xref: /openbmc/linux/drivers/iommu/dma-iommu.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 /*
2  * A fairly generic DMA-API to IOMMU-API glue layer.
3  *
4  * Copyright (C) 2014-2015 ARM Ltd.
5  *
6  * based in part on arch/arm/mm/dma-mapping.c:
7  * Copyright (C) 2000-2004 Russell King
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #include <linux/acpi_iort.h>
23 #include <linux/device.h>
24 #include <linux/dma-iommu.h>
25 #include <linux/gfp.h>
26 #include <linux/huge_mm.h>
27 #include <linux/iommu.h>
28 #include <linux/iova.h>
29 #include <linux/irq.h>
30 #include <linux/mm.h>
31 #include <linux/pci.h>
32 #include <linux/scatterlist.h>
33 #include <linux/vmalloc.h>
34 
35 struct iommu_dma_msi_page {
36 	struct list_head	list;
37 	dma_addr_t		iova;
38 	phys_addr_t		phys;
39 };
40 
41 enum iommu_dma_cookie_type {
42 	IOMMU_DMA_IOVA_COOKIE,
43 	IOMMU_DMA_MSI_COOKIE,
44 };
45 
46 struct iommu_dma_cookie {
47 	enum iommu_dma_cookie_type	type;
48 	union {
49 		/* Full allocator for IOMMU_DMA_IOVA_COOKIE */
50 		struct iova_domain	iovad;
51 		/* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
52 		dma_addr_t		msi_iova;
53 	};
54 	struct list_head		msi_page_list;
55 	spinlock_t			msi_lock;
56 
57 	/* Domain for flush queue callback; NULL if flush queue not in use */
58 	struct iommu_domain		*fq_domain;
59 };
60 
61 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
62 {
63 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
64 		return cookie->iovad.granule;
65 	return PAGE_SIZE;
66 }
67 
68 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
69 {
70 	struct iommu_dma_cookie *cookie;
71 
72 	cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
73 	if (cookie) {
74 		spin_lock_init(&cookie->msi_lock);
75 		INIT_LIST_HEAD(&cookie->msi_page_list);
76 		cookie->type = type;
77 	}
78 	return cookie;
79 }
80 
81 int iommu_dma_init(void)
82 {
83 	return iova_cache_get();
84 }
85 
86 /**
87  * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
88  * @domain: IOMMU domain to prepare for DMA-API usage
89  *
90  * IOMMU drivers should normally call this from their domain_alloc
91  * callback when domain->type == IOMMU_DOMAIN_DMA.
92  */
93 int iommu_get_dma_cookie(struct iommu_domain *domain)
94 {
95 	if (domain->iova_cookie)
96 		return -EEXIST;
97 
98 	domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
99 	if (!domain->iova_cookie)
100 		return -ENOMEM;
101 
102 	return 0;
103 }
104 EXPORT_SYMBOL(iommu_get_dma_cookie);
105 
106 /**
107  * iommu_get_msi_cookie - Acquire just MSI remapping resources
108  * @domain: IOMMU domain to prepare
109  * @base: Start address of IOVA region for MSI mappings
110  *
111  * Users who manage their own IOVA allocation and do not want DMA API support,
112  * but would still like to take advantage of automatic MSI remapping, can use
113  * this to initialise their own domain appropriately. Users should reserve a
114  * contiguous IOVA region, starting at @base, large enough to accommodate the
115  * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
116  * used by the devices attached to @domain.
117  */
118 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
119 {
120 	struct iommu_dma_cookie *cookie;
121 
122 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
123 		return -EINVAL;
124 
125 	if (domain->iova_cookie)
126 		return -EEXIST;
127 
128 	cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
129 	if (!cookie)
130 		return -ENOMEM;
131 
132 	cookie->msi_iova = base;
133 	domain->iova_cookie = cookie;
134 	return 0;
135 }
136 EXPORT_SYMBOL(iommu_get_msi_cookie);
137 
138 /**
139  * iommu_put_dma_cookie - Release a domain's DMA mapping resources
140  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
141  *          iommu_get_msi_cookie()
142  *
143  * IOMMU drivers should normally call this from their domain_free callback.
144  */
145 void iommu_put_dma_cookie(struct iommu_domain *domain)
146 {
147 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
148 	struct iommu_dma_msi_page *msi, *tmp;
149 
150 	if (!cookie)
151 		return;
152 
153 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule)
154 		put_iova_domain(&cookie->iovad);
155 
156 	list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
157 		list_del(&msi->list);
158 		kfree(msi);
159 	}
160 	kfree(cookie);
161 	domain->iova_cookie = NULL;
162 }
163 EXPORT_SYMBOL(iommu_put_dma_cookie);
164 
165 /**
166  * iommu_dma_get_resv_regions - Reserved region driver helper
167  * @dev: Device from iommu_get_resv_regions()
168  * @list: Reserved region list from iommu_get_resv_regions()
169  *
170  * IOMMU drivers can use this to implement their .get_resv_regions callback
171  * for general non-IOMMU-specific reservations. Currently, this covers GICv3
172  * ITS region reservation on ACPI based ARM platforms that may require HW MSI
173  * reservation.
174  */
175 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
176 {
177 
178 	if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode))
179 		iort_iommu_msi_get_resv_regions(dev, list);
180 
181 }
182 EXPORT_SYMBOL(iommu_dma_get_resv_regions);
183 
184 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
185 		phys_addr_t start, phys_addr_t end)
186 {
187 	struct iova_domain *iovad = &cookie->iovad;
188 	struct iommu_dma_msi_page *msi_page;
189 	int i, num_pages;
190 
191 	start -= iova_offset(iovad, start);
192 	num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
193 
194 	msi_page = kcalloc(num_pages, sizeof(*msi_page), GFP_KERNEL);
195 	if (!msi_page)
196 		return -ENOMEM;
197 
198 	for (i = 0; i < num_pages; i++) {
199 		msi_page[i].phys = start;
200 		msi_page[i].iova = start;
201 		INIT_LIST_HEAD(&msi_page[i].list);
202 		list_add(&msi_page[i].list, &cookie->msi_page_list);
203 		start += iovad->granule;
204 	}
205 
206 	return 0;
207 }
208 
209 static void iova_reserve_pci_windows(struct pci_dev *dev,
210 		struct iova_domain *iovad)
211 {
212 	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
213 	struct resource_entry *window;
214 	unsigned long lo, hi;
215 
216 	resource_list_for_each_entry(window, &bridge->windows) {
217 		if (resource_type(window->res) != IORESOURCE_MEM)
218 			continue;
219 
220 		lo = iova_pfn(iovad, window->res->start - window->offset);
221 		hi = iova_pfn(iovad, window->res->end - window->offset);
222 		reserve_iova(iovad, lo, hi);
223 	}
224 }
225 
226 static int iova_reserve_iommu_regions(struct device *dev,
227 		struct iommu_domain *domain)
228 {
229 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
230 	struct iova_domain *iovad = &cookie->iovad;
231 	struct iommu_resv_region *region;
232 	LIST_HEAD(resv_regions);
233 	int ret = 0;
234 
235 	if (dev_is_pci(dev))
236 		iova_reserve_pci_windows(to_pci_dev(dev), iovad);
237 
238 	iommu_get_resv_regions(dev, &resv_regions);
239 	list_for_each_entry(region, &resv_regions, list) {
240 		unsigned long lo, hi;
241 
242 		/* We ARE the software that manages these! */
243 		if (region->type == IOMMU_RESV_SW_MSI)
244 			continue;
245 
246 		lo = iova_pfn(iovad, region->start);
247 		hi = iova_pfn(iovad, region->start + region->length - 1);
248 		reserve_iova(iovad, lo, hi);
249 
250 		if (region->type == IOMMU_RESV_MSI)
251 			ret = cookie_init_hw_msi_region(cookie, region->start,
252 					region->start + region->length);
253 		if (ret)
254 			break;
255 	}
256 	iommu_put_resv_regions(dev, &resv_regions);
257 
258 	return ret;
259 }
260 
261 static void iommu_dma_flush_iotlb_all(struct iova_domain *iovad)
262 {
263 	struct iommu_dma_cookie *cookie;
264 	struct iommu_domain *domain;
265 
266 	cookie = container_of(iovad, struct iommu_dma_cookie, iovad);
267 	domain = cookie->fq_domain;
268 	/*
269 	 * The IOMMU driver supporting DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE
270 	 * implies that ops->flush_iotlb_all must be non-NULL.
271 	 */
272 	domain->ops->flush_iotlb_all(domain);
273 }
274 
275 /**
276  * iommu_dma_init_domain - Initialise a DMA mapping domain
277  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
278  * @base: IOVA at which the mappable address space starts
279  * @size: Size of IOVA space
280  * @dev: Device the domain is being initialised for
281  *
282  * @base and @size should be exact multiples of IOMMU page granularity to
283  * avoid rounding surprises. If necessary, we reserve the page at address 0
284  * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
285  * any change which could make prior IOVAs invalid will fail.
286  */
287 int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
288 		u64 size, struct device *dev)
289 {
290 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
291 	struct iova_domain *iovad = &cookie->iovad;
292 	unsigned long order, base_pfn;
293 	int attr;
294 
295 	if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
296 		return -EINVAL;
297 
298 	/* Use the smallest supported page size for IOVA granularity */
299 	order = __ffs(domain->pgsize_bitmap);
300 	base_pfn = max_t(unsigned long, 1, base >> order);
301 
302 	/* Check the domain allows at least some access to the device... */
303 	if (domain->geometry.force_aperture) {
304 		if (base > domain->geometry.aperture_end ||
305 		    base + size <= domain->geometry.aperture_start) {
306 			pr_warn("specified DMA range outside IOMMU capability\n");
307 			return -EFAULT;
308 		}
309 		/* ...then finally give it a kicking to make sure it fits */
310 		base_pfn = max_t(unsigned long, base_pfn,
311 				domain->geometry.aperture_start >> order);
312 	}
313 
314 	/* start_pfn is always nonzero for an already-initialised domain */
315 	if (iovad->start_pfn) {
316 		if (1UL << order != iovad->granule ||
317 		    base_pfn != iovad->start_pfn) {
318 			pr_warn("Incompatible range for DMA domain\n");
319 			return -EFAULT;
320 		}
321 
322 		return 0;
323 	}
324 
325 	init_iova_domain(iovad, 1UL << order, base_pfn);
326 
327 	if (!cookie->fq_domain && !iommu_domain_get_attr(domain,
328 			DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE, &attr) && attr) {
329 		cookie->fq_domain = domain;
330 		init_iova_flush_queue(iovad, iommu_dma_flush_iotlb_all, NULL);
331 	}
332 
333 	if (!dev)
334 		return 0;
335 
336 	return iova_reserve_iommu_regions(dev, domain);
337 }
338 EXPORT_SYMBOL(iommu_dma_init_domain);
339 
340 /**
341  * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
342  *                    page flags.
343  * @dir: Direction of DMA transfer
344  * @coherent: Is the DMA master cache-coherent?
345  * @attrs: DMA attributes for the mapping
346  *
347  * Return: corresponding IOMMU API page protection flags
348  */
349 int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
350 		     unsigned long attrs)
351 {
352 	int prot = coherent ? IOMMU_CACHE : 0;
353 
354 	if (attrs & DMA_ATTR_PRIVILEGED)
355 		prot |= IOMMU_PRIV;
356 
357 	switch (dir) {
358 	case DMA_BIDIRECTIONAL:
359 		return prot | IOMMU_READ | IOMMU_WRITE;
360 	case DMA_TO_DEVICE:
361 		return prot | IOMMU_READ;
362 	case DMA_FROM_DEVICE:
363 		return prot | IOMMU_WRITE;
364 	default:
365 		return 0;
366 	}
367 }
368 
369 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
370 		size_t size, dma_addr_t dma_limit, struct device *dev)
371 {
372 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
373 	struct iova_domain *iovad = &cookie->iovad;
374 	unsigned long shift, iova_len, iova = 0;
375 
376 	if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
377 		cookie->msi_iova += size;
378 		return cookie->msi_iova - size;
379 	}
380 
381 	shift = iova_shift(iovad);
382 	iova_len = size >> shift;
383 	/*
384 	 * Freeing non-power-of-two-sized allocations back into the IOVA caches
385 	 * will come back to bite us badly, so we have to waste a bit of space
386 	 * rounding up anything cacheable to make sure that can't happen. The
387 	 * order of the unadjusted size will still match upon freeing.
388 	 */
389 	if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1)))
390 		iova_len = roundup_pow_of_two(iova_len);
391 
392 	if (dev->bus_dma_mask)
393 		dma_limit &= dev->bus_dma_mask;
394 
395 	if (domain->geometry.force_aperture)
396 		dma_limit = min(dma_limit, domain->geometry.aperture_end);
397 
398 	/* Try to get PCI devices a SAC address */
399 	if (dma_limit > DMA_BIT_MASK(32) && dev_is_pci(dev))
400 		iova = alloc_iova_fast(iovad, iova_len,
401 				       DMA_BIT_MASK(32) >> shift, false);
402 
403 	if (!iova)
404 		iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift,
405 				       true);
406 
407 	return (dma_addr_t)iova << shift;
408 }
409 
410 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
411 		dma_addr_t iova, size_t size)
412 {
413 	struct iova_domain *iovad = &cookie->iovad;
414 
415 	/* The MSI case is only ever cleaning up its most recent allocation */
416 	if (cookie->type == IOMMU_DMA_MSI_COOKIE)
417 		cookie->msi_iova -= size;
418 	else if (cookie->fq_domain)	/* non-strict mode */
419 		queue_iova(iovad, iova_pfn(iovad, iova),
420 				size >> iova_shift(iovad), 0);
421 	else
422 		free_iova_fast(iovad, iova_pfn(iovad, iova),
423 				size >> iova_shift(iovad));
424 }
425 
426 static void __iommu_dma_unmap(struct iommu_domain *domain, dma_addr_t dma_addr,
427 		size_t size)
428 {
429 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
430 	struct iova_domain *iovad = &cookie->iovad;
431 	size_t iova_off = iova_offset(iovad, dma_addr);
432 
433 	dma_addr -= iova_off;
434 	size = iova_align(iovad, size + iova_off);
435 
436 	WARN_ON(iommu_unmap_fast(domain, dma_addr, size) != size);
437 	if (!cookie->fq_domain)
438 		iommu_tlb_sync(domain);
439 	iommu_dma_free_iova(cookie, dma_addr, size);
440 }
441 
442 static void __iommu_dma_free_pages(struct page **pages, int count)
443 {
444 	while (count--)
445 		__free_page(pages[count]);
446 	kvfree(pages);
447 }
448 
449 static struct page **__iommu_dma_alloc_pages(struct device *dev,
450 		unsigned int count, unsigned long order_mask, gfp_t gfp)
451 {
452 	struct page **pages;
453 	unsigned int i = 0, nid = dev_to_node(dev);
454 
455 	order_mask &= (2U << MAX_ORDER) - 1;
456 	if (!order_mask)
457 		return NULL;
458 
459 	pages = kvzalloc(count * sizeof(*pages), GFP_KERNEL);
460 	if (!pages)
461 		return NULL;
462 
463 	/* IOMMU can map any pages, so himem can also be used here */
464 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
465 
466 	while (count) {
467 		struct page *page = NULL;
468 		unsigned int order_size;
469 
470 		/*
471 		 * Higher-order allocations are a convenience rather
472 		 * than a necessity, hence using __GFP_NORETRY until
473 		 * falling back to minimum-order allocations.
474 		 */
475 		for (order_mask &= (2U << __fls(count)) - 1;
476 		     order_mask; order_mask &= ~order_size) {
477 			unsigned int order = __fls(order_mask);
478 			gfp_t alloc_flags = gfp;
479 
480 			order_size = 1U << order;
481 			if (order_mask > order_size)
482 				alloc_flags |= __GFP_NORETRY;
483 			page = alloc_pages_node(nid, alloc_flags, order);
484 			if (!page)
485 				continue;
486 			if (!order)
487 				break;
488 			if (!PageCompound(page)) {
489 				split_page(page, order);
490 				break;
491 			} else if (!split_huge_page(page)) {
492 				break;
493 			}
494 			__free_pages(page, order);
495 		}
496 		if (!page) {
497 			__iommu_dma_free_pages(pages, i);
498 			return NULL;
499 		}
500 		count -= order_size;
501 		while (order_size--)
502 			pages[i++] = page++;
503 	}
504 	return pages;
505 }
506 
507 /**
508  * iommu_dma_free - Free a buffer allocated by iommu_dma_alloc()
509  * @dev: Device which owns this buffer
510  * @pages: Array of buffer pages as returned by iommu_dma_alloc()
511  * @size: Size of buffer in bytes
512  * @handle: DMA address of buffer
513  *
514  * Frees both the pages associated with the buffer, and the array
515  * describing them
516  */
517 void iommu_dma_free(struct device *dev, struct page **pages, size_t size,
518 		dma_addr_t *handle)
519 {
520 	__iommu_dma_unmap(iommu_get_dma_domain(dev), *handle, size);
521 	__iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
522 	*handle = DMA_MAPPING_ERROR;
523 }
524 
525 /**
526  * iommu_dma_alloc - Allocate and map a buffer contiguous in IOVA space
527  * @dev: Device to allocate memory for. Must be a real device
528  *	 attached to an iommu_dma_domain
529  * @size: Size of buffer in bytes
530  * @gfp: Allocation flags
531  * @attrs: DMA attributes for this allocation
532  * @prot: IOMMU mapping flags
533  * @handle: Out argument for allocated DMA handle
534  * @flush_page: Arch callback which must ensure PAGE_SIZE bytes from the
535  *		given VA/PA are visible to the given non-coherent device.
536  *
537  * If @size is less than PAGE_SIZE, then a full CPU page will be allocated,
538  * but an IOMMU which supports smaller pages might not map the whole thing.
539  *
540  * Return: Array of struct page pointers describing the buffer,
541  *	   or NULL on failure.
542  */
543 struct page **iommu_dma_alloc(struct device *dev, size_t size, gfp_t gfp,
544 		unsigned long attrs, int prot, dma_addr_t *handle,
545 		void (*flush_page)(struct device *, const void *, phys_addr_t))
546 {
547 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
548 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
549 	struct iova_domain *iovad = &cookie->iovad;
550 	struct page **pages;
551 	struct sg_table sgt;
552 	dma_addr_t iova;
553 	unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
554 
555 	*handle = DMA_MAPPING_ERROR;
556 
557 	min_size = alloc_sizes & -alloc_sizes;
558 	if (min_size < PAGE_SIZE) {
559 		min_size = PAGE_SIZE;
560 		alloc_sizes |= PAGE_SIZE;
561 	} else {
562 		size = ALIGN(size, min_size);
563 	}
564 	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
565 		alloc_sizes = min_size;
566 
567 	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
568 	pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT,
569 					gfp);
570 	if (!pages)
571 		return NULL;
572 
573 	size = iova_align(iovad, size);
574 	iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
575 	if (!iova)
576 		goto out_free_pages;
577 
578 	if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL))
579 		goto out_free_iova;
580 
581 	if (!(prot & IOMMU_CACHE)) {
582 		struct sg_mapping_iter miter;
583 		/*
584 		 * The CPU-centric flushing implied by SG_MITER_TO_SG isn't
585 		 * sufficient here, so skip it by using the "wrong" direction.
586 		 */
587 		sg_miter_start(&miter, sgt.sgl, sgt.orig_nents, SG_MITER_FROM_SG);
588 		while (sg_miter_next(&miter))
589 			flush_page(dev, miter.addr, page_to_phys(miter.page));
590 		sg_miter_stop(&miter);
591 	}
592 
593 	if (iommu_map_sg(domain, iova, sgt.sgl, sgt.orig_nents, prot)
594 			< size)
595 		goto out_free_sg;
596 
597 	*handle = iova;
598 	sg_free_table(&sgt);
599 	return pages;
600 
601 out_free_sg:
602 	sg_free_table(&sgt);
603 out_free_iova:
604 	iommu_dma_free_iova(cookie, iova, size);
605 out_free_pages:
606 	__iommu_dma_free_pages(pages, count);
607 	return NULL;
608 }
609 
610 /**
611  * iommu_dma_mmap - Map a buffer into provided user VMA
612  * @pages: Array representing buffer from iommu_dma_alloc()
613  * @size: Size of buffer in bytes
614  * @vma: VMA describing requested userspace mapping
615  *
616  * Maps the pages of the buffer in @pages into @vma. The caller is responsible
617  * for verifying the correct size and protection of @vma beforehand.
618  */
619 
620 int iommu_dma_mmap(struct page **pages, size_t size, struct vm_area_struct *vma)
621 {
622 	unsigned long uaddr = vma->vm_start;
623 	unsigned int i, count = PAGE_ALIGN(size) >> PAGE_SHIFT;
624 	int ret = -ENXIO;
625 
626 	for (i = vma->vm_pgoff; i < count && uaddr < vma->vm_end; i++) {
627 		ret = vm_insert_page(vma, uaddr, pages[i]);
628 		if (ret)
629 			break;
630 		uaddr += PAGE_SIZE;
631 	}
632 	return ret;
633 }
634 
635 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
636 		size_t size, int prot, struct iommu_domain *domain)
637 {
638 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
639 	size_t iova_off = 0;
640 	dma_addr_t iova;
641 
642 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE) {
643 		iova_off = iova_offset(&cookie->iovad, phys);
644 		size = iova_align(&cookie->iovad, size + iova_off);
645 	}
646 
647 	iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
648 	if (!iova)
649 		return DMA_MAPPING_ERROR;
650 
651 	if (iommu_map(domain, iova, phys - iova_off, size, prot)) {
652 		iommu_dma_free_iova(cookie, iova, size);
653 		return DMA_MAPPING_ERROR;
654 	}
655 	return iova + iova_off;
656 }
657 
658 dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
659 		unsigned long offset, size_t size, int prot)
660 {
661 	return __iommu_dma_map(dev, page_to_phys(page) + offset, size, prot,
662 			iommu_get_dma_domain(dev));
663 }
664 
665 void iommu_dma_unmap_page(struct device *dev, dma_addr_t handle, size_t size,
666 		enum dma_data_direction dir, unsigned long attrs)
667 {
668 	__iommu_dma_unmap(iommu_get_dma_domain(dev), handle, size);
669 }
670 
671 /*
672  * Prepare a successfully-mapped scatterlist to give back to the caller.
673  *
674  * At this point the segments are already laid out by iommu_dma_map_sg() to
675  * avoid individually crossing any boundaries, so we merely need to check a
676  * segment's start address to avoid concatenating across one.
677  */
678 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
679 		dma_addr_t dma_addr)
680 {
681 	struct scatterlist *s, *cur = sg;
682 	unsigned long seg_mask = dma_get_seg_boundary(dev);
683 	unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
684 	int i, count = 0;
685 
686 	for_each_sg(sg, s, nents, i) {
687 		/* Restore this segment's original unaligned fields first */
688 		unsigned int s_iova_off = sg_dma_address(s);
689 		unsigned int s_length = sg_dma_len(s);
690 		unsigned int s_iova_len = s->length;
691 
692 		s->offset += s_iova_off;
693 		s->length = s_length;
694 		sg_dma_address(s) = DMA_MAPPING_ERROR;
695 		sg_dma_len(s) = 0;
696 
697 		/*
698 		 * Now fill in the real DMA data. If...
699 		 * - there is a valid output segment to append to
700 		 * - and this segment starts on an IOVA page boundary
701 		 * - but doesn't fall at a segment boundary
702 		 * - and wouldn't make the resulting output segment too long
703 		 */
704 		if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
705 		    (cur_len + s_length <= max_len)) {
706 			/* ...then concatenate it with the previous one */
707 			cur_len += s_length;
708 		} else {
709 			/* Otherwise start the next output segment */
710 			if (i > 0)
711 				cur = sg_next(cur);
712 			cur_len = s_length;
713 			count++;
714 
715 			sg_dma_address(cur) = dma_addr + s_iova_off;
716 		}
717 
718 		sg_dma_len(cur) = cur_len;
719 		dma_addr += s_iova_len;
720 
721 		if (s_length + s_iova_off < s_iova_len)
722 			cur_len = 0;
723 	}
724 	return count;
725 }
726 
727 /*
728  * If mapping failed, then just restore the original list,
729  * but making sure the DMA fields are invalidated.
730  */
731 static void __invalidate_sg(struct scatterlist *sg, int nents)
732 {
733 	struct scatterlist *s;
734 	int i;
735 
736 	for_each_sg(sg, s, nents, i) {
737 		if (sg_dma_address(s) != DMA_MAPPING_ERROR)
738 			s->offset += sg_dma_address(s);
739 		if (sg_dma_len(s))
740 			s->length = sg_dma_len(s);
741 		sg_dma_address(s) = DMA_MAPPING_ERROR;
742 		sg_dma_len(s) = 0;
743 	}
744 }
745 
746 /*
747  * The DMA API client is passing in a scatterlist which could describe
748  * any old buffer layout, but the IOMMU API requires everything to be
749  * aligned to IOMMU pages. Hence the need for this complicated bit of
750  * impedance-matching, to be able to hand off a suitably-aligned list,
751  * but still preserve the original offsets and sizes for the caller.
752  */
753 int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
754 		int nents, int prot)
755 {
756 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
757 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
758 	struct iova_domain *iovad = &cookie->iovad;
759 	struct scatterlist *s, *prev = NULL;
760 	dma_addr_t iova;
761 	size_t iova_len = 0;
762 	unsigned long mask = dma_get_seg_boundary(dev);
763 	int i;
764 
765 	/*
766 	 * Work out how much IOVA space we need, and align the segments to
767 	 * IOVA granules for the IOMMU driver to handle. With some clever
768 	 * trickery we can modify the list in-place, but reversibly, by
769 	 * stashing the unaligned parts in the as-yet-unused DMA fields.
770 	 */
771 	for_each_sg(sg, s, nents, i) {
772 		size_t s_iova_off = iova_offset(iovad, s->offset);
773 		size_t s_length = s->length;
774 		size_t pad_len = (mask - iova_len + 1) & mask;
775 
776 		sg_dma_address(s) = s_iova_off;
777 		sg_dma_len(s) = s_length;
778 		s->offset -= s_iova_off;
779 		s_length = iova_align(iovad, s_length + s_iova_off);
780 		s->length = s_length;
781 
782 		/*
783 		 * Due to the alignment of our single IOVA allocation, we can
784 		 * depend on these assumptions about the segment boundary mask:
785 		 * - If mask size >= IOVA size, then the IOVA range cannot
786 		 *   possibly fall across a boundary, so we don't care.
787 		 * - If mask size < IOVA size, then the IOVA range must start
788 		 *   exactly on a boundary, therefore we can lay things out
789 		 *   based purely on segment lengths without needing to know
790 		 *   the actual addresses beforehand.
791 		 * - The mask must be a power of 2, so pad_len == 0 if
792 		 *   iova_len == 0, thus we cannot dereference prev the first
793 		 *   time through here (i.e. before it has a meaningful value).
794 		 */
795 		if (pad_len && pad_len < s_length - 1) {
796 			prev->length += pad_len;
797 			iova_len += pad_len;
798 		}
799 
800 		iova_len += s_length;
801 		prev = s;
802 	}
803 
804 	iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
805 	if (!iova)
806 		goto out_restore_sg;
807 
808 	/*
809 	 * We'll leave any physical concatenation to the IOMMU driver's
810 	 * implementation - it knows better than we do.
811 	 */
812 	if (iommu_map_sg(domain, iova, sg, nents, prot) < iova_len)
813 		goto out_free_iova;
814 
815 	return __finalise_sg(dev, sg, nents, iova);
816 
817 out_free_iova:
818 	iommu_dma_free_iova(cookie, iova, iova_len);
819 out_restore_sg:
820 	__invalidate_sg(sg, nents);
821 	return 0;
822 }
823 
824 void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
825 		enum dma_data_direction dir, unsigned long attrs)
826 {
827 	dma_addr_t start, end;
828 	struct scatterlist *tmp;
829 	int i;
830 	/*
831 	 * The scatterlist segments are mapped into a single
832 	 * contiguous IOVA allocation, so this is incredibly easy.
833 	 */
834 	start = sg_dma_address(sg);
835 	for_each_sg(sg_next(sg), tmp, nents - 1, i) {
836 		if (sg_dma_len(tmp) == 0)
837 			break;
838 		sg = tmp;
839 	}
840 	end = sg_dma_address(sg) + sg_dma_len(sg);
841 	__iommu_dma_unmap(iommu_get_dma_domain(dev), start, end - start);
842 }
843 
844 dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
845 		size_t size, enum dma_data_direction dir, unsigned long attrs)
846 {
847 	return __iommu_dma_map(dev, phys, size,
848 			dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO,
849 			iommu_get_dma_domain(dev));
850 }
851 
852 void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
853 		size_t size, enum dma_data_direction dir, unsigned long attrs)
854 {
855 	__iommu_dma_unmap(iommu_get_dma_domain(dev), handle, size);
856 }
857 
858 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
859 		phys_addr_t msi_addr, struct iommu_domain *domain)
860 {
861 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
862 	struct iommu_dma_msi_page *msi_page;
863 	dma_addr_t iova;
864 	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
865 	size_t size = cookie_msi_granule(cookie);
866 
867 	msi_addr &= ~(phys_addr_t)(size - 1);
868 	list_for_each_entry(msi_page, &cookie->msi_page_list, list)
869 		if (msi_page->phys == msi_addr)
870 			return msi_page;
871 
872 	msi_page = kzalloc(sizeof(*msi_page), GFP_ATOMIC);
873 	if (!msi_page)
874 		return NULL;
875 
876 	iova = __iommu_dma_map(dev, msi_addr, size, prot, domain);
877 	if (iova == DMA_MAPPING_ERROR)
878 		goto out_free_page;
879 
880 	INIT_LIST_HEAD(&msi_page->list);
881 	msi_page->phys = msi_addr;
882 	msi_page->iova = iova;
883 	list_add(&msi_page->list, &cookie->msi_page_list);
884 	return msi_page;
885 
886 out_free_page:
887 	kfree(msi_page);
888 	return NULL;
889 }
890 
891 void iommu_dma_map_msi_msg(int irq, struct msi_msg *msg)
892 {
893 	struct device *dev = msi_desc_to_dev(irq_get_msi_desc(irq));
894 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
895 	struct iommu_dma_cookie *cookie;
896 	struct iommu_dma_msi_page *msi_page;
897 	phys_addr_t msi_addr = (u64)msg->address_hi << 32 | msg->address_lo;
898 	unsigned long flags;
899 
900 	if (!domain || !domain->iova_cookie)
901 		return;
902 
903 	cookie = domain->iova_cookie;
904 
905 	/*
906 	 * We disable IRQs to rule out a possible inversion against
907 	 * irq_desc_lock if, say, someone tries to retarget the affinity
908 	 * of an MSI from within an IPI handler.
909 	 */
910 	spin_lock_irqsave(&cookie->msi_lock, flags);
911 	msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
912 	spin_unlock_irqrestore(&cookie->msi_lock, flags);
913 
914 	if (WARN_ON(!msi_page)) {
915 		/*
916 		 * We're called from a void callback, so the best we can do is
917 		 * 'fail' by filling the message with obviously bogus values.
918 		 * Since we got this far due to an IOMMU being present, it's
919 		 * not like the existing address would have worked anyway...
920 		 */
921 		msg->address_hi = ~0U;
922 		msg->address_lo = ~0U;
923 		msg->data = ~0U;
924 	} else {
925 		msg->address_hi = upper_32_bits(msi_page->iova);
926 		msg->address_lo &= cookie_msi_granule(cookie) - 1;
927 		msg->address_lo += lower_32_bits(msi_page->iova);
928 	}
929 }
930