1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * IOMMU API for ARM architected SMMU implementations. 4 * 5 * Copyright (C) 2013 ARM Limited 6 * 7 * Author: Will Deacon <will.deacon@arm.com> 8 * 9 * This driver currently supports: 10 * - SMMUv1 and v2 implementations 11 * - Stream-matching and stream-indexing 12 * - v7/v8 long-descriptor format 13 * - Non-secure access to the SMMU 14 * - Context fault reporting 15 * - Extended Stream ID (16 bit) 16 */ 17 18 #define pr_fmt(fmt) "arm-smmu: " fmt 19 20 #include <linux/acpi.h> 21 #include <linux/acpi_iort.h> 22 #include <linux/bitfield.h> 23 #include <linux/delay.h> 24 #include <linux/dma-iommu.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/err.h> 27 #include <linux/interrupt.h> 28 #include <linux/io.h> 29 #include <linux/iopoll.h> 30 #include <linux/module.h> 31 #include <linux/of.h> 32 #include <linux/of_address.h> 33 #include <linux/of_device.h> 34 #include <linux/pci.h> 35 #include <linux/platform_device.h> 36 #include <linux/pm_runtime.h> 37 #include <linux/ratelimit.h> 38 #include <linux/slab.h> 39 40 #include <linux/amba/bus.h> 41 #include <linux/fsl/mc.h> 42 43 #include "arm-smmu.h" 44 45 /* 46 * Apparently, some Qualcomm arm64 platforms which appear to expose their SMMU 47 * global register space are still, in fact, using a hypervisor to mediate it 48 * by trapping and emulating register accesses. Sadly, some deployed versions 49 * of said trapping code have bugs wherein they go horribly wrong for stores 50 * using r31 (i.e. XZR/WZR) as the source register. 51 */ 52 #define QCOM_DUMMY_VAL -1 53 54 #define MSI_IOVA_BASE 0x8000000 55 #define MSI_IOVA_LENGTH 0x100000 56 57 static int force_stage; 58 module_param(force_stage, int, S_IRUGO); 59 MODULE_PARM_DESC(force_stage, 60 "Force SMMU mappings to be installed at a particular stage of translation. A value of '1' or '2' forces the corresponding stage. All other values are ignored (i.e. no stage is forced). Note that selecting a specific stage will disable support for nested translation."); 61 static bool disable_bypass = 62 IS_ENABLED(CONFIG_ARM_SMMU_DISABLE_BYPASS_BY_DEFAULT); 63 module_param(disable_bypass, bool, S_IRUGO); 64 MODULE_PARM_DESC(disable_bypass, 65 "Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU."); 66 67 #define s2cr_init_val (struct arm_smmu_s2cr){ \ 68 .type = disable_bypass ? S2CR_TYPE_FAULT : S2CR_TYPE_BYPASS, \ 69 } 70 71 static bool using_legacy_binding, using_generic_binding; 72 73 static inline int arm_smmu_rpm_get(struct arm_smmu_device *smmu) 74 { 75 if (pm_runtime_enabled(smmu->dev)) 76 return pm_runtime_resume_and_get(smmu->dev); 77 78 return 0; 79 } 80 81 static inline void arm_smmu_rpm_put(struct arm_smmu_device *smmu) 82 { 83 if (pm_runtime_enabled(smmu->dev)) 84 pm_runtime_put_autosuspend(smmu->dev); 85 } 86 87 static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom) 88 { 89 return container_of(dom, struct arm_smmu_domain, domain); 90 } 91 92 static struct platform_driver arm_smmu_driver; 93 static struct iommu_ops arm_smmu_ops; 94 95 #ifdef CONFIG_ARM_SMMU_LEGACY_DT_BINDINGS 96 static int arm_smmu_bus_init(struct iommu_ops *ops); 97 98 static struct device_node *dev_get_dev_node(struct device *dev) 99 { 100 if (dev_is_pci(dev)) { 101 struct pci_bus *bus = to_pci_dev(dev)->bus; 102 103 while (!pci_is_root_bus(bus)) 104 bus = bus->parent; 105 return of_node_get(bus->bridge->parent->of_node); 106 } 107 108 return of_node_get(dev->of_node); 109 } 110 111 static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data) 112 { 113 *((__be32 *)data) = cpu_to_be32(alias); 114 return 0; /* Continue walking */ 115 } 116 117 static int __find_legacy_master_phandle(struct device *dev, void *data) 118 { 119 struct of_phandle_iterator *it = *(void **)data; 120 struct device_node *np = it->node; 121 int err; 122 123 of_for_each_phandle(it, err, dev->of_node, "mmu-masters", 124 "#stream-id-cells", -1) 125 if (it->node == np) { 126 *(void **)data = dev; 127 return 1; 128 } 129 it->node = np; 130 return err == -ENOENT ? 0 : err; 131 } 132 133 static int arm_smmu_register_legacy_master(struct device *dev, 134 struct arm_smmu_device **smmu) 135 { 136 struct device *smmu_dev; 137 struct device_node *np; 138 struct of_phandle_iterator it; 139 void *data = ⁢ 140 u32 *sids; 141 __be32 pci_sid; 142 int err; 143 144 np = dev_get_dev_node(dev); 145 if (!np || !of_find_property(np, "#stream-id-cells", NULL)) { 146 of_node_put(np); 147 return -ENODEV; 148 } 149 150 it.node = np; 151 err = driver_for_each_device(&arm_smmu_driver.driver, NULL, &data, 152 __find_legacy_master_phandle); 153 smmu_dev = data; 154 of_node_put(np); 155 if (err == 0) 156 return -ENODEV; 157 if (err < 0) 158 return err; 159 160 if (dev_is_pci(dev)) { 161 /* "mmu-masters" assumes Stream ID == Requester ID */ 162 pci_for_each_dma_alias(to_pci_dev(dev), __arm_smmu_get_pci_sid, 163 &pci_sid); 164 it.cur = &pci_sid; 165 it.cur_count = 1; 166 } 167 168 err = iommu_fwspec_init(dev, &smmu_dev->of_node->fwnode, 169 &arm_smmu_ops); 170 if (err) 171 return err; 172 173 sids = kcalloc(it.cur_count, sizeof(*sids), GFP_KERNEL); 174 if (!sids) 175 return -ENOMEM; 176 177 *smmu = dev_get_drvdata(smmu_dev); 178 of_phandle_iterator_args(&it, sids, it.cur_count); 179 err = iommu_fwspec_add_ids(dev, sids, it.cur_count); 180 kfree(sids); 181 return err; 182 } 183 184 /* 185 * With the legacy DT binding in play, we have no guarantees about 186 * probe order, but then we're also not doing default domains, so we can 187 * delay setting bus ops until we're sure every possible SMMU is ready, 188 * and that way ensure that no probe_device() calls get missed. 189 */ 190 static int arm_smmu_legacy_bus_init(void) 191 { 192 if (using_legacy_binding) 193 return arm_smmu_bus_init(&arm_smmu_ops); 194 return 0; 195 } 196 device_initcall_sync(arm_smmu_legacy_bus_init); 197 #else 198 static int arm_smmu_register_legacy_master(struct device *dev, 199 struct arm_smmu_device **smmu) 200 { 201 return -ENODEV; 202 } 203 #endif /* CONFIG_ARM_SMMU_LEGACY_DT_BINDINGS */ 204 205 static void __arm_smmu_free_bitmap(unsigned long *map, int idx) 206 { 207 clear_bit(idx, map); 208 } 209 210 /* Wait for any pending TLB invalidations to complete */ 211 static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu, int page, 212 int sync, int status) 213 { 214 unsigned int spin_cnt, delay; 215 u32 reg; 216 217 if (smmu->impl && unlikely(smmu->impl->tlb_sync)) 218 return smmu->impl->tlb_sync(smmu, page, sync, status); 219 220 arm_smmu_writel(smmu, page, sync, QCOM_DUMMY_VAL); 221 for (delay = 1; delay < TLB_LOOP_TIMEOUT; delay *= 2) { 222 for (spin_cnt = TLB_SPIN_COUNT; spin_cnt > 0; spin_cnt--) { 223 reg = arm_smmu_readl(smmu, page, status); 224 if (!(reg & ARM_SMMU_sTLBGSTATUS_GSACTIVE)) 225 return; 226 cpu_relax(); 227 } 228 udelay(delay); 229 } 230 dev_err_ratelimited(smmu->dev, 231 "TLB sync timed out -- SMMU may be deadlocked\n"); 232 } 233 234 static void arm_smmu_tlb_sync_global(struct arm_smmu_device *smmu) 235 { 236 unsigned long flags; 237 238 spin_lock_irqsave(&smmu->global_sync_lock, flags); 239 __arm_smmu_tlb_sync(smmu, ARM_SMMU_GR0, ARM_SMMU_GR0_sTLBGSYNC, 240 ARM_SMMU_GR0_sTLBGSTATUS); 241 spin_unlock_irqrestore(&smmu->global_sync_lock, flags); 242 } 243 244 static void arm_smmu_tlb_sync_context(struct arm_smmu_domain *smmu_domain) 245 { 246 struct arm_smmu_device *smmu = smmu_domain->smmu; 247 unsigned long flags; 248 249 spin_lock_irqsave(&smmu_domain->cb_lock, flags); 250 __arm_smmu_tlb_sync(smmu, ARM_SMMU_CB(smmu, smmu_domain->cfg.cbndx), 251 ARM_SMMU_CB_TLBSYNC, ARM_SMMU_CB_TLBSTATUS); 252 spin_unlock_irqrestore(&smmu_domain->cb_lock, flags); 253 } 254 255 static void arm_smmu_tlb_inv_context_s1(void *cookie) 256 { 257 struct arm_smmu_domain *smmu_domain = cookie; 258 /* 259 * The TLBI write may be relaxed, so ensure that PTEs cleared by the 260 * current CPU are visible beforehand. 261 */ 262 wmb(); 263 arm_smmu_cb_write(smmu_domain->smmu, smmu_domain->cfg.cbndx, 264 ARM_SMMU_CB_S1_TLBIASID, smmu_domain->cfg.asid); 265 arm_smmu_tlb_sync_context(smmu_domain); 266 } 267 268 static void arm_smmu_tlb_inv_context_s2(void *cookie) 269 { 270 struct arm_smmu_domain *smmu_domain = cookie; 271 struct arm_smmu_device *smmu = smmu_domain->smmu; 272 273 /* See above */ 274 wmb(); 275 arm_smmu_gr0_write(smmu, ARM_SMMU_GR0_TLBIVMID, smmu_domain->cfg.vmid); 276 arm_smmu_tlb_sync_global(smmu); 277 } 278 279 static void arm_smmu_tlb_inv_range_s1(unsigned long iova, size_t size, 280 size_t granule, void *cookie, int reg) 281 { 282 struct arm_smmu_domain *smmu_domain = cookie; 283 struct arm_smmu_device *smmu = smmu_domain->smmu; 284 struct arm_smmu_cfg *cfg = &smmu_domain->cfg; 285 int idx = cfg->cbndx; 286 287 if (smmu->features & ARM_SMMU_FEAT_COHERENT_WALK) 288 wmb(); 289 290 if (cfg->fmt != ARM_SMMU_CTX_FMT_AARCH64) { 291 iova = (iova >> 12) << 12; 292 iova |= cfg->asid; 293 do { 294 arm_smmu_cb_write(smmu, idx, reg, iova); 295 iova += granule; 296 } while (size -= granule); 297 } else { 298 iova >>= 12; 299 iova |= (u64)cfg->asid << 48; 300 do { 301 arm_smmu_cb_writeq(smmu, idx, reg, iova); 302 iova += granule >> 12; 303 } while (size -= granule); 304 } 305 } 306 307 static void arm_smmu_tlb_inv_range_s2(unsigned long iova, size_t size, 308 size_t granule, void *cookie, int reg) 309 { 310 struct arm_smmu_domain *smmu_domain = cookie; 311 struct arm_smmu_device *smmu = smmu_domain->smmu; 312 int idx = smmu_domain->cfg.cbndx; 313 314 if (smmu->features & ARM_SMMU_FEAT_COHERENT_WALK) 315 wmb(); 316 317 iova >>= 12; 318 do { 319 if (smmu_domain->cfg.fmt == ARM_SMMU_CTX_FMT_AARCH64) 320 arm_smmu_cb_writeq(smmu, idx, reg, iova); 321 else 322 arm_smmu_cb_write(smmu, idx, reg, iova); 323 iova += granule >> 12; 324 } while (size -= granule); 325 } 326 327 static void arm_smmu_tlb_inv_walk_s1(unsigned long iova, size_t size, 328 size_t granule, void *cookie) 329 { 330 struct arm_smmu_domain *smmu_domain = cookie; 331 struct arm_smmu_cfg *cfg = &smmu_domain->cfg; 332 333 if (cfg->flush_walk_prefer_tlbiasid) { 334 arm_smmu_tlb_inv_context_s1(cookie); 335 } else { 336 arm_smmu_tlb_inv_range_s1(iova, size, granule, cookie, 337 ARM_SMMU_CB_S1_TLBIVA); 338 arm_smmu_tlb_sync_context(cookie); 339 } 340 } 341 342 static void arm_smmu_tlb_add_page_s1(struct iommu_iotlb_gather *gather, 343 unsigned long iova, size_t granule, 344 void *cookie) 345 { 346 arm_smmu_tlb_inv_range_s1(iova, granule, granule, cookie, 347 ARM_SMMU_CB_S1_TLBIVAL); 348 } 349 350 static void arm_smmu_tlb_inv_walk_s2(unsigned long iova, size_t size, 351 size_t granule, void *cookie) 352 { 353 arm_smmu_tlb_inv_range_s2(iova, size, granule, cookie, 354 ARM_SMMU_CB_S2_TLBIIPAS2); 355 arm_smmu_tlb_sync_context(cookie); 356 } 357 358 static void arm_smmu_tlb_add_page_s2(struct iommu_iotlb_gather *gather, 359 unsigned long iova, size_t granule, 360 void *cookie) 361 { 362 arm_smmu_tlb_inv_range_s2(iova, granule, granule, cookie, 363 ARM_SMMU_CB_S2_TLBIIPAS2L); 364 } 365 366 static void arm_smmu_tlb_inv_walk_s2_v1(unsigned long iova, size_t size, 367 size_t granule, void *cookie) 368 { 369 arm_smmu_tlb_inv_context_s2(cookie); 370 } 371 /* 372 * On MMU-401 at least, the cost of firing off multiple TLBIVMIDs appears 373 * almost negligible, but the benefit of getting the first one in as far ahead 374 * of the sync as possible is significant, hence we don't just make this a 375 * no-op and call arm_smmu_tlb_inv_context_s2() from .iotlb_sync as you might 376 * think. 377 */ 378 static void arm_smmu_tlb_add_page_s2_v1(struct iommu_iotlb_gather *gather, 379 unsigned long iova, size_t granule, 380 void *cookie) 381 { 382 struct arm_smmu_domain *smmu_domain = cookie; 383 struct arm_smmu_device *smmu = smmu_domain->smmu; 384 385 if (smmu->features & ARM_SMMU_FEAT_COHERENT_WALK) 386 wmb(); 387 388 arm_smmu_gr0_write(smmu, ARM_SMMU_GR0_TLBIVMID, smmu_domain->cfg.vmid); 389 } 390 391 static const struct iommu_flush_ops arm_smmu_s1_tlb_ops = { 392 .tlb_flush_all = arm_smmu_tlb_inv_context_s1, 393 .tlb_flush_walk = arm_smmu_tlb_inv_walk_s1, 394 .tlb_add_page = arm_smmu_tlb_add_page_s1, 395 }; 396 397 static const struct iommu_flush_ops arm_smmu_s2_tlb_ops_v2 = { 398 .tlb_flush_all = arm_smmu_tlb_inv_context_s2, 399 .tlb_flush_walk = arm_smmu_tlb_inv_walk_s2, 400 .tlb_add_page = arm_smmu_tlb_add_page_s2, 401 }; 402 403 static const struct iommu_flush_ops arm_smmu_s2_tlb_ops_v1 = { 404 .tlb_flush_all = arm_smmu_tlb_inv_context_s2, 405 .tlb_flush_walk = arm_smmu_tlb_inv_walk_s2_v1, 406 .tlb_add_page = arm_smmu_tlb_add_page_s2_v1, 407 }; 408 409 static irqreturn_t arm_smmu_context_fault(int irq, void *dev) 410 { 411 u32 fsr, fsynr, cbfrsynra; 412 unsigned long iova; 413 struct iommu_domain *domain = dev; 414 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain); 415 struct arm_smmu_device *smmu = smmu_domain->smmu; 416 int idx = smmu_domain->cfg.cbndx; 417 int ret; 418 419 fsr = arm_smmu_cb_read(smmu, idx, ARM_SMMU_CB_FSR); 420 if (!(fsr & ARM_SMMU_FSR_FAULT)) 421 return IRQ_NONE; 422 423 fsynr = arm_smmu_cb_read(smmu, idx, ARM_SMMU_CB_FSYNR0); 424 iova = arm_smmu_cb_readq(smmu, idx, ARM_SMMU_CB_FAR); 425 cbfrsynra = arm_smmu_gr1_read(smmu, ARM_SMMU_GR1_CBFRSYNRA(idx)); 426 427 ret = report_iommu_fault(domain, NULL, iova, 428 fsynr & ARM_SMMU_FSYNR0_WNR ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ); 429 430 if (ret == -ENOSYS) 431 dev_err_ratelimited(smmu->dev, 432 "Unhandled context fault: fsr=0x%x, iova=0x%08lx, fsynr=0x%x, cbfrsynra=0x%x, cb=%d\n", 433 fsr, iova, fsynr, cbfrsynra, idx); 434 435 arm_smmu_cb_write(smmu, idx, ARM_SMMU_CB_FSR, fsr); 436 return IRQ_HANDLED; 437 } 438 439 static irqreturn_t arm_smmu_global_fault(int irq, void *dev) 440 { 441 u32 gfsr, gfsynr0, gfsynr1, gfsynr2; 442 struct arm_smmu_device *smmu = dev; 443 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, 444 DEFAULT_RATELIMIT_BURST); 445 446 gfsr = arm_smmu_gr0_read(smmu, ARM_SMMU_GR0_sGFSR); 447 gfsynr0 = arm_smmu_gr0_read(smmu, ARM_SMMU_GR0_sGFSYNR0); 448 gfsynr1 = arm_smmu_gr0_read(smmu, ARM_SMMU_GR0_sGFSYNR1); 449 gfsynr2 = arm_smmu_gr0_read(smmu, ARM_SMMU_GR0_sGFSYNR2); 450 451 if (!gfsr) 452 return IRQ_NONE; 453 454 if (__ratelimit(&rs)) { 455 if (IS_ENABLED(CONFIG_ARM_SMMU_DISABLE_BYPASS_BY_DEFAULT) && 456 (gfsr & ARM_SMMU_sGFSR_USF)) 457 dev_err(smmu->dev, 458 "Blocked unknown Stream ID 0x%hx; boot with \"arm-smmu.disable_bypass=0\" to allow, but this may have security implications\n", 459 (u16)gfsynr1); 460 else 461 dev_err(smmu->dev, 462 "Unexpected global fault, this could be serious\n"); 463 dev_err(smmu->dev, 464 "\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n", 465 gfsr, gfsynr0, gfsynr1, gfsynr2); 466 } 467 468 arm_smmu_gr0_write(smmu, ARM_SMMU_GR0_sGFSR, gfsr); 469 return IRQ_HANDLED; 470 } 471 472 static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain, 473 struct io_pgtable_cfg *pgtbl_cfg) 474 { 475 struct arm_smmu_cfg *cfg = &smmu_domain->cfg; 476 struct arm_smmu_cb *cb = &smmu_domain->smmu->cbs[cfg->cbndx]; 477 bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS; 478 479 cb->cfg = cfg; 480 481 /* TCR */ 482 if (stage1) { 483 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) { 484 cb->tcr[0] = pgtbl_cfg->arm_v7s_cfg.tcr; 485 } else { 486 cb->tcr[0] = arm_smmu_lpae_tcr(pgtbl_cfg); 487 cb->tcr[1] = arm_smmu_lpae_tcr2(pgtbl_cfg); 488 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64) 489 cb->tcr[1] |= ARM_SMMU_TCR2_AS; 490 else 491 cb->tcr[0] |= ARM_SMMU_TCR_EAE; 492 } 493 } else { 494 cb->tcr[0] = arm_smmu_lpae_vtcr(pgtbl_cfg); 495 } 496 497 /* TTBRs */ 498 if (stage1) { 499 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) { 500 cb->ttbr[0] = pgtbl_cfg->arm_v7s_cfg.ttbr; 501 cb->ttbr[1] = 0; 502 } else { 503 cb->ttbr[0] = FIELD_PREP(ARM_SMMU_TTBRn_ASID, 504 cfg->asid); 505 cb->ttbr[1] = FIELD_PREP(ARM_SMMU_TTBRn_ASID, 506 cfg->asid); 507 508 if (pgtbl_cfg->quirks & IO_PGTABLE_QUIRK_ARM_TTBR1) 509 cb->ttbr[1] |= pgtbl_cfg->arm_lpae_s1_cfg.ttbr; 510 else 511 cb->ttbr[0] |= pgtbl_cfg->arm_lpae_s1_cfg.ttbr; 512 } 513 } else { 514 cb->ttbr[0] = pgtbl_cfg->arm_lpae_s2_cfg.vttbr; 515 } 516 517 /* MAIRs (stage-1 only) */ 518 if (stage1) { 519 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) { 520 cb->mair[0] = pgtbl_cfg->arm_v7s_cfg.prrr; 521 cb->mair[1] = pgtbl_cfg->arm_v7s_cfg.nmrr; 522 } else { 523 cb->mair[0] = pgtbl_cfg->arm_lpae_s1_cfg.mair; 524 cb->mair[1] = pgtbl_cfg->arm_lpae_s1_cfg.mair >> 32; 525 } 526 } 527 } 528 529 void arm_smmu_write_context_bank(struct arm_smmu_device *smmu, int idx) 530 { 531 u32 reg; 532 bool stage1; 533 struct arm_smmu_cb *cb = &smmu->cbs[idx]; 534 struct arm_smmu_cfg *cfg = cb->cfg; 535 536 /* Unassigned context banks only need disabling */ 537 if (!cfg) { 538 arm_smmu_cb_write(smmu, idx, ARM_SMMU_CB_SCTLR, 0); 539 return; 540 } 541 542 stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS; 543 544 /* CBA2R */ 545 if (smmu->version > ARM_SMMU_V1) { 546 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64) 547 reg = ARM_SMMU_CBA2R_VA64; 548 else 549 reg = 0; 550 /* 16-bit VMIDs live in CBA2R */ 551 if (smmu->features & ARM_SMMU_FEAT_VMID16) 552 reg |= FIELD_PREP(ARM_SMMU_CBA2R_VMID16, cfg->vmid); 553 554 arm_smmu_gr1_write(smmu, ARM_SMMU_GR1_CBA2R(idx), reg); 555 } 556 557 /* CBAR */ 558 reg = FIELD_PREP(ARM_SMMU_CBAR_TYPE, cfg->cbar); 559 if (smmu->version < ARM_SMMU_V2) 560 reg |= FIELD_PREP(ARM_SMMU_CBAR_IRPTNDX, cfg->irptndx); 561 562 /* 563 * Use the weakest shareability/memory types, so they are 564 * overridden by the ttbcr/pte. 565 */ 566 if (stage1) { 567 reg |= FIELD_PREP(ARM_SMMU_CBAR_S1_BPSHCFG, 568 ARM_SMMU_CBAR_S1_BPSHCFG_NSH) | 569 FIELD_PREP(ARM_SMMU_CBAR_S1_MEMATTR, 570 ARM_SMMU_CBAR_S1_MEMATTR_WB); 571 } else if (!(smmu->features & ARM_SMMU_FEAT_VMID16)) { 572 /* 8-bit VMIDs live in CBAR */ 573 reg |= FIELD_PREP(ARM_SMMU_CBAR_VMID, cfg->vmid); 574 } 575 arm_smmu_gr1_write(smmu, ARM_SMMU_GR1_CBAR(idx), reg); 576 577 /* 578 * TCR 579 * We must write this before the TTBRs, since it determines the 580 * access behaviour of some fields (in particular, ASID[15:8]). 581 */ 582 if (stage1 && smmu->version > ARM_SMMU_V1) 583 arm_smmu_cb_write(smmu, idx, ARM_SMMU_CB_TCR2, cb->tcr[1]); 584 arm_smmu_cb_write(smmu, idx, ARM_SMMU_CB_TCR, cb->tcr[0]); 585 586 /* TTBRs */ 587 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) { 588 arm_smmu_cb_write(smmu, idx, ARM_SMMU_CB_CONTEXTIDR, cfg->asid); 589 arm_smmu_cb_write(smmu, idx, ARM_SMMU_CB_TTBR0, cb->ttbr[0]); 590 arm_smmu_cb_write(smmu, idx, ARM_SMMU_CB_TTBR1, cb->ttbr[1]); 591 } else { 592 arm_smmu_cb_writeq(smmu, idx, ARM_SMMU_CB_TTBR0, cb->ttbr[0]); 593 if (stage1) 594 arm_smmu_cb_writeq(smmu, idx, ARM_SMMU_CB_TTBR1, 595 cb->ttbr[1]); 596 } 597 598 /* MAIRs (stage-1 only) */ 599 if (stage1) { 600 arm_smmu_cb_write(smmu, idx, ARM_SMMU_CB_S1_MAIR0, cb->mair[0]); 601 arm_smmu_cb_write(smmu, idx, ARM_SMMU_CB_S1_MAIR1, cb->mair[1]); 602 } 603 604 /* SCTLR */ 605 reg = ARM_SMMU_SCTLR_CFIE | ARM_SMMU_SCTLR_CFRE | ARM_SMMU_SCTLR_AFE | 606 ARM_SMMU_SCTLR_TRE | ARM_SMMU_SCTLR_M; 607 if (stage1) 608 reg |= ARM_SMMU_SCTLR_S1_ASIDPNE; 609 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN)) 610 reg |= ARM_SMMU_SCTLR_E; 611 612 if (smmu->impl && smmu->impl->write_sctlr) 613 smmu->impl->write_sctlr(smmu, idx, reg); 614 else 615 arm_smmu_cb_write(smmu, idx, ARM_SMMU_CB_SCTLR, reg); 616 } 617 618 static int arm_smmu_alloc_context_bank(struct arm_smmu_domain *smmu_domain, 619 struct arm_smmu_device *smmu, 620 struct device *dev, unsigned int start) 621 { 622 if (smmu->impl && smmu->impl->alloc_context_bank) 623 return smmu->impl->alloc_context_bank(smmu_domain, smmu, dev, start); 624 625 return __arm_smmu_alloc_bitmap(smmu->context_map, start, smmu->num_context_banks); 626 } 627 628 static int arm_smmu_init_domain_context(struct iommu_domain *domain, 629 struct arm_smmu_device *smmu, 630 struct device *dev) 631 { 632 int irq, start, ret = 0; 633 unsigned long ias, oas; 634 struct io_pgtable_ops *pgtbl_ops; 635 struct io_pgtable_cfg pgtbl_cfg; 636 enum io_pgtable_fmt fmt; 637 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain); 638 struct arm_smmu_cfg *cfg = &smmu_domain->cfg; 639 irqreturn_t (*context_fault)(int irq, void *dev); 640 641 mutex_lock(&smmu_domain->init_mutex); 642 if (smmu_domain->smmu) 643 goto out_unlock; 644 645 if (domain->type == IOMMU_DOMAIN_IDENTITY) { 646 smmu_domain->stage = ARM_SMMU_DOMAIN_BYPASS; 647 smmu_domain->smmu = smmu; 648 goto out_unlock; 649 } 650 651 /* 652 * Mapping the requested stage onto what we support is surprisingly 653 * complicated, mainly because the spec allows S1+S2 SMMUs without 654 * support for nested translation. That means we end up with the 655 * following table: 656 * 657 * Requested Supported Actual 658 * S1 N S1 659 * S1 S1+S2 S1 660 * S1 S2 S2 661 * S1 S1 S1 662 * N N N 663 * N S1+S2 S2 664 * N S2 S2 665 * N S1 S1 666 * 667 * Note that you can't actually request stage-2 mappings. 668 */ 669 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1)) 670 smmu_domain->stage = ARM_SMMU_DOMAIN_S2; 671 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2)) 672 smmu_domain->stage = ARM_SMMU_DOMAIN_S1; 673 674 /* 675 * Choosing a suitable context format is even more fiddly. Until we 676 * grow some way for the caller to express a preference, and/or move 677 * the decision into the io-pgtable code where it arguably belongs, 678 * just aim for the closest thing to the rest of the system, and hope 679 * that the hardware isn't esoteric enough that we can't assume AArch64 680 * support to be a superset of AArch32 support... 681 */ 682 if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_L) 683 cfg->fmt = ARM_SMMU_CTX_FMT_AARCH32_L; 684 if (IS_ENABLED(CONFIG_IOMMU_IO_PGTABLE_ARMV7S) && 685 !IS_ENABLED(CONFIG_64BIT) && !IS_ENABLED(CONFIG_ARM_LPAE) && 686 (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_S) && 687 (smmu_domain->stage == ARM_SMMU_DOMAIN_S1)) 688 cfg->fmt = ARM_SMMU_CTX_FMT_AARCH32_S; 689 if ((IS_ENABLED(CONFIG_64BIT) || cfg->fmt == ARM_SMMU_CTX_FMT_NONE) && 690 (smmu->features & (ARM_SMMU_FEAT_FMT_AARCH64_64K | 691 ARM_SMMU_FEAT_FMT_AARCH64_16K | 692 ARM_SMMU_FEAT_FMT_AARCH64_4K))) 693 cfg->fmt = ARM_SMMU_CTX_FMT_AARCH64; 694 695 if (cfg->fmt == ARM_SMMU_CTX_FMT_NONE) { 696 ret = -EINVAL; 697 goto out_unlock; 698 } 699 700 switch (smmu_domain->stage) { 701 case ARM_SMMU_DOMAIN_S1: 702 cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS; 703 start = smmu->num_s2_context_banks; 704 ias = smmu->va_size; 705 oas = smmu->ipa_size; 706 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64) { 707 fmt = ARM_64_LPAE_S1; 708 } else if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_L) { 709 fmt = ARM_32_LPAE_S1; 710 ias = min(ias, 32UL); 711 oas = min(oas, 40UL); 712 } else { 713 fmt = ARM_V7S; 714 ias = min(ias, 32UL); 715 oas = min(oas, 32UL); 716 } 717 smmu_domain->flush_ops = &arm_smmu_s1_tlb_ops; 718 break; 719 case ARM_SMMU_DOMAIN_NESTED: 720 /* 721 * We will likely want to change this if/when KVM gets 722 * involved. 723 */ 724 case ARM_SMMU_DOMAIN_S2: 725 cfg->cbar = CBAR_TYPE_S2_TRANS; 726 start = 0; 727 ias = smmu->ipa_size; 728 oas = smmu->pa_size; 729 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64) { 730 fmt = ARM_64_LPAE_S2; 731 } else { 732 fmt = ARM_32_LPAE_S2; 733 ias = min(ias, 40UL); 734 oas = min(oas, 40UL); 735 } 736 if (smmu->version == ARM_SMMU_V2) 737 smmu_domain->flush_ops = &arm_smmu_s2_tlb_ops_v2; 738 else 739 smmu_domain->flush_ops = &arm_smmu_s2_tlb_ops_v1; 740 break; 741 default: 742 ret = -EINVAL; 743 goto out_unlock; 744 } 745 746 ret = arm_smmu_alloc_context_bank(smmu_domain, smmu, dev, start); 747 if (ret < 0) { 748 goto out_unlock; 749 } 750 751 smmu_domain->smmu = smmu; 752 753 cfg->cbndx = ret; 754 if (smmu->version < ARM_SMMU_V2) { 755 cfg->irptndx = atomic_inc_return(&smmu->irptndx); 756 cfg->irptndx %= smmu->num_context_irqs; 757 } else { 758 cfg->irptndx = cfg->cbndx; 759 } 760 761 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S2) 762 cfg->vmid = cfg->cbndx + 1; 763 else 764 cfg->asid = cfg->cbndx; 765 766 pgtbl_cfg = (struct io_pgtable_cfg) { 767 .pgsize_bitmap = smmu->pgsize_bitmap, 768 .ias = ias, 769 .oas = oas, 770 .coherent_walk = smmu->features & ARM_SMMU_FEAT_COHERENT_WALK, 771 .tlb = smmu_domain->flush_ops, 772 .iommu_dev = smmu->dev, 773 }; 774 775 if (smmu->impl && smmu->impl->init_context) { 776 ret = smmu->impl->init_context(smmu_domain, &pgtbl_cfg, dev); 777 if (ret) 778 goto out_clear_smmu; 779 } 780 781 if (smmu_domain->pgtbl_quirks) 782 pgtbl_cfg.quirks |= smmu_domain->pgtbl_quirks; 783 784 pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain); 785 if (!pgtbl_ops) { 786 ret = -ENOMEM; 787 goto out_clear_smmu; 788 } 789 790 /* Update the domain's page sizes to reflect the page table format */ 791 domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap; 792 793 if (pgtbl_cfg.quirks & IO_PGTABLE_QUIRK_ARM_TTBR1) { 794 domain->geometry.aperture_start = ~0UL << ias; 795 domain->geometry.aperture_end = ~0UL; 796 } else { 797 domain->geometry.aperture_end = (1UL << ias) - 1; 798 } 799 800 domain->geometry.force_aperture = true; 801 802 /* Initialise the context bank with our page table cfg */ 803 arm_smmu_init_context_bank(smmu_domain, &pgtbl_cfg); 804 arm_smmu_write_context_bank(smmu, cfg->cbndx); 805 806 /* 807 * Request context fault interrupt. Do this last to avoid the 808 * handler seeing a half-initialised domain state. 809 */ 810 irq = smmu->irqs[cfg->irptndx]; 811 812 if (smmu->impl && smmu->impl->context_fault) 813 context_fault = smmu->impl->context_fault; 814 else 815 context_fault = arm_smmu_context_fault; 816 817 ret = devm_request_irq(smmu->dev, irq, context_fault, 818 IRQF_SHARED, "arm-smmu-context-fault", domain); 819 if (ret < 0) { 820 dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n", 821 cfg->irptndx, irq); 822 cfg->irptndx = ARM_SMMU_INVALID_IRPTNDX; 823 } 824 825 mutex_unlock(&smmu_domain->init_mutex); 826 827 /* Publish page table ops for map/unmap */ 828 smmu_domain->pgtbl_ops = pgtbl_ops; 829 return 0; 830 831 out_clear_smmu: 832 __arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx); 833 smmu_domain->smmu = NULL; 834 out_unlock: 835 mutex_unlock(&smmu_domain->init_mutex); 836 return ret; 837 } 838 839 static void arm_smmu_destroy_domain_context(struct iommu_domain *domain) 840 { 841 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain); 842 struct arm_smmu_device *smmu = smmu_domain->smmu; 843 struct arm_smmu_cfg *cfg = &smmu_domain->cfg; 844 int ret, irq; 845 846 if (!smmu || domain->type == IOMMU_DOMAIN_IDENTITY) 847 return; 848 849 ret = arm_smmu_rpm_get(smmu); 850 if (ret < 0) 851 return; 852 853 /* 854 * Disable the context bank and free the page tables before freeing 855 * it. 856 */ 857 smmu->cbs[cfg->cbndx].cfg = NULL; 858 arm_smmu_write_context_bank(smmu, cfg->cbndx); 859 860 if (cfg->irptndx != ARM_SMMU_INVALID_IRPTNDX) { 861 irq = smmu->irqs[cfg->irptndx]; 862 devm_free_irq(smmu->dev, irq, domain); 863 } 864 865 free_io_pgtable_ops(smmu_domain->pgtbl_ops); 866 __arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx); 867 868 arm_smmu_rpm_put(smmu); 869 } 870 871 static struct iommu_domain *arm_smmu_domain_alloc(unsigned type) 872 { 873 struct arm_smmu_domain *smmu_domain; 874 875 if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_IDENTITY) { 876 if (using_legacy_binding || 877 (type != IOMMU_DOMAIN_DMA && type != IOMMU_DOMAIN_DMA_FQ)) 878 return NULL; 879 } 880 /* 881 * Allocate the domain and initialise some of its data structures. 882 * We can't really do anything meaningful until we've added a 883 * master. 884 */ 885 smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL); 886 if (!smmu_domain) 887 return NULL; 888 889 mutex_init(&smmu_domain->init_mutex); 890 spin_lock_init(&smmu_domain->cb_lock); 891 892 return &smmu_domain->domain; 893 } 894 895 static void arm_smmu_domain_free(struct iommu_domain *domain) 896 { 897 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain); 898 899 /* 900 * Free the domain resources. We assume that all devices have 901 * already been detached. 902 */ 903 arm_smmu_destroy_domain_context(domain); 904 kfree(smmu_domain); 905 } 906 907 static void arm_smmu_write_smr(struct arm_smmu_device *smmu, int idx) 908 { 909 struct arm_smmu_smr *smr = smmu->smrs + idx; 910 u32 reg = FIELD_PREP(ARM_SMMU_SMR_ID, smr->id) | 911 FIELD_PREP(ARM_SMMU_SMR_MASK, smr->mask); 912 913 if (!(smmu->features & ARM_SMMU_FEAT_EXIDS) && smr->valid) 914 reg |= ARM_SMMU_SMR_VALID; 915 arm_smmu_gr0_write(smmu, ARM_SMMU_GR0_SMR(idx), reg); 916 } 917 918 static void arm_smmu_write_s2cr(struct arm_smmu_device *smmu, int idx) 919 { 920 struct arm_smmu_s2cr *s2cr = smmu->s2crs + idx; 921 u32 reg; 922 923 if (smmu->impl && smmu->impl->write_s2cr) { 924 smmu->impl->write_s2cr(smmu, idx); 925 return; 926 } 927 928 reg = FIELD_PREP(ARM_SMMU_S2CR_TYPE, s2cr->type) | 929 FIELD_PREP(ARM_SMMU_S2CR_CBNDX, s2cr->cbndx) | 930 FIELD_PREP(ARM_SMMU_S2CR_PRIVCFG, s2cr->privcfg); 931 932 if (smmu->features & ARM_SMMU_FEAT_EXIDS && smmu->smrs && 933 smmu->smrs[idx].valid) 934 reg |= ARM_SMMU_S2CR_EXIDVALID; 935 arm_smmu_gr0_write(smmu, ARM_SMMU_GR0_S2CR(idx), reg); 936 } 937 938 static void arm_smmu_write_sme(struct arm_smmu_device *smmu, int idx) 939 { 940 arm_smmu_write_s2cr(smmu, idx); 941 if (smmu->smrs) 942 arm_smmu_write_smr(smmu, idx); 943 } 944 945 /* 946 * The width of SMR's mask field depends on sCR0_EXIDENABLE, so this function 947 * should be called after sCR0 is written. 948 */ 949 static void arm_smmu_test_smr_masks(struct arm_smmu_device *smmu) 950 { 951 u32 smr; 952 int i; 953 954 if (!smmu->smrs) 955 return; 956 /* 957 * If we've had to accommodate firmware memory regions, we may 958 * have live SMRs by now; tread carefully... 959 * 960 * Somewhat perversely, not having a free SMR for this test implies we 961 * can get away without it anyway, as we'll only be able to 'allocate' 962 * these SMRs for the ID/mask values we're already trusting to be OK. 963 */ 964 for (i = 0; i < smmu->num_mapping_groups; i++) 965 if (!smmu->smrs[i].valid) 966 goto smr_ok; 967 return; 968 smr_ok: 969 /* 970 * SMR.ID bits may not be preserved if the corresponding MASK 971 * bits are set, so check each one separately. We can reject 972 * masters later if they try to claim IDs outside these masks. 973 */ 974 smr = FIELD_PREP(ARM_SMMU_SMR_ID, smmu->streamid_mask); 975 arm_smmu_gr0_write(smmu, ARM_SMMU_GR0_SMR(i), smr); 976 smr = arm_smmu_gr0_read(smmu, ARM_SMMU_GR0_SMR(i)); 977 smmu->streamid_mask = FIELD_GET(ARM_SMMU_SMR_ID, smr); 978 979 smr = FIELD_PREP(ARM_SMMU_SMR_MASK, smmu->streamid_mask); 980 arm_smmu_gr0_write(smmu, ARM_SMMU_GR0_SMR(i), smr); 981 smr = arm_smmu_gr0_read(smmu, ARM_SMMU_GR0_SMR(i)); 982 smmu->smr_mask_mask = FIELD_GET(ARM_SMMU_SMR_MASK, smr); 983 } 984 985 static int arm_smmu_find_sme(struct arm_smmu_device *smmu, u16 id, u16 mask) 986 { 987 struct arm_smmu_smr *smrs = smmu->smrs; 988 int i, free_idx = -ENOSPC; 989 990 /* Stream indexing is blissfully easy */ 991 if (!smrs) 992 return id; 993 994 /* Validating SMRs is... less so */ 995 for (i = 0; i < smmu->num_mapping_groups; ++i) { 996 if (!smrs[i].valid) { 997 /* 998 * Note the first free entry we come across, which 999 * we'll claim in the end if nothing else matches. 1000 */ 1001 if (free_idx < 0) 1002 free_idx = i; 1003 continue; 1004 } 1005 /* 1006 * If the new entry is _entirely_ matched by an existing entry, 1007 * then reuse that, with the guarantee that there also cannot 1008 * be any subsequent conflicting entries. In normal use we'd 1009 * expect simply identical entries for this case, but there's 1010 * no harm in accommodating the generalisation. 1011 */ 1012 if ((mask & smrs[i].mask) == mask && 1013 !((id ^ smrs[i].id) & ~smrs[i].mask)) 1014 return i; 1015 /* 1016 * If the new entry has any other overlap with an existing one, 1017 * though, then there always exists at least one stream ID 1018 * which would cause a conflict, and we can't allow that risk. 1019 */ 1020 if (!((id ^ smrs[i].id) & ~(smrs[i].mask | mask))) 1021 return -EINVAL; 1022 } 1023 1024 return free_idx; 1025 } 1026 1027 static bool arm_smmu_free_sme(struct arm_smmu_device *smmu, int idx) 1028 { 1029 if (--smmu->s2crs[idx].count) 1030 return false; 1031 1032 smmu->s2crs[idx] = s2cr_init_val; 1033 if (smmu->smrs) 1034 smmu->smrs[idx].valid = false; 1035 1036 return true; 1037 } 1038 1039 static int arm_smmu_master_alloc_smes(struct device *dev) 1040 { 1041 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 1042 struct arm_smmu_master_cfg *cfg = dev_iommu_priv_get(dev); 1043 struct arm_smmu_device *smmu = cfg->smmu; 1044 struct arm_smmu_smr *smrs = smmu->smrs; 1045 int i, idx, ret; 1046 1047 mutex_lock(&smmu->stream_map_mutex); 1048 /* Figure out a viable stream map entry allocation */ 1049 for_each_cfg_sme(cfg, fwspec, i, idx) { 1050 u16 sid = FIELD_GET(ARM_SMMU_SMR_ID, fwspec->ids[i]); 1051 u16 mask = FIELD_GET(ARM_SMMU_SMR_MASK, fwspec->ids[i]); 1052 1053 if (idx != INVALID_SMENDX) { 1054 ret = -EEXIST; 1055 goto out_err; 1056 } 1057 1058 ret = arm_smmu_find_sme(smmu, sid, mask); 1059 if (ret < 0) 1060 goto out_err; 1061 1062 idx = ret; 1063 if (smrs && smmu->s2crs[idx].count == 0) { 1064 smrs[idx].id = sid; 1065 smrs[idx].mask = mask; 1066 smrs[idx].valid = true; 1067 } 1068 smmu->s2crs[idx].count++; 1069 cfg->smendx[i] = (s16)idx; 1070 } 1071 1072 /* It worked! Now, poke the actual hardware */ 1073 for_each_cfg_sme(cfg, fwspec, i, idx) 1074 arm_smmu_write_sme(smmu, idx); 1075 1076 mutex_unlock(&smmu->stream_map_mutex); 1077 return 0; 1078 1079 out_err: 1080 while (i--) { 1081 arm_smmu_free_sme(smmu, cfg->smendx[i]); 1082 cfg->smendx[i] = INVALID_SMENDX; 1083 } 1084 mutex_unlock(&smmu->stream_map_mutex); 1085 return ret; 1086 } 1087 1088 static void arm_smmu_master_free_smes(struct arm_smmu_master_cfg *cfg, 1089 struct iommu_fwspec *fwspec) 1090 { 1091 struct arm_smmu_device *smmu = cfg->smmu; 1092 int i, idx; 1093 1094 mutex_lock(&smmu->stream_map_mutex); 1095 for_each_cfg_sme(cfg, fwspec, i, idx) { 1096 if (arm_smmu_free_sme(smmu, idx)) 1097 arm_smmu_write_sme(smmu, idx); 1098 cfg->smendx[i] = INVALID_SMENDX; 1099 } 1100 mutex_unlock(&smmu->stream_map_mutex); 1101 } 1102 1103 static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain, 1104 struct arm_smmu_master_cfg *cfg, 1105 struct iommu_fwspec *fwspec) 1106 { 1107 struct arm_smmu_device *smmu = smmu_domain->smmu; 1108 struct arm_smmu_s2cr *s2cr = smmu->s2crs; 1109 u8 cbndx = smmu_domain->cfg.cbndx; 1110 enum arm_smmu_s2cr_type type; 1111 int i, idx; 1112 1113 if (smmu_domain->stage == ARM_SMMU_DOMAIN_BYPASS) 1114 type = S2CR_TYPE_BYPASS; 1115 else 1116 type = S2CR_TYPE_TRANS; 1117 1118 for_each_cfg_sme(cfg, fwspec, i, idx) { 1119 if (type == s2cr[idx].type && cbndx == s2cr[idx].cbndx) 1120 continue; 1121 1122 s2cr[idx].type = type; 1123 s2cr[idx].privcfg = S2CR_PRIVCFG_DEFAULT; 1124 s2cr[idx].cbndx = cbndx; 1125 arm_smmu_write_s2cr(smmu, idx); 1126 } 1127 return 0; 1128 } 1129 1130 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev) 1131 { 1132 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain); 1133 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 1134 struct arm_smmu_master_cfg *cfg; 1135 struct arm_smmu_device *smmu; 1136 int ret; 1137 1138 if (!fwspec || fwspec->ops != &arm_smmu_ops) { 1139 dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n"); 1140 return -ENXIO; 1141 } 1142 1143 /* 1144 * FIXME: The arch/arm DMA API code tries to attach devices to its own 1145 * domains between of_xlate() and probe_device() - we have no way to cope 1146 * with that, so until ARM gets converted to rely on groups and default 1147 * domains, just say no (but more politely than by dereferencing NULL). 1148 * This should be at least a WARN_ON once that's sorted. 1149 */ 1150 cfg = dev_iommu_priv_get(dev); 1151 if (!cfg) 1152 return -ENODEV; 1153 1154 smmu = cfg->smmu; 1155 1156 ret = arm_smmu_rpm_get(smmu); 1157 if (ret < 0) 1158 return ret; 1159 1160 /* Ensure that the domain is finalised */ 1161 ret = arm_smmu_init_domain_context(domain, smmu, dev); 1162 if (ret < 0) 1163 goto rpm_put; 1164 1165 /* 1166 * Sanity check the domain. We don't support domains across 1167 * different SMMUs. 1168 */ 1169 if (smmu_domain->smmu != smmu) { 1170 dev_err(dev, 1171 "cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n", 1172 dev_name(smmu_domain->smmu->dev), dev_name(smmu->dev)); 1173 ret = -EINVAL; 1174 goto rpm_put; 1175 } 1176 1177 /* Looks ok, so add the device to the domain */ 1178 ret = arm_smmu_domain_add_master(smmu_domain, cfg, fwspec); 1179 1180 /* 1181 * Setup an autosuspend delay to avoid bouncing runpm state. 1182 * Otherwise, if a driver for a suspended consumer device 1183 * unmaps buffers, it will runpm resume/suspend for each one. 1184 * 1185 * For example, when used by a GPU device, when an application 1186 * or game exits, it can trigger unmapping 100s or 1000s of 1187 * buffers. With a runpm cycle for each buffer, that adds up 1188 * to 5-10sec worth of reprogramming the context bank, while 1189 * the system appears to be locked up to the user. 1190 */ 1191 pm_runtime_set_autosuspend_delay(smmu->dev, 20); 1192 pm_runtime_use_autosuspend(smmu->dev); 1193 1194 rpm_put: 1195 arm_smmu_rpm_put(smmu); 1196 return ret; 1197 } 1198 1199 static int arm_smmu_map_pages(struct iommu_domain *domain, unsigned long iova, 1200 phys_addr_t paddr, size_t pgsize, size_t pgcount, 1201 int prot, gfp_t gfp, size_t *mapped) 1202 { 1203 struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops; 1204 struct arm_smmu_device *smmu = to_smmu_domain(domain)->smmu; 1205 int ret; 1206 1207 if (!ops) 1208 return -ENODEV; 1209 1210 arm_smmu_rpm_get(smmu); 1211 ret = ops->map_pages(ops, iova, paddr, pgsize, pgcount, prot, gfp, mapped); 1212 arm_smmu_rpm_put(smmu); 1213 1214 return ret; 1215 } 1216 1217 static size_t arm_smmu_unmap_pages(struct iommu_domain *domain, unsigned long iova, 1218 size_t pgsize, size_t pgcount, 1219 struct iommu_iotlb_gather *iotlb_gather) 1220 { 1221 struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops; 1222 struct arm_smmu_device *smmu = to_smmu_domain(domain)->smmu; 1223 size_t ret; 1224 1225 if (!ops) 1226 return 0; 1227 1228 arm_smmu_rpm_get(smmu); 1229 ret = ops->unmap_pages(ops, iova, pgsize, pgcount, iotlb_gather); 1230 arm_smmu_rpm_put(smmu); 1231 1232 return ret; 1233 } 1234 1235 static void arm_smmu_flush_iotlb_all(struct iommu_domain *domain) 1236 { 1237 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain); 1238 struct arm_smmu_device *smmu = smmu_domain->smmu; 1239 1240 if (smmu_domain->flush_ops) { 1241 arm_smmu_rpm_get(smmu); 1242 smmu_domain->flush_ops->tlb_flush_all(smmu_domain); 1243 arm_smmu_rpm_put(smmu); 1244 } 1245 } 1246 1247 static void arm_smmu_iotlb_sync(struct iommu_domain *domain, 1248 struct iommu_iotlb_gather *gather) 1249 { 1250 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain); 1251 struct arm_smmu_device *smmu = smmu_domain->smmu; 1252 1253 if (!smmu) 1254 return; 1255 1256 arm_smmu_rpm_get(smmu); 1257 if (smmu->version == ARM_SMMU_V2 || 1258 smmu_domain->stage == ARM_SMMU_DOMAIN_S1) 1259 arm_smmu_tlb_sync_context(smmu_domain); 1260 else 1261 arm_smmu_tlb_sync_global(smmu); 1262 arm_smmu_rpm_put(smmu); 1263 } 1264 1265 static phys_addr_t arm_smmu_iova_to_phys_hard(struct iommu_domain *domain, 1266 dma_addr_t iova) 1267 { 1268 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain); 1269 struct arm_smmu_device *smmu = smmu_domain->smmu; 1270 struct arm_smmu_cfg *cfg = &smmu_domain->cfg; 1271 struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops; 1272 struct device *dev = smmu->dev; 1273 void __iomem *reg; 1274 u32 tmp; 1275 u64 phys; 1276 unsigned long va, flags; 1277 int ret, idx = cfg->cbndx; 1278 phys_addr_t addr = 0; 1279 1280 ret = arm_smmu_rpm_get(smmu); 1281 if (ret < 0) 1282 return 0; 1283 1284 spin_lock_irqsave(&smmu_domain->cb_lock, flags); 1285 va = iova & ~0xfffUL; 1286 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64) 1287 arm_smmu_cb_writeq(smmu, idx, ARM_SMMU_CB_ATS1PR, va); 1288 else 1289 arm_smmu_cb_write(smmu, idx, ARM_SMMU_CB_ATS1PR, va); 1290 1291 reg = arm_smmu_page(smmu, ARM_SMMU_CB(smmu, idx)) + ARM_SMMU_CB_ATSR; 1292 if (readl_poll_timeout_atomic(reg, tmp, !(tmp & ARM_SMMU_ATSR_ACTIVE), 1293 5, 50)) { 1294 spin_unlock_irqrestore(&smmu_domain->cb_lock, flags); 1295 dev_err(dev, 1296 "iova to phys timed out on %pad. Falling back to software table walk.\n", 1297 &iova); 1298 arm_smmu_rpm_put(smmu); 1299 return ops->iova_to_phys(ops, iova); 1300 } 1301 1302 phys = arm_smmu_cb_readq(smmu, idx, ARM_SMMU_CB_PAR); 1303 spin_unlock_irqrestore(&smmu_domain->cb_lock, flags); 1304 if (phys & ARM_SMMU_CB_PAR_F) { 1305 dev_err(dev, "translation fault!\n"); 1306 dev_err(dev, "PAR = 0x%llx\n", phys); 1307 goto out; 1308 } 1309 1310 addr = (phys & GENMASK_ULL(39, 12)) | (iova & 0xfff); 1311 out: 1312 arm_smmu_rpm_put(smmu); 1313 1314 return addr; 1315 } 1316 1317 static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain, 1318 dma_addr_t iova) 1319 { 1320 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain); 1321 struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops; 1322 1323 if (!ops) 1324 return 0; 1325 1326 if (smmu_domain->smmu->features & ARM_SMMU_FEAT_TRANS_OPS && 1327 smmu_domain->stage == ARM_SMMU_DOMAIN_S1) 1328 return arm_smmu_iova_to_phys_hard(domain, iova); 1329 1330 return ops->iova_to_phys(ops, iova); 1331 } 1332 1333 static bool arm_smmu_capable(enum iommu_cap cap) 1334 { 1335 switch (cap) { 1336 case IOMMU_CAP_CACHE_COHERENCY: 1337 /* 1338 * Return true here as the SMMU can always send out coherent 1339 * requests. 1340 */ 1341 return true; 1342 case IOMMU_CAP_NOEXEC: 1343 return true; 1344 default: 1345 return false; 1346 } 1347 } 1348 1349 static 1350 struct arm_smmu_device *arm_smmu_get_by_fwnode(struct fwnode_handle *fwnode) 1351 { 1352 struct device *dev = driver_find_device_by_fwnode(&arm_smmu_driver.driver, 1353 fwnode); 1354 put_device(dev); 1355 return dev ? dev_get_drvdata(dev) : NULL; 1356 } 1357 1358 static struct iommu_device *arm_smmu_probe_device(struct device *dev) 1359 { 1360 struct arm_smmu_device *smmu = NULL; 1361 struct arm_smmu_master_cfg *cfg; 1362 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 1363 int i, ret; 1364 1365 if (using_legacy_binding) { 1366 ret = arm_smmu_register_legacy_master(dev, &smmu); 1367 1368 /* 1369 * If dev->iommu_fwspec is initally NULL, arm_smmu_register_legacy_master() 1370 * will allocate/initialise a new one. Thus we need to update fwspec for 1371 * later use. 1372 */ 1373 fwspec = dev_iommu_fwspec_get(dev); 1374 if (ret) 1375 goto out_free; 1376 } else if (fwspec && fwspec->ops == &arm_smmu_ops) { 1377 smmu = arm_smmu_get_by_fwnode(fwspec->iommu_fwnode); 1378 } else { 1379 return ERR_PTR(-ENODEV); 1380 } 1381 1382 ret = -EINVAL; 1383 for (i = 0; i < fwspec->num_ids; i++) { 1384 u16 sid = FIELD_GET(ARM_SMMU_SMR_ID, fwspec->ids[i]); 1385 u16 mask = FIELD_GET(ARM_SMMU_SMR_MASK, fwspec->ids[i]); 1386 1387 if (sid & ~smmu->streamid_mask) { 1388 dev_err(dev, "stream ID 0x%x out of range for SMMU (0x%x)\n", 1389 sid, smmu->streamid_mask); 1390 goto out_free; 1391 } 1392 if (mask & ~smmu->smr_mask_mask) { 1393 dev_err(dev, "SMR mask 0x%x out of range for SMMU (0x%x)\n", 1394 mask, smmu->smr_mask_mask); 1395 goto out_free; 1396 } 1397 } 1398 1399 ret = -ENOMEM; 1400 cfg = kzalloc(offsetof(struct arm_smmu_master_cfg, smendx[i]), 1401 GFP_KERNEL); 1402 if (!cfg) 1403 goto out_free; 1404 1405 cfg->smmu = smmu; 1406 dev_iommu_priv_set(dev, cfg); 1407 while (i--) 1408 cfg->smendx[i] = INVALID_SMENDX; 1409 1410 ret = arm_smmu_rpm_get(smmu); 1411 if (ret < 0) 1412 goto out_cfg_free; 1413 1414 ret = arm_smmu_master_alloc_smes(dev); 1415 arm_smmu_rpm_put(smmu); 1416 1417 if (ret) 1418 goto out_cfg_free; 1419 1420 device_link_add(dev, smmu->dev, 1421 DL_FLAG_PM_RUNTIME | DL_FLAG_AUTOREMOVE_SUPPLIER); 1422 1423 return &smmu->iommu; 1424 1425 out_cfg_free: 1426 kfree(cfg); 1427 out_free: 1428 iommu_fwspec_free(dev); 1429 return ERR_PTR(ret); 1430 } 1431 1432 static void arm_smmu_release_device(struct device *dev) 1433 { 1434 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 1435 struct arm_smmu_master_cfg *cfg; 1436 struct arm_smmu_device *smmu; 1437 int ret; 1438 1439 if (!fwspec || fwspec->ops != &arm_smmu_ops) 1440 return; 1441 1442 cfg = dev_iommu_priv_get(dev); 1443 smmu = cfg->smmu; 1444 1445 ret = arm_smmu_rpm_get(smmu); 1446 if (ret < 0) 1447 return; 1448 1449 arm_smmu_master_free_smes(cfg, fwspec); 1450 1451 arm_smmu_rpm_put(smmu); 1452 1453 dev_iommu_priv_set(dev, NULL); 1454 kfree(cfg); 1455 iommu_fwspec_free(dev); 1456 } 1457 1458 static void arm_smmu_probe_finalize(struct device *dev) 1459 { 1460 struct arm_smmu_master_cfg *cfg; 1461 struct arm_smmu_device *smmu; 1462 1463 cfg = dev_iommu_priv_get(dev); 1464 smmu = cfg->smmu; 1465 1466 if (smmu->impl && smmu->impl->probe_finalize) 1467 smmu->impl->probe_finalize(smmu, dev); 1468 } 1469 1470 static struct iommu_group *arm_smmu_device_group(struct device *dev) 1471 { 1472 struct arm_smmu_master_cfg *cfg = dev_iommu_priv_get(dev); 1473 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 1474 struct arm_smmu_device *smmu = cfg->smmu; 1475 struct iommu_group *group = NULL; 1476 int i, idx; 1477 1478 mutex_lock(&smmu->stream_map_mutex); 1479 for_each_cfg_sme(cfg, fwspec, i, idx) { 1480 if (group && smmu->s2crs[idx].group && 1481 group != smmu->s2crs[idx].group) { 1482 mutex_unlock(&smmu->stream_map_mutex); 1483 return ERR_PTR(-EINVAL); 1484 } 1485 1486 group = smmu->s2crs[idx].group; 1487 } 1488 1489 if (group) { 1490 mutex_unlock(&smmu->stream_map_mutex); 1491 return iommu_group_ref_get(group); 1492 } 1493 1494 if (dev_is_pci(dev)) 1495 group = pci_device_group(dev); 1496 else if (dev_is_fsl_mc(dev)) 1497 group = fsl_mc_device_group(dev); 1498 else 1499 group = generic_device_group(dev); 1500 1501 /* Remember group for faster lookups */ 1502 if (!IS_ERR(group)) 1503 for_each_cfg_sme(cfg, fwspec, i, idx) 1504 smmu->s2crs[idx].group = group; 1505 1506 mutex_unlock(&smmu->stream_map_mutex); 1507 return group; 1508 } 1509 1510 static int arm_smmu_enable_nesting(struct iommu_domain *domain) 1511 { 1512 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain); 1513 int ret = 0; 1514 1515 mutex_lock(&smmu_domain->init_mutex); 1516 if (smmu_domain->smmu) 1517 ret = -EPERM; 1518 else 1519 smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED; 1520 mutex_unlock(&smmu_domain->init_mutex); 1521 1522 return ret; 1523 } 1524 1525 static int arm_smmu_set_pgtable_quirks(struct iommu_domain *domain, 1526 unsigned long quirks) 1527 { 1528 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain); 1529 int ret = 0; 1530 1531 mutex_lock(&smmu_domain->init_mutex); 1532 if (smmu_domain->smmu) 1533 ret = -EPERM; 1534 else 1535 smmu_domain->pgtbl_quirks = quirks; 1536 mutex_unlock(&smmu_domain->init_mutex); 1537 1538 return ret; 1539 } 1540 1541 static int arm_smmu_of_xlate(struct device *dev, struct of_phandle_args *args) 1542 { 1543 u32 mask, fwid = 0; 1544 1545 if (args->args_count > 0) 1546 fwid |= FIELD_PREP(ARM_SMMU_SMR_ID, args->args[0]); 1547 1548 if (args->args_count > 1) 1549 fwid |= FIELD_PREP(ARM_SMMU_SMR_MASK, args->args[1]); 1550 else if (!of_property_read_u32(args->np, "stream-match-mask", &mask)) 1551 fwid |= FIELD_PREP(ARM_SMMU_SMR_MASK, mask); 1552 1553 return iommu_fwspec_add_ids(dev, &fwid, 1); 1554 } 1555 1556 static void arm_smmu_get_resv_regions(struct device *dev, 1557 struct list_head *head) 1558 { 1559 struct iommu_resv_region *region; 1560 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO; 1561 1562 region = iommu_alloc_resv_region(MSI_IOVA_BASE, MSI_IOVA_LENGTH, 1563 prot, IOMMU_RESV_SW_MSI); 1564 if (!region) 1565 return; 1566 1567 list_add_tail(®ion->list, head); 1568 1569 iommu_dma_get_resv_regions(dev, head); 1570 } 1571 1572 static int arm_smmu_def_domain_type(struct device *dev) 1573 { 1574 struct arm_smmu_master_cfg *cfg = dev_iommu_priv_get(dev); 1575 const struct arm_smmu_impl *impl = cfg->smmu->impl; 1576 1577 if (impl && impl->def_domain_type) 1578 return impl->def_domain_type(dev); 1579 1580 return 0; 1581 } 1582 1583 static struct iommu_ops arm_smmu_ops = { 1584 .capable = arm_smmu_capable, 1585 .domain_alloc = arm_smmu_domain_alloc, 1586 .probe_device = arm_smmu_probe_device, 1587 .release_device = arm_smmu_release_device, 1588 .probe_finalize = arm_smmu_probe_finalize, 1589 .device_group = arm_smmu_device_group, 1590 .of_xlate = arm_smmu_of_xlate, 1591 .get_resv_regions = arm_smmu_get_resv_regions, 1592 .put_resv_regions = generic_iommu_put_resv_regions, 1593 .def_domain_type = arm_smmu_def_domain_type, 1594 .pgsize_bitmap = -1UL, /* Restricted during device attach */ 1595 .owner = THIS_MODULE, 1596 .default_domain_ops = &(const struct iommu_domain_ops) { 1597 .attach_dev = arm_smmu_attach_dev, 1598 .map_pages = arm_smmu_map_pages, 1599 .unmap_pages = arm_smmu_unmap_pages, 1600 .flush_iotlb_all = arm_smmu_flush_iotlb_all, 1601 .iotlb_sync = arm_smmu_iotlb_sync, 1602 .iova_to_phys = arm_smmu_iova_to_phys, 1603 .enable_nesting = arm_smmu_enable_nesting, 1604 .set_pgtable_quirks = arm_smmu_set_pgtable_quirks, 1605 .free = arm_smmu_domain_free, 1606 } 1607 }; 1608 1609 static void arm_smmu_device_reset(struct arm_smmu_device *smmu) 1610 { 1611 int i; 1612 u32 reg; 1613 1614 /* clear global FSR */ 1615 reg = arm_smmu_gr0_read(smmu, ARM_SMMU_GR0_sGFSR); 1616 arm_smmu_gr0_write(smmu, ARM_SMMU_GR0_sGFSR, reg); 1617 1618 /* 1619 * Reset stream mapping groups: Initial values mark all SMRn as 1620 * invalid and all S2CRn as bypass unless overridden. 1621 */ 1622 for (i = 0; i < smmu->num_mapping_groups; ++i) 1623 arm_smmu_write_sme(smmu, i); 1624 1625 /* Make sure all context banks are disabled and clear CB_FSR */ 1626 for (i = 0; i < smmu->num_context_banks; ++i) { 1627 arm_smmu_write_context_bank(smmu, i); 1628 arm_smmu_cb_write(smmu, i, ARM_SMMU_CB_FSR, ARM_SMMU_FSR_FAULT); 1629 } 1630 1631 /* Invalidate the TLB, just in case */ 1632 arm_smmu_gr0_write(smmu, ARM_SMMU_GR0_TLBIALLH, QCOM_DUMMY_VAL); 1633 arm_smmu_gr0_write(smmu, ARM_SMMU_GR0_TLBIALLNSNH, QCOM_DUMMY_VAL); 1634 1635 reg = arm_smmu_gr0_read(smmu, ARM_SMMU_GR0_sCR0); 1636 1637 /* Enable fault reporting */ 1638 reg |= (ARM_SMMU_sCR0_GFRE | ARM_SMMU_sCR0_GFIE | 1639 ARM_SMMU_sCR0_GCFGFRE | ARM_SMMU_sCR0_GCFGFIE); 1640 1641 /* Disable TLB broadcasting. */ 1642 reg |= (ARM_SMMU_sCR0_VMIDPNE | ARM_SMMU_sCR0_PTM); 1643 1644 /* Enable client access, handling unmatched streams as appropriate */ 1645 reg &= ~ARM_SMMU_sCR0_CLIENTPD; 1646 if (disable_bypass) 1647 reg |= ARM_SMMU_sCR0_USFCFG; 1648 else 1649 reg &= ~ARM_SMMU_sCR0_USFCFG; 1650 1651 /* Disable forced broadcasting */ 1652 reg &= ~ARM_SMMU_sCR0_FB; 1653 1654 /* Don't upgrade barriers */ 1655 reg &= ~(ARM_SMMU_sCR0_BSU); 1656 1657 if (smmu->features & ARM_SMMU_FEAT_VMID16) 1658 reg |= ARM_SMMU_sCR0_VMID16EN; 1659 1660 if (smmu->features & ARM_SMMU_FEAT_EXIDS) 1661 reg |= ARM_SMMU_sCR0_EXIDENABLE; 1662 1663 if (smmu->impl && smmu->impl->reset) 1664 smmu->impl->reset(smmu); 1665 1666 /* Push the button */ 1667 arm_smmu_tlb_sync_global(smmu); 1668 arm_smmu_gr0_write(smmu, ARM_SMMU_GR0_sCR0, reg); 1669 } 1670 1671 static int arm_smmu_id_size_to_bits(int size) 1672 { 1673 switch (size) { 1674 case 0: 1675 return 32; 1676 case 1: 1677 return 36; 1678 case 2: 1679 return 40; 1680 case 3: 1681 return 42; 1682 case 4: 1683 return 44; 1684 case 5: 1685 default: 1686 return 48; 1687 } 1688 } 1689 1690 static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu) 1691 { 1692 unsigned int size; 1693 u32 id; 1694 bool cttw_reg, cttw_fw = smmu->features & ARM_SMMU_FEAT_COHERENT_WALK; 1695 int i, ret; 1696 1697 dev_notice(smmu->dev, "probing hardware configuration...\n"); 1698 dev_notice(smmu->dev, "SMMUv%d with:\n", 1699 smmu->version == ARM_SMMU_V2 ? 2 : 1); 1700 1701 /* ID0 */ 1702 id = arm_smmu_gr0_read(smmu, ARM_SMMU_GR0_ID0); 1703 1704 /* Restrict available stages based on module parameter */ 1705 if (force_stage == 1) 1706 id &= ~(ARM_SMMU_ID0_S2TS | ARM_SMMU_ID0_NTS); 1707 else if (force_stage == 2) 1708 id &= ~(ARM_SMMU_ID0_S1TS | ARM_SMMU_ID0_NTS); 1709 1710 if (id & ARM_SMMU_ID0_S1TS) { 1711 smmu->features |= ARM_SMMU_FEAT_TRANS_S1; 1712 dev_notice(smmu->dev, "\tstage 1 translation\n"); 1713 } 1714 1715 if (id & ARM_SMMU_ID0_S2TS) { 1716 smmu->features |= ARM_SMMU_FEAT_TRANS_S2; 1717 dev_notice(smmu->dev, "\tstage 2 translation\n"); 1718 } 1719 1720 if (id & ARM_SMMU_ID0_NTS) { 1721 smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED; 1722 dev_notice(smmu->dev, "\tnested translation\n"); 1723 } 1724 1725 if (!(smmu->features & 1726 (ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2))) { 1727 dev_err(smmu->dev, "\tno translation support!\n"); 1728 return -ENODEV; 1729 } 1730 1731 if ((id & ARM_SMMU_ID0_S1TS) && 1732 ((smmu->version < ARM_SMMU_V2) || !(id & ARM_SMMU_ID0_ATOSNS))) { 1733 smmu->features |= ARM_SMMU_FEAT_TRANS_OPS; 1734 dev_notice(smmu->dev, "\taddress translation ops\n"); 1735 } 1736 1737 /* 1738 * In order for DMA API calls to work properly, we must defer to what 1739 * the FW says about coherency, regardless of what the hardware claims. 1740 * Fortunately, this also opens up a workaround for systems where the 1741 * ID register value has ended up configured incorrectly. 1742 */ 1743 cttw_reg = !!(id & ARM_SMMU_ID0_CTTW); 1744 if (cttw_fw || cttw_reg) 1745 dev_notice(smmu->dev, "\t%scoherent table walk\n", 1746 cttw_fw ? "" : "non-"); 1747 if (cttw_fw != cttw_reg) 1748 dev_notice(smmu->dev, 1749 "\t(IDR0.CTTW overridden by FW configuration)\n"); 1750 1751 /* Max. number of entries we have for stream matching/indexing */ 1752 if (smmu->version == ARM_SMMU_V2 && id & ARM_SMMU_ID0_EXIDS) { 1753 smmu->features |= ARM_SMMU_FEAT_EXIDS; 1754 size = 1 << 16; 1755 } else { 1756 size = 1 << FIELD_GET(ARM_SMMU_ID0_NUMSIDB, id); 1757 } 1758 smmu->streamid_mask = size - 1; 1759 if (id & ARM_SMMU_ID0_SMS) { 1760 smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH; 1761 size = FIELD_GET(ARM_SMMU_ID0_NUMSMRG, id); 1762 if (size == 0) { 1763 dev_err(smmu->dev, 1764 "stream-matching supported, but no SMRs present!\n"); 1765 return -ENODEV; 1766 } 1767 1768 /* Zero-initialised to mark as invalid */ 1769 smmu->smrs = devm_kcalloc(smmu->dev, size, sizeof(*smmu->smrs), 1770 GFP_KERNEL); 1771 if (!smmu->smrs) 1772 return -ENOMEM; 1773 1774 dev_notice(smmu->dev, 1775 "\tstream matching with %u register groups", size); 1776 } 1777 /* s2cr->type == 0 means translation, so initialise explicitly */ 1778 smmu->s2crs = devm_kmalloc_array(smmu->dev, size, sizeof(*smmu->s2crs), 1779 GFP_KERNEL); 1780 if (!smmu->s2crs) 1781 return -ENOMEM; 1782 for (i = 0; i < size; i++) 1783 smmu->s2crs[i] = s2cr_init_val; 1784 1785 smmu->num_mapping_groups = size; 1786 mutex_init(&smmu->stream_map_mutex); 1787 spin_lock_init(&smmu->global_sync_lock); 1788 1789 if (smmu->version < ARM_SMMU_V2 || 1790 !(id & ARM_SMMU_ID0_PTFS_NO_AARCH32)) { 1791 smmu->features |= ARM_SMMU_FEAT_FMT_AARCH32_L; 1792 if (!(id & ARM_SMMU_ID0_PTFS_NO_AARCH32S)) 1793 smmu->features |= ARM_SMMU_FEAT_FMT_AARCH32_S; 1794 } 1795 1796 /* ID1 */ 1797 id = arm_smmu_gr0_read(smmu, ARM_SMMU_GR0_ID1); 1798 smmu->pgshift = (id & ARM_SMMU_ID1_PAGESIZE) ? 16 : 12; 1799 1800 /* Check for size mismatch of SMMU address space from mapped region */ 1801 size = 1 << (FIELD_GET(ARM_SMMU_ID1_NUMPAGENDXB, id) + 1); 1802 if (smmu->numpage != 2 * size << smmu->pgshift) 1803 dev_warn(smmu->dev, 1804 "SMMU address space size (0x%x) differs from mapped region size (0x%x)!\n", 1805 2 * size << smmu->pgshift, smmu->numpage); 1806 /* Now properly encode NUMPAGE to subsequently derive SMMU_CB_BASE */ 1807 smmu->numpage = size; 1808 1809 smmu->num_s2_context_banks = FIELD_GET(ARM_SMMU_ID1_NUMS2CB, id); 1810 smmu->num_context_banks = FIELD_GET(ARM_SMMU_ID1_NUMCB, id); 1811 if (smmu->num_s2_context_banks > smmu->num_context_banks) { 1812 dev_err(smmu->dev, "impossible number of S2 context banks!\n"); 1813 return -ENODEV; 1814 } 1815 dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n", 1816 smmu->num_context_banks, smmu->num_s2_context_banks); 1817 smmu->cbs = devm_kcalloc(smmu->dev, smmu->num_context_banks, 1818 sizeof(*smmu->cbs), GFP_KERNEL); 1819 if (!smmu->cbs) 1820 return -ENOMEM; 1821 1822 /* ID2 */ 1823 id = arm_smmu_gr0_read(smmu, ARM_SMMU_GR0_ID2); 1824 size = arm_smmu_id_size_to_bits(FIELD_GET(ARM_SMMU_ID2_IAS, id)); 1825 smmu->ipa_size = size; 1826 1827 /* The output mask is also applied for bypass */ 1828 size = arm_smmu_id_size_to_bits(FIELD_GET(ARM_SMMU_ID2_OAS, id)); 1829 smmu->pa_size = size; 1830 1831 if (id & ARM_SMMU_ID2_VMID16) 1832 smmu->features |= ARM_SMMU_FEAT_VMID16; 1833 1834 /* 1835 * What the page table walker can address actually depends on which 1836 * descriptor format is in use, but since a) we don't know that yet, 1837 * and b) it can vary per context bank, this will have to do... 1838 */ 1839 if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(size))) 1840 dev_warn(smmu->dev, 1841 "failed to set DMA mask for table walker\n"); 1842 1843 if (smmu->version < ARM_SMMU_V2) { 1844 smmu->va_size = smmu->ipa_size; 1845 if (smmu->version == ARM_SMMU_V1_64K) 1846 smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_64K; 1847 } else { 1848 size = FIELD_GET(ARM_SMMU_ID2_UBS, id); 1849 smmu->va_size = arm_smmu_id_size_to_bits(size); 1850 if (id & ARM_SMMU_ID2_PTFS_4K) 1851 smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_4K; 1852 if (id & ARM_SMMU_ID2_PTFS_16K) 1853 smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_16K; 1854 if (id & ARM_SMMU_ID2_PTFS_64K) 1855 smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_64K; 1856 } 1857 1858 if (smmu->impl && smmu->impl->cfg_probe) { 1859 ret = smmu->impl->cfg_probe(smmu); 1860 if (ret) 1861 return ret; 1862 } 1863 1864 /* Now we've corralled the various formats, what'll it do? */ 1865 if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_S) 1866 smmu->pgsize_bitmap |= SZ_4K | SZ_64K | SZ_1M | SZ_16M; 1867 if (smmu->features & 1868 (ARM_SMMU_FEAT_FMT_AARCH32_L | ARM_SMMU_FEAT_FMT_AARCH64_4K)) 1869 smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G; 1870 if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH64_16K) 1871 smmu->pgsize_bitmap |= SZ_16K | SZ_32M; 1872 if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH64_64K) 1873 smmu->pgsize_bitmap |= SZ_64K | SZ_512M; 1874 1875 if (arm_smmu_ops.pgsize_bitmap == -1UL) 1876 arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap; 1877 else 1878 arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap; 1879 dev_notice(smmu->dev, "\tSupported page sizes: 0x%08lx\n", 1880 smmu->pgsize_bitmap); 1881 1882 1883 if (smmu->features & ARM_SMMU_FEAT_TRANS_S1) 1884 dev_notice(smmu->dev, "\tStage-1: %lu-bit VA -> %lu-bit IPA\n", 1885 smmu->va_size, smmu->ipa_size); 1886 1887 if (smmu->features & ARM_SMMU_FEAT_TRANS_S2) 1888 dev_notice(smmu->dev, "\tStage-2: %lu-bit IPA -> %lu-bit PA\n", 1889 smmu->ipa_size, smmu->pa_size); 1890 1891 return 0; 1892 } 1893 1894 struct arm_smmu_match_data { 1895 enum arm_smmu_arch_version version; 1896 enum arm_smmu_implementation model; 1897 }; 1898 1899 #define ARM_SMMU_MATCH_DATA(name, ver, imp) \ 1900 static const struct arm_smmu_match_data name = { .version = ver, .model = imp } 1901 1902 ARM_SMMU_MATCH_DATA(smmu_generic_v1, ARM_SMMU_V1, GENERIC_SMMU); 1903 ARM_SMMU_MATCH_DATA(smmu_generic_v2, ARM_SMMU_V2, GENERIC_SMMU); 1904 ARM_SMMU_MATCH_DATA(arm_mmu401, ARM_SMMU_V1_64K, GENERIC_SMMU); 1905 ARM_SMMU_MATCH_DATA(arm_mmu500, ARM_SMMU_V2, ARM_MMU500); 1906 ARM_SMMU_MATCH_DATA(cavium_smmuv2, ARM_SMMU_V2, CAVIUM_SMMUV2); 1907 ARM_SMMU_MATCH_DATA(qcom_smmuv2, ARM_SMMU_V2, QCOM_SMMUV2); 1908 1909 static const struct of_device_id arm_smmu_of_match[] = { 1910 { .compatible = "arm,smmu-v1", .data = &smmu_generic_v1 }, 1911 { .compatible = "arm,smmu-v2", .data = &smmu_generic_v2 }, 1912 { .compatible = "arm,mmu-400", .data = &smmu_generic_v1 }, 1913 { .compatible = "arm,mmu-401", .data = &arm_mmu401 }, 1914 { .compatible = "arm,mmu-500", .data = &arm_mmu500 }, 1915 { .compatible = "cavium,smmu-v2", .data = &cavium_smmuv2 }, 1916 { .compatible = "nvidia,smmu-500", .data = &arm_mmu500 }, 1917 { .compatible = "qcom,smmu-v2", .data = &qcom_smmuv2 }, 1918 { }, 1919 }; 1920 MODULE_DEVICE_TABLE(of, arm_smmu_of_match); 1921 1922 #ifdef CONFIG_ACPI 1923 static int acpi_smmu_get_data(u32 model, struct arm_smmu_device *smmu) 1924 { 1925 int ret = 0; 1926 1927 switch (model) { 1928 case ACPI_IORT_SMMU_V1: 1929 case ACPI_IORT_SMMU_CORELINK_MMU400: 1930 smmu->version = ARM_SMMU_V1; 1931 smmu->model = GENERIC_SMMU; 1932 break; 1933 case ACPI_IORT_SMMU_CORELINK_MMU401: 1934 smmu->version = ARM_SMMU_V1_64K; 1935 smmu->model = GENERIC_SMMU; 1936 break; 1937 case ACPI_IORT_SMMU_V2: 1938 smmu->version = ARM_SMMU_V2; 1939 smmu->model = GENERIC_SMMU; 1940 break; 1941 case ACPI_IORT_SMMU_CORELINK_MMU500: 1942 smmu->version = ARM_SMMU_V2; 1943 smmu->model = ARM_MMU500; 1944 break; 1945 case ACPI_IORT_SMMU_CAVIUM_THUNDERX: 1946 smmu->version = ARM_SMMU_V2; 1947 smmu->model = CAVIUM_SMMUV2; 1948 break; 1949 default: 1950 ret = -ENODEV; 1951 } 1952 1953 return ret; 1954 } 1955 1956 static int arm_smmu_device_acpi_probe(struct arm_smmu_device *smmu, 1957 u32 *global_irqs, u32 *pmu_irqs) 1958 { 1959 struct device *dev = smmu->dev; 1960 struct acpi_iort_node *node = 1961 *(struct acpi_iort_node **)dev_get_platdata(dev); 1962 struct acpi_iort_smmu *iort_smmu; 1963 int ret; 1964 1965 /* Retrieve SMMU1/2 specific data */ 1966 iort_smmu = (struct acpi_iort_smmu *)node->node_data; 1967 1968 ret = acpi_smmu_get_data(iort_smmu->model, smmu); 1969 if (ret < 0) 1970 return ret; 1971 1972 /* Ignore the configuration access interrupt */ 1973 *global_irqs = 1; 1974 *pmu_irqs = 0; 1975 1976 if (iort_smmu->flags & ACPI_IORT_SMMU_COHERENT_WALK) 1977 smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK; 1978 1979 return 0; 1980 } 1981 #else 1982 static inline int arm_smmu_device_acpi_probe(struct arm_smmu_device *smmu, 1983 u32 *global_irqs, u32 *pmu_irqs) 1984 { 1985 return -ENODEV; 1986 } 1987 #endif 1988 1989 static int arm_smmu_device_dt_probe(struct arm_smmu_device *smmu, 1990 u32 *global_irqs, u32 *pmu_irqs) 1991 { 1992 const struct arm_smmu_match_data *data; 1993 struct device *dev = smmu->dev; 1994 bool legacy_binding; 1995 1996 if (of_property_read_u32(dev->of_node, "#global-interrupts", global_irqs)) 1997 return dev_err_probe(dev, -ENODEV, 1998 "missing #global-interrupts property\n"); 1999 *pmu_irqs = 0; 2000 2001 data = of_device_get_match_data(dev); 2002 smmu->version = data->version; 2003 smmu->model = data->model; 2004 2005 legacy_binding = of_find_property(dev->of_node, "mmu-masters", NULL); 2006 if (legacy_binding && !using_generic_binding) { 2007 if (!using_legacy_binding) { 2008 pr_notice("deprecated \"mmu-masters\" DT property in use; %s support unavailable\n", 2009 IS_ENABLED(CONFIG_ARM_SMMU_LEGACY_DT_BINDINGS) ? "DMA API" : "SMMU"); 2010 } 2011 using_legacy_binding = true; 2012 } else if (!legacy_binding && !using_legacy_binding) { 2013 using_generic_binding = true; 2014 } else { 2015 dev_err(dev, "not probing due to mismatched DT properties\n"); 2016 return -ENODEV; 2017 } 2018 2019 if (of_dma_is_coherent(dev->of_node)) 2020 smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK; 2021 2022 return 0; 2023 } 2024 2025 static int arm_smmu_bus_init(struct iommu_ops *ops) 2026 { 2027 int err; 2028 2029 /* Oh, for a proper bus abstraction */ 2030 if (!iommu_present(&platform_bus_type)) { 2031 err = bus_set_iommu(&platform_bus_type, ops); 2032 if (err) 2033 return err; 2034 } 2035 #ifdef CONFIG_ARM_AMBA 2036 if (!iommu_present(&amba_bustype)) { 2037 err = bus_set_iommu(&amba_bustype, ops); 2038 if (err) 2039 goto err_reset_platform_ops; 2040 } 2041 #endif 2042 #ifdef CONFIG_PCI 2043 if (!iommu_present(&pci_bus_type)) { 2044 err = bus_set_iommu(&pci_bus_type, ops); 2045 if (err) 2046 goto err_reset_amba_ops; 2047 } 2048 #endif 2049 #ifdef CONFIG_FSL_MC_BUS 2050 if (!iommu_present(&fsl_mc_bus_type)) { 2051 err = bus_set_iommu(&fsl_mc_bus_type, ops); 2052 if (err) 2053 goto err_reset_pci_ops; 2054 } 2055 #endif 2056 return 0; 2057 2058 err_reset_pci_ops: __maybe_unused; 2059 #ifdef CONFIG_PCI 2060 bus_set_iommu(&pci_bus_type, NULL); 2061 #endif 2062 err_reset_amba_ops: __maybe_unused; 2063 #ifdef CONFIG_ARM_AMBA 2064 bus_set_iommu(&amba_bustype, NULL); 2065 #endif 2066 err_reset_platform_ops: __maybe_unused; 2067 bus_set_iommu(&platform_bus_type, NULL); 2068 return err; 2069 } 2070 2071 static int arm_smmu_device_probe(struct platform_device *pdev) 2072 { 2073 struct resource *res; 2074 resource_size_t ioaddr; 2075 struct arm_smmu_device *smmu; 2076 struct device *dev = &pdev->dev; 2077 int num_irqs, i, err; 2078 u32 global_irqs, pmu_irqs; 2079 irqreturn_t (*global_fault)(int irq, void *dev); 2080 2081 smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL); 2082 if (!smmu) { 2083 dev_err(dev, "failed to allocate arm_smmu_device\n"); 2084 return -ENOMEM; 2085 } 2086 smmu->dev = dev; 2087 2088 if (dev->of_node) 2089 err = arm_smmu_device_dt_probe(smmu, &global_irqs, &pmu_irqs); 2090 else 2091 err = arm_smmu_device_acpi_probe(smmu, &global_irqs, &pmu_irqs); 2092 if (err) 2093 return err; 2094 2095 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2096 ioaddr = res->start; 2097 smmu->base = devm_ioremap_resource(dev, res); 2098 if (IS_ERR(smmu->base)) 2099 return PTR_ERR(smmu->base); 2100 /* 2101 * The resource size should effectively match the value of SMMU_TOP; 2102 * stash that temporarily until we know PAGESIZE to validate it with. 2103 */ 2104 smmu->numpage = resource_size(res); 2105 2106 smmu = arm_smmu_impl_init(smmu); 2107 if (IS_ERR(smmu)) 2108 return PTR_ERR(smmu); 2109 2110 num_irqs = platform_irq_count(pdev); 2111 2112 smmu->num_context_irqs = num_irqs - global_irqs - pmu_irqs; 2113 if (smmu->num_context_irqs <= 0) 2114 return dev_err_probe(dev, -ENODEV, 2115 "found %d interrupts but expected at least %d\n", 2116 num_irqs, global_irqs + pmu_irqs + 1); 2117 2118 smmu->irqs = devm_kcalloc(dev, smmu->num_context_irqs, 2119 sizeof(*smmu->irqs), GFP_KERNEL); 2120 if (!smmu->irqs) 2121 return dev_err_probe(dev, -ENOMEM, "failed to allocate %d irqs\n", 2122 smmu->num_context_irqs); 2123 2124 for (i = 0; i < smmu->num_context_irqs; i++) { 2125 int irq = platform_get_irq(pdev, global_irqs + pmu_irqs + i); 2126 2127 if (irq < 0) 2128 return irq; 2129 smmu->irqs[i] = irq; 2130 } 2131 2132 err = devm_clk_bulk_get_all(dev, &smmu->clks); 2133 if (err < 0) { 2134 dev_err(dev, "failed to get clocks %d\n", err); 2135 return err; 2136 } 2137 smmu->num_clks = err; 2138 2139 err = clk_bulk_prepare_enable(smmu->num_clks, smmu->clks); 2140 if (err) 2141 return err; 2142 2143 err = arm_smmu_device_cfg_probe(smmu); 2144 if (err) 2145 return err; 2146 2147 if (smmu->version == ARM_SMMU_V2) { 2148 if (smmu->num_context_banks > smmu->num_context_irqs) { 2149 dev_err(dev, 2150 "found only %d context irq(s) but %d required\n", 2151 smmu->num_context_irqs, smmu->num_context_banks); 2152 return -ENODEV; 2153 } 2154 2155 /* Ignore superfluous interrupts */ 2156 smmu->num_context_irqs = smmu->num_context_banks; 2157 } 2158 2159 if (smmu->impl && smmu->impl->global_fault) 2160 global_fault = smmu->impl->global_fault; 2161 else 2162 global_fault = arm_smmu_global_fault; 2163 2164 for (i = 0; i < global_irqs; i++) { 2165 int irq = platform_get_irq(pdev, i); 2166 2167 if (irq < 0) 2168 return irq; 2169 2170 err = devm_request_irq(dev, irq, global_fault, IRQF_SHARED, 2171 "arm-smmu global fault", smmu); 2172 if (err) 2173 return dev_err_probe(dev, err, 2174 "failed to request global IRQ %d (%u)\n", 2175 i, irq); 2176 } 2177 2178 err = iommu_device_sysfs_add(&smmu->iommu, smmu->dev, NULL, 2179 "smmu.%pa", &ioaddr); 2180 if (err) { 2181 dev_err(dev, "Failed to register iommu in sysfs\n"); 2182 return err; 2183 } 2184 2185 err = iommu_device_register(&smmu->iommu, &arm_smmu_ops, dev); 2186 if (err) { 2187 dev_err(dev, "Failed to register iommu\n"); 2188 goto err_sysfs_remove; 2189 } 2190 2191 platform_set_drvdata(pdev, smmu); 2192 arm_smmu_device_reset(smmu); 2193 arm_smmu_test_smr_masks(smmu); 2194 2195 /* 2196 * We want to avoid touching dev->power.lock in fastpaths unless 2197 * it's really going to do something useful - pm_runtime_enabled() 2198 * can serve as an ideal proxy for that decision. So, conditionally 2199 * enable pm_runtime. 2200 */ 2201 if (dev->pm_domain) { 2202 pm_runtime_set_active(dev); 2203 pm_runtime_enable(dev); 2204 } 2205 2206 /* 2207 * For ACPI and generic DT bindings, an SMMU will be probed before 2208 * any device which might need it, so we want the bus ops in place 2209 * ready to handle default domain setup as soon as any SMMU exists. 2210 */ 2211 if (!using_legacy_binding) { 2212 err = arm_smmu_bus_init(&arm_smmu_ops); 2213 if (err) 2214 goto err_unregister_device; 2215 } 2216 2217 return 0; 2218 2219 err_unregister_device: 2220 iommu_device_unregister(&smmu->iommu); 2221 err_sysfs_remove: 2222 iommu_device_sysfs_remove(&smmu->iommu); 2223 return err; 2224 } 2225 2226 static int arm_smmu_device_remove(struct platform_device *pdev) 2227 { 2228 struct arm_smmu_device *smmu = platform_get_drvdata(pdev); 2229 2230 if (!smmu) 2231 return -ENODEV; 2232 2233 if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS)) 2234 dev_notice(&pdev->dev, "disabling translation\n"); 2235 2236 arm_smmu_bus_init(NULL); 2237 iommu_device_unregister(&smmu->iommu); 2238 iommu_device_sysfs_remove(&smmu->iommu); 2239 2240 arm_smmu_rpm_get(smmu); 2241 /* Turn the thing off */ 2242 arm_smmu_gr0_write(smmu, ARM_SMMU_GR0_sCR0, ARM_SMMU_sCR0_CLIENTPD); 2243 arm_smmu_rpm_put(smmu); 2244 2245 if (pm_runtime_enabled(smmu->dev)) 2246 pm_runtime_force_suspend(smmu->dev); 2247 else 2248 clk_bulk_disable(smmu->num_clks, smmu->clks); 2249 2250 clk_bulk_unprepare(smmu->num_clks, smmu->clks); 2251 return 0; 2252 } 2253 2254 static void arm_smmu_device_shutdown(struct platform_device *pdev) 2255 { 2256 arm_smmu_device_remove(pdev); 2257 } 2258 2259 static int __maybe_unused arm_smmu_runtime_resume(struct device *dev) 2260 { 2261 struct arm_smmu_device *smmu = dev_get_drvdata(dev); 2262 int ret; 2263 2264 ret = clk_bulk_enable(smmu->num_clks, smmu->clks); 2265 if (ret) 2266 return ret; 2267 2268 arm_smmu_device_reset(smmu); 2269 2270 return 0; 2271 } 2272 2273 static int __maybe_unused arm_smmu_runtime_suspend(struct device *dev) 2274 { 2275 struct arm_smmu_device *smmu = dev_get_drvdata(dev); 2276 2277 clk_bulk_disable(smmu->num_clks, smmu->clks); 2278 2279 return 0; 2280 } 2281 2282 static int __maybe_unused arm_smmu_pm_resume(struct device *dev) 2283 { 2284 int ret; 2285 struct arm_smmu_device *smmu = dev_get_drvdata(dev); 2286 2287 ret = clk_bulk_prepare(smmu->num_clks, smmu->clks); 2288 if (ret) 2289 return ret; 2290 2291 if (pm_runtime_suspended(dev)) 2292 return 0; 2293 2294 ret = arm_smmu_runtime_resume(dev); 2295 if (ret) 2296 clk_bulk_unprepare(smmu->num_clks, smmu->clks); 2297 2298 return ret; 2299 } 2300 2301 static int __maybe_unused arm_smmu_pm_suspend(struct device *dev) 2302 { 2303 int ret = 0; 2304 struct arm_smmu_device *smmu = dev_get_drvdata(dev); 2305 2306 if (pm_runtime_suspended(dev)) 2307 goto clk_unprepare; 2308 2309 ret = arm_smmu_runtime_suspend(dev); 2310 if (ret) 2311 return ret; 2312 2313 clk_unprepare: 2314 clk_bulk_unprepare(smmu->num_clks, smmu->clks); 2315 return ret; 2316 } 2317 2318 static const struct dev_pm_ops arm_smmu_pm_ops = { 2319 SET_SYSTEM_SLEEP_PM_OPS(arm_smmu_pm_suspend, arm_smmu_pm_resume) 2320 SET_RUNTIME_PM_OPS(arm_smmu_runtime_suspend, 2321 arm_smmu_runtime_resume, NULL) 2322 }; 2323 2324 static struct platform_driver arm_smmu_driver = { 2325 .driver = { 2326 .name = "arm-smmu", 2327 .of_match_table = arm_smmu_of_match, 2328 .pm = &arm_smmu_pm_ops, 2329 .suppress_bind_attrs = true, 2330 }, 2331 .probe = arm_smmu_device_probe, 2332 .remove = arm_smmu_device_remove, 2333 .shutdown = arm_smmu_device_shutdown, 2334 }; 2335 module_platform_driver(arm_smmu_driver); 2336 2337 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations"); 2338 MODULE_AUTHOR("Will Deacon <will@kernel.org>"); 2339 MODULE_ALIAS("platform:arm-smmu"); 2340 MODULE_LICENSE("GPL v2"); 2341