1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * A fairly generic DMA-API to IOMMU-API glue layer.
4 *
5 * Copyright (C) 2014-2015 ARM Ltd.
6 *
7 * based in part on arch/arm/mm/dma-mapping.c:
8 * Copyright (C) 2000-2004 Russell King
9 */
10
11 #include <linux/acpi_iort.h>
12 #include <linux/atomic.h>
13 #include <linux/crash_dump.h>
14 #include <linux/device.h>
15 #include <linux/dma-direct.h>
16 #include <linux/dma-map-ops.h>
17 #include <linux/gfp.h>
18 #include <linux/huge_mm.h>
19 #include <linux/iommu.h>
20 #include <linux/iova.h>
21 #include <linux/irq.h>
22 #include <linux/list_sort.h>
23 #include <linux/memremap.h>
24 #include <linux/mm.h>
25 #include <linux/mutex.h>
26 #include <linux/of_iommu.h>
27 #include <linux/pci.h>
28 #include <linux/scatterlist.h>
29 #include <linux/spinlock.h>
30 #include <linux/swiotlb.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/swiotlb.h>
33
34 #include "dma-iommu.h"
35
36 struct iommu_dma_msi_page {
37 struct list_head list;
38 dma_addr_t iova;
39 phys_addr_t phys;
40 };
41
42 enum iommu_dma_cookie_type {
43 IOMMU_DMA_IOVA_COOKIE,
44 IOMMU_DMA_MSI_COOKIE,
45 };
46
47 struct iommu_dma_cookie {
48 enum iommu_dma_cookie_type type;
49 union {
50 /* Full allocator for IOMMU_DMA_IOVA_COOKIE */
51 struct {
52 struct iova_domain iovad;
53
54 struct iova_fq __percpu *fq; /* Flush queue */
55 /* Number of TLB flushes that have been started */
56 atomic64_t fq_flush_start_cnt;
57 /* Number of TLB flushes that have been finished */
58 atomic64_t fq_flush_finish_cnt;
59 /* Timer to regularily empty the flush queues */
60 struct timer_list fq_timer;
61 /* 1 when timer is active, 0 when not */
62 atomic_t fq_timer_on;
63 };
64 /* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
65 dma_addr_t msi_iova;
66 };
67 struct list_head msi_page_list;
68
69 /* Domain for flush queue callback; NULL if flush queue not in use */
70 struct iommu_domain *fq_domain;
71 struct mutex mutex;
72 };
73
74 static DEFINE_STATIC_KEY_FALSE(iommu_deferred_attach_enabled);
75 bool iommu_dma_forcedac __read_mostly;
76
iommu_dma_forcedac_setup(char * str)77 static int __init iommu_dma_forcedac_setup(char *str)
78 {
79 int ret = kstrtobool(str, &iommu_dma_forcedac);
80
81 if (!ret && iommu_dma_forcedac)
82 pr_info("Forcing DAC for PCI devices\n");
83 return ret;
84 }
85 early_param("iommu.forcedac", iommu_dma_forcedac_setup);
86
87 /* Number of entries per flush queue */
88 #define IOVA_FQ_SIZE 256
89
90 /* Timeout (in ms) after which entries are flushed from the queue */
91 #define IOVA_FQ_TIMEOUT 10
92
93 /* Flush queue entry for deferred flushing */
94 struct iova_fq_entry {
95 unsigned long iova_pfn;
96 unsigned long pages;
97 struct list_head freelist;
98 u64 counter; /* Flush counter when this entry was added */
99 };
100
101 /* Per-CPU flush queue structure */
102 struct iova_fq {
103 struct iova_fq_entry entries[IOVA_FQ_SIZE];
104 unsigned int head, tail;
105 spinlock_t lock;
106 };
107
108 #define fq_ring_for_each(i, fq) \
109 for ((i) = (fq)->head; (i) != (fq)->tail; (i) = ((i) + 1) % IOVA_FQ_SIZE)
110
fq_full(struct iova_fq * fq)111 static inline bool fq_full(struct iova_fq *fq)
112 {
113 assert_spin_locked(&fq->lock);
114 return (((fq->tail + 1) % IOVA_FQ_SIZE) == fq->head);
115 }
116
fq_ring_add(struct iova_fq * fq)117 static inline unsigned int fq_ring_add(struct iova_fq *fq)
118 {
119 unsigned int idx = fq->tail;
120
121 assert_spin_locked(&fq->lock);
122
123 fq->tail = (idx + 1) % IOVA_FQ_SIZE;
124
125 return idx;
126 }
127
fq_ring_free(struct iommu_dma_cookie * cookie,struct iova_fq * fq)128 static void fq_ring_free(struct iommu_dma_cookie *cookie, struct iova_fq *fq)
129 {
130 u64 counter = atomic64_read(&cookie->fq_flush_finish_cnt);
131 unsigned int idx;
132
133 assert_spin_locked(&fq->lock);
134
135 fq_ring_for_each(idx, fq) {
136
137 if (fq->entries[idx].counter >= counter)
138 break;
139
140 put_pages_list(&fq->entries[idx].freelist);
141 free_iova_fast(&cookie->iovad,
142 fq->entries[idx].iova_pfn,
143 fq->entries[idx].pages);
144
145 fq->head = (fq->head + 1) % IOVA_FQ_SIZE;
146 }
147 }
148
fq_flush_iotlb(struct iommu_dma_cookie * cookie)149 static void fq_flush_iotlb(struct iommu_dma_cookie *cookie)
150 {
151 atomic64_inc(&cookie->fq_flush_start_cnt);
152 cookie->fq_domain->ops->flush_iotlb_all(cookie->fq_domain);
153 atomic64_inc(&cookie->fq_flush_finish_cnt);
154 }
155
fq_flush_timeout(struct timer_list * t)156 static void fq_flush_timeout(struct timer_list *t)
157 {
158 struct iommu_dma_cookie *cookie = from_timer(cookie, t, fq_timer);
159 int cpu;
160
161 atomic_set(&cookie->fq_timer_on, 0);
162 fq_flush_iotlb(cookie);
163
164 for_each_possible_cpu(cpu) {
165 unsigned long flags;
166 struct iova_fq *fq;
167
168 fq = per_cpu_ptr(cookie->fq, cpu);
169 spin_lock_irqsave(&fq->lock, flags);
170 fq_ring_free(cookie, fq);
171 spin_unlock_irqrestore(&fq->lock, flags);
172 }
173 }
174
queue_iova(struct iommu_dma_cookie * cookie,unsigned long pfn,unsigned long pages,struct list_head * freelist)175 static void queue_iova(struct iommu_dma_cookie *cookie,
176 unsigned long pfn, unsigned long pages,
177 struct list_head *freelist)
178 {
179 struct iova_fq *fq;
180 unsigned long flags;
181 unsigned int idx;
182
183 /*
184 * Order against the IOMMU driver's pagetable update from unmapping
185 * @pte, to guarantee that fq_flush_iotlb() observes that if called
186 * from a different CPU before we release the lock below. Full barrier
187 * so it also pairs with iommu_dma_init_fq() to avoid seeing partially
188 * written fq state here.
189 */
190 smp_mb();
191
192 fq = raw_cpu_ptr(cookie->fq);
193 spin_lock_irqsave(&fq->lock, flags);
194
195 /*
196 * First remove all entries from the flush queue that have already been
197 * flushed out on another CPU. This makes the fq_full() check below less
198 * likely to be true.
199 */
200 fq_ring_free(cookie, fq);
201
202 if (fq_full(fq)) {
203 fq_flush_iotlb(cookie);
204 fq_ring_free(cookie, fq);
205 }
206
207 idx = fq_ring_add(fq);
208
209 fq->entries[idx].iova_pfn = pfn;
210 fq->entries[idx].pages = pages;
211 fq->entries[idx].counter = atomic64_read(&cookie->fq_flush_start_cnt);
212 list_splice(freelist, &fq->entries[idx].freelist);
213
214 spin_unlock_irqrestore(&fq->lock, flags);
215
216 /* Avoid false sharing as much as possible. */
217 if (!atomic_read(&cookie->fq_timer_on) &&
218 !atomic_xchg(&cookie->fq_timer_on, 1))
219 mod_timer(&cookie->fq_timer,
220 jiffies + msecs_to_jiffies(IOVA_FQ_TIMEOUT));
221 }
222
iommu_dma_free_fq(struct iommu_dma_cookie * cookie)223 static void iommu_dma_free_fq(struct iommu_dma_cookie *cookie)
224 {
225 int cpu, idx;
226
227 if (!cookie->fq)
228 return;
229
230 del_timer_sync(&cookie->fq_timer);
231 /* The IOVAs will be torn down separately, so just free our queued pages */
232 for_each_possible_cpu(cpu) {
233 struct iova_fq *fq = per_cpu_ptr(cookie->fq, cpu);
234
235 fq_ring_for_each(idx, fq)
236 put_pages_list(&fq->entries[idx].freelist);
237 }
238
239 free_percpu(cookie->fq);
240 }
241
242 /* sysfs updates are serialised by the mutex of the group owning @domain */
iommu_dma_init_fq(struct iommu_domain * domain)243 int iommu_dma_init_fq(struct iommu_domain *domain)
244 {
245 struct iommu_dma_cookie *cookie = domain->iova_cookie;
246 struct iova_fq __percpu *queue;
247 int i, cpu;
248
249 if (cookie->fq_domain)
250 return 0;
251
252 atomic64_set(&cookie->fq_flush_start_cnt, 0);
253 atomic64_set(&cookie->fq_flush_finish_cnt, 0);
254
255 queue = alloc_percpu(struct iova_fq);
256 if (!queue) {
257 pr_warn("iova flush queue initialization failed\n");
258 return -ENOMEM;
259 }
260
261 for_each_possible_cpu(cpu) {
262 struct iova_fq *fq = per_cpu_ptr(queue, cpu);
263
264 fq->head = 0;
265 fq->tail = 0;
266
267 spin_lock_init(&fq->lock);
268
269 for (i = 0; i < IOVA_FQ_SIZE; i++)
270 INIT_LIST_HEAD(&fq->entries[i].freelist);
271 }
272
273 cookie->fq = queue;
274
275 timer_setup(&cookie->fq_timer, fq_flush_timeout, 0);
276 atomic_set(&cookie->fq_timer_on, 0);
277 /*
278 * Prevent incomplete fq state being observable. Pairs with path from
279 * __iommu_dma_unmap() through iommu_dma_free_iova() to queue_iova()
280 */
281 smp_wmb();
282 WRITE_ONCE(cookie->fq_domain, domain);
283 return 0;
284 }
285
cookie_msi_granule(struct iommu_dma_cookie * cookie)286 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
287 {
288 if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
289 return cookie->iovad.granule;
290 return PAGE_SIZE;
291 }
292
cookie_alloc(enum iommu_dma_cookie_type type)293 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
294 {
295 struct iommu_dma_cookie *cookie;
296
297 cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
298 if (cookie) {
299 INIT_LIST_HEAD(&cookie->msi_page_list);
300 cookie->type = type;
301 }
302 return cookie;
303 }
304
305 /**
306 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
307 * @domain: IOMMU domain to prepare for DMA-API usage
308 */
iommu_get_dma_cookie(struct iommu_domain * domain)309 int iommu_get_dma_cookie(struct iommu_domain *domain)
310 {
311 if (domain->iova_cookie)
312 return -EEXIST;
313
314 domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
315 if (!domain->iova_cookie)
316 return -ENOMEM;
317
318 mutex_init(&domain->iova_cookie->mutex);
319 return 0;
320 }
321
322 /**
323 * iommu_get_msi_cookie - Acquire just MSI remapping resources
324 * @domain: IOMMU domain to prepare
325 * @base: Start address of IOVA region for MSI mappings
326 *
327 * Users who manage their own IOVA allocation and do not want DMA API support,
328 * but would still like to take advantage of automatic MSI remapping, can use
329 * this to initialise their own domain appropriately. Users should reserve a
330 * contiguous IOVA region, starting at @base, large enough to accommodate the
331 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
332 * used by the devices attached to @domain.
333 */
iommu_get_msi_cookie(struct iommu_domain * domain,dma_addr_t base)334 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
335 {
336 struct iommu_dma_cookie *cookie;
337
338 if (domain->type != IOMMU_DOMAIN_UNMANAGED)
339 return -EINVAL;
340
341 if (domain->iova_cookie)
342 return -EEXIST;
343
344 cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
345 if (!cookie)
346 return -ENOMEM;
347
348 cookie->msi_iova = base;
349 domain->iova_cookie = cookie;
350 return 0;
351 }
352 EXPORT_SYMBOL(iommu_get_msi_cookie);
353
354 /**
355 * iommu_put_dma_cookie - Release a domain's DMA mapping resources
356 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
357 * iommu_get_msi_cookie()
358 */
iommu_put_dma_cookie(struct iommu_domain * domain)359 void iommu_put_dma_cookie(struct iommu_domain *domain)
360 {
361 struct iommu_dma_cookie *cookie = domain->iova_cookie;
362 struct iommu_dma_msi_page *msi, *tmp;
363
364 if (!cookie)
365 return;
366
367 if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule) {
368 iommu_dma_free_fq(cookie);
369 put_iova_domain(&cookie->iovad);
370 }
371
372 list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
373 list_del(&msi->list);
374 kfree(msi);
375 }
376 kfree(cookie);
377 domain->iova_cookie = NULL;
378 }
379
380 /**
381 * iommu_dma_get_resv_regions - Reserved region driver helper
382 * @dev: Device from iommu_get_resv_regions()
383 * @list: Reserved region list from iommu_get_resv_regions()
384 *
385 * IOMMU drivers can use this to implement their .get_resv_regions callback
386 * for general non-IOMMU-specific reservations. Currently, this covers GICv3
387 * ITS region reservation on ACPI based ARM platforms that may require HW MSI
388 * reservation.
389 */
iommu_dma_get_resv_regions(struct device * dev,struct list_head * list)390 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
391 {
392
393 if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode))
394 iort_iommu_get_resv_regions(dev, list);
395
396 if (dev->of_node)
397 of_iommu_get_resv_regions(dev, list);
398 }
399 EXPORT_SYMBOL(iommu_dma_get_resv_regions);
400
cookie_init_hw_msi_region(struct iommu_dma_cookie * cookie,phys_addr_t start,phys_addr_t end)401 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
402 phys_addr_t start, phys_addr_t end)
403 {
404 struct iova_domain *iovad = &cookie->iovad;
405 struct iommu_dma_msi_page *msi_page;
406 int i, num_pages;
407
408 start -= iova_offset(iovad, start);
409 num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
410
411 for (i = 0; i < num_pages; i++) {
412 msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL);
413 if (!msi_page)
414 return -ENOMEM;
415
416 msi_page->phys = start;
417 msi_page->iova = start;
418 INIT_LIST_HEAD(&msi_page->list);
419 list_add(&msi_page->list, &cookie->msi_page_list);
420 start += iovad->granule;
421 }
422
423 return 0;
424 }
425
iommu_dma_ranges_sort(void * priv,const struct list_head * a,const struct list_head * b)426 static int iommu_dma_ranges_sort(void *priv, const struct list_head *a,
427 const struct list_head *b)
428 {
429 struct resource_entry *res_a = list_entry(a, typeof(*res_a), node);
430 struct resource_entry *res_b = list_entry(b, typeof(*res_b), node);
431
432 return res_a->res->start > res_b->res->start;
433 }
434
iova_reserve_pci_windows(struct pci_dev * dev,struct iova_domain * iovad)435 static int iova_reserve_pci_windows(struct pci_dev *dev,
436 struct iova_domain *iovad)
437 {
438 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
439 struct resource_entry *window;
440 unsigned long lo, hi;
441 phys_addr_t start = 0, end;
442
443 resource_list_for_each_entry(window, &bridge->windows) {
444 if (resource_type(window->res) != IORESOURCE_MEM)
445 continue;
446
447 lo = iova_pfn(iovad, window->res->start - window->offset);
448 hi = iova_pfn(iovad, window->res->end - window->offset);
449 reserve_iova(iovad, lo, hi);
450 }
451
452 /* Get reserved DMA windows from host bridge */
453 list_sort(NULL, &bridge->dma_ranges, iommu_dma_ranges_sort);
454 resource_list_for_each_entry(window, &bridge->dma_ranges) {
455 end = window->res->start - window->offset;
456 resv_iova:
457 if (end > start) {
458 lo = iova_pfn(iovad, start);
459 hi = iova_pfn(iovad, end);
460 reserve_iova(iovad, lo, hi);
461 } else if (end < start) {
462 /* DMA ranges should be non-overlapping */
463 dev_err(&dev->dev,
464 "Failed to reserve IOVA [%pa-%pa]\n",
465 &start, &end);
466 return -EINVAL;
467 }
468
469 start = window->res->end - window->offset + 1;
470 /* If window is last entry */
471 if (window->node.next == &bridge->dma_ranges &&
472 end != ~(phys_addr_t)0) {
473 end = ~(phys_addr_t)0;
474 goto resv_iova;
475 }
476 }
477
478 return 0;
479 }
480
iova_reserve_iommu_regions(struct device * dev,struct iommu_domain * domain)481 static int iova_reserve_iommu_regions(struct device *dev,
482 struct iommu_domain *domain)
483 {
484 struct iommu_dma_cookie *cookie = domain->iova_cookie;
485 struct iova_domain *iovad = &cookie->iovad;
486 struct iommu_resv_region *region;
487 LIST_HEAD(resv_regions);
488 int ret = 0;
489
490 if (dev_is_pci(dev)) {
491 ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad);
492 if (ret)
493 return ret;
494 }
495
496 iommu_get_resv_regions(dev, &resv_regions);
497 list_for_each_entry(region, &resv_regions, list) {
498 unsigned long lo, hi;
499
500 /* We ARE the software that manages these! */
501 if (region->type == IOMMU_RESV_SW_MSI)
502 continue;
503
504 lo = iova_pfn(iovad, region->start);
505 hi = iova_pfn(iovad, region->start + region->length - 1);
506 reserve_iova(iovad, lo, hi);
507
508 if (region->type == IOMMU_RESV_MSI)
509 ret = cookie_init_hw_msi_region(cookie, region->start,
510 region->start + region->length);
511 if (ret)
512 break;
513 }
514 iommu_put_resv_regions(dev, &resv_regions);
515
516 return ret;
517 }
518
dev_is_untrusted(struct device * dev)519 static bool dev_is_untrusted(struct device *dev)
520 {
521 return dev_is_pci(dev) && to_pci_dev(dev)->untrusted;
522 }
523
dev_use_swiotlb(struct device * dev,size_t size,enum dma_data_direction dir)524 static bool dev_use_swiotlb(struct device *dev, size_t size,
525 enum dma_data_direction dir)
526 {
527 return IS_ENABLED(CONFIG_SWIOTLB) &&
528 (dev_is_untrusted(dev) ||
529 dma_kmalloc_needs_bounce(dev, size, dir));
530 }
531
dev_use_sg_swiotlb(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)532 static bool dev_use_sg_swiotlb(struct device *dev, struct scatterlist *sg,
533 int nents, enum dma_data_direction dir)
534 {
535 struct scatterlist *s;
536 int i;
537
538 if (!IS_ENABLED(CONFIG_SWIOTLB))
539 return false;
540
541 if (dev_is_untrusted(dev))
542 return true;
543
544 /*
545 * If kmalloc() buffers are not DMA-safe for this device and
546 * direction, check the individual lengths in the sg list. If any
547 * element is deemed unsafe, use the swiotlb for bouncing.
548 */
549 if (!dma_kmalloc_safe(dev, dir)) {
550 for_each_sg(sg, s, nents, i)
551 if (!dma_kmalloc_size_aligned(s->length))
552 return true;
553 }
554
555 return false;
556 }
557
558 /**
559 * iommu_dma_init_domain - Initialise a DMA mapping domain
560 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
561 * @base: IOVA at which the mappable address space starts
562 * @limit: Last address of the IOVA space
563 * @dev: Device the domain is being initialised for
564 *
565 * @base and @limit + 1 should be exact multiples of IOMMU page granularity to
566 * avoid rounding surprises. If necessary, we reserve the page at address 0
567 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
568 * any change which could make prior IOVAs invalid will fail.
569 */
iommu_dma_init_domain(struct iommu_domain * domain,dma_addr_t base,dma_addr_t limit,struct device * dev)570 static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
571 dma_addr_t limit, struct device *dev)
572 {
573 struct iommu_dma_cookie *cookie = domain->iova_cookie;
574 unsigned long order, base_pfn;
575 struct iova_domain *iovad;
576 int ret;
577
578 if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
579 return -EINVAL;
580
581 iovad = &cookie->iovad;
582
583 /* Use the smallest supported page size for IOVA granularity */
584 order = __ffs(domain->pgsize_bitmap);
585 base_pfn = max_t(unsigned long, 1, base >> order);
586
587 /* Check the domain allows at least some access to the device... */
588 if (domain->geometry.force_aperture) {
589 if (base > domain->geometry.aperture_end ||
590 limit < domain->geometry.aperture_start) {
591 pr_warn("specified DMA range outside IOMMU capability\n");
592 return -EFAULT;
593 }
594 /* ...then finally give it a kicking to make sure it fits */
595 base_pfn = max_t(unsigned long, base_pfn,
596 domain->geometry.aperture_start >> order);
597 }
598
599 /* start_pfn is always nonzero for an already-initialised domain */
600 mutex_lock(&cookie->mutex);
601 if (iovad->start_pfn) {
602 if (1UL << order != iovad->granule ||
603 base_pfn != iovad->start_pfn) {
604 pr_warn("Incompatible range for DMA domain\n");
605 ret = -EFAULT;
606 goto done_unlock;
607 }
608
609 ret = 0;
610 goto done_unlock;
611 }
612
613 init_iova_domain(iovad, 1UL << order, base_pfn);
614 ret = iova_domain_init_rcaches(iovad);
615 if (ret)
616 goto done_unlock;
617
618 /* If the FQ fails we can simply fall back to strict mode */
619 if (domain->type == IOMMU_DOMAIN_DMA_FQ &&
620 (!device_iommu_capable(dev, IOMMU_CAP_DEFERRED_FLUSH) || iommu_dma_init_fq(domain)))
621 domain->type = IOMMU_DOMAIN_DMA;
622
623 ret = iova_reserve_iommu_regions(dev, domain);
624
625 done_unlock:
626 mutex_unlock(&cookie->mutex);
627 return ret;
628 }
629
630 /**
631 * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
632 * page flags.
633 * @dir: Direction of DMA transfer
634 * @coherent: Is the DMA master cache-coherent?
635 * @attrs: DMA attributes for the mapping
636 *
637 * Return: corresponding IOMMU API page protection flags
638 */
dma_info_to_prot(enum dma_data_direction dir,bool coherent,unsigned long attrs)639 static int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
640 unsigned long attrs)
641 {
642 int prot = coherent ? IOMMU_CACHE : 0;
643
644 if (attrs & DMA_ATTR_PRIVILEGED)
645 prot |= IOMMU_PRIV;
646
647 switch (dir) {
648 case DMA_BIDIRECTIONAL:
649 return prot | IOMMU_READ | IOMMU_WRITE;
650 case DMA_TO_DEVICE:
651 return prot | IOMMU_READ;
652 case DMA_FROM_DEVICE:
653 return prot | IOMMU_WRITE;
654 default:
655 return 0;
656 }
657 }
658
iommu_dma_alloc_iova(struct iommu_domain * domain,size_t size,u64 dma_limit,struct device * dev)659 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
660 size_t size, u64 dma_limit, struct device *dev)
661 {
662 struct iommu_dma_cookie *cookie = domain->iova_cookie;
663 struct iova_domain *iovad = &cookie->iovad;
664 unsigned long shift, iova_len, iova;
665
666 if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
667 cookie->msi_iova += size;
668 return cookie->msi_iova - size;
669 }
670
671 shift = iova_shift(iovad);
672 iova_len = size >> shift;
673
674 dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit);
675
676 if (domain->geometry.force_aperture)
677 dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end);
678
679 /*
680 * Try to use all the 32-bit PCI addresses first. The original SAC vs.
681 * DAC reasoning loses relevance with PCIe, but enough hardware and
682 * firmware bugs are still lurking out there that it's safest not to
683 * venture into the 64-bit space until necessary.
684 *
685 * If your device goes wrong after seeing the notice then likely either
686 * its driver is not setting DMA masks accurately, the hardware has
687 * some inherent bug in handling >32-bit addresses, or not all the
688 * expected address bits are wired up between the device and the IOMMU.
689 */
690 if (dma_limit > DMA_BIT_MASK(32) && dev->iommu->pci_32bit_workaround) {
691 iova = alloc_iova_fast(iovad, iova_len,
692 DMA_BIT_MASK(32) >> shift, false);
693 if (iova)
694 goto done;
695
696 dev->iommu->pci_32bit_workaround = false;
697 dev_notice(dev, "Using %d-bit DMA addresses\n", bits_per(dma_limit));
698 }
699
700 iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift, true);
701 done:
702 return (dma_addr_t)iova << shift;
703 }
704
iommu_dma_free_iova(struct iommu_dma_cookie * cookie,dma_addr_t iova,size_t size,struct iommu_iotlb_gather * gather)705 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
706 dma_addr_t iova, size_t size, struct iommu_iotlb_gather *gather)
707 {
708 struct iova_domain *iovad = &cookie->iovad;
709
710 /* The MSI case is only ever cleaning up its most recent allocation */
711 if (cookie->type == IOMMU_DMA_MSI_COOKIE)
712 cookie->msi_iova -= size;
713 else if (gather && gather->queued)
714 queue_iova(cookie, iova_pfn(iovad, iova),
715 size >> iova_shift(iovad),
716 &gather->freelist);
717 else
718 free_iova_fast(iovad, iova_pfn(iovad, iova),
719 size >> iova_shift(iovad));
720 }
721
__iommu_dma_unmap(struct device * dev,dma_addr_t dma_addr,size_t size)722 static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr,
723 size_t size)
724 {
725 struct iommu_domain *domain = iommu_get_dma_domain(dev);
726 struct iommu_dma_cookie *cookie = domain->iova_cookie;
727 struct iova_domain *iovad = &cookie->iovad;
728 size_t iova_off = iova_offset(iovad, dma_addr);
729 struct iommu_iotlb_gather iotlb_gather;
730 size_t unmapped;
731
732 dma_addr -= iova_off;
733 size = iova_align(iovad, size + iova_off);
734 iommu_iotlb_gather_init(&iotlb_gather);
735 iotlb_gather.queued = READ_ONCE(cookie->fq_domain);
736
737 unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather);
738 WARN_ON(unmapped != size);
739
740 if (!iotlb_gather.queued)
741 iommu_iotlb_sync(domain, &iotlb_gather);
742 iommu_dma_free_iova(cookie, dma_addr, size, &iotlb_gather);
743 }
744
__iommu_dma_map(struct device * dev,phys_addr_t phys,size_t size,int prot,u64 dma_mask)745 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
746 size_t size, int prot, u64 dma_mask)
747 {
748 struct iommu_domain *domain = iommu_get_dma_domain(dev);
749 struct iommu_dma_cookie *cookie = domain->iova_cookie;
750 struct iova_domain *iovad = &cookie->iovad;
751 size_t iova_off = iova_offset(iovad, phys);
752 dma_addr_t iova;
753
754 if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
755 iommu_deferred_attach(dev, domain))
756 return DMA_MAPPING_ERROR;
757
758 size = iova_align(iovad, size + iova_off);
759
760 iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev);
761 if (!iova)
762 return DMA_MAPPING_ERROR;
763
764 if (iommu_map(domain, iova, phys - iova_off, size, prot, GFP_ATOMIC)) {
765 iommu_dma_free_iova(cookie, iova, size, NULL);
766 return DMA_MAPPING_ERROR;
767 }
768 return iova + iova_off;
769 }
770
__iommu_dma_free_pages(struct page ** pages,int count)771 static void __iommu_dma_free_pages(struct page **pages, int count)
772 {
773 while (count--)
774 __free_page(pages[count]);
775 kvfree(pages);
776 }
777
__iommu_dma_alloc_pages(struct device * dev,unsigned int count,unsigned long order_mask,gfp_t gfp)778 static struct page **__iommu_dma_alloc_pages(struct device *dev,
779 unsigned int count, unsigned long order_mask, gfp_t gfp)
780 {
781 struct page **pages;
782 unsigned int i = 0, nid = dev_to_node(dev);
783
784 order_mask &= GENMASK(MAX_ORDER, 0);
785 if (!order_mask)
786 return NULL;
787
788 pages = kvcalloc(count, sizeof(*pages), GFP_KERNEL);
789 if (!pages)
790 return NULL;
791
792 /* IOMMU can map any pages, so himem can also be used here */
793 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
794
795 while (count) {
796 struct page *page = NULL;
797 unsigned int order_size;
798
799 /*
800 * Higher-order allocations are a convenience rather
801 * than a necessity, hence using __GFP_NORETRY until
802 * falling back to minimum-order allocations.
803 */
804 for (order_mask &= GENMASK(__fls(count), 0);
805 order_mask; order_mask &= ~order_size) {
806 unsigned int order = __fls(order_mask);
807 gfp_t alloc_flags = gfp;
808
809 order_size = 1U << order;
810 if (order_mask > order_size)
811 alloc_flags |= __GFP_NORETRY;
812 page = alloc_pages_node(nid, alloc_flags, order);
813 if (!page)
814 continue;
815 if (order)
816 split_page(page, order);
817 break;
818 }
819 if (!page) {
820 __iommu_dma_free_pages(pages, i);
821 return NULL;
822 }
823 count -= order_size;
824 while (order_size--)
825 pages[i++] = page++;
826 }
827 return pages;
828 }
829
830 /*
831 * If size is less than PAGE_SIZE, then a full CPU page will be allocated,
832 * but an IOMMU which supports smaller pages might not map the whole thing.
833 */
__iommu_dma_alloc_noncontiguous(struct device * dev,size_t size,struct sg_table * sgt,gfp_t gfp,pgprot_t prot,unsigned long attrs)834 static struct page **__iommu_dma_alloc_noncontiguous(struct device *dev,
835 size_t size, struct sg_table *sgt, gfp_t gfp, pgprot_t prot,
836 unsigned long attrs)
837 {
838 struct iommu_domain *domain = iommu_get_dma_domain(dev);
839 struct iommu_dma_cookie *cookie = domain->iova_cookie;
840 struct iova_domain *iovad = &cookie->iovad;
841 bool coherent = dev_is_dma_coherent(dev);
842 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
843 unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
844 struct page **pages;
845 dma_addr_t iova;
846 ssize_t ret;
847
848 if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
849 iommu_deferred_attach(dev, domain))
850 return NULL;
851
852 min_size = alloc_sizes & -alloc_sizes;
853 if (min_size < PAGE_SIZE) {
854 min_size = PAGE_SIZE;
855 alloc_sizes |= PAGE_SIZE;
856 } else {
857 size = ALIGN(size, min_size);
858 }
859 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
860 alloc_sizes = min_size;
861
862 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
863 pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT,
864 gfp);
865 if (!pages)
866 return NULL;
867
868 size = iova_align(iovad, size);
869 iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
870 if (!iova)
871 goto out_free_pages;
872
873 /*
874 * Remove the zone/policy flags from the GFP - these are applied to the
875 * __iommu_dma_alloc_pages() but are not used for the supporting
876 * internal allocations that follow.
877 */
878 gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM | __GFP_COMP);
879
880 if (sg_alloc_table_from_pages(sgt, pages, count, 0, size, gfp))
881 goto out_free_iova;
882
883 if (!(ioprot & IOMMU_CACHE)) {
884 struct scatterlist *sg;
885 int i;
886
887 for_each_sg(sgt->sgl, sg, sgt->orig_nents, i)
888 arch_dma_prep_coherent(sg_page(sg), sg->length);
889 }
890
891 ret = iommu_map_sg(domain, iova, sgt->sgl, sgt->orig_nents, ioprot,
892 gfp);
893 if (ret < 0 || ret < size)
894 goto out_free_sg;
895
896 sgt->sgl->dma_address = iova;
897 sgt->sgl->dma_length = size;
898 return pages;
899
900 out_free_sg:
901 sg_free_table(sgt);
902 out_free_iova:
903 iommu_dma_free_iova(cookie, iova, size, NULL);
904 out_free_pages:
905 __iommu_dma_free_pages(pages, count);
906 return NULL;
907 }
908
iommu_dma_alloc_remap(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp,pgprot_t prot,unsigned long attrs)909 static void *iommu_dma_alloc_remap(struct device *dev, size_t size,
910 dma_addr_t *dma_handle, gfp_t gfp, pgprot_t prot,
911 unsigned long attrs)
912 {
913 struct page **pages;
914 struct sg_table sgt;
915 void *vaddr;
916
917 pages = __iommu_dma_alloc_noncontiguous(dev, size, &sgt, gfp, prot,
918 attrs);
919 if (!pages)
920 return NULL;
921 *dma_handle = sgt.sgl->dma_address;
922 sg_free_table(&sgt);
923 vaddr = dma_common_pages_remap(pages, size, prot,
924 __builtin_return_address(0));
925 if (!vaddr)
926 goto out_unmap;
927 return vaddr;
928
929 out_unmap:
930 __iommu_dma_unmap(dev, *dma_handle, size);
931 __iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
932 return NULL;
933 }
934
iommu_dma_alloc_noncontiguous(struct device * dev,size_t size,enum dma_data_direction dir,gfp_t gfp,unsigned long attrs)935 static struct sg_table *iommu_dma_alloc_noncontiguous(struct device *dev,
936 size_t size, enum dma_data_direction dir, gfp_t gfp,
937 unsigned long attrs)
938 {
939 struct dma_sgt_handle *sh;
940
941 sh = kmalloc(sizeof(*sh), gfp);
942 if (!sh)
943 return NULL;
944
945 sh->pages = __iommu_dma_alloc_noncontiguous(dev, size, &sh->sgt, gfp,
946 PAGE_KERNEL, attrs);
947 if (!sh->pages) {
948 kfree(sh);
949 return NULL;
950 }
951 return &sh->sgt;
952 }
953
iommu_dma_free_noncontiguous(struct device * dev,size_t size,struct sg_table * sgt,enum dma_data_direction dir)954 static void iommu_dma_free_noncontiguous(struct device *dev, size_t size,
955 struct sg_table *sgt, enum dma_data_direction dir)
956 {
957 struct dma_sgt_handle *sh = sgt_handle(sgt);
958
959 __iommu_dma_unmap(dev, sgt->sgl->dma_address, size);
960 __iommu_dma_free_pages(sh->pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
961 sg_free_table(&sh->sgt);
962 kfree(sh);
963 }
964
iommu_dma_sync_single_for_cpu(struct device * dev,dma_addr_t dma_handle,size_t size,enum dma_data_direction dir)965 static void iommu_dma_sync_single_for_cpu(struct device *dev,
966 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
967 {
968 phys_addr_t phys;
969
970 if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev, size, dir))
971 return;
972
973 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
974 if (!dev_is_dma_coherent(dev))
975 arch_sync_dma_for_cpu(phys, size, dir);
976
977 if (is_swiotlb_buffer(dev, phys))
978 swiotlb_sync_single_for_cpu(dev, phys, size, dir);
979 }
980
iommu_dma_sync_single_for_device(struct device * dev,dma_addr_t dma_handle,size_t size,enum dma_data_direction dir)981 static void iommu_dma_sync_single_for_device(struct device *dev,
982 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
983 {
984 phys_addr_t phys;
985
986 if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev, size, dir))
987 return;
988
989 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
990 if (is_swiotlb_buffer(dev, phys))
991 swiotlb_sync_single_for_device(dev, phys, size, dir);
992
993 if (!dev_is_dma_coherent(dev))
994 arch_sync_dma_for_device(phys, size, dir);
995 }
996
iommu_dma_sync_sg_for_cpu(struct device * dev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir)997 static void iommu_dma_sync_sg_for_cpu(struct device *dev,
998 struct scatterlist *sgl, int nelems,
999 enum dma_data_direction dir)
1000 {
1001 struct scatterlist *sg;
1002 int i;
1003
1004 if (sg_dma_is_swiotlb(sgl))
1005 for_each_sg(sgl, sg, nelems, i)
1006 iommu_dma_sync_single_for_cpu(dev, sg_dma_address(sg),
1007 sg->length, dir);
1008 else if (!dev_is_dma_coherent(dev))
1009 for_each_sg(sgl, sg, nelems, i)
1010 arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir);
1011 }
1012
iommu_dma_sync_sg_for_device(struct device * dev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir)1013 static void iommu_dma_sync_sg_for_device(struct device *dev,
1014 struct scatterlist *sgl, int nelems,
1015 enum dma_data_direction dir)
1016 {
1017 struct scatterlist *sg;
1018 int i;
1019
1020 if (sg_dma_is_swiotlb(sgl))
1021 for_each_sg(sgl, sg, nelems, i)
1022 iommu_dma_sync_single_for_device(dev,
1023 sg_dma_address(sg),
1024 sg->length, dir);
1025 else if (!dev_is_dma_coherent(dev))
1026 for_each_sg(sgl, sg, nelems, i)
1027 arch_sync_dma_for_device(sg_phys(sg), sg->length, dir);
1028 }
1029
iommu_dma_map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,unsigned long attrs)1030 static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
1031 unsigned long offset, size_t size, enum dma_data_direction dir,
1032 unsigned long attrs)
1033 {
1034 phys_addr_t phys = page_to_phys(page) + offset;
1035 bool coherent = dev_is_dma_coherent(dev);
1036 int prot = dma_info_to_prot(dir, coherent, attrs);
1037 struct iommu_domain *domain = iommu_get_dma_domain(dev);
1038 struct iommu_dma_cookie *cookie = domain->iova_cookie;
1039 struct iova_domain *iovad = &cookie->iovad;
1040 dma_addr_t iova, dma_mask = dma_get_mask(dev);
1041
1042 /*
1043 * If both the physical buffer start address and size are
1044 * page aligned, we don't need to use a bounce page.
1045 */
1046 if (dev_use_swiotlb(dev, size, dir) &&
1047 iova_offset(iovad, phys | size)) {
1048 void *padding_start;
1049 size_t padding_size, aligned_size;
1050
1051 if (!is_swiotlb_active(dev)) {
1052 dev_warn_once(dev, "DMA bounce buffers are inactive, unable to map unaligned transaction.\n");
1053 return DMA_MAPPING_ERROR;
1054 }
1055
1056 trace_swiotlb_bounced(dev, phys, size);
1057
1058 aligned_size = iova_align(iovad, size);
1059 phys = swiotlb_tbl_map_single(dev, phys, size, aligned_size,
1060 iova_mask(iovad), dir, attrs);
1061
1062 if (phys == DMA_MAPPING_ERROR)
1063 return DMA_MAPPING_ERROR;
1064
1065 /* Cleanup the padding area. */
1066 padding_start = phys_to_virt(phys);
1067 padding_size = aligned_size;
1068
1069 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
1070 (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) {
1071 padding_start += size;
1072 padding_size -= size;
1073 }
1074
1075 memset(padding_start, 0, padding_size);
1076 }
1077
1078 if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1079 arch_sync_dma_for_device(phys, size, dir);
1080
1081 iova = __iommu_dma_map(dev, phys, size, prot, dma_mask);
1082 if (iova == DMA_MAPPING_ERROR && is_swiotlb_buffer(dev, phys))
1083 swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
1084 return iova;
1085 }
1086
iommu_dma_unmap_page(struct device * dev,dma_addr_t dma_handle,size_t size,enum dma_data_direction dir,unsigned long attrs)1087 static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle,
1088 size_t size, enum dma_data_direction dir, unsigned long attrs)
1089 {
1090 struct iommu_domain *domain = iommu_get_dma_domain(dev);
1091 phys_addr_t phys;
1092
1093 phys = iommu_iova_to_phys(domain, dma_handle);
1094 if (WARN_ON(!phys))
1095 return;
1096
1097 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && !dev_is_dma_coherent(dev))
1098 arch_sync_dma_for_cpu(phys, size, dir);
1099
1100 __iommu_dma_unmap(dev, dma_handle, size);
1101
1102 if (unlikely(is_swiotlb_buffer(dev, phys)))
1103 swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
1104 }
1105
1106 /*
1107 * Prepare a successfully-mapped scatterlist to give back to the caller.
1108 *
1109 * At this point the segments are already laid out by iommu_dma_map_sg() to
1110 * avoid individually crossing any boundaries, so we merely need to check a
1111 * segment's start address to avoid concatenating across one.
1112 */
__finalise_sg(struct device * dev,struct scatterlist * sg,int nents,dma_addr_t dma_addr)1113 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
1114 dma_addr_t dma_addr)
1115 {
1116 struct scatterlist *s, *cur = sg;
1117 unsigned long seg_mask = dma_get_seg_boundary(dev);
1118 unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
1119 int i, count = 0;
1120
1121 for_each_sg(sg, s, nents, i) {
1122 /* Restore this segment's original unaligned fields first */
1123 dma_addr_t s_dma_addr = sg_dma_address(s);
1124 unsigned int s_iova_off = sg_dma_address(s);
1125 unsigned int s_length = sg_dma_len(s);
1126 unsigned int s_iova_len = s->length;
1127
1128 sg_dma_address(s) = DMA_MAPPING_ERROR;
1129 sg_dma_len(s) = 0;
1130
1131 if (sg_dma_is_bus_address(s)) {
1132 if (i > 0)
1133 cur = sg_next(cur);
1134
1135 sg_dma_unmark_bus_address(s);
1136 sg_dma_address(cur) = s_dma_addr;
1137 sg_dma_len(cur) = s_length;
1138 sg_dma_mark_bus_address(cur);
1139 count++;
1140 cur_len = 0;
1141 continue;
1142 }
1143
1144 s->offset += s_iova_off;
1145 s->length = s_length;
1146
1147 /*
1148 * Now fill in the real DMA data. If...
1149 * - there is a valid output segment to append to
1150 * - and this segment starts on an IOVA page boundary
1151 * - but doesn't fall at a segment boundary
1152 * - and wouldn't make the resulting output segment too long
1153 */
1154 if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
1155 (max_len - cur_len >= s_length)) {
1156 /* ...then concatenate it with the previous one */
1157 cur_len += s_length;
1158 } else {
1159 /* Otherwise start the next output segment */
1160 if (i > 0)
1161 cur = sg_next(cur);
1162 cur_len = s_length;
1163 count++;
1164
1165 sg_dma_address(cur) = dma_addr + s_iova_off;
1166 }
1167
1168 sg_dma_len(cur) = cur_len;
1169 dma_addr += s_iova_len;
1170
1171 if (s_length + s_iova_off < s_iova_len)
1172 cur_len = 0;
1173 }
1174 return count;
1175 }
1176
1177 /*
1178 * If mapping failed, then just restore the original list,
1179 * but making sure the DMA fields are invalidated.
1180 */
__invalidate_sg(struct scatterlist * sg,int nents)1181 static void __invalidate_sg(struct scatterlist *sg, int nents)
1182 {
1183 struct scatterlist *s;
1184 int i;
1185
1186 for_each_sg(sg, s, nents, i) {
1187 if (sg_dma_is_bus_address(s)) {
1188 sg_dma_unmark_bus_address(s);
1189 } else {
1190 if (sg_dma_address(s) != DMA_MAPPING_ERROR)
1191 s->offset += sg_dma_address(s);
1192 if (sg_dma_len(s))
1193 s->length = sg_dma_len(s);
1194 }
1195 sg_dma_address(s) = DMA_MAPPING_ERROR;
1196 sg_dma_len(s) = 0;
1197 }
1198 }
1199
iommu_dma_unmap_sg_swiotlb(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)1200 static void iommu_dma_unmap_sg_swiotlb(struct device *dev, struct scatterlist *sg,
1201 int nents, enum dma_data_direction dir, unsigned long attrs)
1202 {
1203 struct scatterlist *s;
1204 int i;
1205
1206 for_each_sg(sg, s, nents, i)
1207 iommu_dma_unmap_page(dev, sg_dma_address(s),
1208 sg_dma_len(s), dir, attrs);
1209 }
1210
iommu_dma_map_sg_swiotlb(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)1211 static int iommu_dma_map_sg_swiotlb(struct device *dev, struct scatterlist *sg,
1212 int nents, enum dma_data_direction dir, unsigned long attrs)
1213 {
1214 struct scatterlist *s;
1215 int i;
1216
1217 sg_dma_mark_swiotlb(sg);
1218
1219 for_each_sg(sg, s, nents, i) {
1220 sg_dma_address(s) = iommu_dma_map_page(dev, sg_page(s),
1221 s->offset, s->length, dir, attrs);
1222 if (sg_dma_address(s) == DMA_MAPPING_ERROR)
1223 goto out_unmap;
1224 sg_dma_len(s) = s->length;
1225 }
1226
1227 return nents;
1228
1229 out_unmap:
1230 iommu_dma_unmap_sg_swiotlb(dev, sg, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
1231 return -EIO;
1232 }
1233
1234 /*
1235 * The DMA API client is passing in a scatterlist which could describe
1236 * any old buffer layout, but the IOMMU API requires everything to be
1237 * aligned to IOMMU pages. Hence the need for this complicated bit of
1238 * impedance-matching, to be able to hand off a suitably-aligned list,
1239 * but still preserve the original offsets and sizes for the caller.
1240 */
iommu_dma_map_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)1241 static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
1242 int nents, enum dma_data_direction dir, unsigned long attrs)
1243 {
1244 struct iommu_domain *domain = iommu_get_dma_domain(dev);
1245 struct iommu_dma_cookie *cookie = domain->iova_cookie;
1246 struct iova_domain *iovad = &cookie->iovad;
1247 struct scatterlist *s, *prev = NULL;
1248 int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs);
1249 struct pci_p2pdma_map_state p2pdma_state = {};
1250 enum pci_p2pdma_map_type map;
1251 dma_addr_t iova;
1252 size_t iova_len = 0;
1253 unsigned long mask = dma_get_seg_boundary(dev);
1254 ssize_t ret;
1255 int i;
1256
1257 if (static_branch_unlikely(&iommu_deferred_attach_enabled)) {
1258 ret = iommu_deferred_attach(dev, domain);
1259 if (ret)
1260 goto out;
1261 }
1262
1263 if (dev_use_sg_swiotlb(dev, sg, nents, dir))
1264 return iommu_dma_map_sg_swiotlb(dev, sg, nents, dir, attrs);
1265
1266 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1267 iommu_dma_sync_sg_for_device(dev, sg, nents, dir);
1268
1269 /*
1270 * Work out how much IOVA space we need, and align the segments to
1271 * IOVA granules for the IOMMU driver to handle. With some clever
1272 * trickery we can modify the list in-place, but reversibly, by
1273 * stashing the unaligned parts in the as-yet-unused DMA fields.
1274 */
1275 for_each_sg(sg, s, nents, i) {
1276 size_t s_iova_off = iova_offset(iovad, s->offset);
1277 size_t s_length = s->length;
1278 size_t pad_len = (mask - iova_len + 1) & mask;
1279
1280 if (is_pci_p2pdma_page(sg_page(s))) {
1281 map = pci_p2pdma_map_segment(&p2pdma_state, dev, s);
1282 switch (map) {
1283 case PCI_P2PDMA_MAP_BUS_ADDR:
1284 /*
1285 * iommu_map_sg() will skip this segment as
1286 * it is marked as a bus address,
1287 * __finalise_sg() will copy the dma address
1288 * into the output segment.
1289 */
1290 continue;
1291 case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
1292 /*
1293 * Mapping through host bridge should be
1294 * mapped with regular IOVAs, thus we
1295 * do nothing here and continue below.
1296 */
1297 break;
1298 default:
1299 ret = -EREMOTEIO;
1300 goto out_restore_sg;
1301 }
1302 }
1303
1304 sg_dma_address(s) = s_iova_off;
1305 sg_dma_len(s) = s_length;
1306 s->offset -= s_iova_off;
1307 s_length = iova_align(iovad, s_length + s_iova_off);
1308 s->length = s_length;
1309
1310 /*
1311 * Due to the alignment of our single IOVA allocation, we can
1312 * depend on these assumptions about the segment boundary mask:
1313 * - If mask size >= IOVA size, then the IOVA range cannot
1314 * possibly fall across a boundary, so we don't care.
1315 * - If mask size < IOVA size, then the IOVA range must start
1316 * exactly on a boundary, therefore we can lay things out
1317 * based purely on segment lengths without needing to know
1318 * the actual addresses beforehand.
1319 * - The mask must be a power of 2, so pad_len == 0 if
1320 * iova_len == 0, thus we cannot dereference prev the first
1321 * time through here (i.e. before it has a meaningful value).
1322 */
1323 if (pad_len && pad_len < s_length - 1) {
1324 prev->length += pad_len;
1325 iova_len += pad_len;
1326 }
1327
1328 iova_len += s_length;
1329 prev = s;
1330 }
1331
1332 if (!iova_len)
1333 return __finalise_sg(dev, sg, nents, 0);
1334
1335 iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
1336 if (!iova) {
1337 ret = -ENOMEM;
1338 goto out_restore_sg;
1339 }
1340
1341 /*
1342 * We'll leave any physical concatenation to the IOMMU driver's
1343 * implementation - it knows better than we do.
1344 */
1345 ret = iommu_map_sg(domain, iova, sg, nents, prot, GFP_ATOMIC);
1346 if (ret < 0 || ret < iova_len)
1347 goto out_free_iova;
1348
1349 return __finalise_sg(dev, sg, nents, iova);
1350
1351 out_free_iova:
1352 iommu_dma_free_iova(cookie, iova, iova_len, NULL);
1353 out_restore_sg:
1354 __invalidate_sg(sg, nents);
1355 out:
1356 if (ret != -ENOMEM && ret != -EREMOTEIO)
1357 return -EINVAL;
1358 return ret;
1359 }
1360
iommu_dma_unmap_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)1361 static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
1362 int nents, enum dma_data_direction dir, unsigned long attrs)
1363 {
1364 dma_addr_t end = 0, start;
1365 struct scatterlist *tmp;
1366 int i;
1367
1368 if (sg_dma_is_swiotlb(sg)) {
1369 iommu_dma_unmap_sg_swiotlb(dev, sg, nents, dir, attrs);
1370 return;
1371 }
1372
1373 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1374 iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir);
1375
1376 /*
1377 * The scatterlist segments are mapped into a single
1378 * contiguous IOVA allocation, the start and end points
1379 * just have to be determined.
1380 */
1381 for_each_sg(sg, tmp, nents, i) {
1382 if (sg_dma_is_bus_address(tmp)) {
1383 sg_dma_unmark_bus_address(tmp);
1384 continue;
1385 }
1386
1387 if (sg_dma_len(tmp) == 0)
1388 break;
1389
1390 start = sg_dma_address(tmp);
1391 break;
1392 }
1393
1394 nents -= i;
1395 for_each_sg(tmp, tmp, nents, i) {
1396 if (sg_dma_is_bus_address(tmp)) {
1397 sg_dma_unmark_bus_address(tmp);
1398 continue;
1399 }
1400
1401 if (sg_dma_len(tmp) == 0)
1402 break;
1403
1404 end = sg_dma_address(tmp) + sg_dma_len(tmp);
1405 }
1406
1407 if (end)
1408 __iommu_dma_unmap(dev, start, end - start);
1409 }
1410
iommu_dma_map_resource(struct device * dev,phys_addr_t phys,size_t size,enum dma_data_direction dir,unsigned long attrs)1411 static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
1412 size_t size, enum dma_data_direction dir, unsigned long attrs)
1413 {
1414 return __iommu_dma_map(dev, phys, size,
1415 dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO,
1416 dma_get_mask(dev));
1417 }
1418
iommu_dma_unmap_resource(struct device * dev,dma_addr_t handle,size_t size,enum dma_data_direction dir,unsigned long attrs)1419 static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
1420 size_t size, enum dma_data_direction dir, unsigned long attrs)
1421 {
1422 __iommu_dma_unmap(dev, handle, size);
1423 }
1424
__iommu_dma_free(struct device * dev,size_t size,void * cpu_addr)1425 static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr)
1426 {
1427 size_t alloc_size = PAGE_ALIGN(size);
1428 int count = alloc_size >> PAGE_SHIFT;
1429 struct page *page = NULL, **pages = NULL;
1430
1431 /* Non-coherent atomic allocation? Easy */
1432 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1433 dma_free_from_pool(dev, cpu_addr, alloc_size))
1434 return;
1435
1436 if (is_vmalloc_addr(cpu_addr)) {
1437 /*
1438 * If it the address is remapped, then it's either non-coherent
1439 * or highmem CMA, or an iommu_dma_alloc_remap() construction.
1440 */
1441 pages = dma_common_find_pages(cpu_addr);
1442 if (!pages)
1443 page = vmalloc_to_page(cpu_addr);
1444 dma_common_free_remap(cpu_addr, alloc_size);
1445 } else {
1446 /* Lowmem means a coherent atomic or CMA allocation */
1447 page = virt_to_page(cpu_addr);
1448 }
1449
1450 if (pages)
1451 __iommu_dma_free_pages(pages, count);
1452 if (page)
1453 dma_free_contiguous(dev, page, alloc_size);
1454 }
1455
iommu_dma_free(struct device * dev,size_t size,void * cpu_addr,dma_addr_t handle,unsigned long attrs)1456 static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr,
1457 dma_addr_t handle, unsigned long attrs)
1458 {
1459 __iommu_dma_unmap(dev, handle, size);
1460 __iommu_dma_free(dev, size, cpu_addr);
1461 }
1462
iommu_dma_alloc_pages(struct device * dev,size_t size,struct page ** pagep,gfp_t gfp,unsigned long attrs)1463 static void *iommu_dma_alloc_pages(struct device *dev, size_t size,
1464 struct page **pagep, gfp_t gfp, unsigned long attrs)
1465 {
1466 bool coherent = dev_is_dma_coherent(dev);
1467 size_t alloc_size = PAGE_ALIGN(size);
1468 int node = dev_to_node(dev);
1469 struct page *page = NULL;
1470 void *cpu_addr;
1471
1472 page = dma_alloc_contiguous(dev, alloc_size, gfp);
1473 if (!page)
1474 page = alloc_pages_node(node, gfp, get_order(alloc_size));
1475 if (!page)
1476 return NULL;
1477
1478 if (!coherent || PageHighMem(page)) {
1479 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
1480
1481 cpu_addr = dma_common_contiguous_remap(page, alloc_size,
1482 prot, __builtin_return_address(0));
1483 if (!cpu_addr)
1484 goto out_free_pages;
1485
1486 if (!coherent)
1487 arch_dma_prep_coherent(page, size);
1488 } else {
1489 cpu_addr = page_address(page);
1490 }
1491
1492 *pagep = page;
1493 memset(cpu_addr, 0, alloc_size);
1494 return cpu_addr;
1495 out_free_pages:
1496 dma_free_contiguous(dev, page, alloc_size);
1497 return NULL;
1498 }
1499
iommu_dma_alloc(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp,unsigned long attrs)1500 static void *iommu_dma_alloc(struct device *dev, size_t size,
1501 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1502 {
1503 bool coherent = dev_is_dma_coherent(dev);
1504 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
1505 struct page *page = NULL;
1506 void *cpu_addr;
1507
1508 gfp |= __GFP_ZERO;
1509
1510 if (gfpflags_allow_blocking(gfp) &&
1511 !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) {
1512 return iommu_dma_alloc_remap(dev, size, handle, gfp,
1513 dma_pgprot(dev, PAGE_KERNEL, attrs), attrs);
1514 }
1515
1516 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1517 !gfpflags_allow_blocking(gfp) && !coherent)
1518 page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr,
1519 gfp, NULL);
1520 else
1521 cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs);
1522 if (!cpu_addr)
1523 return NULL;
1524
1525 *handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot,
1526 dev->coherent_dma_mask);
1527 if (*handle == DMA_MAPPING_ERROR) {
1528 __iommu_dma_free(dev, size, cpu_addr);
1529 return NULL;
1530 }
1531
1532 return cpu_addr;
1533 }
1534
iommu_dma_mmap(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)1535 static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma,
1536 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1537 unsigned long attrs)
1538 {
1539 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1540 unsigned long pfn, off = vma->vm_pgoff;
1541 int ret;
1542
1543 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
1544
1545 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
1546 return ret;
1547
1548 if (off >= nr_pages || vma_pages(vma) > nr_pages - off)
1549 return -ENXIO;
1550
1551 if (is_vmalloc_addr(cpu_addr)) {
1552 struct page **pages = dma_common_find_pages(cpu_addr);
1553
1554 if (pages)
1555 return vm_map_pages(vma, pages, nr_pages);
1556 pfn = vmalloc_to_pfn(cpu_addr);
1557 } else {
1558 pfn = page_to_pfn(virt_to_page(cpu_addr));
1559 }
1560
1561 return remap_pfn_range(vma, vma->vm_start, pfn + off,
1562 vma->vm_end - vma->vm_start,
1563 vma->vm_page_prot);
1564 }
1565
iommu_dma_get_sgtable(struct device * dev,struct sg_table * sgt,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)1566 static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
1567 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1568 unsigned long attrs)
1569 {
1570 struct page *page;
1571 int ret;
1572
1573 if (is_vmalloc_addr(cpu_addr)) {
1574 struct page **pages = dma_common_find_pages(cpu_addr);
1575
1576 if (pages) {
1577 return sg_alloc_table_from_pages(sgt, pages,
1578 PAGE_ALIGN(size) >> PAGE_SHIFT,
1579 0, size, GFP_KERNEL);
1580 }
1581
1582 page = vmalloc_to_page(cpu_addr);
1583 } else {
1584 page = virt_to_page(cpu_addr);
1585 }
1586
1587 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
1588 if (!ret)
1589 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
1590 return ret;
1591 }
1592
iommu_dma_get_merge_boundary(struct device * dev)1593 static unsigned long iommu_dma_get_merge_boundary(struct device *dev)
1594 {
1595 struct iommu_domain *domain = iommu_get_dma_domain(dev);
1596
1597 return (1UL << __ffs(domain->pgsize_bitmap)) - 1;
1598 }
1599
iommu_dma_opt_mapping_size(void)1600 static size_t iommu_dma_opt_mapping_size(void)
1601 {
1602 return iova_rcache_range();
1603 }
1604
iommu_dma_max_mapping_size(struct device * dev)1605 static size_t iommu_dma_max_mapping_size(struct device *dev)
1606 {
1607 if (dev_is_untrusted(dev))
1608 return swiotlb_max_mapping_size(dev);
1609
1610 return SIZE_MAX;
1611 }
1612
1613 static const struct dma_map_ops iommu_dma_ops = {
1614 .flags = DMA_F_PCI_P2PDMA_SUPPORTED,
1615 .alloc = iommu_dma_alloc,
1616 .free = iommu_dma_free,
1617 .alloc_pages = dma_common_alloc_pages,
1618 .free_pages = dma_common_free_pages,
1619 .alloc_noncontiguous = iommu_dma_alloc_noncontiguous,
1620 .free_noncontiguous = iommu_dma_free_noncontiguous,
1621 .mmap = iommu_dma_mmap,
1622 .get_sgtable = iommu_dma_get_sgtable,
1623 .map_page = iommu_dma_map_page,
1624 .unmap_page = iommu_dma_unmap_page,
1625 .map_sg = iommu_dma_map_sg,
1626 .unmap_sg = iommu_dma_unmap_sg,
1627 .sync_single_for_cpu = iommu_dma_sync_single_for_cpu,
1628 .sync_single_for_device = iommu_dma_sync_single_for_device,
1629 .sync_sg_for_cpu = iommu_dma_sync_sg_for_cpu,
1630 .sync_sg_for_device = iommu_dma_sync_sg_for_device,
1631 .map_resource = iommu_dma_map_resource,
1632 .unmap_resource = iommu_dma_unmap_resource,
1633 .get_merge_boundary = iommu_dma_get_merge_boundary,
1634 .opt_mapping_size = iommu_dma_opt_mapping_size,
1635 .max_mapping_size = iommu_dma_max_mapping_size,
1636 };
1637
1638 /*
1639 * The IOMMU core code allocates the default DMA domain, which the underlying
1640 * IOMMU driver needs to support via the dma-iommu layer.
1641 */
iommu_setup_dma_ops(struct device * dev,u64 dma_base,u64 dma_limit)1642 void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 dma_limit)
1643 {
1644 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1645
1646 if (!domain)
1647 goto out_err;
1648
1649 /*
1650 * The IOMMU core code allocates the default DMA domain, which the
1651 * underlying IOMMU driver needs to support via the dma-iommu layer.
1652 */
1653 if (iommu_is_dma_domain(domain)) {
1654 if (iommu_dma_init_domain(domain, dma_base, dma_limit, dev))
1655 goto out_err;
1656 dev->dma_ops = &iommu_dma_ops;
1657 }
1658
1659 return;
1660 out_err:
1661 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
1662 dev_name(dev));
1663 }
1664 EXPORT_SYMBOL_GPL(iommu_setup_dma_ops);
1665
iommu_dma_get_msi_page(struct device * dev,phys_addr_t msi_addr,struct iommu_domain * domain)1666 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
1667 phys_addr_t msi_addr, struct iommu_domain *domain)
1668 {
1669 struct iommu_dma_cookie *cookie = domain->iova_cookie;
1670 struct iommu_dma_msi_page *msi_page;
1671 dma_addr_t iova;
1672 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1673 size_t size = cookie_msi_granule(cookie);
1674
1675 msi_addr &= ~(phys_addr_t)(size - 1);
1676 list_for_each_entry(msi_page, &cookie->msi_page_list, list)
1677 if (msi_page->phys == msi_addr)
1678 return msi_page;
1679
1680 msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL);
1681 if (!msi_page)
1682 return NULL;
1683
1684 iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
1685 if (!iova)
1686 goto out_free_page;
1687
1688 if (iommu_map(domain, iova, msi_addr, size, prot, GFP_KERNEL))
1689 goto out_free_iova;
1690
1691 INIT_LIST_HEAD(&msi_page->list);
1692 msi_page->phys = msi_addr;
1693 msi_page->iova = iova;
1694 list_add(&msi_page->list, &cookie->msi_page_list);
1695 return msi_page;
1696
1697 out_free_iova:
1698 iommu_dma_free_iova(cookie, iova, size, NULL);
1699 out_free_page:
1700 kfree(msi_page);
1701 return NULL;
1702 }
1703
1704 /**
1705 * iommu_dma_prepare_msi() - Map the MSI page in the IOMMU domain
1706 * @desc: MSI descriptor, will store the MSI page
1707 * @msi_addr: MSI target address to be mapped
1708 *
1709 * Return: 0 on success or negative error code if the mapping failed.
1710 */
iommu_dma_prepare_msi(struct msi_desc * desc,phys_addr_t msi_addr)1711 int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)
1712 {
1713 struct device *dev = msi_desc_to_dev(desc);
1714 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1715 struct iommu_dma_msi_page *msi_page;
1716 static DEFINE_MUTEX(msi_prepare_lock); /* see below */
1717
1718 if (!domain || !domain->iova_cookie) {
1719 desc->iommu_cookie = NULL;
1720 return 0;
1721 }
1722
1723 /*
1724 * In fact the whole prepare operation should already be serialised by
1725 * irq_domain_mutex further up the callchain, but that's pretty subtle
1726 * on its own, so consider this locking as failsafe documentation...
1727 */
1728 mutex_lock(&msi_prepare_lock);
1729 msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
1730 mutex_unlock(&msi_prepare_lock);
1731
1732 msi_desc_set_iommu_cookie(desc, msi_page);
1733
1734 if (!msi_page)
1735 return -ENOMEM;
1736 return 0;
1737 }
1738
1739 /**
1740 * iommu_dma_compose_msi_msg() - Apply translation to an MSI message
1741 * @desc: MSI descriptor prepared by iommu_dma_prepare_msi()
1742 * @msg: MSI message containing target physical address
1743 */
iommu_dma_compose_msi_msg(struct msi_desc * desc,struct msi_msg * msg)1744 void iommu_dma_compose_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
1745 {
1746 struct device *dev = msi_desc_to_dev(desc);
1747 const struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1748 const struct iommu_dma_msi_page *msi_page;
1749
1750 msi_page = msi_desc_get_iommu_cookie(desc);
1751
1752 if (!domain || !domain->iova_cookie || WARN_ON(!msi_page))
1753 return;
1754
1755 msg->address_hi = upper_32_bits(msi_page->iova);
1756 msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1;
1757 msg->address_lo += lower_32_bits(msi_page->iova);
1758 }
1759
iommu_dma_init(void)1760 static int iommu_dma_init(void)
1761 {
1762 if (is_kdump_kernel())
1763 static_branch_enable(&iommu_deferred_attach_enabled);
1764
1765 return iova_cache_get();
1766 }
1767 arch_initcall(iommu_dma_init);
1768