xref: /openbmc/linux/drivers/iommu/dma-iommu.c (revision 0c874100)
1 /*
2  * A fairly generic DMA-API to IOMMU-API glue layer.
3  *
4  * Copyright (C) 2014-2015 ARM Ltd.
5  *
6  * based in part on arch/arm/mm/dma-mapping.c:
7  * Copyright (C) 2000-2004 Russell King
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #include <linux/acpi_iort.h>
23 #include <linux/device.h>
24 #include <linux/dma-iommu.h>
25 #include <linux/gfp.h>
26 #include <linux/huge_mm.h>
27 #include <linux/iommu.h>
28 #include <linux/iova.h>
29 #include <linux/irq.h>
30 #include <linux/mm.h>
31 #include <linux/pci.h>
32 #include <linux/scatterlist.h>
33 #include <linux/vmalloc.h>
34 
35 #define IOMMU_MAPPING_ERROR	0
36 
37 struct iommu_dma_msi_page {
38 	struct list_head	list;
39 	dma_addr_t		iova;
40 	phys_addr_t		phys;
41 };
42 
43 enum iommu_dma_cookie_type {
44 	IOMMU_DMA_IOVA_COOKIE,
45 	IOMMU_DMA_MSI_COOKIE,
46 };
47 
48 struct iommu_dma_cookie {
49 	enum iommu_dma_cookie_type	type;
50 	union {
51 		/* Full allocator for IOMMU_DMA_IOVA_COOKIE */
52 		struct iova_domain	iovad;
53 		/* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
54 		dma_addr_t		msi_iova;
55 	};
56 	struct list_head		msi_page_list;
57 	spinlock_t			msi_lock;
58 
59 	/* Domain for flush queue callback; NULL if flush queue not in use */
60 	struct iommu_domain		*fq_domain;
61 };
62 
63 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
64 {
65 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
66 		return cookie->iovad.granule;
67 	return PAGE_SIZE;
68 }
69 
70 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
71 {
72 	struct iommu_dma_cookie *cookie;
73 
74 	cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
75 	if (cookie) {
76 		spin_lock_init(&cookie->msi_lock);
77 		INIT_LIST_HEAD(&cookie->msi_page_list);
78 		cookie->type = type;
79 	}
80 	return cookie;
81 }
82 
83 int iommu_dma_init(void)
84 {
85 	return iova_cache_get();
86 }
87 
88 /**
89  * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
90  * @domain: IOMMU domain to prepare for DMA-API usage
91  *
92  * IOMMU drivers should normally call this from their domain_alloc
93  * callback when domain->type == IOMMU_DOMAIN_DMA.
94  */
95 int iommu_get_dma_cookie(struct iommu_domain *domain)
96 {
97 	if (domain->iova_cookie)
98 		return -EEXIST;
99 
100 	domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
101 	if (!domain->iova_cookie)
102 		return -ENOMEM;
103 
104 	return 0;
105 }
106 EXPORT_SYMBOL(iommu_get_dma_cookie);
107 
108 /**
109  * iommu_get_msi_cookie - Acquire just MSI remapping resources
110  * @domain: IOMMU domain to prepare
111  * @base: Start address of IOVA region for MSI mappings
112  *
113  * Users who manage their own IOVA allocation and do not want DMA API support,
114  * but would still like to take advantage of automatic MSI remapping, can use
115  * this to initialise their own domain appropriately. Users should reserve a
116  * contiguous IOVA region, starting at @base, large enough to accommodate the
117  * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
118  * used by the devices attached to @domain.
119  */
120 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
121 {
122 	struct iommu_dma_cookie *cookie;
123 
124 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
125 		return -EINVAL;
126 
127 	if (domain->iova_cookie)
128 		return -EEXIST;
129 
130 	cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
131 	if (!cookie)
132 		return -ENOMEM;
133 
134 	cookie->msi_iova = base;
135 	domain->iova_cookie = cookie;
136 	return 0;
137 }
138 EXPORT_SYMBOL(iommu_get_msi_cookie);
139 
140 /**
141  * iommu_put_dma_cookie - Release a domain's DMA mapping resources
142  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
143  *          iommu_get_msi_cookie()
144  *
145  * IOMMU drivers should normally call this from their domain_free callback.
146  */
147 void iommu_put_dma_cookie(struct iommu_domain *domain)
148 {
149 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
150 	struct iommu_dma_msi_page *msi, *tmp;
151 
152 	if (!cookie)
153 		return;
154 
155 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule)
156 		put_iova_domain(&cookie->iovad);
157 
158 	list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
159 		list_del(&msi->list);
160 		kfree(msi);
161 	}
162 	kfree(cookie);
163 	domain->iova_cookie = NULL;
164 }
165 EXPORT_SYMBOL(iommu_put_dma_cookie);
166 
167 /**
168  * iommu_dma_get_resv_regions - Reserved region driver helper
169  * @dev: Device from iommu_get_resv_regions()
170  * @list: Reserved region list from iommu_get_resv_regions()
171  *
172  * IOMMU drivers can use this to implement their .get_resv_regions callback
173  * for general non-IOMMU-specific reservations. Currently, this covers GICv3
174  * ITS region reservation on ACPI based ARM platforms that may require HW MSI
175  * reservation.
176  */
177 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
178 {
179 
180 	if (!is_of_node(dev->iommu_fwspec->iommu_fwnode))
181 		iort_iommu_msi_get_resv_regions(dev, list);
182 
183 }
184 EXPORT_SYMBOL(iommu_dma_get_resv_regions);
185 
186 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
187 		phys_addr_t start, phys_addr_t end)
188 {
189 	struct iova_domain *iovad = &cookie->iovad;
190 	struct iommu_dma_msi_page *msi_page;
191 	int i, num_pages;
192 
193 	start -= iova_offset(iovad, start);
194 	num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
195 
196 	msi_page = kcalloc(num_pages, sizeof(*msi_page), GFP_KERNEL);
197 	if (!msi_page)
198 		return -ENOMEM;
199 
200 	for (i = 0; i < num_pages; i++) {
201 		msi_page[i].phys = start;
202 		msi_page[i].iova = start;
203 		INIT_LIST_HEAD(&msi_page[i].list);
204 		list_add(&msi_page[i].list, &cookie->msi_page_list);
205 		start += iovad->granule;
206 	}
207 
208 	return 0;
209 }
210 
211 static void iova_reserve_pci_windows(struct pci_dev *dev,
212 		struct iova_domain *iovad)
213 {
214 	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
215 	struct resource_entry *window;
216 	unsigned long lo, hi;
217 
218 	resource_list_for_each_entry(window, &bridge->windows) {
219 		if (resource_type(window->res) != IORESOURCE_MEM)
220 			continue;
221 
222 		lo = iova_pfn(iovad, window->res->start - window->offset);
223 		hi = iova_pfn(iovad, window->res->end - window->offset);
224 		reserve_iova(iovad, lo, hi);
225 	}
226 }
227 
228 static int iova_reserve_iommu_regions(struct device *dev,
229 		struct iommu_domain *domain)
230 {
231 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
232 	struct iova_domain *iovad = &cookie->iovad;
233 	struct iommu_resv_region *region;
234 	LIST_HEAD(resv_regions);
235 	int ret = 0;
236 
237 	if (dev_is_pci(dev))
238 		iova_reserve_pci_windows(to_pci_dev(dev), iovad);
239 
240 	iommu_get_resv_regions(dev, &resv_regions);
241 	list_for_each_entry(region, &resv_regions, list) {
242 		unsigned long lo, hi;
243 
244 		/* We ARE the software that manages these! */
245 		if (region->type == IOMMU_RESV_SW_MSI)
246 			continue;
247 
248 		lo = iova_pfn(iovad, region->start);
249 		hi = iova_pfn(iovad, region->start + region->length - 1);
250 		reserve_iova(iovad, lo, hi);
251 
252 		if (region->type == IOMMU_RESV_MSI)
253 			ret = cookie_init_hw_msi_region(cookie, region->start,
254 					region->start + region->length);
255 		if (ret)
256 			break;
257 	}
258 	iommu_put_resv_regions(dev, &resv_regions);
259 
260 	return ret;
261 }
262 
263 static void iommu_dma_flush_iotlb_all(struct iova_domain *iovad)
264 {
265 	struct iommu_dma_cookie *cookie;
266 	struct iommu_domain *domain;
267 
268 	cookie = container_of(iovad, struct iommu_dma_cookie, iovad);
269 	domain = cookie->fq_domain;
270 	/*
271 	 * The IOMMU driver supporting DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE
272 	 * implies that ops->flush_iotlb_all must be non-NULL.
273 	 */
274 	domain->ops->flush_iotlb_all(domain);
275 }
276 
277 /**
278  * iommu_dma_init_domain - Initialise a DMA mapping domain
279  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
280  * @base: IOVA at which the mappable address space starts
281  * @size: Size of IOVA space
282  * @dev: Device the domain is being initialised for
283  *
284  * @base and @size should be exact multiples of IOMMU page granularity to
285  * avoid rounding surprises. If necessary, we reserve the page at address 0
286  * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
287  * any change which could make prior IOVAs invalid will fail.
288  */
289 int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
290 		u64 size, struct device *dev)
291 {
292 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
293 	struct iova_domain *iovad = &cookie->iovad;
294 	unsigned long order, base_pfn, end_pfn;
295 	int attr;
296 
297 	if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
298 		return -EINVAL;
299 
300 	/* Use the smallest supported page size for IOVA granularity */
301 	order = __ffs(domain->pgsize_bitmap);
302 	base_pfn = max_t(unsigned long, 1, base >> order);
303 	end_pfn = (base + size - 1) >> order;
304 
305 	/* Check the domain allows at least some access to the device... */
306 	if (domain->geometry.force_aperture) {
307 		if (base > domain->geometry.aperture_end ||
308 		    base + size <= domain->geometry.aperture_start) {
309 			pr_warn("specified DMA range outside IOMMU capability\n");
310 			return -EFAULT;
311 		}
312 		/* ...then finally give it a kicking to make sure it fits */
313 		base_pfn = max_t(unsigned long, base_pfn,
314 				domain->geometry.aperture_start >> order);
315 	}
316 
317 	/* start_pfn is always nonzero for an already-initialised domain */
318 	if (iovad->start_pfn) {
319 		if (1UL << order != iovad->granule ||
320 		    base_pfn != iovad->start_pfn) {
321 			pr_warn("Incompatible range for DMA domain\n");
322 			return -EFAULT;
323 		}
324 
325 		return 0;
326 	}
327 
328 	init_iova_domain(iovad, 1UL << order, base_pfn);
329 
330 	if (!cookie->fq_domain && !iommu_domain_get_attr(domain,
331 			DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE, &attr) && attr) {
332 		cookie->fq_domain = domain;
333 		init_iova_flush_queue(iovad, iommu_dma_flush_iotlb_all, NULL);
334 	}
335 
336 	if (!dev)
337 		return 0;
338 
339 	return iova_reserve_iommu_regions(dev, domain);
340 }
341 EXPORT_SYMBOL(iommu_dma_init_domain);
342 
343 /**
344  * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
345  *                    page flags.
346  * @dir: Direction of DMA transfer
347  * @coherent: Is the DMA master cache-coherent?
348  * @attrs: DMA attributes for the mapping
349  *
350  * Return: corresponding IOMMU API page protection flags
351  */
352 int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
353 		     unsigned long attrs)
354 {
355 	int prot = coherent ? IOMMU_CACHE : 0;
356 
357 	if (attrs & DMA_ATTR_PRIVILEGED)
358 		prot |= IOMMU_PRIV;
359 
360 	switch (dir) {
361 	case DMA_BIDIRECTIONAL:
362 		return prot | IOMMU_READ | IOMMU_WRITE;
363 	case DMA_TO_DEVICE:
364 		return prot | IOMMU_READ;
365 	case DMA_FROM_DEVICE:
366 		return prot | IOMMU_WRITE;
367 	default:
368 		return 0;
369 	}
370 }
371 
372 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
373 		size_t size, dma_addr_t dma_limit, struct device *dev)
374 {
375 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
376 	struct iova_domain *iovad = &cookie->iovad;
377 	unsigned long shift, iova_len, iova = 0;
378 
379 	if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
380 		cookie->msi_iova += size;
381 		return cookie->msi_iova - size;
382 	}
383 
384 	shift = iova_shift(iovad);
385 	iova_len = size >> shift;
386 	/*
387 	 * Freeing non-power-of-two-sized allocations back into the IOVA caches
388 	 * will come back to bite us badly, so we have to waste a bit of space
389 	 * rounding up anything cacheable to make sure that can't happen. The
390 	 * order of the unadjusted size will still match upon freeing.
391 	 */
392 	if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1)))
393 		iova_len = roundup_pow_of_two(iova_len);
394 
395 	if (dev->bus_dma_mask)
396 		dma_limit &= dev->bus_dma_mask;
397 
398 	if (domain->geometry.force_aperture)
399 		dma_limit = min(dma_limit, domain->geometry.aperture_end);
400 
401 	/* Try to get PCI devices a SAC address */
402 	if (dma_limit > DMA_BIT_MASK(32) && dev_is_pci(dev))
403 		iova = alloc_iova_fast(iovad, iova_len,
404 				       DMA_BIT_MASK(32) >> shift, false);
405 
406 	if (!iova)
407 		iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift,
408 				       true);
409 
410 	return (dma_addr_t)iova << shift;
411 }
412 
413 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
414 		dma_addr_t iova, size_t size)
415 {
416 	struct iova_domain *iovad = &cookie->iovad;
417 
418 	/* The MSI case is only ever cleaning up its most recent allocation */
419 	if (cookie->type == IOMMU_DMA_MSI_COOKIE)
420 		cookie->msi_iova -= size;
421 	else if (cookie->fq_domain)	/* non-strict mode */
422 		queue_iova(iovad, iova_pfn(iovad, iova),
423 				size >> iova_shift(iovad), 0);
424 	else
425 		free_iova_fast(iovad, iova_pfn(iovad, iova),
426 				size >> iova_shift(iovad));
427 }
428 
429 static void __iommu_dma_unmap(struct iommu_domain *domain, dma_addr_t dma_addr,
430 		size_t size)
431 {
432 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
433 	struct iova_domain *iovad = &cookie->iovad;
434 	size_t iova_off = iova_offset(iovad, dma_addr);
435 
436 	dma_addr -= iova_off;
437 	size = iova_align(iovad, size + iova_off);
438 
439 	WARN_ON(iommu_unmap_fast(domain, dma_addr, size) != size);
440 	if (!cookie->fq_domain)
441 		iommu_tlb_sync(domain);
442 	iommu_dma_free_iova(cookie, dma_addr, size);
443 }
444 
445 static void __iommu_dma_free_pages(struct page **pages, int count)
446 {
447 	while (count--)
448 		__free_page(pages[count]);
449 	kvfree(pages);
450 }
451 
452 static struct page **__iommu_dma_alloc_pages(unsigned int count,
453 		unsigned long order_mask, gfp_t gfp)
454 {
455 	struct page **pages;
456 	unsigned int i = 0, array_size = count * sizeof(*pages);
457 
458 	order_mask &= (2U << MAX_ORDER) - 1;
459 	if (!order_mask)
460 		return NULL;
461 
462 	if (array_size <= PAGE_SIZE)
463 		pages = kzalloc(array_size, GFP_KERNEL);
464 	else
465 		pages = vzalloc(array_size);
466 	if (!pages)
467 		return NULL;
468 
469 	/* IOMMU can map any pages, so himem can also be used here */
470 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
471 
472 	while (count) {
473 		struct page *page = NULL;
474 		unsigned int order_size;
475 
476 		/*
477 		 * Higher-order allocations are a convenience rather
478 		 * than a necessity, hence using __GFP_NORETRY until
479 		 * falling back to minimum-order allocations.
480 		 */
481 		for (order_mask &= (2U << __fls(count)) - 1;
482 		     order_mask; order_mask &= ~order_size) {
483 			unsigned int order = __fls(order_mask);
484 
485 			order_size = 1U << order;
486 			page = alloc_pages((order_mask - order_size) ?
487 					   gfp | __GFP_NORETRY : gfp, order);
488 			if (!page)
489 				continue;
490 			if (!order)
491 				break;
492 			if (!PageCompound(page)) {
493 				split_page(page, order);
494 				break;
495 			} else if (!split_huge_page(page)) {
496 				break;
497 			}
498 			__free_pages(page, order);
499 		}
500 		if (!page) {
501 			__iommu_dma_free_pages(pages, i);
502 			return NULL;
503 		}
504 		count -= order_size;
505 		while (order_size--)
506 			pages[i++] = page++;
507 	}
508 	return pages;
509 }
510 
511 /**
512  * iommu_dma_free - Free a buffer allocated by iommu_dma_alloc()
513  * @dev: Device which owns this buffer
514  * @pages: Array of buffer pages as returned by iommu_dma_alloc()
515  * @size: Size of buffer in bytes
516  * @handle: DMA address of buffer
517  *
518  * Frees both the pages associated with the buffer, and the array
519  * describing them
520  */
521 void iommu_dma_free(struct device *dev, struct page **pages, size_t size,
522 		dma_addr_t *handle)
523 {
524 	__iommu_dma_unmap(iommu_get_dma_domain(dev), *handle, size);
525 	__iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
526 	*handle = IOMMU_MAPPING_ERROR;
527 }
528 
529 /**
530  * iommu_dma_alloc - Allocate and map a buffer contiguous in IOVA space
531  * @dev: Device to allocate memory for. Must be a real device
532  *	 attached to an iommu_dma_domain
533  * @size: Size of buffer in bytes
534  * @gfp: Allocation flags
535  * @attrs: DMA attributes for this allocation
536  * @prot: IOMMU mapping flags
537  * @handle: Out argument for allocated DMA handle
538  * @flush_page: Arch callback which must ensure PAGE_SIZE bytes from the
539  *		given VA/PA are visible to the given non-coherent device.
540  *
541  * If @size is less than PAGE_SIZE, then a full CPU page will be allocated,
542  * but an IOMMU which supports smaller pages might not map the whole thing.
543  *
544  * Return: Array of struct page pointers describing the buffer,
545  *	   or NULL on failure.
546  */
547 struct page **iommu_dma_alloc(struct device *dev, size_t size, gfp_t gfp,
548 		unsigned long attrs, int prot, dma_addr_t *handle,
549 		void (*flush_page)(struct device *, const void *, phys_addr_t))
550 {
551 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
552 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
553 	struct iova_domain *iovad = &cookie->iovad;
554 	struct page **pages;
555 	struct sg_table sgt;
556 	dma_addr_t iova;
557 	unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
558 
559 	*handle = IOMMU_MAPPING_ERROR;
560 
561 	min_size = alloc_sizes & -alloc_sizes;
562 	if (min_size < PAGE_SIZE) {
563 		min_size = PAGE_SIZE;
564 		alloc_sizes |= PAGE_SIZE;
565 	} else {
566 		size = ALIGN(size, min_size);
567 	}
568 	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
569 		alloc_sizes = min_size;
570 
571 	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
572 	pages = __iommu_dma_alloc_pages(count, alloc_sizes >> PAGE_SHIFT, gfp);
573 	if (!pages)
574 		return NULL;
575 
576 	size = iova_align(iovad, size);
577 	iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
578 	if (!iova)
579 		goto out_free_pages;
580 
581 	if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL))
582 		goto out_free_iova;
583 
584 	if (!(prot & IOMMU_CACHE)) {
585 		struct sg_mapping_iter miter;
586 		/*
587 		 * The CPU-centric flushing implied by SG_MITER_TO_SG isn't
588 		 * sufficient here, so skip it by using the "wrong" direction.
589 		 */
590 		sg_miter_start(&miter, sgt.sgl, sgt.orig_nents, SG_MITER_FROM_SG);
591 		while (sg_miter_next(&miter))
592 			flush_page(dev, miter.addr, page_to_phys(miter.page));
593 		sg_miter_stop(&miter);
594 	}
595 
596 	if (iommu_map_sg(domain, iova, sgt.sgl, sgt.orig_nents, prot)
597 			< size)
598 		goto out_free_sg;
599 
600 	*handle = iova;
601 	sg_free_table(&sgt);
602 	return pages;
603 
604 out_free_sg:
605 	sg_free_table(&sgt);
606 out_free_iova:
607 	iommu_dma_free_iova(cookie, iova, size);
608 out_free_pages:
609 	__iommu_dma_free_pages(pages, count);
610 	return NULL;
611 }
612 
613 /**
614  * iommu_dma_mmap - Map a buffer into provided user VMA
615  * @pages: Array representing buffer from iommu_dma_alloc()
616  * @size: Size of buffer in bytes
617  * @vma: VMA describing requested userspace mapping
618  *
619  * Maps the pages of the buffer in @pages into @vma. The caller is responsible
620  * for verifying the correct size and protection of @vma beforehand.
621  */
622 
623 int iommu_dma_mmap(struct page **pages, size_t size, struct vm_area_struct *vma)
624 {
625 	unsigned long uaddr = vma->vm_start;
626 	unsigned int i, count = PAGE_ALIGN(size) >> PAGE_SHIFT;
627 	int ret = -ENXIO;
628 
629 	for (i = vma->vm_pgoff; i < count && uaddr < vma->vm_end; i++) {
630 		ret = vm_insert_page(vma, uaddr, pages[i]);
631 		if (ret)
632 			break;
633 		uaddr += PAGE_SIZE;
634 	}
635 	return ret;
636 }
637 
638 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
639 		size_t size, int prot, struct iommu_domain *domain)
640 {
641 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
642 	size_t iova_off = 0;
643 	dma_addr_t iova;
644 
645 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE) {
646 		iova_off = iova_offset(&cookie->iovad, phys);
647 		size = iova_align(&cookie->iovad, size + iova_off);
648 	}
649 
650 	iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
651 	if (!iova)
652 		return IOMMU_MAPPING_ERROR;
653 
654 	if (iommu_map(domain, iova, phys - iova_off, size, prot)) {
655 		iommu_dma_free_iova(cookie, iova, size);
656 		return IOMMU_MAPPING_ERROR;
657 	}
658 	return iova + iova_off;
659 }
660 
661 dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
662 		unsigned long offset, size_t size, int prot)
663 {
664 	return __iommu_dma_map(dev, page_to_phys(page) + offset, size, prot,
665 			iommu_get_dma_domain(dev));
666 }
667 
668 void iommu_dma_unmap_page(struct device *dev, dma_addr_t handle, size_t size,
669 		enum dma_data_direction dir, unsigned long attrs)
670 {
671 	__iommu_dma_unmap(iommu_get_dma_domain(dev), handle, size);
672 }
673 
674 /*
675  * Prepare a successfully-mapped scatterlist to give back to the caller.
676  *
677  * At this point the segments are already laid out by iommu_dma_map_sg() to
678  * avoid individually crossing any boundaries, so we merely need to check a
679  * segment's start address to avoid concatenating across one.
680  */
681 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
682 		dma_addr_t dma_addr)
683 {
684 	struct scatterlist *s, *cur = sg;
685 	unsigned long seg_mask = dma_get_seg_boundary(dev);
686 	unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
687 	int i, count = 0;
688 
689 	for_each_sg(sg, s, nents, i) {
690 		/* Restore this segment's original unaligned fields first */
691 		unsigned int s_iova_off = sg_dma_address(s);
692 		unsigned int s_length = sg_dma_len(s);
693 		unsigned int s_iova_len = s->length;
694 
695 		s->offset += s_iova_off;
696 		s->length = s_length;
697 		sg_dma_address(s) = IOMMU_MAPPING_ERROR;
698 		sg_dma_len(s) = 0;
699 
700 		/*
701 		 * Now fill in the real DMA data. If...
702 		 * - there is a valid output segment to append to
703 		 * - and this segment starts on an IOVA page boundary
704 		 * - but doesn't fall at a segment boundary
705 		 * - and wouldn't make the resulting output segment too long
706 		 */
707 		if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
708 		    (cur_len + s_length <= max_len)) {
709 			/* ...then concatenate it with the previous one */
710 			cur_len += s_length;
711 		} else {
712 			/* Otherwise start the next output segment */
713 			if (i > 0)
714 				cur = sg_next(cur);
715 			cur_len = s_length;
716 			count++;
717 
718 			sg_dma_address(cur) = dma_addr + s_iova_off;
719 		}
720 
721 		sg_dma_len(cur) = cur_len;
722 		dma_addr += s_iova_len;
723 
724 		if (s_length + s_iova_off < s_iova_len)
725 			cur_len = 0;
726 	}
727 	return count;
728 }
729 
730 /*
731  * If mapping failed, then just restore the original list,
732  * but making sure the DMA fields are invalidated.
733  */
734 static void __invalidate_sg(struct scatterlist *sg, int nents)
735 {
736 	struct scatterlist *s;
737 	int i;
738 
739 	for_each_sg(sg, s, nents, i) {
740 		if (sg_dma_address(s) != IOMMU_MAPPING_ERROR)
741 			s->offset += sg_dma_address(s);
742 		if (sg_dma_len(s))
743 			s->length = sg_dma_len(s);
744 		sg_dma_address(s) = IOMMU_MAPPING_ERROR;
745 		sg_dma_len(s) = 0;
746 	}
747 }
748 
749 /*
750  * The DMA API client is passing in a scatterlist which could describe
751  * any old buffer layout, but the IOMMU API requires everything to be
752  * aligned to IOMMU pages. Hence the need for this complicated bit of
753  * impedance-matching, to be able to hand off a suitably-aligned list,
754  * but still preserve the original offsets and sizes for the caller.
755  */
756 int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
757 		int nents, int prot)
758 {
759 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
760 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
761 	struct iova_domain *iovad = &cookie->iovad;
762 	struct scatterlist *s, *prev = NULL;
763 	dma_addr_t iova;
764 	size_t iova_len = 0;
765 	unsigned long mask = dma_get_seg_boundary(dev);
766 	int i;
767 
768 	/*
769 	 * Work out how much IOVA space we need, and align the segments to
770 	 * IOVA granules for the IOMMU driver to handle. With some clever
771 	 * trickery we can modify the list in-place, but reversibly, by
772 	 * stashing the unaligned parts in the as-yet-unused DMA fields.
773 	 */
774 	for_each_sg(sg, s, nents, i) {
775 		size_t s_iova_off = iova_offset(iovad, s->offset);
776 		size_t s_length = s->length;
777 		size_t pad_len = (mask - iova_len + 1) & mask;
778 
779 		sg_dma_address(s) = s_iova_off;
780 		sg_dma_len(s) = s_length;
781 		s->offset -= s_iova_off;
782 		s_length = iova_align(iovad, s_length + s_iova_off);
783 		s->length = s_length;
784 
785 		/*
786 		 * Due to the alignment of our single IOVA allocation, we can
787 		 * depend on these assumptions about the segment boundary mask:
788 		 * - If mask size >= IOVA size, then the IOVA range cannot
789 		 *   possibly fall across a boundary, so we don't care.
790 		 * - If mask size < IOVA size, then the IOVA range must start
791 		 *   exactly on a boundary, therefore we can lay things out
792 		 *   based purely on segment lengths without needing to know
793 		 *   the actual addresses beforehand.
794 		 * - The mask must be a power of 2, so pad_len == 0 if
795 		 *   iova_len == 0, thus we cannot dereference prev the first
796 		 *   time through here (i.e. before it has a meaningful value).
797 		 */
798 		if (pad_len && pad_len < s_length - 1) {
799 			prev->length += pad_len;
800 			iova_len += pad_len;
801 		}
802 
803 		iova_len += s_length;
804 		prev = s;
805 	}
806 
807 	iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
808 	if (!iova)
809 		goto out_restore_sg;
810 
811 	/*
812 	 * We'll leave any physical concatenation to the IOMMU driver's
813 	 * implementation - it knows better than we do.
814 	 */
815 	if (iommu_map_sg(domain, iova, sg, nents, prot) < iova_len)
816 		goto out_free_iova;
817 
818 	return __finalise_sg(dev, sg, nents, iova);
819 
820 out_free_iova:
821 	iommu_dma_free_iova(cookie, iova, iova_len);
822 out_restore_sg:
823 	__invalidate_sg(sg, nents);
824 	return 0;
825 }
826 
827 void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
828 		enum dma_data_direction dir, unsigned long attrs)
829 {
830 	dma_addr_t start, end;
831 	struct scatterlist *tmp;
832 	int i;
833 	/*
834 	 * The scatterlist segments are mapped into a single
835 	 * contiguous IOVA allocation, so this is incredibly easy.
836 	 */
837 	start = sg_dma_address(sg);
838 	for_each_sg(sg_next(sg), tmp, nents - 1, i) {
839 		if (sg_dma_len(tmp) == 0)
840 			break;
841 		sg = tmp;
842 	}
843 	end = sg_dma_address(sg) + sg_dma_len(sg);
844 	__iommu_dma_unmap(iommu_get_dma_domain(dev), start, end - start);
845 }
846 
847 dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
848 		size_t size, enum dma_data_direction dir, unsigned long attrs)
849 {
850 	return __iommu_dma_map(dev, phys, size,
851 			dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO,
852 			iommu_get_dma_domain(dev));
853 }
854 
855 void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
856 		size_t size, enum dma_data_direction dir, unsigned long attrs)
857 {
858 	__iommu_dma_unmap(iommu_get_dma_domain(dev), handle, size);
859 }
860 
861 int iommu_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
862 {
863 	return dma_addr == IOMMU_MAPPING_ERROR;
864 }
865 
866 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
867 		phys_addr_t msi_addr, struct iommu_domain *domain)
868 {
869 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
870 	struct iommu_dma_msi_page *msi_page;
871 	dma_addr_t iova;
872 	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
873 	size_t size = cookie_msi_granule(cookie);
874 
875 	msi_addr &= ~(phys_addr_t)(size - 1);
876 	list_for_each_entry(msi_page, &cookie->msi_page_list, list)
877 		if (msi_page->phys == msi_addr)
878 			return msi_page;
879 
880 	msi_page = kzalloc(sizeof(*msi_page), GFP_ATOMIC);
881 	if (!msi_page)
882 		return NULL;
883 
884 	iova = __iommu_dma_map(dev, msi_addr, size, prot, domain);
885 	if (iommu_dma_mapping_error(dev, iova))
886 		goto out_free_page;
887 
888 	INIT_LIST_HEAD(&msi_page->list);
889 	msi_page->phys = msi_addr;
890 	msi_page->iova = iova;
891 	list_add(&msi_page->list, &cookie->msi_page_list);
892 	return msi_page;
893 
894 out_free_page:
895 	kfree(msi_page);
896 	return NULL;
897 }
898 
899 void iommu_dma_map_msi_msg(int irq, struct msi_msg *msg)
900 {
901 	struct device *dev = msi_desc_to_dev(irq_get_msi_desc(irq));
902 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
903 	struct iommu_dma_cookie *cookie;
904 	struct iommu_dma_msi_page *msi_page;
905 	phys_addr_t msi_addr = (u64)msg->address_hi << 32 | msg->address_lo;
906 	unsigned long flags;
907 
908 	if (!domain || !domain->iova_cookie)
909 		return;
910 
911 	cookie = domain->iova_cookie;
912 
913 	/*
914 	 * We disable IRQs to rule out a possible inversion against
915 	 * irq_desc_lock if, say, someone tries to retarget the affinity
916 	 * of an MSI from within an IPI handler.
917 	 */
918 	spin_lock_irqsave(&cookie->msi_lock, flags);
919 	msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
920 	spin_unlock_irqrestore(&cookie->msi_lock, flags);
921 
922 	if (WARN_ON(!msi_page)) {
923 		/*
924 		 * We're called from a void callback, so the best we can do is
925 		 * 'fail' by filling the message with obviously bogus values.
926 		 * Since we got this far due to an IOMMU being present, it's
927 		 * not like the existing address would have worked anyway...
928 		 */
929 		msg->address_hi = ~0U;
930 		msg->address_lo = ~0U;
931 		msg->data = ~0U;
932 	} else {
933 		msg->address_hi = upper_32_bits(msi_page->iova);
934 		msg->address_lo &= cookie_msi_granule(cookie) - 1;
935 		msg->address_lo += lower_32_bits(msi_page->iova);
936 	}
937 }
938