1 /* 2 * A fairly generic DMA-API to IOMMU-API glue layer. 3 * 4 * Copyright (C) 2014-2015 ARM Ltd. 5 * 6 * based in part on arch/arm/mm/dma-mapping.c: 7 * Copyright (C) 2000-2004 Russell King 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program. If not, see <http://www.gnu.org/licenses/>. 20 */ 21 22 #include <linux/acpi_iort.h> 23 #include <linux/device.h> 24 #include <linux/dma-iommu.h> 25 #include <linux/gfp.h> 26 #include <linux/huge_mm.h> 27 #include <linux/iommu.h> 28 #include <linux/iova.h> 29 #include <linux/irq.h> 30 #include <linux/mm.h> 31 #include <linux/pci.h> 32 #include <linux/scatterlist.h> 33 #include <linux/vmalloc.h> 34 35 struct iommu_dma_msi_page { 36 struct list_head list; 37 dma_addr_t iova; 38 phys_addr_t phys; 39 }; 40 41 enum iommu_dma_cookie_type { 42 IOMMU_DMA_IOVA_COOKIE, 43 IOMMU_DMA_MSI_COOKIE, 44 }; 45 46 struct iommu_dma_cookie { 47 enum iommu_dma_cookie_type type; 48 union { 49 /* Full allocator for IOMMU_DMA_IOVA_COOKIE */ 50 struct iova_domain iovad; 51 /* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */ 52 dma_addr_t msi_iova; 53 }; 54 struct list_head msi_page_list; 55 spinlock_t msi_lock; 56 57 /* Domain for flush queue callback; NULL if flush queue not in use */ 58 struct iommu_domain *fq_domain; 59 }; 60 61 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie) 62 { 63 if (cookie->type == IOMMU_DMA_IOVA_COOKIE) 64 return cookie->iovad.granule; 65 return PAGE_SIZE; 66 } 67 68 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type) 69 { 70 struct iommu_dma_cookie *cookie; 71 72 cookie = kzalloc(sizeof(*cookie), GFP_KERNEL); 73 if (cookie) { 74 spin_lock_init(&cookie->msi_lock); 75 INIT_LIST_HEAD(&cookie->msi_page_list); 76 cookie->type = type; 77 } 78 return cookie; 79 } 80 81 int iommu_dma_init(void) 82 { 83 return iova_cache_get(); 84 } 85 86 /** 87 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain 88 * @domain: IOMMU domain to prepare for DMA-API usage 89 * 90 * IOMMU drivers should normally call this from their domain_alloc 91 * callback when domain->type == IOMMU_DOMAIN_DMA. 92 */ 93 int iommu_get_dma_cookie(struct iommu_domain *domain) 94 { 95 if (domain->iova_cookie) 96 return -EEXIST; 97 98 domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE); 99 if (!domain->iova_cookie) 100 return -ENOMEM; 101 102 return 0; 103 } 104 EXPORT_SYMBOL(iommu_get_dma_cookie); 105 106 /** 107 * iommu_get_msi_cookie - Acquire just MSI remapping resources 108 * @domain: IOMMU domain to prepare 109 * @base: Start address of IOVA region for MSI mappings 110 * 111 * Users who manage their own IOVA allocation and do not want DMA API support, 112 * but would still like to take advantage of automatic MSI remapping, can use 113 * this to initialise their own domain appropriately. Users should reserve a 114 * contiguous IOVA region, starting at @base, large enough to accommodate the 115 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address 116 * used by the devices attached to @domain. 117 */ 118 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base) 119 { 120 struct iommu_dma_cookie *cookie; 121 122 if (domain->type != IOMMU_DOMAIN_UNMANAGED) 123 return -EINVAL; 124 125 if (domain->iova_cookie) 126 return -EEXIST; 127 128 cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE); 129 if (!cookie) 130 return -ENOMEM; 131 132 cookie->msi_iova = base; 133 domain->iova_cookie = cookie; 134 return 0; 135 } 136 EXPORT_SYMBOL(iommu_get_msi_cookie); 137 138 /** 139 * iommu_put_dma_cookie - Release a domain's DMA mapping resources 140 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or 141 * iommu_get_msi_cookie() 142 * 143 * IOMMU drivers should normally call this from their domain_free callback. 144 */ 145 void iommu_put_dma_cookie(struct iommu_domain *domain) 146 { 147 struct iommu_dma_cookie *cookie = domain->iova_cookie; 148 struct iommu_dma_msi_page *msi, *tmp; 149 150 if (!cookie) 151 return; 152 153 if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule) 154 put_iova_domain(&cookie->iovad); 155 156 list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) { 157 list_del(&msi->list); 158 kfree(msi); 159 } 160 kfree(cookie); 161 domain->iova_cookie = NULL; 162 } 163 EXPORT_SYMBOL(iommu_put_dma_cookie); 164 165 /** 166 * iommu_dma_get_resv_regions - Reserved region driver helper 167 * @dev: Device from iommu_get_resv_regions() 168 * @list: Reserved region list from iommu_get_resv_regions() 169 * 170 * IOMMU drivers can use this to implement their .get_resv_regions callback 171 * for general non-IOMMU-specific reservations. Currently, this covers GICv3 172 * ITS region reservation on ACPI based ARM platforms that may require HW MSI 173 * reservation. 174 */ 175 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list) 176 { 177 178 if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode)) 179 iort_iommu_msi_get_resv_regions(dev, list); 180 181 } 182 EXPORT_SYMBOL(iommu_dma_get_resv_regions); 183 184 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie, 185 phys_addr_t start, phys_addr_t end) 186 { 187 struct iova_domain *iovad = &cookie->iovad; 188 struct iommu_dma_msi_page *msi_page; 189 int i, num_pages; 190 191 start -= iova_offset(iovad, start); 192 num_pages = iova_align(iovad, end - start) >> iova_shift(iovad); 193 194 msi_page = kcalloc(num_pages, sizeof(*msi_page), GFP_KERNEL); 195 if (!msi_page) 196 return -ENOMEM; 197 198 for (i = 0; i < num_pages; i++) { 199 msi_page[i].phys = start; 200 msi_page[i].iova = start; 201 INIT_LIST_HEAD(&msi_page[i].list); 202 list_add(&msi_page[i].list, &cookie->msi_page_list); 203 start += iovad->granule; 204 } 205 206 return 0; 207 } 208 209 static void iova_reserve_pci_windows(struct pci_dev *dev, 210 struct iova_domain *iovad) 211 { 212 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus); 213 struct resource_entry *window; 214 unsigned long lo, hi; 215 216 resource_list_for_each_entry(window, &bridge->windows) { 217 if (resource_type(window->res) != IORESOURCE_MEM) 218 continue; 219 220 lo = iova_pfn(iovad, window->res->start - window->offset); 221 hi = iova_pfn(iovad, window->res->end - window->offset); 222 reserve_iova(iovad, lo, hi); 223 } 224 } 225 226 static int iova_reserve_iommu_regions(struct device *dev, 227 struct iommu_domain *domain) 228 { 229 struct iommu_dma_cookie *cookie = domain->iova_cookie; 230 struct iova_domain *iovad = &cookie->iovad; 231 struct iommu_resv_region *region; 232 LIST_HEAD(resv_regions); 233 int ret = 0; 234 235 if (dev_is_pci(dev)) 236 iova_reserve_pci_windows(to_pci_dev(dev), iovad); 237 238 iommu_get_resv_regions(dev, &resv_regions); 239 list_for_each_entry(region, &resv_regions, list) { 240 unsigned long lo, hi; 241 242 /* We ARE the software that manages these! */ 243 if (region->type == IOMMU_RESV_SW_MSI) 244 continue; 245 246 lo = iova_pfn(iovad, region->start); 247 hi = iova_pfn(iovad, region->start + region->length - 1); 248 reserve_iova(iovad, lo, hi); 249 250 if (region->type == IOMMU_RESV_MSI) 251 ret = cookie_init_hw_msi_region(cookie, region->start, 252 region->start + region->length); 253 if (ret) 254 break; 255 } 256 iommu_put_resv_regions(dev, &resv_regions); 257 258 return ret; 259 } 260 261 static void iommu_dma_flush_iotlb_all(struct iova_domain *iovad) 262 { 263 struct iommu_dma_cookie *cookie; 264 struct iommu_domain *domain; 265 266 cookie = container_of(iovad, struct iommu_dma_cookie, iovad); 267 domain = cookie->fq_domain; 268 /* 269 * The IOMMU driver supporting DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE 270 * implies that ops->flush_iotlb_all must be non-NULL. 271 */ 272 domain->ops->flush_iotlb_all(domain); 273 } 274 275 /** 276 * iommu_dma_init_domain - Initialise a DMA mapping domain 277 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() 278 * @base: IOVA at which the mappable address space starts 279 * @size: Size of IOVA space 280 * @dev: Device the domain is being initialised for 281 * 282 * @base and @size should be exact multiples of IOMMU page granularity to 283 * avoid rounding surprises. If necessary, we reserve the page at address 0 284 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but 285 * any change which could make prior IOVAs invalid will fail. 286 */ 287 int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base, 288 u64 size, struct device *dev) 289 { 290 struct iommu_dma_cookie *cookie = domain->iova_cookie; 291 struct iova_domain *iovad = &cookie->iovad; 292 unsigned long order, base_pfn; 293 int attr; 294 295 if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE) 296 return -EINVAL; 297 298 /* Use the smallest supported page size for IOVA granularity */ 299 order = __ffs(domain->pgsize_bitmap); 300 base_pfn = max_t(unsigned long, 1, base >> order); 301 302 /* Check the domain allows at least some access to the device... */ 303 if (domain->geometry.force_aperture) { 304 if (base > domain->geometry.aperture_end || 305 base + size <= domain->geometry.aperture_start) { 306 pr_warn("specified DMA range outside IOMMU capability\n"); 307 return -EFAULT; 308 } 309 /* ...then finally give it a kicking to make sure it fits */ 310 base_pfn = max_t(unsigned long, base_pfn, 311 domain->geometry.aperture_start >> order); 312 } 313 314 /* start_pfn is always nonzero for an already-initialised domain */ 315 if (iovad->start_pfn) { 316 if (1UL << order != iovad->granule || 317 base_pfn != iovad->start_pfn) { 318 pr_warn("Incompatible range for DMA domain\n"); 319 return -EFAULT; 320 } 321 322 return 0; 323 } 324 325 init_iova_domain(iovad, 1UL << order, base_pfn); 326 327 if (!cookie->fq_domain && !iommu_domain_get_attr(domain, 328 DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE, &attr) && attr) { 329 cookie->fq_domain = domain; 330 init_iova_flush_queue(iovad, iommu_dma_flush_iotlb_all, NULL); 331 } 332 333 if (!dev) 334 return 0; 335 336 return iova_reserve_iommu_regions(dev, domain); 337 } 338 EXPORT_SYMBOL(iommu_dma_init_domain); 339 340 /** 341 * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API 342 * page flags. 343 * @dir: Direction of DMA transfer 344 * @coherent: Is the DMA master cache-coherent? 345 * @attrs: DMA attributes for the mapping 346 * 347 * Return: corresponding IOMMU API page protection flags 348 */ 349 int dma_info_to_prot(enum dma_data_direction dir, bool coherent, 350 unsigned long attrs) 351 { 352 int prot = coherent ? IOMMU_CACHE : 0; 353 354 if (attrs & DMA_ATTR_PRIVILEGED) 355 prot |= IOMMU_PRIV; 356 357 switch (dir) { 358 case DMA_BIDIRECTIONAL: 359 return prot | IOMMU_READ | IOMMU_WRITE; 360 case DMA_TO_DEVICE: 361 return prot | IOMMU_READ; 362 case DMA_FROM_DEVICE: 363 return prot | IOMMU_WRITE; 364 default: 365 return 0; 366 } 367 } 368 369 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain, 370 size_t size, dma_addr_t dma_limit, struct device *dev) 371 { 372 struct iommu_dma_cookie *cookie = domain->iova_cookie; 373 struct iova_domain *iovad = &cookie->iovad; 374 unsigned long shift, iova_len, iova = 0; 375 376 if (cookie->type == IOMMU_DMA_MSI_COOKIE) { 377 cookie->msi_iova += size; 378 return cookie->msi_iova - size; 379 } 380 381 shift = iova_shift(iovad); 382 iova_len = size >> shift; 383 /* 384 * Freeing non-power-of-two-sized allocations back into the IOVA caches 385 * will come back to bite us badly, so we have to waste a bit of space 386 * rounding up anything cacheable to make sure that can't happen. The 387 * order of the unadjusted size will still match upon freeing. 388 */ 389 if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1))) 390 iova_len = roundup_pow_of_two(iova_len); 391 392 if (dev->bus_dma_mask) 393 dma_limit &= dev->bus_dma_mask; 394 395 if (domain->geometry.force_aperture) 396 dma_limit = min(dma_limit, domain->geometry.aperture_end); 397 398 /* Try to get PCI devices a SAC address */ 399 if (dma_limit > DMA_BIT_MASK(32) && dev_is_pci(dev)) 400 iova = alloc_iova_fast(iovad, iova_len, 401 DMA_BIT_MASK(32) >> shift, false); 402 403 if (!iova) 404 iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift, 405 true); 406 407 return (dma_addr_t)iova << shift; 408 } 409 410 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie, 411 dma_addr_t iova, size_t size) 412 { 413 struct iova_domain *iovad = &cookie->iovad; 414 415 /* The MSI case is only ever cleaning up its most recent allocation */ 416 if (cookie->type == IOMMU_DMA_MSI_COOKIE) 417 cookie->msi_iova -= size; 418 else if (cookie->fq_domain) /* non-strict mode */ 419 queue_iova(iovad, iova_pfn(iovad, iova), 420 size >> iova_shift(iovad), 0); 421 else 422 free_iova_fast(iovad, iova_pfn(iovad, iova), 423 size >> iova_shift(iovad)); 424 } 425 426 static void __iommu_dma_unmap(struct iommu_domain *domain, dma_addr_t dma_addr, 427 size_t size) 428 { 429 struct iommu_dma_cookie *cookie = domain->iova_cookie; 430 struct iova_domain *iovad = &cookie->iovad; 431 size_t iova_off = iova_offset(iovad, dma_addr); 432 433 dma_addr -= iova_off; 434 size = iova_align(iovad, size + iova_off); 435 436 WARN_ON(iommu_unmap_fast(domain, dma_addr, size) != size); 437 if (!cookie->fq_domain) 438 iommu_tlb_sync(domain); 439 iommu_dma_free_iova(cookie, dma_addr, size); 440 } 441 442 static void __iommu_dma_free_pages(struct page **pages, int count) 443 { 444 while (count--) 445 __free_page(pages[count]); 446 kvfree(pages); 447 } 448 449 static struct page **__iommu_dma_alloc_pages(struct device *dev, 450 unsigned int count, unsigned long order_mask, gfp_t gfp) 451 { 452 struct page **pages; 453 unsigned int i = 0, nid = dev_to_node(dev); 454 455 order_mask &= (2U << MAX_ORDER) - 1; 456 if (!order_mask) 457 return NULL; 458 459 pages = kvzalloc(count * sizeof(*pages), GFP_KERNEL); 460 if (!pages) 461 return NULL; 462 463 /* IOMMU can map any pages, so himem can also be used here */ 464 gfp |= __GFP_NOWARN | __GFP_HIGHMEM; 465 466 while (count) { 467 struct page *page = NULL; 468 unsigned int order_size; 469 470 /* 471 * Higher-order allocations are a convenience rather 472 * than a necessity, hence using __GFP_NORETRY until 473 * falling back to minimum-order allocations. 474 */ 475 for (order_mask &= (2U << __fls(count)) - 1; 476 order_mask; order_mask &= ~order_size) { 477 unsigned int order = __fls(order_mask); 478 gfp_t alloc_flags = gfp; 479 480 order_size = 1U << order; 481 if (order_mask > order_size) 482 alloc_flags |= __GFP_NORETRY; 483 page = alloc_pages_node(nid, alloc_flags, order); 484 if (!page) 485 continue; 486 if (!order) 487 break; 488 if (!PageCompound(page)) { 489 split_page(page, order); 490 break; 491 } else if (!split_huge_page(page)) { 492 break; 493 } 494 __free_pages(page, order); 495 } 496 if (!page) { 497 __iommu_dma_free_pages(pages, i); 498 return NULL; 499 } 500 count -= order_size; 501 while (order_size--) 502 pages[i++] = page++; 503 } 504 return pages; 505 } 506 507 /** 508 * iommu_dma_free - Free a buffer allocated by iommu_dma_alloc() 509 * @dev: Device which owns this buffer 510 * @pages: Array of buffer pages as returned by iommu_dma_alloc() 511 * @size: Size of buffer in bytes 512 * @handle: DMA address of buffer 513 * 514 * Frees both the pages associated with the buffer, and the array 515 * describing them 516 */ 517 void iommu_dma_free(struct device *dev, struct page **pages, size_t size, 518 dma_addr_t *handle) 519 { 520 __iommu_dma_unmap(iommu_get_dma_domain(dev), *handle, size); 521 __iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT); 522 *handle = DMA_MAPPING_ERROR; 523 } 524 525 /** 526 * iommu_dma_alloc - Allocate and map a buffer contiguous in IOVA space 527 * @dev: Device to allocate memory for. Must be a real device 528 * attached to an iommu_dma_domain 529 * @size: Size of buffer in bytes 530 * @gfp: Allocation flags 531 * @attrs: DMA attributes for this allocation 532 * @prot: IOMMU mapping flags 533 * @handle: Out argument for allocated DMA handle 534 * @flush_page: Arch callback which must ensure PAGE_SIZE bytes from the 535 * given VA/PA are visible to the given non-coherent device. 536 * 537 * If @size is less than PAGE_SIZE, then a full CPU page will be allocated, 538 * but an IOMMU which supports smaller pages might not map the whole thing. 539 * 540 * Return: Array of struct page pointers describing the buffer, 541 * or NULL on failure. 542 */ 543 struct page **iommu_dma_alloc(struct device *dev, size_t size, gfp_t gfp, 544 unsigned long attrs, int prot, dma_addr_t *handle, 545 void (*flush_page)(struct device *, const void *, phys_addr_t)) 546 { 547 struct iommu_domain *domain = iommu_get_dma_domain(dev); 548 struct iommu_dma_cookie *cookie = domain->iova_cookie; 549 struct iova_domain *iovad = &cookie->iovad; 550 struct page **pages; 551 struct sg_table sgt; 552 dma_addr_t iova; 553 unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap; 554 555 *handle = DMA_MAPPING_ERROR; 556 557 min_size = alloc_sizes & -alloc_sizes; 558 if (min_size < PAGE_SIZE) { 559 min_size = PAGE_SIZE; 560 alloc_sizes |= PAGE_SIZE; 561 } else { 562 size = ALIGN(size, min_size); 563 } 564 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES) 565 alloc_sizes = min_size; 566 567 count = PAGE_ALIGN(size) >> PAGE_SHIFT; 568 pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT, 569 gfp); 570 if (!pages) 571 return NULL; 572 573 size = iova_align(iovad, size); 574 iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev); 575 if (!iova) 576 goto out_free_pages; 577 578 if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL)) 579 goto out_free_iova; 580 581 if (!(prot & IOMMU_CACHE)) { 582 struct sg_mapping_iter miter; 583 /* 584 * The CPU-centric flushing implied by SG_MITER_TO_SG isn't 585 * sufficient here, so skip it by using the "wrong" direction. 586 */ 587 sg_miter_start(&miter, sgt.sgl, sgt.orig_nents, SG_MITER_FROM_SG); 588 while (sg_miter_next(&miter)) 589 flush_page(dev, miter.addr, page_to_phys(miter.page)); 590 sg_miter_stop(&miter); 591 } 592 593 if (iommu_map_sg(domain, iova, sgt.sgl, sgt.orig_nents, prot) 594 < size) 595 goto out_free_sg; 596 597 *handle = iova; 598 sg_free_table(&sgt); 599 return pages; 600 601 out_free_sg: 602 sg_free_table(&sgt); 603 out_free_iova: 604 iommu_dma_free_iova(cookie, iova, size); 605 out_free_pages: 606 __iommu_dma_free_pages(pages, count); 607 return NULL; 608 } 609 610 /** 611 * iommu_dma_mmap - Map a buffer into provided user VMA 612 * @pages: Array representing buffer from iommu_dma_alloc() 613 * @size: Size of buffer in bytes 614 * @vma: VMA describing requested userspace mapping 615 * 616 * Maps the pages of the buffer in @pages into @vma. The caller is responsible 617 * for verifying the correct size and protection of @vma beforehand. 618 */ 619 620 int iommu_dma_mmap(struct page **pages, size_t size, struct vm_area_struct *vma) 621 { 622 unsigned long uaddr = vma->vm_start; 623 unsigned int i, count = PAGE_ALIGN(size) >> PAGE_SHIFT; 624 int ret = -ENXIO; 625 626 for (i = vma->vm_pgoff; i < count && uaddr < vma->vm_end; i++) { 627 ret = vm_insert_page(vma, uaddr, pages[i]); 628 if (ret) 629 break; 630 uaddr += PAGE_SIZE; 631 } 632 return ret; 633 } 634 635 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys, 636 size_t size, int prot, struct iommu_domain *domain) 637 { 638 struct iommu_dma_cookie *cookie = domain->iova_cookie; 639 size_t iova_off = 0; 640 dma_addr_t iova; 641 642 if (cookie->type == IOMMU_DMA_IOVA_COOKIE) { 643 iova_off = iova_offset(&cookie->iovad, phys); 644 size = iova_align(&cookie->iovad, size + iova_off); 645 } 646 647 iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev); 648 if (!iova) 649 return DMA_MAPPING_ERROR; 650 651 if (iommu_map(domain, iova, phys - iova_off, size, prot)) { 652 iommu_dma_free_iova(cookie, iova, size); 653 return DMA_MAPPING_ERROR; 654 } 655 return iova + iova_off; 656 } 657 658 dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page, 659 unsigned long offset, size_t size, int prot) 660 { 661 return __iommu_dma_map(dev, page_to_phys(page) + offset, size, prot, 662 iommu_get_dma_domain(dev)); 663 } 664 665 void iommu_dma_unmap_page(struct device *dev, dma_addr_t handle, size_t size, 666 enum dma_data_direction dir, unsigned long attrs) 667 { 668 __iommu_dma_unmap(iommu_get_dma_domain(dev), handle, size); 669 } 670 671 /* 672 * Prepare a successfully-mapped scatterlist to give back to the caller. 673 * 674 * At this point the segments are already laid out by iommu_dma_map_sg() to 675 * avoid individually crossing any boundaries, so we merely need to check a 676 * segment's start address to avoid concatenating across one. 677 */ 678 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents, 679 dma_addr_t dma_addr) 680 { 681 struct scatterlist *s, *cur = sg; 682 unsigned long seg_mask = dma_get_seg_boundary(dev); 683 unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev); 684 int i, count = 0; 685 686 for_each_sg(sg, s, nents, i) { 687 /* Restore this segment's original unaligned fields first */ 688 unsigned int s_iova_off = sg_dma_address(s); 689 unsigned int s_length = sg_dma_len(s); 690 unsigned int s_iova_len = s->length; 691 692 s->offset += s_iova_off; 693 s->length = s_length; 694 sg_dma_address(s) = DMA_MAPPING_ERROR; 695 sg_dma_len(s) = 0; 696 697 /* 698 * Now fill in the real DMA data. If... 699 * - there is a valid output segment to append to 700 * - and this segment starts on an IOVA page boundary 701 * - but doesn't fall at a segment boundary 702 * - and wouldn't make the resulting output segment too long 703 */ 704 if (cur_len && !s_iova_off && (dma_addr & seg_mask) && 705 (cur_len + s_length <= max_len)) { 706 /* ...then concatenate it with the previous one */ 707 cur_len += s_length; 708 } else { 709 /* Otherwise start the next output segment */ 710 if (i > 0) 711 cur = sg_next(cur); 712 cur_len = s_length; 713 count++; 714 715 sg_dma_address(cur) = dma_addr + s_iova_off; 716 } 717 718 sg_dma_len(cur) = cur_len; 719 dma_addr += s_iova_len; 720 721 if (s_length + s_iova_off < s_iova_len) 722 cur_len = 0; 723 } 724 return count; 725 } 726 727 /* 728 * If mapping failed, then just restore the original list, 729 * but making sure the DMA fields are invalidated. 730 */ 731 static void __invalidate_sg(struct scatterlist *sg, int nents) 732 { 733 struct scatterlist *s; 734 int i; 735 736 for_each_sg(sg, s, nents, i) { 737 if (sg_dma_address(s) != DMA_MAPPING_ERROR) 738 s->offset += sg_dma_address(s); 739 if (sg_dma_len(s)) 740 s->length = sg_dma_len(s); 741 sg_dma_address(s) = DMA_MAPPING_ERROR; 742 sg_dma_len(s) = 0; 743 } 744 } 745 746 /* 747 * The DMA API client is passing in a scatterlist which could describe 748 * any old buffer layout, but the IOMMU API requires everything to be 749 * aligned to IOMMU pages. Hence the need for this complicated bit of 750 * impedance-matching, to be able to hand off a suitably-aligned list, 751 * but still preserve the original offsets and sizes for the caller. 752 */ 753 int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg, 754 int nents, int prot) 755 { 756 struct iommu_domain *domain = iommu_get_dma_domain(dev); 757 struct iommu_dma_cookie *cookie = domain->iova_cookie; 758 struct iova_domain *iovad = &cookie->iovad; 759 struct scatterlist *s, *prev = NULL; 760 dma_addr_t iova; 761 size_t iova_len = 0; 762 unsigned long mask = dma_get_seg_boundary(dev); 763 int i; 764 765 /* 766 * Work out how much IOVA space we need, and align the segments to 767 * IOVA granules for the IOMMU driver to handle. With some clever 768 * trickery we can modify the list in-place, but reversibly, by 769 * stashing the unaligned parts in the as-yet-unused DMA fields. 770 */ 771 for_each_sg(sg, s, nents, i) { 772 size_t s_iova_off = iova_offset(iovad, s->offset); 773 size_t s_length = s->length; 774 size_t pad_len = (mask - iova_len + 1) & mask; 775 776 sg_dma_address(s) = s_iova_off; 777 sg_dma_len(s) = s_length; 778 s->offset -= s_iova_off; 779 s_length = iova_align(iovad, s_length + s_iova_off); 780 s->length = s_length; 781 782 /* 783 * Due to the alignment of our single IOVA allocation, we can 784 * depend on these assumptions about the segment boundary mask: 785 * - If mask size >= IOVA size, then the IOVA range cannot 786 * possibly fall across a boundary, so we don't care. 787 * - If mask size < IOVA size, then the IOVA range must start 788 * exactly on a boundary, therefore we can lay things out 789 * based purely on segment lengths without needing to know 790 * the actual addresses beforehand. 791 * - The mask must be a power of 2, so pad_len == 0 if 792 * iova_len == 0, thus we cannot dereference prev the first 793 * time through here (i.e. before it has a meaningful value). 794 */ 795 if (pad_len && pad_len < s_length - 1) { 796 prev->length += pad_len; 797 iova_len += pad_len; 798 } 799 800 iova_len += s_length; 801 prev = s; 802 } 803 804 iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev); 805 if (!iova) 806 goto out_restore_sg; 807 808 /* 809 * We'll leave any physical concatenation to the IOMMU driver's 810 * implementation - it knows better than we do. 811 */ 812 if (iommu_map_sg(domain, iova, sg, nents, prot) < iova_len) 813 goto out_free_iova; 814 815 return __finalise_sg(dev, sg, nents, iova); 816 817 out_free_iova: 818 iommu_dma_free_iova(cookie, iova, iova_len); 819 out_restore_sg: 820 __invalidate_sg(sg, nents); 821 return 0; 822 } 823 824 void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 825 enum dma_data_direction dir, unsigned long attrs) 826 { 827 dma_addr_t start, end; 828 struct scatterlist *tmp; 829 int i; 830 /* 831 * The scatterlist segments are mapped into a single 832 * contiguous IOVA allocation, so this is incredibly easy. 833 */ 834 start = sg_dma_address(sg); 835 for_each_sg(sg_next(sg), tmp, nents - 1, i) { 836 if (sg_dma_len(tmp) == 0) 837 break; 838 sg = tmp; 839 } 840 end = sg_dma_address(sg) + sg_dma_len(sg); 841 __iommu_dma_unmap(iommu_get_dma_domain(dev), start, end - start); 842 } 843 844 dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys, 845 size_t size, enum dma_data_direction dir, unsigned long attrs) 846 { 847 return __iommu_dma_map(dev, phys, size, 848 dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO, 849 iommu_get_dma_domain(dev)); 850 } 851 852 void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle, 853 size_t size, enum dma_data_direction dir, unsigned long attrs) 854 { 855 __iommu_dma_unmap(iommu_get_dma_domain(dev), handle, size); 856 } 857 858 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev, 859 phys_addr_t msi_addr, struct iommu_domain *domain) 860 { 861 struct iommu_dma_cookie *cookie = domain->iova_cookie; 862 struct iommu_dma_msi_page *msi_page; 863 dma_addr_t iova; 864 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO; 865 size_t size = cookie_msi_granule(cookie); 866 867 msi_addr &= ~(phys_addr_t)(size - 1); 868 list_for_each_entry(msi_page, &cookie->msi_page_list, list) 869 if (msi_page->phys == msi_addr) 870 return msi_page; 871 872 msi_page = kzalloc(sizeof(*msi_page), GFP_ATOMIC); 873 if (!msi_page) 874 return NULL; 875 876 iova = __iommu_dma_map(dev, msi_addr, size, prot, domain); 877 if (iova == DMA_MAPPING_ERROR) 878 goto out_free_page; 879 880 INIT_LIST_HEAD(&msi_page->list); 881 msi_page->phys = msi_addr; 882 msi_page->iova = iova; 883 list_add(&msi_page->list, &cookie->msi_page_list); 884 return msi_page; 885 886 out_free_page: 887 kfree(msi_page); 888 return NULL; 889 } 890 891 void iommu_dma_map_msi_msg(int irq, struct msi_msg *msg) 892 { 893 struct device *dev = msi_desc_to_dev(irq_get_msi_desc(irq)); 894 struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 895 struct iommu_dma_cookie *cookie; 896 struct iommu_dma_msi_page *msi_page; 897 phys_addr_t msi_addr = (u64)msg->address_hi << 32 | msg->address_lo; 898 unsigned long flags; 899 900 if (!domain || !domain->iova_cookie) 901 return; 902 903 cookie = domain->iova_cookie; 904 905 /* 906 * We disable IRQs to rule out a possible inversion against 907 * irq_desc_lock if, say, someone tries to retarget the affinity 908 * of an MSI from within an IPI handler. 909 */ 910 spin_lock_irqsave(&cookie->msi_lock, flags); 911 msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain); 912 spin_unlock_irqrestore(&cookie->msi_lock, flags); 913 914 if (WARN_ON(!msi_page)) { 915 /* 916 * We're called from a void callback, so the best we can do is 917 * 'fail' by filling the message with obviously bogus values. 918 * Since we got this far due to an IOMMU being present, it's 919 * not like the existing address would have worked anyway... 920 */ 921 msg->address_hi = ~0U; 922 msg->address_lo = ~0U; 923 msg->data = ~0U; 924 } else { 925 msg->address_hi = upper_32_bits(msi_page->iova); 926 msg->address_lo &= cookie_msi_granule(cookie) - 1; 927 msg->address_lo += lower_32_bits(msi_page->iova); 928 } 929 } 930