domain->iova_cookie || WARN_ON(!msi_page)) 1275 return; 1276 1277 msg->address_hi = upper_32_bits(msi_page->iova); 1278 msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1; 1279 msg->address_lo += lower_32_bits(msi_page->iova); 1280 } 1281 1282 static int iommu_dma_init(void) 1283 { 1284 return iova_cache_get(); 1285 } 1286 arch_initcall(iommu_dma_init); 1287