xref: /openbmc/linux/drivers/iommu/dma-iommu.c (revision 11a163f2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * A fairly generic DMA-API to IOMMU-API glue layer.
4  *
5  * Copyright (C) 2014-2015 ARM Ltd.
6  *
7  * based in part on arch/arm/mm/dma-mapping.c:
8  * Copyright (C) 2000-2004 Russell King
9  */
10 
11 #include <linux/acpi_iort.h>
12 #include <linux/device.h>
13 #include <linux/dma-map-ops.h>
14 #include <linux/dma-iommu.h>
15 #include <linux/gfp.h>
16 #include <linux/huge_mm.h>
17 #include <linux/iommu.h>
18 #include <linux/iova.h>
19 #include <linux/irq.h>
20 #include <linux/mm.h>
21 #include <linux/mutex.h>
22 #include <linux/pci.h>
23 #include <linux/scatterlist.h>
24 #include <linux/vmalloc.h>
25 #include <linux/crash_dump.h>
26 
27 struct iommu_dma_msi_page {
28 	struct list_head	list;
29 	dma_addr_t		iova;
30 	phys_addr_t		phys;
31 };
32 
33 enum iommu_dma_cookie_type {
34 	IOMMU_DMA_IOVA_COOKIE,
35 	IOMMU_DMA_MSI_COOKIE,
36 };
37 
38 struct iommu_dma_cookie {
39 	enum iommu_dma_cookie_type	type;
40 	union {
41 		/* Full allocator for IOMMU_DMA_IOVA_COOKIE */
42 		struct iova_domain	iovad;
43 		/* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
44 		dma_addr_t		msi_iova;
45 	};
46 	struct list_head		msi_page_list;
47 
48 	/* Domain for flush queue callback; NULL if flush queue not in use */
49 	struct iommu_domain		*fq_domain;
50 };
51 
52 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
53 {
54 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
55 		return cookie->iovad.granule;
56 	return PAGE_SIZE;
57 }
58 
59 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
60 {
61 	struct iommu_dma_cookie *cookie;
62 
63 	cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
64 	if (cookie) {
65 		INIT_LIST_HEAD(&cookie->msi_page_list);
66 		cookie->type = type;
67 	}
68 	return cookie;
69 }
70 
71 /**
72  * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
73  * @domain: IOMMU domain to prepare for DMA-API usage
74  *
75  * IOMMU drivers should normally call this from their domain_alloc
76  * callback when domain->type == IOMMU_DOMAIN_DMA.
77  */
78 int iommu_get_dma_cookie(struct iommu_domain *domain)
79 {
80 	if (domain->iova_cookie)
81 		return -EEXIST;
82 
83 	domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
84 	if (!domain->iova_cookie)
85 		return -ENOMEM;
86 
87 	return 0;
88 }
89 EXPORT_SYMBOL(iommu_get_dma_cookie);
90 
91 /**
92  * iommu_get_msi_cookie - Acquire just MSI remapping resources
93  * @domain: IOMMU domain to prepare
94  * @base: Start address of IOVA region for MSI mappings
95  *
96  * Users who manage their own IOVA allocation and do not want DMA API support,
97  * but would still like to take advantage of automatic MSI remapping, can use
98  * this to initialise their own domain appropriately. Users should reserve a
99  * contiguous IOVA region, starting at @base, large enough to accommodate the
100  * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
101  * used by the devices attached to @domain.
102  */
103 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
104 {
105 	struct iommu_dma_cookie *cookie;
106 
107 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
108 		return -EINVAL;
109 
110 	if (domain->iova_cookie)
111 		return -EEXIST;
112 
113 	cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
114 	if (!cookie)
115 		return -ENOMEM;
116 
117 	cookie->msi_iova = base;
118 	domain->iova_cookie = cookie;
119 	return 0;
120 }
121 EXPORT_SYMBOL(iommu_get_msi_cookie);
122 
123 /**
124  * iommu_put_dma_cookie - Release a domain's DMA mapping resources
125  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
126  *          iommu_get_msi_cookie()
127  *
128  * IOMMU drivers should normally call this from their domain_free callback.
129  */
130 void iommu_put_dma_cookie(struct iommu_domain *domain)
131 {
132 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
133 	struct iommu_dma_msi_page *msi, *tmp;
134 
135 	if (!cookie)
136 		return;
137 
138 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule)
139 		put_iova_domain(&cookie->iovad);
140 
141 	list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
142 		list_del(&msi->list);
143 		kfree(msi);
144 	}
145 	kfree(cookie);
146 	domain->iova_cookie = NULL;
147 }
148 EXPORT_SYMBOL(iommu_put_dma_cookie);
149 
150 /**
151  * iommu_dma_get_resv_regions - Reserved region driver helper
152  * @dev: Device from iommu_get_resv_regions()
153  * @list: Reserved region list from iommu_get_resv_regions()
154  *
155  * IOMMU drivers can use this to implement their .get_resv_regions callback
156  * for general non-IOMMU-specific reservations. Currently, this covers GICv3
157  * ITS region reservation on ACPI based ARM platforms that may require HW MSI
158  * reservation.
159  */
160 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
161 {
162 
163 	if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode))
164 		iort_iommu_msi_get_resv_regions(dev, list);
165 
166 }
167 EXPORT_SYMBOL(iommu_dma_get_resv_regions);
168 
169 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
170 		phys_addr_t start, phys_addr_t end)
171 {
172 	struct iova_domain *iovad = &cookie->iovad;
173 	struct iommu_dma_msi_page *msi_page;
174 	int i, num_pages;
175 
176 	start -= iova_offset(iovad, start);
177 	num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
178 
179 	for (i = 0; i < num_pages; i++) {
180 		msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL);
181 		if (!msi_page)
182 			return -ENOMEM;
183 
184 		msi_page->phys = start;
185 		msi_page->iova = start;
186 		INIT_LIST_HEAD(&msi_page->list);
187 		list_add(&msi_page->list, &cookie->msi_page_list);
188 		start += iovad->granule;
189 	}
190 
191 	return 0;
192 }
193 
194 static int iova_reserve_pci_windows(struct pci_dev *dev,
195 		struct iova_domain *iovad)
196 {
197 	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
198 	struct resource_entry *window;
199 	unsigned long lo, hi;
200 	phys_addr_t start = 0, end;
201 
202 	resource_list_for_each_entry(window, &bridge->windows) {
203 		if (resource_type(window->res) != IORESOURCE_MEM)
204 			continue;
205 
206 		lo = iova_pfn(iovad, window->res->start - window->offset);
207 		hi = iova_pfn(iovad, window->res->end - window->offset);
208 		reserve_iova(iovad, lo, hi);
209 	}
210 
211 	/* Get reserved DMA windows from host bridge */
212 	resource_list_for_each_entry(window, &bridge->dma_ranges) {
213 		end = window->res->start - window->offset;
214 resv_iova:
215 		if (end > start) {
216 			lo = iova_pfn(iovad, start);
217 			hi = iova_pfn(iovad, end);
218 			reserve_iova(iovad, lo, hi);
219 		} else {
220 			/* dma_ranges list should be sorted */
221 			dev_err(&dev->dev, "Failed to reserve IOVA\n");
222 			return -EINVAL;
223 		}
224 
225 		start = window->res->end - window->offset + 1;
226 		/* If window is last entry */
227 		if (window->node.next == &bridge->dma_ranges &&
228 		    end != ~(phys_addr_t)0) {
229 			end = ~(phys_addr_t)0;
230 			goto resv_iova;
231 		}
232 	}
233 
234 	return 0;
235 }
236 
237 static int iova_reserve_iommu_regions(struct device *dev,
238 		struct iommu_domain *domain)
239 {
240 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
241 	struct iova_domain *iovad = &cookie->iovad;
242 	struct iommu_resv_region *region;
243 	LIST_HEAD(resv_regions);
244 	int ret = 0;
245 
246 	if (dev_is_pci(dev)) {
247 		ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad);
248 		if (ret)
249 			return ret;
250 	}
251 
252 	iommu_get_resv_regions(dev, &resv_regions);
253 	list_for_each_entry(region, &resv_regions, list) {
254 		unsigned long lo, hi;
255 
256 		/* We ARE the software that manages these! */
257 		if (region->type == IOMMU_RESV_SW_MSI)
258 			continue;
259 
260 		lo = iova_pfn(iovad, region->start);
261 		hi = iova_pfn(iovad, region->start + region->length - 1);
262 		reserve_iova(iovad, lo, hi);
263 
264 		if (region->type == IOMMU_RESV_MSI)
265 			ret = cookie_init_hw_msi_region(cookie, region->start,
266 					region->start + region->length);
267 		if (ret)
268 			break;
269 	}
270 	iommu_put_resv_regions(dev, &resv_regions);
271 
272 	return ret;
273 }
274 
275 static void iommu_dma_flush_iotlb_all(struct iova_domain *iovad)
276 {
277 	struct iommu_dma_cookie *cookie;
278 	struct iommu_domain *domain;
279 
280 	cookie = container_of(iovad, struct iommu_dma_cookie, iovad);
281 	domain = cookie->fq_domain;
282 	/*
283 	 * The IOMMU driver supporting DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE
284 	 * implies that ops->flush_iotlb_all must be non-NULL.
285 	 */
286 	domain->ops->flush_iotlb_all(domain);
287 }
288 
289 /**
290  * iommu_dma_init_domain - Initialise a DMA mapping domain
291  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
292  * @base: IOVA at which the mappable address space starts
293  * @size: Size of IOVA space
294  * @dev: Device the domain is being initialised for
295  *
296  * @base and @size should be exact multiples of IOMMU page granularity to
297  * avoid rounding surprises. If necessary, we reserve the page at address 0
298  * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
299  * any change which could make prior IOVAs invalid will fail.
300  */
301 static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
302 		u64 size, struct device *dev)
303 {
304 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
305 	unsigned long order, base_pfn;
306 	struct iova_domain *iovad;
307 	int attr;
308 
309 	if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
310 		return -EINVAL;
311 
312 	iovad = &cookie->iovad;
313 
314 	/* Use the smallest supported page size for IOVA granularity */
315 	order = __ffs(domain->pgsize_bitmap);
316 	base_pfn = max_t(unsigned long, 1, base >> order);
317 
318 	/* Check the domain allows at least some access to the device... */
319 	if (domain->geometry.force_aperture) {
320 		if (base > domain->geometry.aperture_end ||
321 		    base + size <= domain->geometry.aperture_start) {
322 			pr_warn("specified DMA range outside IOMMU capability\n");
323 			return -EFAULT;
324 		}
325 		/* ...then finally give it a kicking to make sure it fits */
326 		base_pfn = max_t(unsigned long, base_pfn,
327 				domain->geometry.aperture_start >> order);
328 	}
329 
330 	/* start_pfn is always nonzero for an already-initialised domain */
331 	if (iovad->start_pfn) {
332 		if (1UL << order != iovad->granule ||
333 		    base_pfn != iovad->start_pfn) {
334 			pr_warn("Incompatible range for DMA domain\n");
335 			return -EFAULT;
336 		}
337 
338 		return 0;
339 	}
340 
341 	init_iova_domain(iovad, 1UL << order, base_pfn);
342 
343 	if (!cookie->fq_domain && !iommu_domain_get_attr(domain,
344 			DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE, &attr) && attr) {
345 		if (init_iova_flush_queue(iovad, iommu_dma_flush_iotlb_all,
346 					NULL))
347 			pr_warn("iova flush queue initialization failed\n");
348 		else
349 			cookie->fq_domain = domain;
350 	}
351 
352 	if (!dev)
353 		return 0;
354 
355 	return iova_reserve_iommu_regions(dev, domain);
356 }
357 
358 static int iommu_dma_deferred_attach(struct device *dev,
359 		struct iommu_domain *domain)
360 {
361 	const struct iommu_ops *ops = domain->ops;
362 
363 	if (!is_kdump_kernel())
364 		return 0;
365 
366 	if (unlikely(ops->is_attach_deferred &&
367 			ops->is_attach_deferred(domain, dev)))
368 		return iommu_attach_device(domain, dev);
369 
370 	return 0;
371 }
372 
373 /**
374  * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
375  *                    page flags.
376  * @dir: Direction of DMA transfer
377  * @coherent: Is the DMA master cache-coherent?
378  * @attrs: DMA attributes for the mapping
379  *
380  * Return: corresponding IOMMU API page protection flags
381  */
382 static int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
383 		     unsigned long attrs)
384 {
385 	int prot = coherent ? IOMMU_CACHE : 0;
386 
387 	if (attrs & DMA_ATTR_PRIVILEGED)
388 		prot |= IOMMU_PRIV;
389 
390 	switch (dir) {
391 	case DMA_BIDIRECTIONAL:
392 		return prot | IOMMU_READ | IOMMU_WRITE;
393 	case DMA_TO_DEVICE:
394 		return prot | IOMMU_READ;
395 	case DMA_FROM_DEVICE:
396 		return prot | IOMMU_WRITE;
397 	default:
398 		return 0;
399 	}
400 }
401 
402 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
403 		size_t size, u64 dma_limit, struct device *dev)
404 {
405 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
406 	struct iova_domain *iovad = &cookie->iovad;
407 	unsigned long shift, iova_len, iova = 0;
408 
409 	if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
410 		cookie->msi_iova += size;
411 		return cookie->msi_iova - size;
412 	}
413 
414 	shift = iova_shift(iovad);
415 	iova_len = size >> shift;
416 	/*
417 	 * Freeing non-power-of-two-sized allocations back into the IOVA caches
418 	 * will come back to bite us badly, so we have to waste a bit of space
419 	 * rounding up anything cacheable to make sure that can't happen. The
420 	 * order of the unadjusted size will still match upon freeing.
421 	 */
422 	if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1)))
423 		iova_len = roundup_pow_of_two(iova_len);
424 
425 	dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit);
426 
427 	if (domain->geometry.force_aperture)
428 		dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end);
429 
430 	/* Try to get PCI devices a SAC address */
431 	if (dma_limit > DMA_BIT_MASK(32) && dev_is_pci(dev))
432 		iova = alloc_iova_fast(iovad, iova_len,
433 				       DMA_BIT_MASK(32) >> shift, false);
434 
435 	if (!iova)
436 		iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift,
437 				       true);
438 
439 	return (dma_addr_t)iova << shift;
440 }
441 
442 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
443 		dma_addr_t iova, size_t size)
444 {
445 	struct iova_domain *iovad = &cookie->iovad;
446 
447 	/* The MSI case is only ever cleaning up its most recent allocation */
448 	if (cookie->type == IOMMU_DMA_MSI_COOKIE)
449 		cookie->msi_iova -= size;
450 	else if (cookie->fq_domain)	/* non-strict mode */
451 		queue_iova(iovad, iova_pfn(iovad, iova),
452 				size >> iova_shift(iovad), 0);
453 	else
454 		free_iova_fast(iovad, iova_pfn(iovad, iova),
455 				size >> iova_shift(iovad));
456 }
457 
458 static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr,
459 		size_t size)
460 {
461 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
462 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
463 	struct iova_domain *iovad = &cookie->iovad;
464 	size_t iova_off = iova_offset(iovad, dma_addr);
465 	struct iommu_iotlb_gather iotlb_gather;
466 	size_t unmapped;
467 
468 	dma_addr -= iova_off;
469 	size = iova_align(iovad, size + iova_off);
470 	iommu_iotlb_gather_init(&iotlb_gather);
471 
472 	unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather);
473 	WARN_ON(unmapped != size);
474 
475 	if (!cookie->fq_domain)
476 		iommu_iotlb_sync(domain, &iotlb_gather);
477 	iommu_dma_free_iova(cookie, dma_addr, size);
478 }
479 
480 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
481 		size_t size, int prot, u64 dma_mask)
482 {
483 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
484 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
485 	struct iova_domain *iovad = &cookie->iovad;
486 	size_t iova_off = iova_offset(iovad, phys);
487 	dma_addr_t iova;
488 
489 	if (unlikely(iommu_dma_deferred_attach(dev, domain)))
490 		return DMA_MAPPING_ERROR;
491 
492 	size = iova_align(iovad, size + iova_off);
493 
494 	iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev);
495 	if (!iova)
496 		return DMA_MAPPING_ERROR;
497 
498 	if (iommu_map_atomic(domain, iova, phys - iova_off, size, prot)) {
499 		iommu_dma_free_iova(cookie, iova, size);
500 		return DMA_MAPPING_ERROR;
501 	}
502 	return iova + iova_off;
503 }
504 
505 static void __iommu_dma_free_pages(struct page **pages, int count)
506 {
507 	while (count--)
508 		__free_page(pages[count]);
509 	kvfree(pages);
510 }
511 
512 static struct page **__iommu_dma_alloc_pages(struct device *dev,
513 		unsigned int count, unsigned long order_mask, gfp_t gfp)
514 {
515 	struct page **pages;
516 	unsigned int i = 0, nid = dev_to_node(dev);
517 
518 	order_mask &= (2U << MAX_ORDER) - 1;
519 	if (!order_mask)
520 		return NULL;
521 
522 	pages = kvzalloc(count * sizeof(*pages), GFP_KERNEL);
523 	if (!pages)
524 		return NULL;
525 
526 	/* IOMMU can map any pages, so himem can also be used here */
527 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
528 
529 	/* It makes no sense to muck about with huge pages */
530 	gfp &= ~__GFP_COMP;
531 
532 	while (count) {
533 		struct page *page = NULL;
534 		unsigned int order_size;
535 
536 		/*
537 		 * Higher-order allocations are a convenience rather
538 		 * than a necessity, hence using __GFP_NORETRY until
539 		 * falling back to minimum-order allocations.
540 		 */
541 		for (order_mask &= (2U << __fls(count)) - 1;
542 		     order_mask; order_mask &= ~order_size) {
543 			unsigned int order = __fls(order_mask);
544 			gfp_t alloc_flags = gfp;
545 
546 			order_size = 1U << order;
547 			if (order_mask > order_size)
548 				alloc_flags |= __GFP_NORETRY;
549 			page = alloc_pages_node(nid, alloc_flags, order);
550 			if (!page)
551 				continue;
552 			if (order)
553 				split_page(page, order);
554 			break;
555 		}
556 		if (!page) {
557 			__iommu_dma_free_pages(pages, i);
558 			return NULL;
559 		}
560 		count -= order_size;
561 		while (order_size--)
562 			pages[i++] = page++;
563 	}
564 	return pages;
565 }
566 
567 /**
568  * iommu_dma_alloc_remap - Allocate and map a buffer contiguous in IOVA space
569  * @dev: Device to allocate memory for. Must be a real device
570  *	 attached to an iommu_dma_domain
571  * @size: Size of buffer in bytes
572  * @dma_handle: Out argument for allocated DMA handle
573  * @gfp: Allocation flags
574  * @prot: pgprot_t to use for the remapped mapping
575  * @attrs: DMA attributes for this allocation
576  *
577  * If @size is less than PAGE_SIZE, then a full CPU page will be allocated,
578  * but an IOMMU which supports smaller pages might not map the whole thing.
579  *
580  * Return: Mapped virtual address, or NULL on failure.
581  */
582 static void *iommu_dma_alloc_remap(struct device *dev, size_t size,
583 		dma_addr_t *dma_handle, gfp_t gfp, pgprot_t prot,
584 		unsigned long attrs)
585 {
586 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
587 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
588 	struct iova_domain *iovad = &cookie->iovad;
589 	bool coherent = dev_is_dma_coherent(dev);
590 	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
591 	unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
592 	struct page **pages;
593 	struct sg_table sgt;
594 	dma_addr_t iova;
595 	void *vaddr;
596 
597 	*dma_handle = DMA_MAPPING_ERROR;
598 
599 	if (unlikely(iommu_dma_deferred_attach(dev, domain)))
600 		return NULL;
601 
602 	min_size = alloc_sizes & -alloc_sizes;
603 	if (min_size < PAGE_SIZE) {
604 		min_size = PAGE_SIZE;
605 		alloc_sizes |= PAGE_SIZE;
606 	} else {
607 		size = ALIGN(size, min_size);
608 	}
609 	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
610 		alloc_sizes = min_size;
611 
612 	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
613 	pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT,
614 					gfp);
615 	if (!pages)
616 		return NULL;
617 
618 	size = iova_align(iovad, size);
619 	iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
620 	if (!iova)
621 		goto out_free_pages;
622 
623 	if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL))
624 		goto out_free_iova;
625 
626 	if (!(ioprot & IOMMU_CACHE)) {
627 		struct scatterlist *sg;
628 		int i;
629 
630 		for_each_sg(sgt.sgl, sg, sgt.orig_nents, i)
631 			arch_dma_prep_coherent(sg_page(sg), sg->length);
632 	}
633 
634 	if (iommu_map_sg_atomic(domain, iova, sgt.sgl, sgt.orig_nents, ioprot)
635 			< size)
636 		goto out_free_sg;
637 
638 	vaddr = dma_common_pages_remap(pages, size, prot,
639 			__builtin_return_address(0));
640 	if (!vaddr)
641 		goto out_unmap;
642 
643 	*dma_handle = iova;
644 	sg_free_table(&sgt);
645 	return vaddr;
646 
647 out_unmap:
648 	__iommu_dma_unmap(dev, iova, size);
649 out_free_sg:
650 	sg_free_table(&sgt);
651 out_free_iova:
652 	iommu_dma_free_iova(cookie, iova, size);
653 out_free_pages:
654 	__iommu_dma_free_pages(pages, count);
655 	return NULL;
656 }
657 
658 /**
659  * __iommu_dma_mmap - Map a buffer into provided user VMA
660  * @pages: Array representing buffer from __iommu_dma_alloc()
661  * @size: Size of buffer in bytes
662  * @vma: VMA describing requested userspace mapping
663  *
664  * Maps the pages of the buffer in @pages into @vma. The caller is responsible
665  * for verifying the correct size and protection of @vma beforehand.
666  */
667 static int __iommu_dma_mmap(struct page **pages, size_t size,
668 		struct vm_area_struct *vma)
669 {
670 	return vm_map_pages(vma, pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
671 }
672 
673 static void iommu_dma_sync_single_for_cpu(struct device *dev,
674 		dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
675 {
676 	phys_addr_t phys;
677 
678 	if (dev_is_dma_coherent(dev))
679 		return;
680 
681 	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
682 	arch_sync_dma_for_cpu(phys, size, dir);
683 }
684 
685 static void iommu_dma_sync_single_for_device(struct device *dev,
686 		dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
687 {
688 	phys_addr_t phys;
689 
690 	if (dev_is_dma_coherent(dev))
691 		return;
692 
693 	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
694 	arch_sync_dma_for_device(phys, size, dir);
695 }
696 
697 static void iommu_dma_sync_sg_for_cpu(struct device *dev,
698 		struct scatterlist *sgl, int nelems,
699 		enum dma_data_direction dir)
700 {
701 	struct scatterlist *sg;
702 	int i;
703 
704 	if (dev_is_dma_coherent(dev))
705 		return;
706 
707 	for_each_sg(sgl, sg, nelems, i)
708 		arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir);
709 }
710 
711 static void iommu_dma_sync_sg_for_device(struct device *dev,
712 		struct scatterlist *sgl, int nelems,
713 		enum dma_data_direction dir)
714 {
715 	struct scatterlist *sg;
716 	int i;
717 
718 	if (dev_is_dma_coherent(dev))
719 		return;
720 
721 	for_each_sg(sgl, sg, nelems, i)
722 		arch_sync_dma_for_device(sg_phys(sg), sg->length, dir);
723 }
724 
725 static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
726 		unsigned long offset, size_t size, enum dma_data_direction dir,
727 		unsigned long attrs)
728 {
729 	phys_addr_t phys = page_to_phys(page) + offset;
730 	bool coherent = dev_is_dma_coherent(dev);
731 	int prot = dma_info_to_prot(dir, coherent, attrs);
732 	dma_addr_t dma_handle;
733 
734 	dma_handle = __iommu_dma_map(dev, phys, size, prot, dma_get_mask(dev));
735 	if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
736 	    dma_handle != DMA_MAPPING_ERROR)
737 		arch_sync_dma_for_device(phys, size, dir);
738 	return dma_handle;
739 }
740 
741 static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle,
742 		size_t size, enum dma_data_direction dir, unsigned long attrs)
743 {
744 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
745 		iommu_dma_sync_single_for_cpu(dev, dma_handle, size, dir);
746 	__iommu_dma_unmap(dev, dma_handle, size);
747 }
748 
749 /*
750  * Prepare a successfully-mapped scatterlist to give back to the caller.
751  *
752  * At this point the segments are already laid out by iommu_dma_map_sg() to
753  * avoid individually crossing any boundaries, so we merely need to check a
754  * segment's start address to avoid concatenating across one.
755  */
756 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
757 		dma_addr_t dma_addr)
758 {
759 	struct scatterlist *s, *cur = sg;
760 	unsigned long seg_mask = dma_get_seg_boundary(dev);
761 	unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
762 	int i, count = 0;
763 
764 	for_each_sg(sg, s, nents, i) {
765 		/* Restore this segment's original unaligned fields first */
766 		unsigned int s_iova_off = sg_dma_address(s);
767 		unsigned int s_length = sg_dma_len(s);
768 		unsigned int s_iova_len = s->length;
769 
770 		s->offset += s_iova_off;
771 		s->length = s_length;
772 		sg_dma_address(s) = DMA_MAPPING_ERROR;
773 		sg_dma_len(s) = 0;
774 
775 		/*
776 		 * Now fill in the real DMA data. If...
777 		 * - there is a valid output segment to append to
778 		 * - and this segment starts on an IOVA page boundary
779 		 * - but doesn't fall at a segment boundary
780 		 * - and wouldn't make the resulting output segment too long
781 		 */
782 		if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
783 		    (max_len - cur_len >= s_length)) {
784 			/* ...then concatenate it with the previous one */
785 			cur_len += s_length;
786 		} else {
787 			/* Otherwise start the next output segment */
788 			if (i > 0)
789 				cur = sg_next(cur);
790 			cur_len = s_length;
791 			count++;
792 
793 			sg_dma_address(cur) = dma_addr + s_iova_off;
794 		}
795 
796 		sg_dma_len(cur) = cur_len;
797 		dma_addr += s_iova_len;
798 
799 		if (s_length + s_iova_off < s_iova_len)
800 			cur_len = 0;
801 	}
802 	return count;
803 }
804 
805 /*
806  * If mapping failed, then just restore the original list,
807  * but making sure the DMA fields are invalidated.
808  */
809 static void __invalidate_sg(struct scatterlist *sg, int nents)
810 {
811 	struct scatterlist *s;
812 	int i;
813 
814 	for_each_sg(sg, s, nents, i) {
815 		if (sg_dma_address(s) != DMA_MAPPING_ERROR)
816 			s->offset += sg_dma_address(s);
817 		if (sg_dma_len(s))
818 			s->length = sg_dma_len(s);
819 		sg_dma_address(s) = DMA_MAPPING_ERROR;
820 		sg_dma_len(s) = 0;
821 	}
822 }
823 
824 /*
825  * The DMA API client is passing in a scatterlist which could describe
826  * any old buffer layout, but the IOMMU API requires everything to be
827  * aligned to IOMMU pages. Hence the need for this complicated bit of
828  * impedance-matching, to be able to hand off a suitably-aligned list,
829  * but still preserve the original offsets and sizes for the caller.
830  */
831 static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
832 		int nents, enum dma_data_direction dir, unsigned long attrs)
833 {
834 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
835 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
836 	struct iova_domain *iovad = &cookie->iovad;
837 	struct scatterlist *s, *prev = NULL;
838 	int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs);
839 	dma_addr_t iova;
840 	size_t iova_len = 0;
841 	unsigned long mask = dma_get_seg_boundary(dev);
842 	int i;
843 
844 	if (unlikely(iommu_dma_deferred_attach(dev, domain)))
845 		return 0;
846 
847 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
848 		iommu_dma_sync_sg_for_device(dev, sg, nents, dir);
849 
850 	/*
851 	 * Work out how much IOVA space we need, and align the segments to
852 	 * IOVA granules for the IOMMU driver to handle. With some clever
853 	 * trickery we can modify the list in-place, but reversibly, by
854 	 * stashing the unaligned parts in the as-yet-unused DMA fields.
855 	 */
856 	for_each_sg(sg, s, nents, i) {
857 		size_t s_iova_off = iova_offset(iovad, s->offset);
858 		size_t s_length = s->length;
859 		size_t pad_len = (mask - iova_len + 1) & mask;
860 
861 		sg_dma_address(s) = s_iova_off;
862 		sg_dma_len(s) = s_length;
863 		s->offset -= s_iova_off;
864 		s_length = iova_align(iovad, s_length + s_iova_off);
865 		s->length = s_length;
866 
867 		/*
868 		 * Due to the alignment of our single IOVA allocation, we can
869 		 * depend on these assumptions about the segment boundary mask:
870 		 * - If mask size >= IOVA size, then the IOVA range cannot
871 		 *   possibly fall across a boundary, so we don't care.
872 		 * - If mask size < IOVA size, then the IOVA range must start
873 		 *   exactly on a boundary, therefore we can lay things out
874 		 *   based purely on segment lengths without needing to know
875 		 *   the actual addresses beforehand.
876 		 * - The mask must be a power of 2, so pad_len == 0 if
877 		 *   iova_len == 0, thus we cannot dereference prev the first
878 		 *   time through here (i.e. before it has a meaningful value).
879 		 */
880 		if (pad_len && pad_len < s_length - 1) {
881 			prev->length += pad_len;
882 			iova_len += pad_len;
883 		}
884 
885 		iova_len += s_length;
886 		prev = s;
887 	}
888 
889 	iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
890 	if (!iova)
891 		goto out_restore_sg;
892 
893 	/*
894 	 * We'll leave any physical concatenation to the IOMMU driver's
895 	 * implementation - it knows better than we do.
896 	 */
897 	if (iommu_map_sg_atomic(domain, iova, sg, nents, prot) < iova_len)
898 		goto out_free_iova;
899 
900 	return __finalise_sg(dev, sg, nents, iova);
901 
902 out_free_iova:
903 	iommu_dma_free_iova(cookie, iova, iova_len);
904 out_restore_sg:
905 	__invalidate_sg(sg, nents);
906 	return 0;
907 }
908 
909 static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
910 		int nents, enum dma_data_direction dir, unsigned long attrs)
911 {
912 	dma_addr_t start, end;
913 	struct scatterlist *tmp;
914 	int i;
915 
916 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
917 		iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir);
918 
919 	/*
920 	 * The scatterlist segments are mapped into a single
921 	 * contiguous IOVA allocation, so this is incredibly easy.
922 	 */
923 	start = sg_dma_address(sg);
924 	for_each_sg(sg_next(sg), tmp, nents - 1, i) {
925 		if (sg_dma_len(tmp) == 0)
926 			break;
927 		sg = tmp;
928 	}
929 	end = sg_dma_address(sg) + sg_dma_len(sg);
930 	__iommu_dma_unmap(dev, start, end - start);
931 }
932 
933 static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
934 		size_t size, enum dma_data_direction dir, unsigned long attrs)
935 {
936 	return __iommu_dma_map(dev, phys, size,
937 			dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO,
938 			dma_get_mask(dev));
939 }
940 
941 static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
942 		size_t size, enum dma_data_direction dir, unsigned long attrs)
943 {
944 	__iommu_dma_unmap(dev, handle, size);
945 }
946 
947 static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr)
948 {
949 	size_t alloc_size = PAGE_ALIGN(size);
950 	int count = alloc_size >> PAGE_SHIFT;
951 	struct page *page = NULL, **pages = NULL;
952 
953 	/* Non-coherent atomic allocation? Easy */
954 	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
955 	    dma_free_from_pool(dev, cpu_addr, alloc_size))
956 		return;
957 
958 	if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
959 		/*
960 		 * If it the address is remapped, then it's either non-coherent
961 		 * or highmem CMA, or an iommu_dma_alloc_remap() construction.
962 		 */
963 		pages = dma_common_find_pages(cpu_addr);
964 		if (!pages)
965 			page = vmalloc_to_page(cpu_addr);
966 		dma_common_free_remap(cpu_addr, alloc_size);
967 	} else {
968 		/* Lowmem means a coherent atomic or CMA allocation */
969 		page = virt_to_page(cpu_addr);
970 	}
971 
972 	if (pages)
973 		__iommu_dma_free_pages(pages, count);
974 	if (page)
975 		dma_free_contiguous(dev, page, alloc_size);
976 }
977 
978 static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr,
979 		dma_addr_t handle, unsigned long attrs)
980 {
981 	__iommu_dma_unmap(dev, handle, size);
982 	__iommu_dma_free(dev, size, cpu_addr);
983 }
984 
985 static void *iommu_dma_alloc_pages(struct device *dev, size_t size,
986 		struct page **pagep, gfp_t gfp, unsigned long attrs)
987 {
988 	bool coherent = dev_is_dma_coherent(dev);
989 	size_t alloc_size = PAGE_ALIGN(size);
990 	int node = dev_to_node(dev);
991 	struct page *page = NULL;
992 	void *cpu_addr;
993 
994 	page = dma_alloc_contiguous(dev, alloc_size, gfp);
995 	if (!page)
996 		page = alloc_pages_node(node, gfp, get_order(alloc_size));
997 	if (!page)
998 		return NULL;
999 
1000 	if (IS_ENABLED(CONFIG_DMA_REMAP) && (!coherent || PageHighMem(page))) {
1001 		pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
1002 
1003 		cpu_addr = dma_common_contiguous_remap(page, alloc_size,
1004 				prot, __builtin_return_address(0));
1005 		if (!cpu_addr)
1006 			goto out_free_pages;
1007 
1008 		if (!coherent)
1009 			arch_dma_prep_coherent(page, size);
1010 	} else {
1011 		cpu_addr = page_address(page);
1012 	}
1013 
1014 	*pagep = page;
1015 	memset(cpu_addr, 0, alloc_size);
1016 	return cpu_addr;
1017 out_free_pages:
1018 	dma_free_contiguous(dev, page, alloc_size);
1019 	return NULL;
1020 }
1021 
1022 static void *iommu_dma_alloc(struct device *dev, size_t size,
1023 		dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1024 {
1025 	bool coherent = dev_is_dma_coherent(dev);
1026 	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
1027 	struct page *page = NULL;
1028 	void *cpu_addr;
1029 
1030 	gfp |= __GFP_ZERO;
1031 
1032 	if (IS_ENABLED(CONFIG_DMA_REMAP) && gfpflags_allow_blocking(gfp) &&
1033 	    !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) {
1034 		return iommu_dma_alloc_remap(dev, size, handle, gfp,
1035 				dma_pgprot(dev, PAGE_KERNEL, attrs), attrs);
1036 	}
1037 
1038 	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1039 	    !gfpflags_allow_blocking(gfp) && !coherent)
1040 		page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr,
1041 					       gfp, NULL);
1042 	else
1043 		cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs);
1044 	if (!cpu_addr)
1045 		return NULL;
1046 
1047 	*handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot,
1048 			dev->coherent_dma_mask);
1049 	if (*handle == DMA_MAPPING_ERROR) {
1050 		__iommu_dma_free(dev, size, cpu_addr);
1051 		return NULL;
1052 	}
1053 
1054 	return cpu_addr;
1055 }
1056 
1057 #ifdef CONFIG_DMA_REMAP
1058 static void *iommu_dma_alloc_noncoherent(struct device *dev, size_t size,
1059 		dma_addr_t *handle, enum dma_data_direction dir, gfp_t gfp)
1060 {
1061 	if (!gfpflags_allow_blocking(gfp)) {
1062 		struct page *page;
1063 
1064 		page = dma_common_alloc_pages(dev, size, handle, dir, gfp);
1065 		if (!page)
1066 			return NULL;
1067 		return page_address(page);
1068 	}
1069 
1070 	return iommu_dma_alloc_remap(dev, size, handle, gfp | __GFP_ZERO,
1071 				     PAGE_KERNEL, 0);
1072 }
1073 
1074 static void iommu_dma_free_noncoherent(struct device *dev, size_t size,
1075 		void *cpu_addr, dma_addr_t handle, enum dma_data_direction dir)
1076 {
1077 	__iommu_dma_unmap(dev, handle, size);
1078 	__iommu_dma_free(dev, size, cpu_addr);
1079 }
1080 #else
1081 #define iommu_dma_alloc_noncoherent		NULL
1082 #define iommu_dma_free_noncoherent		NULL
1083 #endif /* CONFIG_DMA_REMAP */
1084 
1085 static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma,
1086 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
1087 		unsigned long attrs)
1088 {
1089 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1090 	unsigned long pfn, off = vma->vm_pgoff;
1091 	int ret;
1092 
1093 	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
1094 
1095 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
1096 		return ret;
1097 
1098 	if (off >= nr_pages || vma_pages(vma) > nr_pages - off)
1099 		return -ENXIO;
1100 
1101 	if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1102 		struct page **pages = dma_common_find_pages(cpu_addr);
1103 
1104 		if (pages)
1105 			return __iommu_dma_mmap(pages, size, vma);
1106 		pfn = vmalloc_to_pfn(cpu_addr);
1107 	} else {
1108 		pfn = page_to_pfn(virt_to_page(cpu_addr));
1109 	}
1110 
1111 	return remap_pfn_range(vma, vma->vm_start, pfn + off,
1112 			       vma->vm_end - vma->vm_start,
1113 			       vma->vm_page_prot);
1114 }
1115 
1116 static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
1117 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
1118 		unsigned long attrs)
1119 {
1120 	struct page *page;
1121 	int ret;
1122 
1123 	if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1124 		struct page **pages = dma_common_find_pages(cpu_addr);
1125 
1126 		if (pages) {
1127 			return sg_alloc_table_from_pages(sgt, pages,
1128 					PAGE_ALIGN(size) >> PAGE_SHIFT,
1129 					0, size, GFP_KERNEL);
1130 		}
1131 
1132 		page = vmalloc_to_page(cpu_addr);
1133 	} else {
1134 		page = virt_to_page(cpu_addr);
1135 	}
1136 
1137 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
1138 	if (!ret)
1139 		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
1140 	return ret;
1141 }
1142 
1143 static unsigned long iommu_dma_get_merge_boundary(struct device *dev)
1144 {
1145 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1146 
1147 	return (1UL << __ffs(domain->pgsize_bitmap)) - 1;
1148 }
1149 
1150 static const struct dma_map_ops iommu_dma_ops = {
1151 	.alloc			= iommu_dma_alloc,
1152 	.free			= iommu_dma_free,
1153 	.alloc_pages		= dma_common_alloc_pages,
1154 	.free_pages		= dma_common_free_pages,
1155 	.alloc_noncoherent	= iommu_dma_alloc_noncoherent,
1156 	.free_noncoherent	= iommu_dma_free_noncoherent,
1157 	.mmap			= iommu_dma_mmap,
1158 	.get_sgtable		= iommu_dma_get_sgtable,
1159 	.map_page		= iommu_dma_map_page,
1160 	.unmap_page		= iommu_dma_unmap_page,
1161 	.map_sg			= iommu_dma_map_sg,
1162 	.unmap_sg		= iommu_dma_unmap_sg,
1163 	.sync_single_for_cpu	= iommu_dma_sync_single_for_cpu,
1164 	.sync_single_for_device	= iommu_dma_sync_single_for_device,
1165 	.sync_sg_for_cpu	= iommu_dma_sync_sg_for_cpu,
1166 	.sync_sg_for_device	= iommu_dma_sync_sg_for_device,
1167 	.map_resource		= iommu_dma_map_resource,
1168 	.unmap_resource		= iommu_dma_unmap_resource,
1169 	.get_merge_boundary	= iommu_dma_get_merge_boundary,
1170 };
1171 
1172 /*
1173  * The IOMMU core code allocates the default DMA domain, which the underlying
1174  * IOMMU driver needs to support via the dma-iommu layer.
1175  */
1176 void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size)
1177 {
1178 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1179 
1180 	if (!domain)
1181 		goto out_err;
1182 
1183 	/*
1184 	 * The IOMMU core code allocates the default DMA domain, which the
1185 	 * underlying IOMMU driver needs to support via the dma-iommu layer.
1186 	 */
1187 	if (domain->type == IOMMU_DOMAIN_DMA) {
1188 		if (iommu_dma_init_domain(domain, dma_base, size, dev))
1189 			goto out_err;
1190 		dev->dma_ops = &iommu_dma_ops;
1191 	}
1192 
1193 	return;
1194 out_err:
1195 	 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
1196 		 dev_name(dev));
1197 }
1198 
1199 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
1200 		phys_addr_t msi_addr, struct iommu_domain *domain)
1201 {
1202 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
1203 	struct iommu_dma_msi_page *msi_page;
1204 	dma_addr_t iova;
1205 	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1206 	size_t size = cookie_msi_granule(cookie);
1207 
1208 	msi_addr &= ~(phys_addr_t)(size - 1);
1209 	list_for_each_entry(msi_page, &cookie->msi_page_list, list)
1210 		if (msi_page->phys == msi_addr)
1211 			return msi_page;
1212 
1213 	msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL);
1214 	if (!msi_page)
1215 		return NULL;
1216 
1217 	iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
1218 	if (!iova)
1219 		goto out_free_page;
1220 
1221 	if (iommu_map(domain, iova, msi_addr, size, prot))
1222 		goto out_free_iova;
1223 
1224 	INIT_LIST_HEAD(&msi_page->list);
1225 	msi_page->phys = msi_addr;
1226 	msi_page->iova = iova;
1227 	list_add(&msi_page->list, &cookie->msi_page_list);
1228 	return msi_page;
1229 
1230 out_free_iova:
1231 	iommu_dma_free_iova(cookie, iova, size);
1232 out_free_page:
1233 	kfree(msi_page);
1234 	return NULL;
1235 }
1236 
1237 int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)
1238 {
1239 	struct device *dev = msi_desc_to_dev(desc);
1240 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1241 	struct iommu_dma_msi_page *msi_page;
1242 	static DEFINE_MUTEX(msi_prepare_lock); /* see below */
1243 
1244 	if (!domain || !domain->iova_cookie) {
1245 		desc->iommu_cookie = NULL;
1246 		return 0;
1247 	}
1248 
1249 	/*
1250 	 * In fact the whole prepare operation should already be serialised by
1251 	 * irq_domain_mutex further up the callchain, but that's pretty subtle
1252 	 * on its own, so consider this locking as failsafe documentation...
1253 	 */
1254 	mutex_lock(&msi_prepare_lock);
1255 	msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
1256 	mutex_unlock(&msi_prepare_lock);
1257 
1258 	msi_desc_set_iommu_cookie(desc, msi_page);
1259 
1260 	if (!msi_page)
1261 		return -ENOMEM;
1262 	return 0;
1263 }
1264 
1265 void iommu_dma_compose_msi_msg(struct msi_desc *desc,
1266 			       struct msi_msg *msg)
1267 {
1268 	struct device *dev = msi_desc_to_dev(desc);
1269 	const struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1270 	const struct iommu_dma_msi_page *msi_page;
1271 
1272 	msi_page = msi_desc_get_iommu_cookie(desc);
1273 
1274 	if (!domain || !domain->iova_cookie || WARN_ON(!msi_page))
1275 		return;
1276 
1277 	msg->address_hi = upper_32_bits(msi_page->iova);
1278 	msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1;
1279 	msg->address_lo += lower_32_bits(msi_page->iova);
1280 }
1281 
1282 static int iommu_dma_init(void)
1283 {
1284 	return iova_cache_get();
1285 }
1286 arch_initcall(iommu_dma_init);
1287