xref: /openbmc/linux/drivers/iommu/dma-iommu.c (revision 06ba8020)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * A fairly generic DMA-API to IOMMU-API glue layer.
4  *
5  * Copyright (C) 2014-2015 ARM Ltd.
6  *
7  * based in part on arch/arm/mm/dma-mapping.c:
8  * Copyright (C) 2000-2004 Russell King
9  */
10 
11 #include <linux/acpi_iort.h>
12 #include <linux/atomic.h>
13 #include <linux/crash_dump.h>
14 #include <linux/device.h>
15 #include <linux/dma-direct.h>
16 #include <linux/dma-map-ops.h>
17 #include <linux/gfp.h>
18 #include <linux/huge_mm.h>
19 #include <linux/iommu.h>
20 #include <linux/iova.h>
21 #include <linux/irq.h>
22 #include <linux/list_sort.h>
23 #include <linux/memremap.h>
24 #include <linux/mm.h>
25 #include <linux/mutex.h>
26 #include <linux/of_iommu.h>
27 #include <linux/pci.h>
28 #include <linux/scatterlist.h>
29 #include <linux/spinlock.h>
30 #include <linux/swiotlb.h>
31 #include <linux/vmalloc.h>
32 
33 #include "dma-iommu.h"
34 
35 struct iommu_dma_msi_page {
36 	struct list_head	list;
37 	dma_addr_t		iova;
38 	phys_addr_t		phys;
39 };
40 
41 enum iommu_dma_cookie_type {
42 	IOMMU_DMA_IOVA_COOKIE,
43 	IOMMU_DMA_MSI_COOKIE,
44 };
45 
46 struct iommu_dma_cookie {
47 	enum iommu_dma_cookie_type	type;
48 	union {
49 		/* Full allocator for IOMMU_DMA_IOVA_COOKIE */
50 		struct {
51 			struct iova_domain	iovad;
52 
53 			struct iova_fq __percpu *fq;	/* Flush queue */
54 			/* Number of TLB flushes that have been started */
55 			atomic64_t		fq_flush_start_cnt;
56 			/* Number of TLB flushes that have been finished */
57 			atomic64_t		fq_flush_finish_cnt;
58 			/* Timer to regularily empty the flush queues */
59 			struct timer_list	fq_timer;
60 			/* 1 when timer is active, 0 when not */
61 			atomic_t		fq_timer_on;
62 		};
63 		/* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
64 		dma_addr_t		msi_iova;
65 	};
66 	struct list_head		msi_page_list;
67 
68 	/* Domain for flush queue callback; NULL if flush queue not in use */
69 	struct iommu_domain		*fq_domain;
70 	struct mutex			mutex;
71 };
72 
73 static DEFINE_STATIC_KEY_FALSE(iommu_deferred_attach_enabled);
74 bool iommu_dma_forcedac __read_mostly;
75 
76 static int __init iommu_dma_forcedac_setup(char *str)
77 {
78 	int ret = kstrtobool(str, &iommu_dma_forcedac);
79 
80 	if (!ret && iommu_dma_forcedac)
81 		pr_info("Forcing DAC for PCI devices\n");
82 	return ret;
83 }
84 early_param("iommu.forcedac", iommu_dma_forcedac_setup);
85 
86 /* Number of entries per flush queue */
87 #define IOVA_FQ_SIZE	256
88 
89 /* Timeout (in ms) after which entries are flushed from the queue */
90 #define IOVA_FQ_TIMEOUT	10
91 
92 /* Flush queue entry for deferred flushing */
93 struct iova_fq_entry {
94 	unsigned long iova_pfn;
95 	unsigned long pages;
96 	struct list_head freelist;
97 	u64 counter; /* Flush counter when this entry was added */
98 };
99 
100 /* Per-CPU flush queue structure */
101 struct iova_fq {
102 	struct iova_fq_entry entries[IOVA_FQ_SIZE];
103 	unsigned int head, tail;
104 	spinlock_t lock;
105 };
106 
107 #define fq_ring_for_each(i, fq) \
108 	for ((i) = (fq)->head; (i) != (fq)->tail; (i) = ((i) + 1) % IOVA_FQ_SIZE)
109 
110 static inline bool fq_full(struct iova_fq *fq)
111 {
112 	assert_spin_locked(&fq->lock);
113 	return (((fq->tail + 1) % IOVA_FQ_SIZE) == fq->head);
114 }
115 
116 static inline unsigned int fq_ring_add(struct iova_fq *fq)
117 {
118 	unsigned int idx = fq->tail;
119 
120 	assert_spin_locked(&fq->lock);
121 
122 	fq->tail = (idx + 1) % IOVA_FQ_SIZE;
123 
124 	return idx;
125 }
126 
127 static void fq_ring_free(struct iommu_dma_cookie *cookie, struct iova_fq *fq)
128 {
129 	u64 counter = atomic64_read(&cookie->fq_flush_finish_cnt);
130 	unsigned int idx;
131 
132 	assert_spin_locked(&fq->lock);
133 
134 	fq_ring_for_each(idx, fq) {
135 
136 		if (fq->entries[idx].counter >= counter)
137 			break;
138 
139 		put_pages_list(&fq->entries[idx].freelist);
140 		free_iova_fast(&cookie->iovad,
141 			       fq->entries[idx].iova_pfn,
142 			       fq->entries[idx].pages);
143 
144 		fq->head = (fq->head + 1) % IOVA_FQ_SIZE;
145 	}
146 }
147 
148 static void fq_flush_iotlb(struct iommu_dma_cookie *cookie)
149 {
150 	atomic64_inc(&cookie->fq_flush_start_cnt);
151 	cookie->fq_domain->ops->flush_iotlb_all(cookie->fq_domain);
152 	atomic64_inc(&cookie->fq_flush_finish_cnt);
153 }
154 
155 static void fq_flush_timeout(struct timer_list *t)
156 {
157 	struct iommu_dma_cookie *cookie = from_timer(cookie, t, fq_timer);
158 	int cpu;
159 
160 	atomic_set(&cookie->fq_timer_on, 0);
161 	fq_flush_iotlb(cookie);
162 
163 	for_each_possible_cpu(cpu) {
164 		unsigned long flags;
165 		struct iova_fq *fq;
166 
167 		fq = per_cpu_ptr(cookie->fq, cpu);
168 		spin_lock_irqsave(&fq->lock, flags);
169 		fq_ring_free(cookie, fq);
170 		spin_unlock_irqrestore(&fq->lock, flags);
171 	}
172 }
173 
174 static void queue_iova(struct iommu_dma_cookie *cookie,
175 		unsigned long pfn, unsigned long pages,
176 		struct list_head *freelist)
177 {
178 	struct iova_fq *fq;
179 	unsigned long flags;
180 	unsigned int idx;
181 
182 	/*
183 	 * Order against the IOMMU driver's pagetable update from unmapping
184 	 * @pte, to guarantee that fq_flush_iotlb() observes that if called
185 	 * from a different CPU before we release the lock below. Full barrier
186 	 * so it also pairs with iommu_dma_init_fq() to avoid seeing partially
187 	 * written fq state here.
188 	 */
189 	smp_mb();
190 
191 	fq = raw_cpu_ptr(cookie->fq);
192 	spin_lock_irqsave(&fq->lock, flags);
193 
194 	/*
195 	 * First remove all entries from the flush queue that have already been
196 	 * flushed out on another CPU. This makes the fq_full() check below less
197 	 * likely to be true.
198 	 */
199 	fq_ring_free(cookie, fq);
200 
201 	if (fq_full(fq)) {
202 		fq_flush_iotlb(cookie);
203 		fq_ring_free(cookie, fq);
204 	}
205 
206 	idx = fq_ring_add(fq);
207 
208 	fq->entries[idx].iova_pfn = pfn;
209 	fq->entries[idx].pages    = pages;
210 	fq->entries[idx].counter  = atomic64_read(&cookie->fq_flush_start_cnt);
211 	list_splice(freelist, &fq->entries[idx].freelist);
212 
213 	spin_unlock_irqrestore(&fq->lock, flags);
214 
215 	/* Avoid false sharing as much as possible. */
216 	if (!atomic_read(&cookie->fq_timer_on) &&
217 	    !atomic_xchg(&cookie->fq_timer_on, 1))
218 		mod_timer(&cookie->fq_timer,
219 			  jiffies + msecs_to_jiffies(IOVA_FQ_TIMEOUT));
220 }
221 
222 static void iommu_dma_free_fq(struct iommu_dma_cookie *cookie)
223 {
224 	int cpu, idx;
225 
226 	if (!cookie->fq)
227 		return;
228 
229 	del_timer_sync(&cookie->fq_timer);
230 	/* The IOVAs will be torn down separately, so just free our queued pages */
231 	for_each_possible_cpu(cpu) {
232 		struct iova_fq *fq = per_cpu_ptr(cookie->fq, cpu);
233 
234 		fq_ring_for_each(idx, fq)
235 			put_pages_list(&fq->entries[idx].freelist);
236 	}
237 
238 	free_percpu(cookie->fq);
239 }
240 
241 /* sysfs updates are serialised by the mutex of the group owning @domain */
242 int iommu_dma_init_fq(struct iommu_domain *domain)
243 {
244 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
245 	struct iova_fq __percpu *queue;
246 	int i, cpu;
247 
248 	if (cookie->fq_domain)
249 		return 0;
250 
251 	atomic64_set(&cookie->fq_flush_start_cnt,  0);
252 	atomic64_set(&cookie->fq_flush_finish_cnt, 0);
253 
254 	queue = alloc_percpu(struct iova_fq);
255 	if (!queue) {
256 		pr_warn("iova flush queue initialization failed\n");
257 		return -ENOMEM;
258 	}
259 
260 	for_each_possible_cpu(cpu) {
261 		struct iova_fq *fq = per_cpu_ptr(queue, cpu);
262 
263 		fq->head = 0;
264 		fq->tail = 0;
265 
266 		spin_lock_init(&fq->lock);
267 
268 		for (i = 0; i < IOVA_FQ_SIZE; i++)
269 			INIT_LIST_HEAD(&fq->entries[i].freelist);
270 	}
271 
272 	cookie->fq = queue;
273 
274 	timer_setup(&cookie->fq_timer, fq_flush_timeout, 0);
275 	atomic_set(&cookie->fq_timer_on, 0);
276 	/*
277 	 * Prevent incomplete fq state being observable. Pairs with path from
278 	 * __iommu_dma_unmap() through iommu_dma_free_iova() to queue_iova()
279 	 */
280 	smp_wmb();
281 	WRITE_ONCE(cookie->fq_domain, domain);
282 	return 0;
283 }
284 
285 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
286 {
287 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
288 		return cookie->iovad.granule;
289 	return PAGE_SIZE;
290 }
291 
292 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
293 {
294 	struct iommu_dma_cookie *cookie;
295 
296 	cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
297 	if (cookie) {
298 		INIT_LIST_HEAD(&cookie->msi_page_list);
299 		cookie->type = type;
300 	}
301 	return cookie;
302 }
303 
304 /**
305  * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
306  * @domain: IOMMU domain to prepare for DMA-API usage
307  */
308 int iommu_get_dma_cookie(struct iommu_domain *domain)
309 {
310 	if (domain->iova_cookie)
311 		return -EEXIST;
312 
313 	domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
314 	if (!domain->iova_cookie)
315 		return -ENOMEM;
316 
317 	mutex_init(&domain->iova_cookie->mutex);
318 	return 0;
319 }
320 
321 /**
322  * iommu_get_msi_cookie - Acquire just MSI remapping resources
323  * @domain: IOMMU domain to prepare
324  * @base: Start address of IOVA region for MSI mappings
325  *
326  * Users who manage their own IOVA allocation and do not want DMA API support,
327  * but would still like to take advantage of automatic MSI remapping, can use
328  * this to initialise their own domain appropriately. Users should reserve a
329  * contiguous IOVA region, starting at @base, large enough to accommodate the
330  * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
331  * used by the devices attached to @domain.
332  */
333 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
334 {
335 	struct iommu_dma_cookie *cookie;
336 
337 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
338 		return -EINVAL;
339 
340 	if (domain->iova_cookie)
341 		return -EEXIST;
342 
343 	cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
344 	if (!cookie)
345 		return -ENOMEM;
346 
347 	cookie->msi_iova = base;
348 	domain->iova_cookie = cookie;
349 	return 0;
350 }
351 EXPORT_SYMBOL(iommu_get_msi_cookie);
352 
353 /**
354  * iommu_put_dma_cookie - Release a domain's DMA mapping resources
355  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
356  *          iommu_get_msi_cookie()
357  */
358 void iommu_put_dma_cookie(struct iommu_domain *domain)
359 {
360 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
361 	struct iommu_dma_msi_page *msi, *tmp;
362 
363 	if (!cookie)
364 		return;
365 
366 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule) {
367 		iommu_dma_free_fq(cookie);
368 		put_iova_domain(&cookie->iovad);
369 	}
370 
371 	list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
372 		list_del(&msi->list);
373 		kfree(msi);
374 	}
375 	kfree(cookie);
376 	domain->iova_cookie = NULL;
377 }
378 
379 /**
380  * iommu_dma_get_resv_regions - Reserved region driver helper
381  * @dev: Device from iommu_get_resv_regions()
382  * @list: Reserved region list from iommu_get_resv_regions()
383  *
384  * IOMMU drivers can use this to implement their .get_resv_regions callback
385  * for general non-IOMMU-specific reservations. Currently, this covers GICv3
386  * ITS region reservation on ACPI based ARM platforms that may require HW MSI
387  * reservation.
388  */
389 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
390 {
391 
392 	if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode))
393 		iort_iommu_get_resv_regions(dev, list);
394 
395 	if (dev->of_node)
396 		of_iommu_get_resv_regions(dev, list);
397 }
398 EXPORT_SYMBOL(iommu_dma_get_resv_regions);
399 
400 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
401 		phys_addr_t start, phys_addr_t end)
402 {
403 	struct iova_domain *iovad = &cookie->iovad;
404 	struct iommu_dma_msi_page *msi_page;
405 	int i, num_pages;
406 
407 	start -= iova_offset(iovad, start);
408 	num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
409 
410 	for (i = 0; i < num_pages; i++) {
411 		msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL);
412 		if (!msi_page)
413 			return -ENOMEM;
414 
415 		msi_page->phys = start;
416 		msi_page->iova = start;
417 		INIT_LIST_HEAD(&msi_page->list);
418 		list_add(&msi_page->list, &cookie->msi_page_list);
419 		start += iovad->granule;
420 	}
421 
422 	return 0;
423 }
424 
425 static int iommu_dma_ranges_sort(void *priv, const struct list_head *a,
426 		const struct list_head *b)
427 {
428 	struct resource_entry *res_a = list_entry(a, typeof(*res_a), node);
429 	struct resource_entry *res_b = list_entry(b, typeof(*res_b), node);
430 
431 	return res_a->res->start > res_b->res->start;
432 }
433 
434 static int iova_reserve_pci_windows(struct pci_dev *dev,
435 		struct iova_domain *iovad)
436 {
437 	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
438 	struct resource_entry *window;
439 	unsigned long lo, hi;
440 	phys_addr_t start = 0, end;
441 
442 	resource_list_for_each_entry(window, &bridge->windows) {
443 		if (resource_type(window->res) != IORESOURCE_MEM)
444 			continue;
445 
446 		lo = iova_pfn(iovad, window->res->start - window->offset);
447 		hi = iova_pfn(iovad, window->res->end - window->offset);
448 		reserve_iova(iovad, lo, hi);
449 	}
450 
451 	/* Get reserved DMA windows from host bridge */
452 	list_sort(NULL, &bridge->dma_ranges, iommu_dma_ranges_sort);
453 	resource_list_for_each_entry(window, &bridge->dma_ranges) {
454 		end = window->res->start - window->offset;
455 resv_iova:
456 		if (end > start) {
457 			lo = iova_pfn(iovad, start);
458 			hi = iova_pfn(iovad, end);
459 			reserve_iova(iovad, lo, hi);
460 		} else if (end < start) {
461 			/* DMA ranges should be non-overlapping */
462 			dev_err(&dev->dev,
463 				"Failed to reserve IOVA [%pa-%pa]\n",
464 				&start, &end);
465 			return -EINVAL;
466 		}
467 
468 		start = window->res->end - window->offset + 1;
469 		/* If window is last entry */
470 		if (window->node.next == &bridge->dma_ranges &&
471 		    end != ~(phys_addr_t)0) {
472 			end = ~(phys_addr_t)0;
473 			goto resv_iova;
474 		}
475 	}
476 
477 	return 0;
478 }
479 
480 static int iova_reserve_iommu_regions(struct device *dev,
481 		struct iommu_domain *domain)
482 {
483 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
484 	struct iova_domain *iovad = &cookie->iovad;
485 	struct iommu_resv_region *region;
486 	LIST_HEAD(resv_regions);
487 	int ret = 0;
488 
489 	if (dev_is_pci(dev)) {
490 		ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad);
491 		if (ret)
492 			return ret;
493 	}
494 
495 	iommu_get_resv_regions(dev, &resv_regions);
496 	list_for_each_entry(region, &resv_regions, list) {
497 		unsigned long lo, hi;
498 
499 		/* We ARE the software that manages these! */
500 		if (region->type == IOMMU_RESV_SW_MSI)
501 			continue;
502 
503 		lo = iova_pfn(iovad, region->start);
504 		hi = iova_pfn(iovad, region->start + region->length - 1);
505 		reserve_iova(iovad, lo, hi);
506 
507 		if (region->type == IOMMU_RESV_MSI)
508 			ret = cookie_init_hw_msi_region(cookie, region->start,
509 					region->start + region->length);
510 		if (ret)
511 			break;
512 	}
513 	iommu_put_resv_regions(dev, &resv_regions);
514 
515 	return ret;
516 }
517 
518 static bool dev_is_untrusted(struct device *dev)
519 {
520 	return dev_is_pci(dev) && to_pci_dev(dev)->untrusted;
521 }
522 
523 static bool dev_use_swiotlb(struct device *dev)
524 {
525 	return IS_ENABLED(CONFIG_SWIOTLB) && dev_is_untrusted(dev);
526 }
527 
528 /**
529  * iommu_dma_init_domain - Initialise a DMA mapping domain
530  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
531  * @base: IOVA at which the mappable address space starts
532  * @limit: Last address of the IOVA space
533  * @dev: Device the domain is being initialised for
534  *
535  * @base and @limit + 1 should be exact multiples of IOMMU page granularity to
536  * avoid rounding surprises. If necessary, we reserve the page at address 0
537  * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
538  * any change which could make prior IOVAs invalid will fail.
539  */
540 static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
541 				 dma_addr_t limit, struct device *dev)
542 {
543 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
544 	unsigned long order, base_pfn;
545 	struct iova_domain *iovad;
546 	int ret;
547 
548 	if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
549 		return -EINVAL;
550 
551 	iovad = &cookie->iovad;
552 
553 	/* Use the smallest supported page size for IOVA granularity */
554 	order = __ffs(domain->pgsize_bitmap);
555 	base_pfn = max_t(unsigned long, 1, base >> order);
556 
557 	/* Check the domain allows at least some access to the device... */
558 	if (domain->geometry.force_aperture) {
559 		if (base > domain->geometry.aperture_end ||
560 		    limit < domain->geometry.aperture_start) {
561 			pr_warn("specified DMA range outside IOMMU capability\n");
562 			return -EFAULT;
563 		}
564 		/* ...then finally give it a kicking to make sure it fits */
565 		base_pfn = max_t(unsigned long, base_pfn,
566 				domain->geometry.aperture_start >> order);
567 	}
568 
569 	/* start_pfn is always nonzero for an already-initialised domain */
570 	mutex_lock(&cookie->mutex);
571 	if (iovad->start_pfn) {
572 		if (1UL << order != iovad->granule ||
573 		    base_pfn != iovad->start_pfn) {
574 			pr_warn("Incompatible range for DMA domain\n");
575 			ret = -EFAULT;
576 			goto done_unlock;
577 		}
578 
579 		ret = 0;
580 		goto done_unlock;
581 	}
582 
583 	init_iova_domain(iovad, 1UL << order, base_pfn);
584 	ret = iova_domain_init_rcaches(iovad);
585 	if (ret)
586 		goto done_unlock;
587 
588 	/* If the FQ fails we can simply fall back to strict mode */
589 	if (domain->type == IOMMU_DOMAIN_DMA_FQ && iommu_dma_init_fq(domain))
590 		domain->type = IOMMU_DOMAIN_DMA;
591 
592 	ret = iova_reserve_iommu_regions(dev, domain);
593 
594 done_unlock:
595 	mutex_unlock(&cookie->mutex);
596 	return ret;
597 }
598 
599 /**
600  * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
601  *                    page flags.
602  * @dir: Direction of DMA transfer
603  * @coherent: Is the DMA master cache-coherent?
604  * @attrs: DMA attributes for the mapping
605  *
606  * Return: corresponding IOMMU API page protection flags
607  */
608 static int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
609 		     unsigned long attrs)
610 {
611 	int prot = coherent ? IOMMU_CACHE : 0;
612 
613 	if (attrs & DMA_ATTR_PRIVILEGED)
614 		prot |= IOMMU_PRIV;
615 
616 	switch (dir) {
617 	case DMA_BIDIRECTIONAL:
618 		return prot | IOMMU_READ | IOMMU_WRITE;
619 	case DMA_TO_DEVICE:
620 		return prot | IOMMU_READ;
621 	case DMA_FROM_DEVICE:
622 		return prot | IOMMU_WRITE;
623 	default:
624 		return 0;
625 	}
626 }
627 
628 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
629 		size_t size, u64 dma_limit, struct device *dev)
630 {
631 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
632 	struct iova_domain *iovad = &cookie->iovad;
633 	unsigned long shift, iova_len, iova = 0;
634 
635 	if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
636 		cookie->msi_iova += size;
637 		return cookie->msi_iova - size;
638 	}
639 
640 	shift = iova_shift(iovad);
641 	iova_len = size >> shift;
642 
643 	dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit);
644 
645 	if (domain->geometry.force_aperture)
646 		dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end);
647 
648 	/* Try to get PCI devices a SAC address */
649 	if (dma_limit > DMA_BIT_MASK(32) && !iommu_dma_forcedac && dev_is_pci(dev))
650 		iova = alloc_iova_fast(iovad, iova_len,
651 				       DMA_BIT_MASK(32) >> shift, false);
652 
653 	if (!iova)
654 		iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift,
655 				       true);
656 
657 	return (dma_addr_t)iova << shift;
658 }
659 
660 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
661 		dma_addr_t iova, size_t size, struct iommu_iotlb_gather *gather)
662 {
663 	struct iova_domain *iovad = &cookie->iovad;
664 
665 	/* The MSI case is only ever cleaning up its most recent allocation */
666 	if (cookie->type == IOMMU_DMA_MSI_COOKIE)
667 		cookie->msi_iova -= size;
668 	else if (gather && gather->queued)
669 		queue_iova(cookie, iova_pfn(iovad, iova),
670 				size >> iova_shift(iovad),
671 				&gather->freelist);
672 	else
673 		free_iova_fast(iovad, iova_pfn(iovad, iova),
674 				size >> iova_shift(iovad));
675 }
676 
677 static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr,
678 		size_t size)
679 {
680 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
681 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
682 	struct iova_domain *iovad = &cookie->iovad;
683 	size_t iova_off = iova_offset(iovad, dma_addr);
684 	struct iommu_iotlb_gather iotlb_gather;
685 	size_t unmapped;
686 
687 	dma_addr -= iova_off;
688 	size = iova_align(iovad, size + iova_off);
689 	iommu_iotlb_gather_init(&iotlb_gather);
690 	iotlb_gather.queued = READ_ONCE(cookie->fq_domain);
691 
692 	unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather);
693 	WARN_ON(unmapped != size);
694 
695 	if (!iotlb_gather.queued)
696 		iommu_iotlb_sync(domain, &iotlb_gather);
697 	iommu_dma_free_iova(cookie, dma_addr, size, &iotlb_gather);
698 }
699 
700 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
701 		size_t size, int prot, u64 dma_mask)
702 {
703 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
704 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
705 	struct iova_domain *iovad = &cookie->iovad;
706 	size_t iova_off = iova_offset(iovad, phys);
707 	dma_addr_t iova;
708 
709 	if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
710 	    iommu_deferred_attach(dev, domain))
711 		return DMA_MAPPING_ERROR;
712 
713 	size = iova_align(iovad, size + iova_off);
714 
715 	iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev);
716 	if (!iova)
717 		return DMA_MAPPING_ERROR;
718 
719 	if (iommu_map(domain, iova, phys - iova_off, size, prot, GFP_ATOMIC)) {
720 		iommu_dma_free_iova(cookie, iova, size, NULL);
721 		return DMA_MAPPING_ERROR;
722 	}
723 	return iova + iova_off;
724 }
725 
726 static void __iommu_dma_free_pages(struct page **pages, int count)
727 {
728 	while (count--)
729 		__free_page(pages[count]);
730 	kvfree(pages);
731 }
732 
733 static struct page **__iommu_dma_alloc_pages(struct device *dev,
734 		unsigned int count, unsigned long order_mask, gfp_t gfp)
735 {
736 	struct page **pages;
737 	unsigned int i = 0, nid = dev_to_node(dev);
738 
739 	order_mask &= GENMASK(MAX_ORDER, 0);
740 	if (!order_mask)
741 		return NULL;
742 
743 	pages = kvcalloc(count, sizeof(*pages), GFP_KERNEL);
744 	if (!pages)
745 		return NULL;
746 
747 	/* IOMMU can map any pages, so himem can also be used here */
748 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
749 
750 	while (count) {
751 		struct page *page = NULL;
752 		unsigned int order_size;
753 
754 		/*
755 		 * Higher-order allocations are a convenience rather
756 		 * than a necessity, hence using __GFP_NORETRY until
757 		 * falling back to minimum-order allocations.
758 		 */
759 		for (order_mask &= GENMASK(__fls(count), 0);
760 		     order_mask; order_mask &= ~order_size) {
761 			unsigned int order = __fls(order_mask);
762 			gfp_t alloc_flags = gfp;
763 
764 			order_size = 1U << order;
765 			if (order_mask > order_size)
766 				alloc_flags |= __GFP_NORETRY;
767 			page = alloc_pages_node(nid, alloc_flags, order);
768 			if (!page)
769 				continue;
770 			if (order)
771 				split_page(page, order);
772 			break;
773 		}
774 		if (!page) {
775 			__iommu_dma_free_pages(pages, i);
776 			return NULL;
777 		}
778 		count -= order_size;
779 		while (order_size--)
780 			pages[i++] = page++;
781 	}
782 	return pages;
783 }
784 
785 /*
786  * If size is less than PAGE_SIZE, then a full CPU page will be allocated,
787  * but an IOMMU which supports smaller pages might not map the whole thing.
788  */
789 static struct page **__iommu_dma_alloc_noncontiguous(struct device *dev,
790 		size_t size, struct sg_table *sgt, gfp_t gfp, pgprot_t prot,
791 		unsigned long attrs)
792 {
793 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
794 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
795 	struct iova_domain *iovad = &cookie->iovad;
796 	bool coherent = dev_is_dma_coherent(dev);
797 	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
798 	unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
799 	struct page **pages;
800 	dma_addr_t iova;
801 	ssize_t ret;
802 
803 	if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
804 	    iommu_deferred_attach(dev, domain))
805 		return NULL;
806 
807 	min_size = alloc_sizes & -alloc_sizes;
808 	if (min_size < PAGE_SIZE) {
809 		min_size = PAGE_SIZE;
810 		alloc_sizes |= PAGE_SIZE;
811 	} else {
812 		size = ALIGN(size, min_size);
813 	}
814 	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
815 		alloc_sizes = min_size;
816 
817 	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
818 	pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT,
819 					gfp);
820 	if (!pages)
821 		return NULL;
822 
823 	size = iova_align(iovad, size);
824 	iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
825 	if (!iova)
826 		goto out_free_pages;
827 
828 	/*
829 	 * Remove the zone/policy flags from the GFP - these are applied to the
830 	 * __iommu_dma_alloc_pages() but are not used for the supporting
831 	 * internal allocations that follow.
832 	 */
833 	gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM | __GFP_COMP);
834 
835 	if (sg_alloc_table_from_pages(sgt, pages, count, 0, size, gfp))
836 		goto out_free_iova;
837 
838 	if (!(ioprot & IOMMU_CACHE)) {
839 		struct scatterlist *sg;
840 		int i;
841 
842 		for_each_sg(sgt->sgl, sg, sgt->orig_nents, i)
843 			arch_dma_prep_coherent(sg_page(sg), sg->length);
844 	}
845 
846 	ret = iommu_map_sg(domain, iova, sgt->sgl, sgt->orig_nents, ioprot,
847 			   gfp);
848 	if (ret < 0 || ret < size)
849 		goto out_free_sg;
850 
851 	sgt->sgl->dma_address = iova;
852 	sgt->sgl->dma_length = size;
853 	return pages;
854 
855 out_free_sg:
856 	sg_free_table(sgt);
857 out_free_iova:
858 	iommu_dma_free_iova(cookie, iova, size, NULL);
859 out_free_pages:
860 	__iommu_dma_free_pages(pages, count);
861 	return NULL;
862 }
863 
864 static void *iommu_dma_alloc_remap(struct device *dev, size_t size,
865 		dma_addr_t *dma_handle, gfp_t gfp, pgprot_t prot,
866 		unsigned long attrs)
867 {
868 	struct page **pages;
869 	struct sg_table sgt;
870 	void *vaddr;
871 
872 	pages = __iommu_dma_alloc_noncontiguous(dev, size, &sgt, gfp, prot,
873 						attrs);
874 	if (!pages)
875 		return NULL;
876 	*dma_handle = sgt.sgl->dma_address;
877 	sg_free_table(&sgt);
878 	vaddr = dma_common_pages_remap(pages, size, prot,
879 			__builtin_return_address(0));
880 	if (!vaddr)
881 		goto out_unmap;
882 	return vaddr;
883 
884 out_unmap:
885 	__iommu_dma_unmap(dev, *dma_handle, size);
886 	__iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
887 	return NULL;
888 }
889 
890 static struct sg_table *iommu_dma_alloc_noncontiguous(struct device *dev,
891 		size_t size, enum dma_data_direction dir, gfp_t gfp,
892 		unsigned long attrs)
893 {
894 	struct dma_sgt_handle *sh;
895 
896 	sh = kmalloc(sizeof(*sh), gfp);
897 	if (!sh)
898 		return NULL;
899 
900 	sh->pages = __iommu_dma_alloc_noncontiguous(dev, size, &sh->sgt, gfp,
901 						    PAGE_KERNEL, attrs);
902 	if (!sh->pages) {
903 		kfree(sh);
904 		return NULL;
905 	}
906 	return &sh->sgt;
907 }
908 
909 static void iommu_dma_free_noncontiguous(struct device *dev, size_t size,
910 		struct sg_table *sgt, enum dma_data_direction dir)
911 {
912 	struct dma_sgt_handle *sh = sgt_handle(sgt);
913 
914 	__iommu_dma_unmap(dev, sgt->sgl->dma_address, size);
915 	__iommu_dma_free_pages(sh->pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
916 	sg_free_table(&sh->sgt);
917 	kfree(sh);
918 }
919 
920 static void iommu_dma_sync_single_for_cpu(struct device *dev,
921 		dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
922 {
923 	phys_addr_t phys;
924 
925 	if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev))
926 		return;
927 
928 	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
929 	if (!dev_is_dma_coherent(dev))
930 		arch_sync_dma_for_cpu(phys, size, dir);
931 
932 	if (is_swiotlb_buffer(dev, phys))
933 		swiotlb_sync_single_for_cpu(dev, phys, size, dir);
934 }
935 
936 static void iommu_dma_sync_single_for_device(struct device *dev,
937 		dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
938 {
939 	phys_addr_t phys;
940 
941 	if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev))
942 		return;
943 
944 	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
945 	if (is_swiotlb_buffer(dev, phys))
946 		swiotlb_sync_single_for_device(dev, phys, size, dir);
947 
948 	if (!dev_is_dma_coherent(dev))
949 		arch_sync_dma_for_device(phys, size, dir);
950 }
951 
952 static void iommu_dma_sync_sg_for_cpu(struct device *dev,
953 		struct scatterlist *sgl, int nelems,
954 		enum dma_data_direction dir)
955 {
956 	struct scatterlist *sg;
957 	int i;
958 
959 	if (dev_use_swiotlb(dev))
960 		for_each_sg(sgl, sg, nelems, i)
961 			iommu_dma_sync_single_for_cpu(dev, sg_dma_address(sg),
962 						      sg->length, dir);
963 	else if (!dev_is_dma_coherent(dev))
964 		for_each_sg(sgl, sg, nelems, i)
965 			arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir);
966 }
967 
968 static void iommu_dma_sync_sg_for_device(struct device *dev,
969 		struct scatterlist *sgl, int nelems,
970 		enum dma_data_direction dir)
971 {
972 	struct scatterlist *sg;
973 	int i;
974 
975 	if (dev_use_swiotlb(dev))
976 		for_each_sg(sgl, sg, nelems, i)
977 			iommu_dma_sync_single_for_device(dev,
978 							 sg_dma_address(sg),
979 							 sg->length, dir);
980 	else if (!dev_is_dma_coherent(dev))
981 		for_each_sg(sgl, sg, nelems, i)
982 			arch_sync_dma_for_device(sg_phys(sg), sg->length, dir);
983 }
984 
985 static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
986 		unsigned long offset, size_t size, enum dma_data_direction dir,
987 		unsigned long attrs)
988 {
989 	phys_addr_t phys = page_to_phys(page) + offset;
990 	bool coherent = dev_is_dma_coherent(dev);
991 	int prot = dma_info_to_prot(dir, coherent, attrs);
992 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
993 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
994 	struct iova_domain *iovad = &cookie->iovad;
995 	dma_addr_t iova, dma_mask = dma_get_mask(dev);
996 
997 	/*
998 	 * If both the physical buffer start address and size are
999 	 * page aligned, we don't need to use a bounce page.
1000 	 */
1001 	if (dev_use_swiotlb(dev) && iova_offset(iovad, phys | size)) {
1002 		void *padding_start;
1003 		size_t padding_size, aligned_size;
1004 
1005 		if (!is_swiotlb_active(dev)) {
1006 			dev_warn_once(dev, "DMA bounce buffers are inactive, unable to map unaligned transaction.\n");
1007 			return DMA_MAPPING_ERROR;
1008 		}
1009 
1010 		aligned_size = iova_align(iovad, size);
1011 		phys = swiotlb_tbl_map_single(dev, phys, size, aligned_size,
1012 					      iova_mask(iovad), dir, attrs);
1013 
1014 		if (phys == DMA_MAPPING_ERROR)
1015 			return DMA_MAPPING_ERROR;
1016 
1017 		/* Cleanup the padding area. */
1018 		padding_start = phys_to_virt(phys);
1019 		padding_size = aligned_size;
1020 
1021 		if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
1022 		    (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) {
1023 			padding_start += size;
1024 			padding_size -= size;
1025 		}
1026 
1027 		memset(padding_start, 0, padding_size);
1028 	}
1029 
1030 	if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1031 		arch_sync_dma_for_device(phys, size, dir);
1032 
1033 	iova = __iommu_dma_map(dev, phys, size, prot, dma_mask);
1034 	if (iova == DMA_MAPPING_ERROR && is_swiotlb_buffer(dev, phys))
1035 		swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
1036 	return iova;
1037 }
1038 
1039 static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle,
1040 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1041 {
1042 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1043 	phys_addr_t phys;
1044 
1045 	phys = iommu_iova_to_phys(domain, dma_handle);
1046 	if (WARN_ON(!phys))
1047 		return;
1048 
1049 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && !dev_is_dma_coherent(dev))
1050 		arch_sync_dma_for_cpu(phys, size, dir);
1051 
1052 	__iommu_dma_unmap(dev, dma_handle, size);
1053 
1054 	if (unlikely(is_swiotlb_buffer(dev, phys)))
1055 		swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
1056 }
1057 
1058 /*
1059  * Prepare a successfully-mapped scatterlist to give back to the caller.
1060  *
1061  * At this point the segments are already laid out by iommu_dma_map_sg() to
1062  * avoid individually crossing any boundaries, so we merely need to check a
1063  * segment's start address to avoid concatenating across one.
1064  */
1065 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
1066 		dma_addr_t dma_addr)
1067 {
1068 	struct scatterlist *s, *cur = sg;
1069 	unsigned long seg_mask = dma_get_seg_boundary(dev);
1070 	unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
1071 	int i, count = 0;
1072 
1073 	for_each_sg(sg, s, nents, i) {
1074 		/* Restore this segment's original unaligned fields first */
1075 		dma_addr_t s_dma_addr = sg_dma_address(s);
1076 		unsigned int s_iova_off = sg_dma_address(s);
1077 		unsigned int s_length = sg_dma_len(s);
1078 		unsigned int s_iova_len = s->length;
1079 
1080 		sg_dma_address(s) = DMA_MAPPING_ERROR;
1081 		sg_dma_len(s) = 0;
1082 
1083 		if (sg_is_dma_bus_address(s)) {
1084 			if (i > 0)
1085 				cur = sg_next(cur);
1086 
1087 			sg_dma_unmark_bus_address(s);
1088 			sg_dma_address(cur) = s_dma_addr;
1089 			sg_dma_len(cur) = s_length;
1090 			sg_dma_mark_bus_address(cur);
1091 			count++;
1092 			cur_len = 0;
1093 			continue;
1094 		}
1095 
1096 		s->offset += s_iova_off;
1097 		s->length = s_length;
1098 
1099 		/*
1100 		 * Now fill in the real DMA data. If...
1101 		 * - there is a valid output segment to append to
1102 		 * - and this segment starts on an IOVA page boundary
1103 		 * - but doesn't fall at a segment boundary
1104 		 * - and wouldn't make the resulting output segment too long
1105 		 */
1106 		if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
1107 		    (max_len - cur_len >= s_length)) {
1108 			/* ...then concatenate it with the previous one */
1109 			cur_len += s_length;
1110 		} else {
1111 			/* Otherwise start the next output segment */
1112 			if (i > 0)
1113 				cur = sg_next(cur);
1114 			cur_len = s_length;
1115 			count++;
1116 
1117 			sg_dma_address(cur) = dma_addr + s_iova_off;
1118 		}
1119 
1120 		sg_dma_len(cur) = cur_len;
1121 		dma_addr += s_iova_len;
1122 
1123 		if (s_length + s_iova_off < s_iova_len)
1124 			cur_len = 0;
1125 	}
1126 	return count;
1127 }
1128 
1129 /*
1130  * If mapping failed, then just restore the original list,
1131  * but making sure the DMA fields are invalidated.
1132  */
1133 static void __invalidate_sg(struct scatterlist *sg, int nents)
1134 {
1135 	struct scatterlist *s;
1136 	int i;
1137 
1138 	for_each_sg(sg, s, nents, i) {
1139 		if (sg_is_dma_bus_address(s)) {
1140 			sg_dma_unmark_bus_address(s);
1141 		} else {
1142 			if (sg_dma_address(s) != DMA_MAPPING_ERROR)
1143 				s->offset += sg_dma_address(s);
1144 			if (sg_dma_len(s))
1145 				s->length = sg_dma_len(s);
1146 		}
1147 		sg_dma_address(s) = DMA_MAPPING_ERROR;
1148 		sg_dma_len(s) = 0;
1149 	}
1150 }
1151 
1152 static void iommu_dma_unmap_sg_swiotlb(struct device *dev, struct scatterlist *sg,
1153 		int nents, enum dma_data_direction dir, unsigned long attrs)
1154 {
1155 	struct scatterlist *s;
1156 	int i;
1157 
1158 	for_each_sg(sg, s, nents, i)
1159 		iommu_dma_unmap_page(dev, sg_dma_address(s),
1160 				sg_dma_len(s), dir, attrs);
1161 }
1162 
1163 static int iommu_dma_map_sg_swiotlb(struct device *dev, struct scatterlist *sg,
1164 		int nents, enum dma_data_direction dir, unsigned long attrs)
1165 {
1166 	struct scatterlist *s;
1167 	int i;
1168 
1169 	for_each_sg(sg, s, nents, i) {
1170 		sg_dma_address(s) = iommu_dma_map_page(dev, sg_page(s),
1171 				s->offset, s->length, dir, attrs);
1172 		if (sg_dma_address(s) == DMA_MAPPING_ERROR)
1173 			goto out_unmap;
1174 		sg_dma_len(s) = s->length;
1175 	}
1176 
1177 	return nents;
1178 
1179 out_unmap:
1180 	iommu_dma_unmap_sg_swiotlb(dev, sg, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
1181 	return -EIO;
1182 }
1183 
1184 /*
1185  * The DMA API client is passing in a scatterlist which could describe
1186  * any old buffer layout, but the IOMMU API requires everything to be
1187  * aligned to IOMMU pages. Hence the need for this complicated bit of
1188  * impedance-matching, to be able to hand off a suitably-aligned list,
1189  * but still preserve the original offsets and sizes for the caller.
1190  */
1191 static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
1192 		int nents, enum dma_data_direction dir, unsigned long attrs)
1193 {
1194 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1195 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
1196 	struct iova_domain *iovad = &cookie->iovad;
1197 	struct scatterlist *s, *prev = NULL;
1198 	int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs);
1199 	struct pci_p2pdma_map_state p2pdma_state = {};
1200 	enum pci_p2pdma_map_type map;
1201 	dma_addr_t iova;
1202 	size_t iova_len = 0;
1203 	unsigned long mask = dma_get_seg_boundary(dev);
1204 	ssize_t ret;
1205 	int i;
1206 
1207 	if (static_branch_unlikely(&iommu_deferred_attach_enabled)) {
1208 		ret = iommu_deferred_attach(dev, domain);
1209 		if (ret)
1210 			goto out;
1211 	}
1212 
1213 	if (dev_use_swiotlb(dev))
1214 		return iommu_dma_map_sg_swiotlb(dev, sg, nents, dir, attrs);
1215 
1216 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1217 		iommu_dma_sync_sg_for_device(dev, sg, nents, dir);
1218 
1219 	/*
1220 	 * Work out how much IOVA space we need, and align the segments to
1221 	 * IOVA granules for the IOMMU driver to handle. With some clever
1222 	 * trickery we can modify the list in-place, but reversibly, by
1223 	 * stashing the unaligned parts in the as-yet-unused DMA fields.
1224 	 */
1225 	for_each_sg(sg, s, nents, i) {
1226 		size_t s_iova_off = iova_offset(iovad, s->offset);
1227 		size_t s_length = s->length;
1228 		size_t pad_len = (mask - iova_len + 1) & mask;
1229 
1230 		if (is_pci_p2pdma_page(sg_page(s))) {
1231 			map = pci_p2pdma_map_segment(&p2pdma_state, dev, s);
1232 			switch (map) {
1233 			case PCI_P2PDMA_MAP_BUS_ADDR:
1234 				/*
1235 				 * iommu_map_sg() will skip this segment as
1236 				 * it is marked as a bus address,
1237 				 * __finalise_sg() will copy the dma address
1238 				 * into the output segment.
1239 				 */
1240 				continue;
1241 			case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
1242 				/*
1243 				 * Mapping through host bridge should be
1244 				 * mapped with regular IOVAs, thus we
1245 				 * do nothing here and continue below.
1246 				 */
1247 				break;
1248 			default:
1249 				ret = -EREMOTEIO;
1250 				goto out_restore_sg;
1251 			}
1252 		}
1253 
1254 		sg_dma_address(s) = s_iova_off;
1255 		sg_dma_len(s) = s_length;
1256 		s->offset -= s_iova_off;
1257 		s_length = iova_align(iovad, s_length + s_iova_off);
1258 		s->length = s_length;
1259 
1260 		/*
1261 		 * Due to the alignment of our single IOVA allocation, we can
1262 		 * depend on these assumptions about the segment boundary mask:
1263 		 * - If mask size >= IOVA size, then the IOVA range cannot
1264 		 *   possibly fall across a boundary, so we don't care.
1265 		 * - If mask size < IOVA size, then the IOVA range must start
1266 		 *   exactly on a boundary, therefore we can lay things out
1267 		 *   based purely on segment lengths without needing to know
1268 		 *   the actual addresses beforehand.
1269 		 * - The mask must be a power of 2, so pad_len == 0 if
1270 		 *   iova_len == 0, thus we cannot dereference prev the first
1271 		 *   time through here (i.e. before it has a meaningful value).
1272 		 */
1273 		if (pad_len && pad_len < s_length - 1) {
1274 			prev->length += pad_len;
1275 			iova_len += pad_len;
1276 		}
1277 
1278 		iova_len += s_length;
1279 		prev = s;
1280 	}
1281 
1282 	if (!iova_len)
1283 		return __finalise_sg(dev, sg, nents, 0);
1284 
1285 	iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
1286 	if (!iova) {
1287 		ret = -ENOMEM;
1288 		goto out_restore_sg;
1289 	}
1290 
1291 	/*
1292 	 * We'll leave any physical concatenation to the IOMMU driver's
1293 	 * implementation - it knows better than we do.
1294 	 */
1295 	ret = iommu_map_sg(domain, iova, sg, nents, prot, GFP_ATOMIC);
1296 	if (ret < 0 || ret < iova_len)
1297 		goto out_free_iova;
1298 
1299 	return __finalise_sg(dev, sg, nents, iova);
1300 
1301 out_free_iova:
1302 	iommu_dma_free_iova(cookie, iova, iova_len, NULL);
1303 out_restore_sg:
1304 	__invalidate_sg(sg, nents);
1305 out:
1306 	if (ret != -ENOMEM && ret != -EREMOTEIO)
1307 		return -EINVAL;
1308 	return ret;
1309 }
1310 
1311 static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
1312 		int nents, enum dma_data_direction dir, unsigned long attrs)
1313 {
1314 	dma_addr_t end = 0, start;
1315 	struct scatterlist *tmp;
1316 	int i;
1317 
1318 	if (dev_use_swiotlb(dev)) {
1319 		iommu_dma_unmap_sg_swiotlb(dev, sg, nents, dir, attrs);
1320 		return;
1321 	}
1322 
1323 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1324 		iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir);
1325 
1326 	/*
1327 	 * The scatterlist segments are mapped into a single
1328 	 * contiguous IOVA allocation, the start and end points
1329 	 * just have to be determined.
1330 	 */
1331 	for_each_sg(sg, tmp, nents, i) {
1332 		if (sg_is_dma_bus_address(tmp)) {
1333 			sg_dma_unmark_bus_address(tmp);
1334 			continue;
1335 		}
1336 
1337 		if (sg_dma_len(tmp) == 0)
1338 			break;
1339 
1340 		start = sg_dma_address(tmp);
1341 		break;
1342 	}
1343 
1344 	nents -= i;
1345 	for_each_sg(tmp, tmp, nents, i) {
1346 		if (sg_is_dma_bus_address(tmp)) {
1347 			sg_dma_unmark_bus_address(tmp);
1348 			continue;
1349 		}
1350 
1351 		if (sg_dma_len(tmp) == 0)
1352 			break;
1353 
1354 		end = sg_dma_address(tmp) + sg_dma_len(tmp);
1355 	}
1356 
1357 	if (end)
1358 		__iommu_dma_unmap(dev, start, end - start);
1359 }
1360 
1361 static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
1362 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1363 {
1364 	return __iommu_dma_map(dev, phys, size,
1365 			dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO,
1366 			dma_get_mask(dev));
1367 }
1368 
1369 static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
1370 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1371 {
1372 	__iommu_dma_unmap(dev, handle, size);
1373 }
1374 
1375 static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr)
1376 {
1377 	size_t alloc_size = PAGE_ALIGN(size);
1378 	int count = alloc_size >> PAGE_SHIFT;
1379 	struct page *page = NULL, **pages = NULL;
1380 
1381 	/* Non-coherent atomic allocation? Easy */
1382 	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1383 	    dma_free_from_pool(dev, cpu_addr, alloc_size))
1384 		return;
1385 
1386 	if (is_vmalloc_addr(cpu_addr)) {
1387 		/*
1388 		 * If it the address is remapped, then it's either non-coherent
1389 		 * or highmem CMA, or an iommu_dma_alloc_remap() construction.
1390 		 */
1391 		pages = dma_common_find_pages(cpu_addr);
1392 		if (!pages)
1393 			page = vmalloc_to_page(cpu_addr);
1394 		dma_common_free_remap(cpu_addr, alloc_size);
1395 	} else {
1396 		/* Lowmem means a coherent atomic or CMA allocation */
1397 		page = virt_to_page(cpu_addr);
1398 	}
1399 
1400 	if (pages)
1401 		__iommu_dma_free_pages(pages, count);
1402 	if (page)
1403 		dma_free_contiguous(dev, page, alloc_size);
1404 }
1405 
1406 static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr,
1407 		dma_addr_t handle, unsigned long attrs)
1408 {
1409 	__iommu_dma_unmap(dev, handle, size);
1410 	__iommu_dma_free(dev, size, cpu_addr);
1411 }
1412 
1413 static void *iommu_dma_alloc_pages(struct device *dev, size_t size,
1414 		struct page **pagep, gfp_t gfp, unsigned long attrs)
1415 {
1416 	bool coherent = dev_is_dma_coherent(dev);
1417 	size_t alloc_size = PAGE_ALIGN(size);
1418 	int node = dev_to_node(dev);
1419 	struct page *page = NULL;
1420 	void *cpu_addr;
1421 
1422 	page = dma_alloc_contiguous(dev, alloc_size, gfp);
1423 	if (!page)
1424 		page = alloc_pages_node(node, gfp, get_order(alloc_size));
1425 	if (!page)
1426 		return NULL;
1427 
1428 	if (!coherent || PageHighMem(page)) {
1429 		pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
1430 
1431 		cpu_addr = dma_common_contiguous_remap(page, alloc_size,
1432 				prot, __builtin_return_address(0));
1433 		if (!cpu_addr)
1434 			goto out_free_pages;
1435 
1436 		if (!coherent)
1437 			arch_dma_prep_coherent(page, size);
1438 	} else {
1439 		cpu_addr = page_address(page);
1440 	}
1441 
1442 	*pagep = page;
1443 	memset(cpu_addr, 0, alloc_size);
1444 	return cpu_addr;
1445 out_free_pages:
1446 	dma_free_contiguous(dev, page, alloc_size);
1447 	return NULL;
1448 }
1449 
1450 static void *iommu_dma_alloc(struct device *dev, size_t size,
1451 		dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1452 {
1453 	bool coherent = dev_is_dma_coherent(dev);
1454 	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
1455 	struct page *page = NULL;
1456 	void *cpu_addr;
1457 
1458 	gfp |= __GFP_ZERO;
1459 
1460 	if (gfpflags_allow_blocking(gfp) &&
1461 	    !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) {
1462 		return iommu_dma_alloc_remap(dev, size, handle, gfp,
1463 				dma_pgprot(dev, PAGE_KERNEL, attrs), attrs);
1464 	}
1465 
1466 	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1467 	    !gfpflags_allow_blocking(gfp) && !coherent)
1468 		page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr,
1469 					       gfp, NULL);
1470 	else
1471 		cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs);
1472 	if (!cpu_addr)
1473 		return NULL;
1474 
1475 	*handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot,
1476 			dev->coherent_dma_mask);
1477 	if (*handle == DMA_MAPPING_ERROR) {
1478 		__iommu_dma_free(dev, size, cpu_addr);
1479 		return NULL;
1480 	}
1481 
1482 	return cpu_addr;
1483 }
1484 
1485 static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma,
1486 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
1487 		unsigned long attrs)
1488 {
1489 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1490 	unsigned long pfn, off = vma->vm_pgoff;
1491 	int ret;
1492 
1493 	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
1494 
1495 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
1496 		return ret;
1497 
1498 	if (off >= nr_pages || vma_pages(vma) > nr_pages - off)
1499 		return -ENXIO;
1500 
1501 	if (is_vmalloc_addr(cpu_addr)) {
1502 		struct page **pages = dma_common_find_pages(cpu_addr);
1503 
1504 		if (pages)
1505 			return vm_map_pages(vma, pages, nr_pages);
1506 		pfn = vmalloc_to_pfn(cpu_addr);
1507 	} else {
1508 		pfn = page_to_pfn(virt_to_page(cpu_addr));
1509 	}
1510 
1511 	return remap_pfn_range(vma, vma->vm_start, pfn + off,
1512 			       vma->vm_end - vma->vm_start,
1513 			       vma->vm_page_prot);
1514 }
1515 
1516 static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
1517 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
1518 		unsigned long attrs)
1519 {
1520 	struct page *page;
1521 	int ret;
1522 
1523 	if (is_vmalloc_addr(cpu_addr)) {
1524 		struct page **pages = dma_common_find_pages(cpu_addr);
1525 
1526 		if (pages) {
1527 			return sg_alloc_table_from_pages(sgt, pages,
1528 					PAGE_ALIGN(size) >> PAGE_SHIFT,
1529 					0, size, GFP_KERNEL);
1530 		}
1531 
1532 		page = vmalloc_to_page(cpu_addr);
1533 	} else {
1534 		page = virt_to_page(cpu_addr);
1535 	}
1536 
1537 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
1538 	if (!ret)
1539 		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
1540 	return ret;
1541 }
1542 
1543 static unsigned long iommu_dma_get_merge_boundary(struct device *dev)
1544 {
1545 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1546 
1547 	return (1UL << __ffs(domain->pgsize_bitmap)) - 1;
1548 }
1549 
1550 static size_t iommu_dma_opt_mapping_size(void)
1551 {
1552 	return iova_rcache_range();
1553 }
1554 
1555 static const struct dma_map_ops iommu_dma_ops = {
1556 	.flags			= DMA_F_PCI_P2PDMA_SUPPORTED,
1557 	.alloc			= iommu_dma_alloc,
1558 	.free			= iommu_dma_free,
1559 	.alloc_pages		= dma_common_alloc_pages,
1560 	.free_pages		= dma_common_free_pages,
1561 	.alloc_noncontiguous	= iommu_dma_alloc_noncontiguous,
1562 	.free_noncontiguous	= iommu_dma_free_noncontiguous,
1563 	.mmap			= iommu_dma_mmap,
1564 	.get_sgtable		= iommu_dma_get_sgtable,
1565 	.map_page		= iommu_dma_map_page,
1566 	.unmap_page		= iommu_dma_unmap_page,
1567 	.map_sg			= iommu_dma_map_sg,
1568 	.unmap_sg		= iommu_dma_unmap_sg,
1569 	.sync_single_for_cpu	= iommu_dma_sync_single_for_cpu,
1570 	.sync_single_for_device	= iommu_dma_sync_single_for_device,
1571 	.sync_sg_for_cpu	= iommu_dma_sync_sg_for_cpu,
1572 	.sync_sg_for_device	= iommu_dma_sync_sg_for_device,
1573 	.map_resource		= iommu_dma_map_resource,
1574 	.unmap_resource		= iommu_dma_unmap_resource,
1575 	.get_merge_boundary	= iommu_dma_get_merge_boundary,
1576 	.opt_mapping_size	= iommu_dma_opt_mapping_size,
1577 };
1578 
1579 /*
1580  * The IOMMU core code allocates the default DMA domain, which the underlying
1581  * IOMMU driver needs to support via the dma-iommu layer.
1582  */
1583 void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 dma_limit)
1584 {
1585 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1586 
1587 	if (!domain)
1588 		goto out_err;
1589 
1590 	/*
1591 	 * The IOMMU core code allocates the default DMA domain, which the
1592 	 * underlying IOMMU driver needs to support via the dma-iommu layer.
1593 	 */
1594 	if (iommu_is_dma_domain(domain)) {
1595 		if (iommu_dma_init_domain(domain, dma_base, dma_limit, dev))
1596 			goto out_err;
1597 		dev->dma_ops = &iommu_dma_ops;
1598 	}
1599 
1600 	return;
1601 out_err:
1602 	 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
1603 		 dev_name(dev));
1604 }
1605 EXPORT_SYMBOL_GPL(iommu_setup_dma_ops);
1606 
1607 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
1608 		phys_addr_t msi_addr, struct iommu_domain *domain)
1609 {
1610 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
1611 	struct iommu_dma_msi_page *msi_page;
1612 	dma_addr_t iova;
1613 	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1614 	size_t size = cookie_msi_granule(cookie);
1615 
1616 	msi_addr &= ~(phys_addr_t)(size - 1);
1617 	list_for_each_entry(msi_page, &cookie->msi_page_list, list)
1618 		if (msi_page->phys == msi_addr)
1619 			return msi_page;
1620 
1621 	msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL);
1622 	if (!msi_page)
1623 		return NULL;
1624 
1625 	iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
1626 	if (!iova)
1627 		goto out_free_page;
1628 
1629 	if (iommu_map(domain, iova, msi_addr, size, prot, GFP_KERNEL))
1630 		goto out_free_iova;
1631 
1632 	INIT_LIST_HEAD(&msi_page->list);
1633 	msi_page->phys = msi_addr;
1634 	msi_page->iova = iova;
1635 	list_add(&msi_page->list, &cookie->msi_page_list);
1636 	return msi_page;
1637 
1638 out_free_iova:
1639 	iommu_dma_free_iova(cookie, iova, size, NULL);
1640 out_free_page:
1641 	kfree(msi_page);
1642 	return NULL;
1643 }
1644 
1645 /**
1646  * iommu_dma_prepare_msi() - Map the MSI page in the IOMMU domain
1647  * @desc: MSI descriptor, will store the MSI page
1648  * @msi_addr: MSI target address to be mapped
1649  *
1650  * Return: 0 on success or negative error code if the mapping failed.
1651  */
1652 int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)
1653 {
1654 	struct device *dev = msi_desc_to_dev(desc);
1655 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1656 	struct iommu_dma_msi_page *msi_page;
1657 	static DEFINE_MUTEX(msi_prepare_lock); /* see below */
1658 
1659 	if (!domain || !domain->iova_cookie) {
1660 		desc->iommu_cookie = NULL;
1661 		return 0;
1662 	}
1663 
1664 	/*
1665 	 * In fact the whole prepare operation should already be serialised by
1666 	 * irq_domain_mutex further up the callchain, but that's pretty subtle
1667 	 * on its own, so consider this locking as failsafe documentation...
1668 	 */
1669 	mutex_lock(&msi_prepare_lock);
1670 	msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
1671 	mutex_unlock(&msi_prepare_lock);
1672 
1673 	msi_desc_set_iommu_cookie(desc, msi_page);
1674 
1675 	if (!msi_page)
1676 		return -ENOMEM;
1677 	return 0;
1678 }
1679 
1680 /**
1681  * iommu_dma_compose_msi_msg() - Apply translation to an MSI message
1682  * @desc: MSI descriptor prepared by iommu_dma_prepare_msi()
1683  * @msg: MSI message containing target physical address
1684  */
1685 void iommu_dma_compose_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
1686 {
1687 	struct device *dev = msi_desc_to_dev(desc);
1688 	const struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1689 	const struct iommu_dma_msi_page *msi_page;
1690 
1691 	msi_page = msi_desc_get_iommu_cookie(desc);
1692 
1693 	if (!domain || !domain->iova_cookie || WARN_ON(!msi_page))
1694 		return;
1695 
1696 	msg->address_hi = upper_32_bits(msi_page->iova);
1697 	msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1;
1698 	msg->address_lo += lower_32_bits(msi_page->iova);
1699 }
1700 
1701 static int iommu_dma_init(void)
1702 {
1703 	if (is_kdump_kernel())
1704 		static_branch_enable(&iommu_deferred_attach_enabled);
1705 
1706 	return iova_cache_get();
1707 }
1708 arch_initcall(iommu_dma_init);
1709