1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * IOMMU API for ARM architected SMMU implementations. 4 * 5 * Copyright (C) 2013 ARM Limited 6 * 7 * Author: Will Deacon <will.deacon@arm.com> 8 * 9 * This driver currently supports: 10 * - SMMUv1 and v2 implementations 11 * - Stream-matching and stream-indexing 12 * - v7/v8 long-descriptor format 13 * - Non-secure access to the SMMU 14 * - Context fault reporting 15 * - Extended Stream ID (16 bit) 16 */ 17 18 #define pr_fmt(fmt) "arm-smmu: " fmt 19 20 #include <linux/acpi.h> 21 #include <linux/acpi_iort.h> 22 #include <linux/bitfield.h> 23 #include <linux/delay.h> 24 #include <linux/dma-iommu.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/err.h> 27 #include <linux/interrupt.h> 28 #include <linux/io.h> 29 #include <linux/iopoll.h> 30 #include <linux/module.h> 31 #include <linux/of.h> 32 #include <linux/of_address.h> 33 #include <linux/of_device.h> 34 #include <linux/pci.h> 35 #include <linux/platform_device.h> 36 #include <linux/pm_runtime.h> 37 #include <linux/ratelimit.h> 38 #include <linux/slab.h> 39 40 #include <linux/amba/bus.h> 41 #include <linux/fsl/mc.h> 42 43 #include "arm-smmu.h" 44 45 /* 46 * Apparently, some Qualcomm arm64 platforms which appear to expose their SMMU 47 * global register space are still, in fact, using a hypervisor to mediate it 48 * by trapping and emulating register accesses. Sadly, some deployed versions 49 * of said trapping code have bugs wherein they go horribly wrong for stores 50 * using r31 (i.e. XZR/WZR) as the source register. 51 */ 52 #define QCOM_DUMMY_VAL -1 53 54 #define MSI_IOVA_BASE 0x8000000 55 #define MSI_IOVA_LENGTH 0x100000 56 57 static int force_stage; 58 module_param(force_stage, int, S_IRUGO); 59 MODULE_PARM_DESC(force_stage, 60 "Force SMMU mappings to be installed at a particular stage of translation. A value of '1' or '2' forces the corresponding stage. All other values are ignored (i.e. no stage is forced). Note that selecting a specific stage will disable support for nested translation."); 61 static bool disable_bypass = 62 IS_ENABLED(CONFIG_ARM_SMMU_DISABLE_BYPASS_BY_DEFAULT); 63 module_param(disable_bypass, bool, S_IRUGO); 64 MODULE_PARM_DESC(disable_bypass, 65 "Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU."); 66 67 #define s2cr_init_val (struct arm_smmu_s2cr){ \ 68 .type = disable_bypass ? S2CR_TYPE_FAULT : S2CR_TYPE_BYPASS, \ 69 } 70 71 static bool using_legacy_binding, using_generic_binding; 72 73 static inline int arm_smmu_rpm_get(struct arm_smmu_device *smmu) 74 { 75 if (pm_runtime_enabled(smmu->dev)) 76 return pm_runtime_resume_and_get(smmu->dev); 77 78 return 0; 79 } 80 81 static inline void arm_smmu_rpm_put(struct arm_smmu_device *smmu) 82 { 83 if (pm_runtime_enabled(smmu->dev)) 84 pm_runtime_put_autosuspend(smmu->dev); 85 } 86 87 static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom) 88 { 89 return container_of(dom, struct arm_smmu_domain, domain); 90 } 91 92 static struct platform_driver arm_smmu_driver; 93 static struct iommu_ops arm_smmu_ops; 94 95 #ifdef CONFIG_ARM_SMMU_LEGACY_DT_BINDINGS 96 static int arm_smmu_bus_init(struct iommu_ops *ops); 97 98 static struct device_node *dev_get_dev_node(struct device *dev) 99 { 100 if (dev_is_pci(dev)) { 101 struct pci_bus *bus = to_pci_dev(dev)->bus; 102 103 while (!pci_is_root_bus(bus)) 104 bus = bus->parent; 105 return of_node_get(bus->bridge->parent->of_node); 106 } 107 108 return of_node_get(dev->of_node); 109 } 110 111 static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data) 112 { 113 *((__be32 *)data) = cpu_to_be32(alias); 114 return 0; /* Continue walking */ 115 } 116 117 static int __find_legacy_master_phandle(struct device *dev, void *data) 118 { 119 struct of_phandle_iterator *it = *(void **)data; 120 struct device_node *np = it->node; 121 int err; 122 123 of_for_each_phandle(it, err, dev->of_node, "mmu-masters", 124 "#stream-id-cells", -1) 125 if (it->node == np) { 126 *(void **)data = dev; 127 return 1; 128 } 129 it->node = np; 130 return err == -ENOENT ? 0 : err; 131 } 132 133 static int arm_smmu_register_legacy_master(struct device *dev, 134 struct arm_smmu_device **smmu) 135 { 136 struct device *smmu_dev; 137 struct device_node *np; 138 struct of_phandle_iterator it; 139 void *data = ⁢ 140 u32 *sids; 141 __be32 pci_sid; 142 int err; 143 144 np = dev_get_dev_node(dev); 145 if (!np || !of_find_property(np, "#stream-id-cells", NULL)) { 146 of_node_put(np); 147 return -ENODEV; 148 } 149 150 it.node = np; 151 err = driver_for_each_device(&arm_smmu_driver.driver, NULL, &data, 152 __find_legacy_master_phandle); 153 smmu_dev = data; 154 of_node_put(np); 155 if (err == 0) 156 return -ENODEV; 157 if (err < 0) 158 return err; 159 160 if (dev_is_pci(dev)) { 161 /* "mmu-masters" assumes Stream ID == Requester ID */ 162 pci_for_each_dma_alias(to_pci_dev(dev), __arm_smmu_get_pci_sid, 163 &pci_sid); 164 it.cur = &pci_sid; 165 it.cur_count = 1; 166 } 167 168 err = iommu_fwspec_init(dev, &smmu_dev->of_node->fwnode, 169 &arm_smmu_ops); 170 if (err) 171 return err; 172 173 sids = kcalloc(it.cur_count, sizeof(*sids), GFP_KERNEL); 174 if (!sids) 175 return -ENOMEM; 176 177 *smmu = dev_get_drvdata(smmu_dev); 178 of_phandle_iterator_args(&it, sids, it.cur_count); 179 err = iommu_fwspec_add_ids(dev, sids, it.cur_count); 180 kfree(sids); 181 return err; 182 } 183 184 /* 185 * With the legacy DT binding in play, we have no guarantees about 186 * probe order, but then we're also not doing default domains, so we can 187 * delay setting bus ops until we're sure every possible SMMU is ready, 188 * and that way ensure that no probe_device() calls get missed. 189 */ 190 static int arm_smmu_legacy_bus_init(void) 191 { 192 if (using_legacy_binding) 193 return arm_smmu_bus_init(&arm_smmu_ops); 194 return 0; 195 } 196 device_initcall_sync(arm_smmu_legacy_bus_init); 197 #else 198 static int arm_smmu_register_legacy_master(struct device *dev, 199 struct arm_smmu_device **smmu) 200 { 201 return -ENODEV; 202 } 203 #endif /* CONFIG_ARM_SMMU_LEGACY_DT_BINDINGS */ 204 205 static void __arm_smmu_free_bitmap(unsigned long *map, int idx) 206 { 207 clear_bit(idx, map); 208 } 209 210 /* Wait for any pending TLB invalidations to complete */ 211 static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu, int page, 212 int sync, int status) 213 { 214 unsigned int spin_cnt, delay; 215 u32 reg; 216 217 if (smmu->impl && unlikely(smmu->impl->tlb_sync)) 218 return smmu->impl->tlb_sync(smmu, page, sync, status); 219 220 arm_smmu_writel(smmu, page, sync, QCOM_DUMMY_VAL); 221 for (delay = 1; delay < TLB_LOOP_TIMEOUT; delay *= 2) { 222 for (spin_cnt = TLB_SPIN_COUNT; spin_cnt > 0; spin_cnt--) { 223 reg = arm_smmu_readl(smmu, page, status); 224 if (!(reg & ARM_SMMU_sTLBGSTATUS_GSACTIVE)) 225 return; 226 cpu_relax(); 227 } 228 udelay(delay); 229 } 230 dev_err_ratelimited(smmu->dev, 231 "TLB sync timed out -- SMMU may be deadlocked\n"); 232 } 233 234 static void arm_smmu_tlb_sync_global(struct arm_smmu_device *smmu) 235 { 236 unsigned long flags; 237 238 spin_lock_irqsave(&smmu->global_sync_lock, flags); 239 __arm_smmu_tlb_sync(smmu, ARM_SMMU_GR0, ARM_SMMU_GR0_sTLBGSYNC, 240 ARM_SMMU_GR0_sTLBGSTATUS); 241 spin_unlock_irqrestore(&smmu->global_sync_lock, flags); 242 } 243 244 static void arm_smmu_tlb_sync_context(struct arm_smmu_domain *smmu_domain) 245 { 246 struct arm_smmu_device *smmu = smmu_domain->smmu; 247 unsigned long flags; 248 249 spin_lock_irqsave(&smmu_domain->cb_lock, flags); 250 __arm_smmu_tlb_sync(smmu, ARM_SMMU_CB(smmu, smmu_domain->cfg.cbndx), 251 ARM_SMMU_CB_TLBSYNC, ARM_SMMU_CB_TLBSTATUS); 252 spin_unlock_irqrestore(&smmu_domain->cb_lock, flags); 253 } 254 255 static void arm_smmu_tlb_inv_context_s1(void *cookie) 256 { 257 struct arm_smmu_domain *smmu_domain = cookie; 258 /* 259 * The TLBI write may be relaxed, so ensure that PTEs cleared by the 260 * current CPU are visible beforehand. 261 */ 262 wmb(); 263 arm_smmu_cb_write(smmu_domain->smmu, smmu_domain->cfg.cbndx, 264 ARM_SMMU_CB_S1_TLBIASID, smmu_domain->cfg.asid); 265 arm_smmu_tlb_sync_context(smmu_domain); 266 } 267 268 static void arm_smmu_tlb_inv_context_s2(void *cookie) 269 { 270 struct arm_smmu_domain *smmu_domain = cookie; 271 struct arm_smmu_device *smmu = smmu_domain->smmu; 272 273 /* See above */ 274 wmb(); 275 arm_smmu_gr0_write(smmu, ARM_SMMU_GR0_TLBIVMID, smmu_domain->cfg.vmid); 276 arm_smmu_tlb_sync_global(smmu); 277 } 278 279 static void arm_smmu_tlb_inv_range_s1(unsigned long iova, size_t size, 280 size_t granule, void *cookie, int reg) 281 { 282 struct arm_smmu_domain *smmu_domain = cookie; 283 struct arm_smmu_device *smmu = smmu_domain->smmu; 284 struct arm_smmu_cfg *cfg = &smmu_domain->cfg; 285 int idx = cfg->cbndx; 286 287 if (smmu->features & ARM_SMMU_FEAT_COHERENT_WALK) 288 wmb(); 289 290 if (cfg->fmt != ARM_SMMU_CTX_FMT_AARCH64) { 291 iova = (iova >> 12) << 12; 292 iova |= cfg->asid; 293 do { 294 arm_smmu_cb_write(smmu, idx, reg, iova); 295 iova += granule; 296 } while (size -= granule); 297 } else { 298 iova >>= 12; 299 iova |= (u64)cfg->asid << 48; 300 do { 301 arm_smmu_cb_writeq(smmu, idx, reg, iova); 302 iova += granule >> 12; 303 } while (size -= granule); 304 } 305 } 306 307 static void arm_smmu_tlb_inv_range_s2(unsigned long iova, size_t size, 308 size_t granule, void *cookie, int reg) 309 { 310 struct arm_smmu_domain *smmu_domain = cookie; 311 struct arm_smmu_device *smmu = smmu_domain->smmu; 312 int idx = smmu_domain->cfg.cbndx; 313 314 if (smmu->features & ARM_SMMU_FEAT_COHERENT_WALK) 315 wmb(); 316 317 iova >>= 12; 318 do { 319 if (smmu_domain->cfg.fmt == ARM_SMMU_CTX_FMT_AARCH64) 320 arm_smmu_cb_writeq(smmu, idx, reg, iova); 321 else 322 arm_smmu_cb_write(smmu, idx, reg, iova); 323 iova += granule >> 12; 324 } while (size -= granule); 325 } 326 327 static void arm_smmu_tlb_inv_walk_s1(unsigned long iova, size_t size, 328 size_t granule, void *cookie) 329 { 330 struct arm_smmu_domain *smmu_domain = cookie; 331 struct arm_smmu_cfg *cfg = &smmu_domain->cfg; 332 333 if (cfg->flush_walk_prefer_tlbiasid) { 334 arm_smmu_tlb_inv_context_s1(cookie); 335 } else { 336 arm_smmu_tlb_inv_range_s1(iova, size, granule, cookie, 337 ARM_SMMU_CB_S1_TLBIVA); 338 arm_smmu_tlb_sync_context(cookie); 339 } 340 } 341 342 static void arm_smmu_tlb_add_page_s1(struct iommu_iotlb_gather *gather, 343 unsigned long iova, size_t granule, 344 void *cookie) 345 { 346 arm_smmu_tlb_inv_range_s1(iova, granule, granule, cookie, 347 ARM_SMMU_CB_S1_TLBIVAL); 348 } 349 350 static void arm_smmu_tlb_inv_walk_s2(unsigned long iova, size_t size, 351 size_t granule, void *cookie) 352 { 353 arm_smmu_tlb_inv_range_s2(iova, size, granule, cookie, 354 ARM_SMMU_CB_S2_TLBIIPAS2); 355 arm_smmu_tlb_sync_context(cookie); 356 } 357 358 static void arm_smmu_tlb_add_page_s2(struct iommu_iotlb_gather *gather, 359 unsigned long iova, size_t granule, 360 void *cookie) 361 { 362 arm_smmu_tlb_inv_range_s2(iova, granule, granule, cookie, 363 ARM_SMMU_CB_S2_TLBIIPAS2L); 364 } 365 366 static void arm_smmu_tlb_inv_walk_s2_v1(unsigned long iova, size_t size, 367 size_t granule, void *cookie) 368 { 369 arm_smmu_tlb_inv_context_s2(cookie); 370 } 371 /* 372 * On MMU-401 at least, the cost of firing off multiple TLBIVMIDs appears 373 * almost negligible, but the benefit of getting the first one in as far ahead 374 * of the sync as possible is significant, hence we don't just make this a 375 * no-op and call arm_smmu_tlb_inv_context_s2() from .iotlb_sync as you might 376 * think. 377 */ 378 static void arm_smmu_tlb_add_page_s2_v1(struct iommu_iotlb_gather *gather, 379 unsigned long iova, size_t granule, 380 void *cookie) 381 { 382 struct arm_smmu_domain *smmu_domain = cookie; 383 struct arm_smmu_device *smmu = smmu_domain->smmu; 384 385 if (smmu->features & ARM_SMMU_FEAT_COHERENT_WALK) 386 wmb(); 387 388 arm_smmu_gr0_write(smmu, ARM_SMMU_GR0_TLBIVMID, smmu_domain->cfg.vmid); 389 } 390 391 static const struct iommu_flush_ops arm_smmu_s1_tlb_ops = { 392 .tlb_flush_all = arm_smmu_tlb_inv_context_s1, 393 .tlb_flush_walk = arm_smmu_tlb_inv_walk_s1, 394 .tlb_add_page = arm_smmu_tlb_add_page_s1, 395 }; 396 397 static const struct iommu_flush_ops arm_smmu_s2_tlb_ops_v2 = { 398 .tlb_flush_all = arm_smmu_tlb_inv_context_s2, 399 .tlb_flush_walk = arm_smmu_tlb_inv_walk_s2, 400 .tlb_add_page = arm_smmu_tlb_add_page_s2, 401 }; 402 403 static const struct iommu_flush_ops arm_smmu_s2_tlb_ops_v1 = { 404 .tlb_flush_all = arm_smmu_tlb_inv_context_s2, 405 .tlb_flush_walk = arm_smmu_tlb_inv_walk_s2_v1, 406 .tlb_add_page = arm_smmu_tlb_add_page_s2_v1, 407 }; 408 409 static irqreturn_t arm_smmu_context_fault(int irq, void *dev) 410 { 411 u32 fsr, fsynr, cbfrsynra; 412 unsigned long iova; 413 struct iommu_domain *domain = dev; 414 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain); 415 struct arm_smmu_device *smmu = smmu_domain->smmu; 416 int idx = smmu_domain->cfg.cbndx; 417 int ret; 418 419 fsr = arm_smmu_cb_read(smmu, idx, ARM_SMMU_CB_FSR); 420 if (!(fsr & ARM_SMMU_FSR_FAULT)) 421 return IRQ_NONE; 422 423 fsynr = arm_smmu_cb_read(smmu, idx, ARM_SMMU_CB_FSYNR0); 424 iova = arm_smmu_cb_readq(smmu, idx, ARM_SMMU_CB_FAR); 425 cbfrsynra = arm_smmu_gr1_read(smmu, ARM_SMMU_GR1_CBFRSYNRA(idx)); 426 427 ret = report_iommu_fault(domain, NULL, iova, 428 fsynr & ARM_SMMU_FSYNR0_WNR ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ); 429 430 if (ret == -ENOSYS) 431 dev_err_ratelimited(smmu->dev, 432 "Unhandled context fault: fsr=0x%x, iova=0x%08lx, fsynr=0x%x, cbfrsynra=0x%x, cb=%d\n", 433 fsr, iova, fsynr, cbfrsynra, idx); 434 435 arm_smmu_cb_write(smmu, idx, ARM_SMMU_CB_FSR, fsr); 436 return IRQ_HANDLED; 437 } 438 439 static irqreturn_t arm_smmu_global_fault(int irq, void *dev) 440 { 441 u32 gfsr, gfsynr0, gfsynr1, gfsynr2; 442 struct arm_smmu_device *smmu = dev; 443 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, 444 DEFAULT_RATELIMIT_BURST); 445 446 gfsr = arm_smmu_gr0_read(smmu, ARM_SMMU_GR0_sGFSR); 447 gfsynr0 = arm_smmu_gr0_read(smmu, ARM_SMMU_GR0_sGFSYNR0); 448 gfsynr1 = arm_smmu_gr0_read(smmu, ARM_SMMU_GR0_sGFSYNR1); 449 gfsynr2 = arm_smmu_gr0_read(smmu, ARM_SMMU_GR0_sGFSYNR2); 450 451 if (!gfsr) 452 return IRQ_NONE; 453 454 if (__ratelimit(&rs)) { 455 if (IS_ENABLED(CONFIG_ARM_SMMU_DISABLE_BYPASS_BY_DEFAULT) && 456 (gfsr & ARM_SMMU_sGFSR_USF)) 457 dev_err(smmu->dev, 458 "Blocked unknown Stream ID 0x%hx; boot with \"arm-smmu.disable_bypass=0\" to allow, but this may have security implications\n", 459 (u16)gfsynr1); 460 else 461 dev_err(smmu->dev, 462 "Unexpected global fault, this could be serious\n"); 463 dev_err(smmu->dev, 464 "\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n", 465 gfsr, gfsynr0, gfsynr1, gfsynr2); 466 } 467 468 arm_smmu_gr0_write(smmu, ARM_SMMU_GR0_sGFSR, gfsr); 469 return IRQ_HANDLED; 470 } 471 472 static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain, 473 struct io_pgtable_cfg *pgtbl_cfg) 474 { 475 struct arm_smmu_cfg *cfg = &smmu_domain->cfg; 476 struct arm_smmu_cb *cb = &smmu_domain->smmu->cbs[cfg->cbndx]; 477 bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS; 478 479 cb->cfg = cfg; 480 481 /* TCR */ 482 if (stage1) { 483 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) { 484 cb->tcr[0] = pgtbl_cfg->arm_v7s_cfg.tcr; 485 } else { 486 cb->tcr[0] = arm_smmu_lpae_tcr(pgtbl_cfg); 487 cb->tcr[1] = arm_smmu_lpae_tcr2(pgtbl_cfg); 488 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64) 489 cb->tcr[1] |= ARM_SMMU_TCR2_AS; 490 else 491 cb->tcr[0] |= ARM_SMMU_TCR_EAE; 492 } 493 } else { 494 cb->tcr[0] = arm_smmu_lpae_vtcr(pgtbl_cfg); 495 } 496 497 /* TTBRs */ 498 if (stage1) { 499 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) { 500 cb->ttbr[0] = pgtbl_cfg->arm_v7s_cfg.ttbr; 501 cb->ttbr[1] = 0; 502 } else { 503 cb->ttbr[0] = FIELD_PREP(ARM_SMMU_TTBRn_ASID, 504 cfg->asid); 505 cb->ttbr[1] = FIELD_PREP(ARM_SMMU_TTBRn_ASID, 506 cfg->asid); 507 508 if (pgtbl_cfg->quirks & IO_PGTABLE_QUIRK_ARM_TTBR1) 509 cb->ttbr[1] |= pgtbl_cfg->arm_lpae_s1_cfg.ttbr; 510 else 511 cb->ttbr[0] |= pgtbl_cfg->arm_lpae_s1_cfg.ttbr; 512 } 513 } else { 514 cb->ttbr[0] = pgtbl_cfg->arm_lpae_s2_cfg.vttbr; 515 } 516 517 /* MAIRs (stage-1 only) */ 518 if (stage1) { 519 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) { 520 cb->mair[0] = pgtbl_cfg->arm_v7s_cfg.prrr; 521 cb->mair[1] = pgtbl_cfg->arm_v7s_cfg.nmrr; 522 } else { 523 cb->mair[0] = pgtbl_cfg->arm_lpae_s1_cfg.mair; 524 cb->mair[1] = pgtbl_cfg->arm_lpae_s1_cfg.mair >> 32; 525 } 526 } 527 } 528 529 void arm_smmu_write_context_bank(struct arm_smmu_device *smmu, int idx) 530 { 531 u32 reg; 532 bool stage1; 533 struct arm_smmu_cb *cb = &smmu->cbs[idx]; 534 struct arm_smmu_cfg *cfg = cb->cfg; 535 536 /* Unassigned context banks only need disabling */ 537 if (!cfg) { 538 arm_smmu_cb_write(smmu, idx, ARM_SMMU_CB_SCTLR, 0); 539 return; 540 } 541 542 stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS; 543 544 /* CBA2R */ 545 if (smmu->version > ARM_SMMU_V1) { 546 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64) 547 reg = ARM_SMMU_CBA2R_VA64; 548 else 549 reg = 0; 550 /* 16-bit VMIDs live in CBA2R */ 551 if (smmu->features & ARM_SMMU_FEAT_VMID16) 552 reg |= FIELD_PREP(ARM_SMMU_CBA2R_VMID16, cfg->vmid); 553 554 arm_smmu_gr1_write(smmu, ARM_SMMU_GR1_CBA2R(idx), reg); 555 } 556 557 /* CBAR */ 558 reg = FIELD_PREP(ARM_SMMU_CBAR_TYPE, cfg->cbar); 559 if (smmu->version < ARM_SMMU_V2) 560 reg |= FIELD_PREP(ARM_SMMU_CBAR_IRPTNDX, cfg->irptndx); 561 562 /* 563 * Use the weakest shareability/memory types, so they are 564 * overridden by the ttbcr/pte. 565 */ 566 if (stage1) { 567 reg |= FIELD_PREP(ARM_SMMU_CBAR_S1_BPSHCFG, 568 ARM_SMMU_CBAR_S1_BPSHCFG_NSH) | 569 FIELD_PREP(ARM_SMMU_CBAR_S1_MEMATTR, 570 ARM_SMMU_CBAR_S1_MEMATTR_WB); 571 } else if (!(smmu->features & ARM_SMMU_FEAT_VMID16)) { 572 /* 8-bit VMIDs live in CBAR */ 573 reg |= FIELD_PREP(ARM_SMMU_CBAR_VMID, cfg->vmid); 574 } 575 arm_smmu_gr1_write(smmu, ARM_SMMU_GR1_CBAR(idx), reg); 576 577 /* 578 * TCR 579 * We must write this before the TTBRs, since it determines the 580 * access behaviour of some fields (in particular, ASID[15:8]). 581 */ 582 if (stage1 && smmu->version > ARM_SMMU_V1) 583 arm_smmu_cb_write(smmu, idx, ARM_SMMU_CB_TCR2, cb->tcr[1]); 584 arm_smmu_cb_write(smmu, idx, ARM_SMMU_CB_TCR, cb->tcr[0]); 585 586 /* TTBRs */ 587 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) { 588 arm_smmu_cb_write(smmu, idx, ARM_SMMU_CB_CONTEXTIDR, cfg->asid); 589 arm_smmu_cb_write(smmu, idx, ARM_SMMU_CB_TTBR0, cb->ttbr[0]); 590 arm_smmu_cb_write(smmu, idx, ARM_SMMU_CB_TTBR1, cb->ttbr[1]); 591 } else { 592 arm_smmu_cb_writeq(smmu, idx, ARM_SMMU_CB_TTBR0, cb->ttbr[0]); 593 if (stage1) 594 arm_smmu_cb_writeq(smmu, idx, ARM_SMMU_CB_TTBR1, 595 cb->ttbr[1]); 596 } 597 598 /* MAIRs (stage-1 only) */ 599 if (stage1) { 600 arm_smmu_cb_write(smmu, idx, ARM_SMMU_CB_S1_MAIR0, cb->mair[0]); 601 arm_smmu_cb_write(smmu, idx, ARM_SMMU_CB_S1_MAIR1, cb->mair[1]); 602 } 603 604 /* SCTLR */ 605 reg = ARM_SMMU_SCTLR_CFIE | ARM_SMMU_SCTLR_CFRE | ARM_SMMU_SCTLR_AFE | 606 ARM_SMMU_SCTLR_TRE | ARM_SMMU_SCTLR_M; 607 if (stage1) 608 reg |= ARM_SMMU_SCTLR_S1_ASIDPNE; 609 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN)) 610 reg |= ARM_SMMU_SCTLR_E; 611 612 if (smmu->impl && smmu->impl->write_sctlr) 613 smmu->impl->write_sctlr(smmu, idx, reg); 614 else 615 arm_smmu_cb_write(smmu, idx, ARM_SMMU_CB_SCTLR, reg); 616 } 617 618 static int arm_smmu_alloc_context_bank(struct arm_smmu_domain *smmu_domain, 619 struct arm_smmu_device *smmu, 620 struct device *dev, unsigned int start) 621 { 622 if (smmu->impl && smmu->impl->alloc_context_bank) 623 return smmu->impl->alloc_context_bank(smmu_domain, smmu, dev, start); 624 625 return __arm_smmu_alloc_bitmap(smmu->context_map, start, smmu->num_context_banks); 626 } 627 628 static int arm_smmu_init_domain_context(struct iommu_domain *domain, 629 struct arm_smmu_device *smmu, 630 struct device *dev) 631 { 632 int irq, start, ret = 0; 633 unsigned long ias, oas; 634 struct io_pgtable_ops *pgtbl_ops; 635 struct io_pgtable_cfg pgtbl_cfg; 636 enum io_pgtable_fmt fmt; 637 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain); 638 struct arm_smmu_cfg *cfg = &smmu_domain->cfg; 639 irqreturn_t (*context_fault)(int irq, void *dev); 640 641 mutex_lock(&smmu_domain->init_mutex); 642 if (smmu_domain->smmu) 643 goto out_unlock; 644 645 if (domain->type == IOMMU_DOMAIN_IDENTITY) { 646 smmu_domain->stage = ARM_SMMU_DOMAIN_BYPASS; 647 smmu_domain->smmu = smmu; 648 goto out_unlock; 649 } 650 651 /* 652 * Mapping the requested stage onto what we support is surprisingly 653 * complicated, mainly because the spec allows S1+S2 SMMUs without 654 * support for nested translation. That means we end up with the 655 * following table: 656 * 657 * Requested Supported Actual 658 * S1 N S1 659 * S1 S1+S2 S1 660 * S1 S2 S2 661 * S1 S1 S1 662 * N N N 663 * N S1+S2 S2 664 * N S2 S2 665 * N S1 S1 666 * 667 * Note that you can't actually request stage-2 mappings. 668 */ 669 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1)) 670 smmu_domain->stage = ARM_SMMU_DOMAIN_S2; 671 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2)) 672 smmu_domain->stage = ARM_SMMU_DOMAIN_S1; 673 674 /* 675 * Choosing a suitable context format is even more fiddly. Until we 676 * grow some way for the caller to express a preference, and/or move 677 * the decision into the io-pgtable code where it arguably belongs, 678 * just aim for the closest thing to the rest of the system, and hope 679 * that the hardware isn't esoteric enough that we can't assume AArch64 680 * support to be a superset of AArch32 support... 681 */ 682 if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_L) 683 cfg->fmt = ARM_SMMU_CTX_FMT_AARCH32_L; 684 if (IS_ENABLED(CONFIG_IOMMU_IO_PGTABLE_ARMV7S) && 685 !IS_ENABLED(CONFIG_64BIT) && !IS_ENABLED(CONFIG_ARM_LPAE) && 686 (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_S) && 687 (smmu_domain->stage == ARM_SMMU_DOMAIN_S1)) 688 cfg->fmt = ARM_SMMU_CTX_FMT_AARCH32_S; 689 if ((IS_ENABLED(CONFIG_64BIT) || cfg->fmt == ARM_SMMU_CTX_FMT_NONE) && 690 (smmu->features & (ARM_SMMU_FEAT_FMT_AARCH64_64K | 691 ARM_SMMU_FEAT_FMT_AARCH64_16K | 692 ARM_SMMU_FEAT_FMT_AARCH64_4K))) 693 cfg->fmt = ARM_SMMU_CTX_FMT_AARCH64; 694 695 if (cfg->fmt == ARM_SMMU_CTX_FMT_NONE) { 696 ret = -EINVAL; 697 goto out_unlock; 698 } 699 700 switch (smmu_domain->stage) { 701 case ARM_SMMU_DOMAIN_S1: 702 cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS; 703 start = smmu->num_s2_context_banks; 704 ias = smmu->va_size; 705 oas = smmu->ipa_size; 706 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64) { 707 fmt = ARM_64_LPAE_S1; 708 } else if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_L) { 709 fmt = ARM_32_LPAE_S1; 710 ias = min(ias, 32UL); 711 oas = min(oas, 40UL); 712 } else { 713 fmt = ARM_V7S; 714 ias = min(ias, 32UL); 715 oas = min(oas, 32UL); 716 } 717 smmu_domain->flush_ops = &arm_smmu_s1_tlb_ops; 718 break; 719 case ARM_SMMU_DOMAIN_NESTED: 720 /* 721 * We will likely want to change this if/when KVM gets 722 * involved. 723 */ 724 case ARM_SMMU_DOMAIN_S2: 725 cfg->cbar = CBAR_TYPE_S2_TRANS; 726 start = 0; 727 ias = smmu->ipa_size; 728 oas = smmu->pa_size; 729 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64) { 730 fmt = ARM_64_LPAE_S2; 731 } else { 732 fmt = ARM_32_LPAE_S2; 733 ias = min(ias, 40UL); 734 oas = min(oas, 40UL); 735 } 736 if (smmu->version == ARM_SMMU_V2) 737 smmu_domain->flush_ops = &arm_smmu_s2_tlb_ops_v2; 738 else 739 smmu_domain->flush_ops = &arm_smmu_s2_tlb_ops_v1; 740 break; 741 default: 742 ret = -EINVAL; 743 goto out_unlock; 744 } 745 746 ret = arm_smmu_alloc_context_bank(smmu_domain, smmu, dev, start); 747 if (ret < 0) { 748 goto out_unlock; 749 } 750 751 smmu_domain->smmu = smmu; 752 753 cfg->cbndx = ret; 754 if (smmu->version < ARM_SMMU_V2) { 755 cfg->irptndx = atomic_inc_return(&smmu->irptndx); 756 cfg->irptndx %= smmu->num_context_irqs; 757 } else { 758 cfg->irptndx = cfg->cbndx; 759 } 760 761 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S2) 762 cfg->vmid = cfg->cbndx + 1; 763 else 764 cfg->asid = cfg->cbndx; 765 766 pgtbl_cfg = (struct io_pgtable_cfg) { 767 .pgsize_bitmap = smmu->pgsize_bitmap, 768 .ias = ias, 769 .oas = oas, 770 .coherent_walk = smmu->features & ARM_SMMU_FEAT_COHERENT_WALK, 771 .tlb = smmu_domain->flush_ops, 772 .iommu_dev = smmu->dev, 773 }; 774 775 if (smmu->impl && smmu->impl->init_context) { 776 ret = smmu->impl->init_context(smmu_domain, &pgtbl_cfg, dev); 777 if (ret) 778 goto out_clear_smmu; 779 } 780 781 if (smmu_domain->pgtbl_quirks) 782 pgtbl_cfg.quirks |= smmu_domain->pgtbl_quirks; 783 784 pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain); 785 if (!pgtbl_ops) { 786 ret = -ENOMEM; 787 goto out_clear_smmu; 788 } 789 790 /* Update the domain's page sizes to reflect the page table format */ 791 domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap; 792 793 if (pgtbl_cfg.quirks & IO_PGTABLE_QUIRK_ARM_TTBR1) { 794 domain->geometry.aperture_start = ~0UL << ias; 795 domain->geometry.aperture_end = ~0UL; 796 } else { 797 domain->geometry.aperture_end = (1UL << ias) - 1; 798 } 799 800 domain->geometry.force_aperture = true; 801 802 /* Initialise the context bank with our page table cfg */ 803 arm_smmu_init_context_bank(smmu_domain, &pgtbl_cfg); 804 arm_smmu_write_context_bank(smmu, cfg->cbndx); 805 806 /* 807 * Request context fault interrupt. Do this last to avoid the 808 * handler seeing a half-initialised domain state. 809 */ 810 irq = smmu->irqs[cfg->irptndx]; 811 812 if (smmu->impl && smmu->impl->context_fault) 813 context_fault = smmu->impl->context_fault; 814 else 815 context_fault = arm_smmu_context_fault; 816 817 ret = devm_request_irq(smmu->dev, irq, context_fault, 818 IRQF_SHARED, "arm-smmu-context-fault", domain); 819 if (ret < 0) { 820 dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n", 821 cfg->irptndx, irq); 822 cfg->irptndx = ARM_SMMU_INVALID_IRPTNDX; 823 } 824 825 mutex_unlock(&smmu_domain->init_mutex); 826 827 /* Publish page table ops for map/unmap */ 828 smmu_domain->pgtbl_ops = pgtbl_ops; 829 return 0; 830 831 out_clear_smmu: 832 __arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx); 833 smmu_domain->smmu = NULL; 834 out_unlock: 835 mutex_unlock(&smmu_domain->init_mutex); 836 return ret; 837 } 838 839 static void arm_smmu_destroy_domain_context(struct iommu_domain *domain) 840 { 841 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain); 842 struct arm_smmu_device *smmu = smmu_domain->smmu; 843 struct arm_smmu_cfg *cfg = &smmu_domain->cfg; 844 int ret, irq; 845 846 if (!smmu || domain->type == IOMMU_DOMAIN_IDENTITY) 847 return; 848 849 ret = arm_smmu_rpm_get(smmu); 850 if (ret < 0) 851 return; 852 853 /* 854 * Disable the context bank and free the page tables before freeing 855 * it. 856 */ 857 smmu->cbs[cfg->cbndx].cfg = NULL; 858 arm_smmu_write_context_bank(smmu, cfg->cbndx); 859 860 if (cfg->irptndx != ARM_SMMU_INVALID_IRPTNDX) { 861 irq = smmu->irqs[cfg->irptndx]; 862 devm_free_irq(smmu->dev, irq, domain); 863 } 864 865 free_io_pgtable_ops(smmu_domain->pgtbl_ops); 866 __arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx); 867 868 arm_smmu_rpm_put(smmu); 869 } 870 871 static struct iommu_domain *arm_smmu_domain_alloc(unsigned type) 872 { 873 struct arm_smmu_domain *smmu_domain; 874 875 if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_IDENTITY) { 876 if (using_legacy_binding || 877 (type != IOMMU_DOMAIN_DMA && type != IOMMU_DOMAIN_DMA_FQ)) 878 return NULL; 879 } 880 /* 881 * Allocate the domain and initialise some of its data structures. 882 * We can't really do anything meaningful until we've added a 883 * master. 884 */ 885 smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL); 886 if (!smmu_domain) 887 return NULL; 888 889 mutex_init(&smmu_domain->init_mutex); 890 spin_lock_init(&smmu_domain->cb_lock); 891 892 return &smmu_domain->domain; 893 } 894 895 static void arm_smmu_domain_free(struct iommu_domain *domain) 896 { 897 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain); 898 899 /* 900 * Free the domain resources. We assume that all devices have 901 * already been detached. 902 */ 903 arm_smmu_destroy_domain_context(domain); 904 kfree(smmu_domain); 905 } 906 907 static void arm_smmu_write_smr(struct arm_smmu_device *smmu, int idx) 908 { 909 struct arm_smmu_smr *smr = smmu->smrs + idx; 910 u32 reg = FIELD_PREP(ARM_SMMU_SMR_ID, smr->id) | 911 FIELD_PREP(ARM_SMMU_SMR_MASK, smr->mask); 912 913 if (!(smmu->features & ARM_SMMU_FEAT_EXIDS) && smr->valid) 914 reg |= ARM_SMMU_SMR_VALID; 915 arm_smmu_gr0_write(smmu, ARM_SMMU_GR0_SMR(idx), reg); 916 } 917 918 static void arm_smmu_write_s2cr(struct arm_smmu_device *smmu, int idx) 919 { 920 struct arm_smmu_s2cr *s2cr = smmu->s2crs + idx; 921 u32 reg; 922 923 if (smmu->impl && smmu->impl->write_s2cr) { 924 smmu->impl->write_s2cr(smmu, idx); 925 return; 926 } 927 928 reg = FIELD_PREP(ARM_SMMU_S2CR_TYPE, s2cr->type) | 929 FIELD_PREP(ARM_SMMU_S2CR_CBNDX, s2cr->cbndx) | 930 FIELD_PREP(ARM_SMMU_S2CR_PRIVCFG, s2cr->privcfg); 931 932 if (smmu->features & ARM_SMMU_FEAT_EXIDS && smmu->smrs && 933 smmu->smrs[idx].valid) 934 reg |= ARM_SMMU_S2CR_EXIDVALID; 935 arm_smmu_gr0_write(smmu, ARM_SMMU_GR0_S2CR(idx), reg); 936 } 937 938 static void arm_smmu_write_sme(struct arm_smmu_device *smmu, int idx) 939 { 940 arm_smmu_write_s2cr(smmu, idx); 941 if (smmu->smrs) 942 arm_smmu_write_smr(smmu, idx); 943 } 944 945 /* 946 * The width of SMR's mask field depends on sCR0_EXIDENABLE, so this function 947 * should be called after sCR0 is written. 948 */ 949 static void arm_smmu_test_smr_masks(struct arm_smmu_device *smmu) 950 { 951 u32 smr; 952 int i; 953 954 if (!smmu->smrs) 955 return; 956 /* 957 * If we've had to accommodate firmware memory regions, we may 958 * have live SMRs by now; tread carefully... 959 * 960 * Somewhat perversely, not having a free SMR for this test implies we 961 * can get away without it anyway, as we'll only be able to 'allocate' 962 * these SMRs for the ID/mask values we're already trusting to be OK. 963 */ 964 for (i = 0; i < smmu->num_mapping_groups; i++) 965 if (!smmu->smrs[i].valid) 966 goto smr_ok; 967 return; 968 smr_ok: 969 /* 970 * SMR.ID bits may not be preserved if the corresponding MASK 971 * bits are set, so check each one separately. We can reject 972 * masters later if they try to claim IDs outside these masks. 973 */ 974 smr = FIELD_PREP(ARM_SMMU_SMR_ID, smmu->streamid_mask); 975 arm_smmu_gr0_write(smmu, ARM_SMMU_GR0_SMR(i), smr); 976 smr = arm_smmu_gr0_read(smmu, ARM_SMMU_GR0_SMR(i)); 977 smmu->streamid_mask = FIELD_GET(ARM_SMMU_SMR_ID, smr); 978 979 smr = FIELD_PREP(ARM_SMMU_SMR_MASK, smmu->streamid_mask); 980 arm_smmu_gr0_write(smmu, ARM_SMMU_GR0_SMR(i), smr); 981 smr = arm_smmu_gr0_read(smmu, ARM_SMMU_GR0_SMR(i)); 982 smmu->smr_mask_mask = FIELD_GET(ARM_SMMU_SMR_MASK, smr); 983 } 984 985 static int arm_smmu_find_sme(struct arm_smmu_device *smmu, u16 id, u16 mask) 986 { 987 struct arm_smmu_smr *smrs = smmu->smrs; 988 int i, free_idx = -ENOSPC; 989 990 /* Stream indexing is blissfully easy */ 991 if (!smrs) 992 return id; 993 994 /* Validating SMRs is... less so */ 995 for (i = 0; i < smmu->num_mapping_groups; ++i) { 996 if (!smrs[i].valid) { 997 /* 998 * Note the first free entry we come across, which 999 * we'll claim in the end if nothing else matches. 1000 */ 1001 if (free_idx < 0) 1002 free_idx = i; 1003 continue; 1004 } 1005 /* 1006 * If the new entry is _entirely_ matched by an existing entry, 1007 * then reuse that, with the guarantee that there also cannot 1008 * be any subsequent conflicting entries. In normal use we'd 1009 * expect simply identical entries for this case, but there's 1010 * no harm in accommodating the generalisation. 1011 */ 1012 if ((mask & smrs[i].mask) == mask && 1013 !((id ^ smrs[i].id) & ~smrs[i].mask)) 1014 return i; 1015 /* 1016 * If the new entry has any other overlap with an existing one, 1017 * though, then there always exists at least one stream ID 1018 * which would cause a conflict, and we can't allow that risk. 1019 */ 1020 if (!((id ^ smrs[i].id) & ~(smrs[i].mask | mask))) 1021 return -EINVAL; 1022 } 1023 1024 return free_idx; 1025 } 1026 1027 static bool arm_smmu_free_sme(struct arm_smmu_device *smmu, int idx) 1028 { 1029 if (--smmu->s2crs[idx].count) 1030 return false; 1031 1032 smmu->s2crs[idx] = s2cr_init_val; 1033 if (smmu->smrs) 1034 smmu->smrs[idx].valid = false; 1035 1036 return true; 1037 } 1038 1039 static int arm_smmu_master_alloc_smes(struct device *dev) 1040 { 1041 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 1042 struct arm_smmu_master_cfg *cfg = dev_iommu_priv_get(dev); 1043 struct arm_smmu_device *smmu = cfg->smmu; 1044 struct arm_smmu_smr *smrs = smmu->smrs; 1045 int i, idx, ret; 1046 1047 mutex_lock(&smmu->stream_map_mutex); 1048 /* Figure out a viable stream map entry allocation */ 1049 for_each_cfg_sme(cfg, fwspec, i, idx) { 1050 u16 sid = FIELD_GET(ARM_SMMU_SMR_ID, fwspec->ids[i]); 1051 u16 mask = FIELD_GET(ARM_SMMU_SMR_MASK, fwspec->ids[i]); 1052 1053 if (idx != INVALID_SMENDX) { 1054 ret = -EEXIST; 1055 goto out_err; 1056 } 1057 1058 ret = arm_smmu_find_sme(smmu, sid, mask); 1059 if (ret < 0) 1060 goto out_err; 1061 1062 idx = ret; 1063 if (smrs && smmu->s2crs[idx].count == 0) { 1064 smrs[idx].id = sid; 1065 smrs[idx].mask = mask; 1066 smrs[idx].valid = true; 1067 } 1068 smmu->s2crs[idx].count++; 1069 cfg->smendx[i] = (s16)idx; 1070 } 1071 1072 /* It worked! Now, poke the actual hardware */ 1073 for_each_cfg_sme(cfg, fwspec, i, idx) 1074 arm_smmu_write_sme(smmu, idx); 1075 1076 mutex_unlock(&smmu->stream_map_mutex); 1077 return 0; 1078 1079 out_err: 1080 while (i--) { 1081 arm_smmu_free_sme(smmu, cfg->smendx[i]); 1082 cfg->smendx[i] = INVALID_SMENDX; 1083 } 1084 mutex_unlock(&smmu->stream_map_mutex); 1085 return ret; 1086 } 1087 1088 static void arm_smmu_master_free_smes(struct arm_smmu_master_cfg *cfg, 1089 struct iommu_fwspec *fwspec) 1090 { 1091 struct arm_smmu_device *smmu = cfg->smmu; 1092 int i, idx; 1093 1094 mutex_lock(&smmu->stream_map_mutex); 1095 for_each_cfg_sme(cfg, fwspec, i, idx) { 1096 if (arm_smmu_free_sme(smmu, idx)) 1097 arm_smmu_write_sme(smmu, idx); 1098 cfg->smendx[i] = INVALID_SMENDX; 1099 } 1100 mutex_unlock(&smmu->stream_map_mutex); 1101 } 1102 1103 static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain, 1104 struct arm_smmu_master_cfg *cfg, 1105 struct iommu_fwspec *fwspec) 1106 { 1107 struct arm_smmu_device *smmu = smmu_domain->smmu; 1108 struct arm_smmu_s2cr *s2cr = smmu->s2crs; 1109 u8 cbndx = smmu_domain->cfg.cbndx; 1110 enum arm_smmu_s2cr_type type; 1111 int i, idx; 1112 1113 if (smmu_domain->stage == ARM_SMMU_DOMAIN_BYPASS) 1114 type = S2CR_TYPE_BYPASS; 1115 else 1116 type = S2CR_TYPE_TRANS; 1117 1118 for_each_cfg_sme(cfg, fwspec, i, idx) { 1119 if (type == s2cr[idx].type && cbndx == s2cr[idx].cbndx) 1120 continue; 1121 1122 s2cr[idx].type = type; 1123 s2cr[idx].privcfg = S2CR_PRIVCFG_DEFAULT; 1124 s2cr[idx].cbndx = cbndx; 1125 arm_smmu_write_s2cr(smmu, idx); 1126 } 1127 return 0; 1128 } 1129 1130 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev) 1131 { 1132 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain); 1133 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 1134 struct arm_smmu_master_cfg *cfg; 1135 struct arm_smmu_device *smmu; 1136 int ret; 1137 1138 if (!fwspec || fwspec->ops != &arm_smmu_ops) { 1139 dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n"); 1140 return -ENXIO; 1141 } 1142 1143 /* 1144 * FIXME: The arch/arm DMA API code tries to attach devices to its own 1145 * domains between of_xlate() and probe_device() - we have no way to cope 1146 * with that, so until ARM gets converted to rely on groups and default 1147 * domains, just say no (but more politely than by dereferencing NULL). 1148 * This should be at least a WARN_ON once that's sorted. 1149 */ 1150 cfg = dev_iommu_priv_get(dev); 1151 if (!cfg) 1152 return -ENODEV; 1153 1154 smmu = cfg->smmu; 1155 1156 ret = arm_smmu_rpm_get(smmu); 1157 if (ret < 0) 1158 return ret; 1159 1160 /* Ensure that the domain is finalised */ 1161 ret = arm_smmu_init_domain_context(domain, smmu, dev); 1162 if (ret < 0) 1163 goto rpm_put; 1164 1165 /* 1166 * Sanity check the domain. We don't support domains across 1167 * different SMMUs. 1168 */ 1169 if (smmu_domain->smmu != smmu) { 1170 dev_err(dev, 1171 "cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n", 1172 dev_name(smmu_domain->smmu->dev), dev_name(smmu->dev)); 1173 ret = -EINVAL; 1174 goto rpm_put; 1175 } 1176 1177 /* Looks ok, so add the device to the domain */ 1178 ret = arm_smmu_domain_add_master(smmu_domain, cfg, fwspec); 1179 1180 /* 1181 * Setup an autosuspend delay to avoid bouncing runpm state. 1182 * Otherwise, if a driver for a suspended consumer device 1183 * unmaps buffers, it will runpm resume/suspend for each one. 1184 * 1185 * For example, when used by a GPU device, when an application 1186 * or game exits, it can trigger unmapping 100s or 1000s of 1187 * buffers. With a runpm cycle for each buffer, that adds up 1188 * to 5-10sec worth of reprogramming the context bank, while 1189 * the system appears to be locked up to the user. 1190 */ 1191 pm_runtime_set_autosuspend_delay(smmu->dev, 20); 1192 pm_runtime_use_autosuspend(smmu->dev); 1193 1194 rpm_put: 1195 arm_smmu_rpm_put(smmu); 1196 return ret; 1197 } 1198 1199 static int arm_smmu_map_pages(struct iommu_domain *domain, unsigned long iova, 1200 phys_addr_t paddr, size_t pgsize, size_t pgcount, 1201 int prot, gfp_t gfp, size_t *mapped) 1202 { 1203 struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops; 1204 struct arm_smmu_device *smmu = to_smmu_domain(domain)->smmu; 1205 int ret; 1206 1207 if (!ops) 1208 return -ENODEV; 1209 1210 arm_smmu_rpm_get(smmu); 1211 ret = ops->map_pages(ops, iova, paddr, pgsize, pgcount, prot, gfp, mapped); 1212 arm_smmu_rpm_put(smmu); 1213 1214 return ret; 1215 } 1216 1217 static size_t arm_smmu_unmap_pages(struct iommu_domain *domain, unsigned long iova, 1218 size_t pgsize, size_t pgcount, 1219 struct iommu_iotlb_gather *iotlb_gather) 1220 { 1221 struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops; 1222 struct arm_smmu_device *smmu = to_smmu_domain(domain)->smmu; 1223 size_t ret; 1224 1225 if (!ops) 1226 return 0; 1227 1228 arm_smmu_rpm_get(smmu); 1229 ret = ops->unmap_pages(ops, iova, pgsize, pgcount, iotlb_gather); 1230 arm_smmu_rpm_put(smmu); 1231 1232 return ret; 1233 } 1234 1235 static void arm_smmu_flush_iotlb_all(struct iommu_domain *domain) 1236 { 1237 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain); 1238 struct arm_smmu_device *smmu = smmu_domain->smmu; 1239 1240 if (smmu_domain->flush_ops) { 1241 arm_smmu_rpm_get(smmu); 1242 smmu_domain->flush_ops->tlb_flush_all(smmu_domain); 1243 arm_smmu_rpm_put(smmu); 1244 } 1245 } 1246 1247 static void arm_smmu_iotlb_sync(struct iommu_domain *domain, 1248 struct iommu_iotlb_gather *gather) 1249 { 1250 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain); 1251 struct arm_smmu_device *smmu = smmu_domain->smmu; 1252 1253 if (!smmu) 1254 return; 1255 1256 arm_smmu_rpm_get(smmu); 1257 if (smmu->version == ARM_SMMU_V2 || 1258 smmu_domain->stage == ARM_SMMU_DOMAIN_S1) 1259 arm_smmu_tlb_sync_context(smmu_domain); 1260 else 1261 arm_smmu_tlb_sync_global(smmu); 1262 arm_smmu_rpm_put(smmu); 1263 } 1264 1265 static phys_addr_t arm_smmu_iova_to_phys_hard(struct iommu_domain *domain, 1266 dma_addr_t iova) 1267 { 1268 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain); 1269 struct arm_smmu_device *smmu = smmu_domain->smmu; 1270 struct arm_smmu_cfg *cfg = &smmu_domain->cfg; 1271 struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops; 1272 struct device *dev = smmu->dev; 1273 void __iomem *reg; 1274 u32 tmp; 1275 u64 phys; 1276 unsigned long va, flags; 1277 int ret, idx = cfg->cbndx; 1278 phys_addr_t addr = 0; 1279 1280 ret = arm_smmu_rpm_get(smmu); 1281 if (ret < 0) 1282 return 0; 1283 1284 spin_lock_irqsave(&smmu_domain->cb_lock, flags); 1285 va = iova & ~0xfffUL; 1286 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64) 1287 arm_smmu_cb_writeq(smmu, idx, ARM_SMMU_CB_ATS1PR, va); 1288 else 1289 arm_smmu_cb_write(smmu, idx, ARM_SMMU_CB_ATS1PR, va); 1290 1291 reg = arm_smmu_page(smmu, ARM_SMMU_CB(smmu, idx)) + ARM_SMMU_CB_ATSR; 1292 if (readl_poll_timeout_atomic(reg, tmp, !(tmp & ARM_SMMU_ATSR_ACTIVE), 1293 5, 50)) { 1294 spin_unlock_irqrestore(&smmu_domain->cb_lock, flags); 1295 dev_err(dev, 1296 "iova to phys timed out on %pad. Falling back to software table walk.\n", 1297 &iova); 1298 arm_smmu_rpm_put(smmu); 1299 return ops->iova_to_phys(ops, iova); 1300 } 1301 1302 phys = arm_smmu_cb_readq(smmu, idx, ARM_SMMU_CB_PAR); 1303 spin_unlock_irqrestore(&smmu_domain->cb_lock, flags); 1304 if (phys & ARM_SMMU_CB_PAR_F) { 1305 dev_err(dev, "translation fault!\n"); 1306 dev_err(dev, "PAR = 0x%llx\n", phys); 1307 goto out; 1308 } 1309 1310 addr = (phys & GENMASK_ULL(39, 12)) | (iova & 0xfff); 1311 out: 1312 arm_smmu_rpm_put(smmu); 1313 1314 return addr; 1315 } 1316 1317 static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain, 1318 dma_addr_t iova) 1319 { 1320 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain); 1321 struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops; 1322 1323 if (!ops) 1324 return 0; 1325 1326 if (smmu_domain->smmu->features & ARM_SMMU_FEAT_TRANS_OPS && 1327 smmu_domain->stage == ARM_SMMU_DOMAIN_S1) 1328 return arm_smmu_iova_to_phys_hard(domain, iova); 1329 1330 return ops->iova_to_phys(ops, iova); 1331 } 1332 1333 static bool arm_smmu_capable(enum iommu_cap cap) 1334 { 1335 switch (cap) { 1336 case IOMMU_CAP_CACHE_COHERENCY: 1337 /* 1338 * Return true here as the SMMU can always send out coherent 1339 * requests. 1340 */ 1341 return true; 1342 case IOMMU_CAP_NOEXEC: 1343 return true; 1344 default: 1345 return false; 1346 } 1347 } 1348 1349 static 1350 struct arm_smmu_device *arm_smmu_get_by_fwnode(struct fwnode_handle *fwnode) 1351 { 1352 struct device *dev = driver_find_device_by_fwnode(&arm_smmu_driver.driver, 1353 fwnode); 1354 put_device(dev); 1355 return dev ? dev_get_drvdata(dev) : NULL; 1356 } 1357 1358 static struct iommu_device *arm_smmu_probe_device(struct device *dev) 1359 { 1360 struct arm_smmu_device *smmu = NULL; 1361 struct arm_smmu_master_cfg *cfg; 1362 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 1363 int i, ret; 1364 1365 if (using_legacy_binding) { 1366 ret = arm_smmu_register_legacy_master(dev, &smmu); 1367 1368 /* 1369 * If dev->iommu_fwspec is initally NULL, arm_smmu_register_legacy_master() 1370 * will allocate/initialise a new one. Thus we need to update fwspec for 1371 * later use. 1372 */ 1373 fwspec = dev_iommu_fwspec_get(dev); 1374 if (ret) 1375 goto out_free; 1376 } else if (fwspec && fwspec->ops == &arm_smmu_ops) { 1377 smmu = arm_smmu_get_by_fwnode(fwspec->iommu_fwnode); 1378 } else { 1379 return ERR_PTR(-ENODEV); 1380 } 1381 1382 ret = -EINVAL; 1383 for (i = 0; i < fwspec->num_ids; i++) { 1384 u16 sid = FIELD_GET(ARM_SMMU_SMR_ID, fwspec->ids[i]); 1385 u16 mask = FIELD_GET(ARM_SMMU_SMR_MASK, fwspec->ids[i]); 1386 1387 if (sid & ~smmu->streamid_mask) { 1388 dev_err(dev, "stream ID 0x%x out of range for SMMU (0x%x)\n", 1389 sid, smmu->streamid_mask); 1390 goto out_free; 1391 } 1392 if (mask & ~smmu->smr_mask_mask) { 1393 dev_err(dev, "SMR mask 0x%x out of range for SMMU (0x%x)\n", 1394 mask, smmu->smr_mask_mask); 1395 goto out_free; 1396 } 1397 } 1398 1399 ret = -ENOMEM; 1400 cfg = kzalloc(offsetof(struct arm_smmu_master_cfg, smendx[i]), 1401 GFP_KERNEL); 1402 if (!cfg) 1403 goto out_free; 1404 1405 cfg->smmu = smmu; 1406 dev_iommu_priv_set(dev, cfg); 1407 while (i--) 1408 cfg->smendx[i] = INVALID_SMENDX; 1409 1410 ret = arm_smmu_rpm_get(smmu); 1411 if (ret < 0) 1412 goto out_cfg_free; 1413 1414 ret = arm_smmu_master_alloc_smes(dev); 1415 arm_smmu_rpm_put(smmu); 1416 1417 if (ret) 1418 goto out_cfg_free; 1419 1420 device_link_add(dev, smmu->dev, 1421 DL_FLAG_PM_RUNTIME | DL_FLAG_AUTOREMOVE_SUPPLIER); 1422 1423 return &smmu->iommu; 1424 1425 out_cfg_free: 1426 kfree(cfg); 1427 out_free: 1428 iommu_fwspec_free(dev); 1429 return ERR_PTR(ret); 1430 } 1431 1432 static void arm_smmu_release_device(struct device *dev) 1433 { 1434 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 1435 struct arm_smmu_master_cfg *cfg; 1436 struct arm_smmu_device *smmu; 1437 int ret; 1438 1439 if (!fwspec || fwspec->ops != &arm_smmu_ops) 1440 return; 1441 1442 cfg = dev_iommu_priv_get(dev); 1443 smmu = cfg->smmu; 1444 1445 ret = arm_smmu_rpm_get(smmu); 1446 if (ret < 0) 1447 return; 1448 1449 arm_smmu_master_free_smes(cfg, fwspec); 1450 1451 arm_smmu_rpm_put(smmu); 1452 1453 dev_iommu_priv_set(dev, NULL); 1454 kfree(cfg); 1455 iommu_fwspec_free(dev); 1456 } 1457 1458 static void arm_smmu_probe_finalize(struct device *dev) 1459 { 1460 struct arm_smmu_master_cfg *cfg; 1461 struct arm_smmu_device *smmu; 1462 1463 cfg = dev_iommu_priv_get(dev); 1464 smmu = cfg->smmu; 1465 1466 if (smmu->impl && smmu->impl->probe_finalize) 1467 smmu->impl->probe_finalize(smmu, dev); 1468 } 1469 1470 static struct iommu_group *arm_smmu_device_group(struct device *dev) 1471 { 1472 struct arm_smmu_master_cfg *cfg = dev_iommu_priv_get(dev); 1473 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 1474 struct arm_smmu_device *smmu = cfg->smmu; 1475 struct iommu_group *group = NULL; 1476 int i, idx; 1477 1478 mutex_lock(&smmu->stream_map_mutex); 1479 for_each_cfg_sme(cfg, fwspec, i, idx) { 1480 if (group && smmu->s2crs[idx].group && 1481 group != smmu->s2crs[idx].group) { 1482 mutex_unlock(&smmu->stream_map_mutex); 1483 return ERR_PTR(-EINVAL); 1484 } 1485 1486 group = smmu->s2crs[idx].group; 1487 } 1488 1489 if (group) { 1490 mutex_unlock(&smmu->stream_map_mutex); 1491 return iommu_group_ref_get(group); 1492 } 1493 1494 if (dev_is_pci(dev)) 1495 group = pci_device_group(dev); 1496 else if (dev_is_fsl_mc(dev)) 1497 group = fsl_mc_device_group(dev); 1498 else 1499 group = generic_device_group(dev); 1500 1501 /* Remember group for faster lookups */ 1502 if (!IS_ERR(group)) 1503 for_each_cfg_sme(cfg, fwspec, i, idx) 1504 smmu->s2crs[idx].group = group; 1505 1506 mutex_unlock(&smmu->stream_map_mutex); 1507 return group; 1508 } 1509 1510 static int arm_smmu_enable_nesting(struct iommu_domain *domain) 1511 { 1512 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain); 1513 int ret = 0; 1514 1515 mutex_lock(&smmu_domain->init_mutex); 1516 if (smmu_domain->smmu) 1517 ret = -EPERM; 1518 else 1519 smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED; 1520 mutex_unlock(&smmu_domain->init_mutex); 1521 1522 return ret; 1523 } 1524 1525 static int arm_smmu_set_pgtable_quirks(struct iommu_domain *domain, 1526 unsigned long quirks) 1527 { 1528 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain); 1529 int ret = 0; 1530 1531 mutex_lock(&smmu_domain->init_mutex); 1532 if (smmu_domain->smmu) 1533 ret = -EPERM; 1534 else 1535 smmu_domain->pgtbl_quirks = quirks; 1536 mutex_unlock(&smmu_domain->init_mutex); 1537 1538 return ret; 1539 } 1540 1541 static int arm_smmu_of_xlate(struct device *dev, struct of_phandle_args *args) 1542 { 1543 u32 mask, fwid = 0; 1544 1545 if (args->args_count > 0) 1546 fwid |= FIELD_PREP(ARM_SMMU_SMR_ID, args->args[0]); 1547 1548 if (args->args_count > 1) 1549 fwid |= FIELD_PREP(ARM_SMMU_SMR_MASK, args->args[1]); 1550 else if (!of_property_read_u32(args->np, "stream-match-mask", &mask)) 1551 fwid |= FIELD_PREP(ARM_SMMU_SMR_MASK, mask); 1552 1553 return iommu_fwspec_add_ids(dev, &fwid, 1); 1554 } 1555 1556 static void arm_smmu_get_resv_regions(struct device *dev, 1557 struct list_head *head) 1558 { 1559 struct iommu_resv_region *region; 1560 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO; 1561 1562 region = iommu_alloc_resv_region(MSI_IOVA_BASE, MSI_IOVA_LENGTH, 1563 prot, IOMMU_RESV_SW_MSI); 1564 if (!region) 1565 return; 1566 1567 list_add_tail(®ion->list, head); 1568 1569 iommu_dma_get_resv_regions(dev, head); 1570 } 1571 1572 static int arm_smmu_def_domain_type(struct device *dev) 1573 { 1574 struct arm_smmu_master_cfg *cfg = dev_iommu_priv_get(dev); 1575 const struct arm_smmu_impl *impl = cfg->smmu->impl; 1576 1577 if (using_legacy_binding) 1578 return IOMMU_DOMAIN_IDENTITY; 1579 1580 if (impl && impl->def_domain_type) 1581 return impl->def_domain_type(dev); 1582 1583 return 0; 1584 } 1585 1586 static struct iommu_ops arm_smmu_ops = { 1587 .capable = arm_smmu_capable, 1588 .domain_alloc = arm_smmu_domain_alloc, 1589 .probe_device = arm_smmu_probe_device, 1590 .release_device = arm_smmu_release_device, 1591 .probe_finalize = arm_smmu_probe_finalize, 1592 .device_group = arm_smmu_device_group, 1593 .of_xlate = arm_smmu_of_xlate, 1594 .get_resv_regions = arm_smmu_get_resv_regions, 1595 .put_resv_regions = generic_iommu_put_resv_regions, 1596 .def_domain_type = arm_smmu_def_domain_type, 1597 .pgsize_bitmap = -1UL, /* Restricted during device attach */ 1598 .owner = THIS_MODULE, 1599 .default_domain_ops = &(const struct iommu_domain_ops) { 1600 .attach_dev = arm_smmu_attach_dev, 1601 .map_pages = arm_smmu_map_pages, 1602 .unmap_pages = arm_smmu_unmap_pages, 1603 .flush_iotlb_all = arm_smmu_flush_iotlb_all, 1604 .iotlb_sync = arm_smmu_iotlb_sync, 1605 .iova_to_phys = arm_smmu_iova_to_phys, 1606 .enable_nesting = arm_smmu_enable_nesting, 1607 .set_pgtable_quirks = arm_smmu_set_pgtable_quirks, 1608 .free = arm_smmu_domain_free, 1609 } 1610 }; 1611 1612 static void arm_smmu_device_reset(struct arm_smmu_device *smmu) 1613 { 1614 int i; 1615 u32 reg; 1616 1617 /* clear global FSR */ 1618 reg = arm_smmu_gr0_read(smmu, ARM_SMMU_GR0_sGFSR); 1619 arm_smmu_gr0_write(smmu, ARM_SMMU_GR0_sGFSR, reg); 1620 1621 /* 1622 * Reset stream mapping groups: Initial values mark all SMRn as 1623 * invalid and all S2CRn as bypass unless overridden. 1624 */ 1625 for (i = 0; i < smmu->num_mapping_groups; ++i) 1626 arm_smmu_write_sme(smmu, i); 1627 1628 /* Make sure all context banks are disabled and clear CB_FSR */ 1629 for (i = 0; i < smmu->num_context_banks; ++i) { 1630 arm_smmu_write_context_bank(smmu, i); 1631 arm_smmu_cb_write(smmu, i, ARM_SMMU_CB_FSR, ARM_SMMU_FSR_FAULT); 1632 } 1633 1634 /* Invalidate the TLB, just in case */ 1635 arm_smmu_gr0_write(smmu, ARM_SMMU_GR0_TLBIALLH, QCOM_DUMMY_VAL); 1636 arm_smmu_gr0_write(smmu, ARM_SMMU_GR0_TLBIALLNSNH, QCOM_DUMMY_VAL); 1637 1638 reg = arm_smmu_gr0_read(smmu, ARM_SMMU_GR0_sCR0); 1639 1640 /* Enable fault reporting */ 1641 reg |= (ARM_SMMU_sCR0_GFRE | ARM_SMMU_sCR0_GFIE | 1642 ARM_SMMU_sCR0_GCFGFRE | ARM_SMMU_sCR0_GCFGFIE); 1643 1644 /* Disable TLB broadcasting. */ 1645 reg |= (ARM_SMMU_sCR0_VMIDPNE | ARM_SMMU_sCR0_PTM); 1646 1647 /* Enable client access, handling unmatched streams as appropriate */ 1648 reg &= ~ARM_SMMU_sCR0_CLIENTPD; 1649 if (disable_bypass) 1650 reg |= ARM_SMMU_sCR0_USFCFG; 1651 else 1652 reg &= ~ARM_SMMU_sCR0_USFCFG; 1653 1654 /* Disable forced broadcasting */ 1655 reg &= ~ARM_SMMU_sCR0_FB; 1656 1657 /* Don't upgrade barriers */ 1658 reg &= ~(ARM_SMMU_sCR0_BSU); 1659 1660 if (smmu->features & ARM_SMMU_FEAT_VMID16) 1661 reg |= ARM_SMMU_sCR0_VMID16EN; 1662 1663 if (smmu->features & ARM_SMMU_FEAT_EXIDS) 1664 reg |= ARM_SMMU_sCR0_EXIDENABLE; 1665 1666 if (smmu->impl && smmu->impl->reset) 1667 smmu->impl->reset(smmu); 1668 1669 /* Push the button */ 1670 arm_smmu_tlb_sync_global(smmu); 1671 arm_smmu_gr0_write(smmu, ARM_SMMU_GR0_sCR0, reg); 1672 } 1673 1674 static int arm_smmu_id_size_to_bits(int size) 1675 { 1676 switch (size) { 1677 case 0: 1678 return 32; 1679 case 1: 1680 return 36; 1681 case 2: 1682 return 40; 1683 case 3: 1684 return 42; 1685 case 4: 1686 return 44; 1687 case 5: 1688 default: 1689 return 48; 1690 } 1691 } 1692 1693 static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu) 1694 { 1695 unsigned int size; 1696 u32 id; 1697 bool cttw_reg, cttw_fw = smmu->features & ARM_SMMU_FEAT_COHERENT_WALK; 1698 int i, ret; 1699 1700 dev_notice(smmu->dev, "probing hardware configuration...\n"); 1701 dev_notice(smmu->dev, "SMMUv%d with:\n", 1702 smmu->version == ARM_SMMU_V2 ? 2 : 1); 1703 1704 /* ID0 */ 1705 id = arm_smmu_gr0_read(smmu, ARM_SMMU_GR0_ID0); 1706 1707 /* Restrict available stages based on module parameter */ 1708 if (force_stage == 1) 1709 id &= ~(ARM_SMMU_ID0_S2TS | ARM_SMMU_ID0_NTS); 1710 else if (force_stage == 2) 1711 id &= ~(ARM_SMMU_ID0_S1TS | ARM_SMMU_ID0_NTS); 1712 1713 if (id & ARM_SMMU_ID0_S1TS) { 1714 smmu->features |= ARM_SMMU_FEAT_TRANS_S1; 1715 dev_notice(smmu->dev, "\tstage 1 translation\n"); 1716 } 1717 1718 if (id & ARM_SMMU_ID0_S2TS) { 1719 smmu->features |= ARM_SMMU_FEAT_TRANS_S2; 1720 dev_notice(smmu->dev, "\tstage 2 translation\n"); 1721 } 1722 1723 if (id & ARM_SMMU_ID0_NTS) { 1724 smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED; 1725 dev_notice(smmu->dev, "\tnested translation\n"); 1726 } 1727 1728 if (!(smmu->features & 1729 (ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2))) { 1730 dev_err(smmu->dev, "\tno translation support!\n"); 1731 return -ENODEV; 1732 } 1733 1734 if ((id & ARM_SMMU_ID0_S1TS) && 1735 ((smmu->version < ARM_SMMU_V2) || !(id & ARM_SMMU_ID0_ATOSNS))) { 1736 smmu->features |= ARM_SMMU_FEAT_TRANS_OPS; 1737 dev_notice(smmu->dev, "\taddress translation ops\n"); 1738 } 1739 1740 /* 1741 * In order for DMA API calls to work properly, we must defer to what 1742 * the FW says about coherency, regardless of what the hardware claims. 1743 * Fortunately, this also opens up a workaround for systems where the 1744 * ID register value has ended up configured incorrectly. 1745 */ 1746 cttw_reg = !!(id & ARM_SMMU_ID0_CTTW); 1747 if (cttw_fw || cttw_reg) 1748 dev_notice(smmu->dev, "\t%scoherent table walk\n", 1749 cttw_fw ? "" : "non-"); 1750 if (cttw_fw != cttw_reg) 1751 dev_notice(smmu->dev, 1752 "\t(IDR0.CTTW overridden by FW configuration)\n"); 1753 1754 /* Max. number of entries we have for stream matching/indexing */ 1755 if (smmu->version == ARM_SMMU_V2 && id & ARM_SMMU_ID0_EXIDS) { 1756 smmu->features |= ARM_SMMU_FEAT_EXIDS; 1757 size = 1 << 16; 1758 } else { 1759 size = 1 << FIELD_GET(ARM_SMMU_ID0_NUMSIDB, id); 1760 } 1761 smmu->streamid_mask = size - 1; 1762 if (id & ARM_SMMU_ID0_SMS) { 1763 smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH; 1764 size = FIELD_GET(ARM_SMMU_ID0_NUMSMRG, id); 1765 if (size == 0) { 1766 dev_err(smmu->dev, 1767 "stream-matching supported, but no SMRs present!\n"); 1768 return -ENODEV; 1769 } 1770 1771 /* Zero-initialised to mark as invalid */ 1772 smmu->smrs = devm_kcalloc(smmu->dev, size, sizeof(*smmu->smrs), 1773 GFP_KERNEL); 1774 if (!smmu->smrs) 1775 return -ENOMEM; 1776 1777 dev_notice(smmu->dev, 1778 "\tstream matching with %u register groups", size); 1779 } 1780 /* s2cr->type == 0 means translation, so initialise explicitly */ 1781 smmu->s2crs = devm_kmalloc_array(smmu->dev, size, sizeof(*smmu->s2crs), 1782 GFP_KERNEL); 1783 if (!smmu->s2crs) 1784 return -ENOMEM; 1785 for (i = 0; i < size; i++) 1786 smmu->s2crs[i] = s2cr_init_val; 1787 1788 smmu->num_mapping_groups = size; 1789 mutex_init(&smmu->stream_map_mutex); 1790 spin_lock_init(&smmu->global_sync_lock); 1791 1792 if (smmu->version < ARM_SMMU_V2 || 1793 !(id & ARM_SMMU_ID0_PTFS_NO_AARCH32)) { 1794 smmu->features |= ARM_SMMU_FEAT_FMT_AARCH32_L; 1795 if (!(id & ARM_SMMU_ID0_PTFS_NO_AARCH32S)) 1796 smmu->features |= ARM_SMMU_FEAT_FMT_AARCH32_S; 1797 } 1798 1799 /* ID1 */ 1800 id = arm_smmu_gr0_read(smmu, ARM_SMMU_GR0_ID1); 1801 smmu->pgshift = (id & ARM_SMMU_ID1_PAGESIZE) ? 16 : 12; 1802 1803 /* Check for size mismatch of SMMU address space from mapped region */ 1804 size = 1 << (FIELD_GET(ARM_SMMU_ID1_NUMPAGENDXB, id) + 1); 1805 if (smmu->numpage != 2 * size << smmu->pgshift) 1806 dev_warn(smmu->dev, 1807 "SMMU address space size (0x%x) differs from mapped region size (0x%x)!\n", 1808 2 * size << smmu->pgshift, smmu->numpage); 1809 /* Now properly encode NUMPAGE to subsequently derive SMMU_CB_BASE */ 1810 smmu->numpage = size; 1811 1812 smmu->num_s2_context_banks = FIELD_GET(ARM_SMMU_ID1_NUMS2CB, id); 1813 smmu->num_context_banks = FIELD_GET(ARM_SMMU_ID1_NUMCB, id); 1814 if (smmu->num_s2_context_banks > smmu->num_context_banks) { 1815 dev_err(smmu->dev, "impossible number of S2 context banks!\n"); 1816 return -ENODEV; 1817 } 1818 dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n", 1819 smmu->num_context_banks, smmu->num_s2_context_banks); 1820 smmu->cbs = devm_kcalloc(smmu->dev, smmu->num_context_banks, 1821 sizeof(*smmu->cbs), GFP_KERNEL); 1822 if (!smmu->cbs) 1823 return -ENOMEM; 1824 1825 /* ID2 */ 1826 id = arm_smmu_gr0_read(smmu, ARM_SMMU_GR0_ID2); 1827 size = arm_smmu_id_size_to_bits(FIELD_GET(ARM_SMMU_ID2_IAS, id)); 1828 smmu->ipa_size = size; 1829 1830 /* The output mask is also applied for bypass */ 1831 size = arm_smmu_id_size_to_bits(FIELD_GET(ARM_SMMU_ID2_OAS, id)); 1832 smmu->pa_size = size; 1833 1834 if (id & ARM_SMMU_ID2_VMID16) 1835 smmu->features |= ARM_SMMU_FEAT_VMID16; 1836 1837 /* 1838 * What the page table walker can address actually depends on which 1839 * descriptor format is in use, but since a) we don't know that yet, 1840 * and b) it can vary per context bank, this will have to do... 1841 */ 1842 if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(size))) 1843 dev_warn(smmu->dev, 1844 "failed to set DMA mask for table walker\n"); 1845 1846 if (smmu->version < ARM_SMMU_V2) { 1847 smmu->va_size = smmu->ipa_size; 1848 if (smmu->version == ARM_SMMU_V1_64K) 1849 smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_64K; 1850 } else { 1851 size = FIELD_GET(ARM_SMMU_ID2_UBS, id); 1852 smmu->va_size = arm_smmu_id_size_to_bits(size); 1853 if (id & ARM_SMMU_ID2_PTFS_4K) 1854 smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_4K; 1855 if (id & ARM_SMMU_ID2_PTFS_16K) 1856 smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_16K; 1857 if (id & ARM_SMMU_ID2_PTFS_64K) 1858 smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_64K; 1859 } 1860 1861 if (smmu->impl && smmu->impl->cfg_probe) { 1862 ret = smmu->impl->cfg_probe(smmu); 1863 if (ret) 1864 return ret; 1865 } 1866 1867 /* Now we've corralled the various formats, what'll it do? */ 1868 if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_S) 1869 smmu->pgsize_bitmap |= SZ_4K | SZ_64K | SZ_1M | SZ_16M; 1870 if (smmu->features & 1871 (ARM_SMMU_FEAT_FMT_AARCH32_L | ARM_SMMU_FEAT_FMT_AARCH64_4K)) 1872 smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G; 1873 if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH64_16K) 1874 smmu->pgsize_bitmap |= SZ_16K | SZ_32M; 1875 if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH64_64K) 1876 smmu->pgsize_bitmap |= SZ_64K | SZ_512M; 1877 1878 if (arm_smmu_ops.pgsize_bitmap == -1UL) 1879 arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap; 1880 else 1881 arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap; 1882 dev_notice(smmu->dev, "\tSupported page sizes: 0x%08lx\n", 1883 smmu->pgsize_bitmap); 1884 1885 1886 if (smmu->features & ARM_SMMU_FEAT_TRANS_S1) 1887 dev_notice(smmu->dev, "\tStage-1: %lu-bit VA -> %lu-bit IPA\n", 1888 smmu->va_size, smmu->ipa_size); 1889 1890 if (smmu->features & ARM_SMMU_FEAT_TRANS_S2) 1891 dev_notice(smmu->dev, "\tStage-2: %lu-bit IPA -> %lu-bit PA\n", 1892 smmu->ipa_size, smmu->pa_size); 1893 1894 return 0; 1895 } 1896 1897 struct arm_smmu_match_data { 1898 enum arm_smmu_arch_version version; 1899 enum arm_smmu_implementation model; 1900 }; 1901 1902 #define ARM_SMMU_MATCH_DATA(name, ver, imp) \ 1903 static const struct arm_smmu_match_data name = { .version = ver, .model = imp } 1904 1905 ARM_SMMU_MATCH_DATA(smmu_generic_v1, ARM_SMMU_V1, GENERIC_SMMU); 1906 ARM_SMMU_MATCH_DATA(smmu_generic_v2, ARM_SMMU_V2, GENERIC_SMMU); 1907 ARM_SMMU_MATCH_DATA(arm_mmu401, ARM_SMMU_V1_64K, GENERIC_SMMU); 1908 ARM_SMMU_MATCH_DATA(arm_mmu500, ARM_SMMU_V2, ARM_MMU500); 1909 ARM_SMMU_MATCH_DATA(cavium_smmuv2, ARM_SMMU_V2, CAVIUM_SMMUV2); 1910 ARM_SMMU_MATCH_DATA(qcom_smmuv2, ARM_SMMU_V2, QCOM_SMMUV2); 1911 1912 static const struct of_device_id arm_smmu_of_match[] = { 1913 { .compatible = "arm,smmu-v1", .data = &smmu_generic_v1 }, 1914 { .compatible = "arm,smmu-v2", .data = &smmu_generic_v2 }, 1915 { .compatible = "arm,mmu-400", .data = &smmu_generic_v1 }, 1916 { .compatible = "arm,mmu-401", .data = &arm_mmu401 }, 1917 { .compatible = "arm,mmu-500", .data = &arm_mmu500 }, 1918 { .compatible = "cavium,smmu-v2", .data = &cavium_smmuv2 }, 1919 { .compatible = "nvidia,smmu-500", .data = &arm_mmu500 }, 1920 { .compatible = "qcom,smmu-v2", .data = &qcom_smmuv2 }, 1921 { }, 1922 }; 1923 MODULE_DEVICE_TABLE(of, arm_smmu_of_match); 1924 1925 #ifdef CONFIG_ACPI 1926 static int acpi_smmu_get_data(u32 model, struct arm_smmu_device *smmu) 1927 { 1928 int ret = 0; 1929 1930 switch (model) { 1931 case ACPI_IORT_SMMU_V1: 1932 case ACPI_IORT_SMMU_CORELINK_MMU400: 1933 smmu->version = ARM_SMMU_V1; 1934 smmu->model = GENERIC_SMMU; 1935 break; 1936 case ACPI_IORT_SMMU_CORELINK_MMU401: 1937 smmu->version = ARM_SMMU_V1_64K; 1938 smmu->model = GENERIC_SMMU; 1939 break; 1940 case ACPI_IORT_SMMU_V2: 1941 smmu->version = ARM_SMMU_V2; 1942 smmu->model = GENERIC_SMMU; 1943 break; 1944 case ACPI_IORT_SMMU_CORELINK_MMU500: 1945 smmu->version = ARM_SMMU_V2; 1946 smmu->model = ARM_MMU500; 1947 break; 1948 case ACPI_IORT_SMMU_CAVIUM_THUNDERX: 1949 smmu->version = ARM_SMMU_V2; 1950 smmu->model = CAVIUM_SMMUV2; 1951 break; 1952 default: 1953 ret = -ENODEV; 1954 } 1955 1956 return ret; 1957 } 1958 1959 static int arm_smmu_device_acpi_probe(struct arm_smmu_device *smmu, 1960 u32 *global_irqs, u32 *pmu_irqs) 1961 { 1962 struct device *dev = smmu->dev; 1963 struct acpi_iort_node *node = 1964 *(struct acpi_iort_node **)dev_get_platdata(dev); 1965 struct acpi_iort_smmu *iort_smmu; 1966 int ret; 1967 1968 /* Retrieve SMMU1/2 specific data */ 1969 iort_smmu = (struct acpi_iort_smmu *)node->node_data; 1970 1971 ret = acpi_smmu_get_data(iort_smmu->model, smmu); 1972 if (ret < 0) 1973 return ret; 1974 1975 /* Ignore the configuration access interrupt */ 1976 *global_irqs = 1; 1977 *pmu_irqs = 0; 1978 1979 if (iort_smmu->flags & ACPI_IORT_SMMU_COHERENT_WALK) 1980 smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK; 1981 1982 return 0; 1983 } 1984 #else 1985 static inline int arm_smmu_device_acpi_probe(struct arm_smmu_device *smmu, 1986 u32 *global_irqs, u32 *pmu_irqs) 1987 { 1988 return -ENODEV; 1989 } 1990 #endif 1991 1992 static int arm_smmu_device_dt_probe(struct arm_smmu_device *smmu, 1993 u32 *global_irqs, u32 *pmu_irqs) 1994 { 1995 const struct arm_smmu_match_data *data; 1996 struct device *dev = smmu->dev; 1997 bool legacy_binding; 1998 1999 if (of_property_read_u32(dev->of_node, "#global-interrupts", global_irqs)) 2000 return dev_err_probe(dev, -ENODEV, 2001 "missing #global-interrupts property\n"); 2002 *pmu_irqs = 0; 2003 2004 data = of_device_get_match_data(dev); 2005 smmu->version = data->version; 2006 smmu->model = data->model; 2007 2008 legacy_binding = of_find_property(dev->of_node, "mmu-masters", NULL); 2009 if (legacy_binding && !using_generic_binding) { 2010 if (!using_legacy_binding) { 2011 pr_notice("deprecated \"mmu-masters\" DT property in use; %s support unavailable\n", 2012 IS_ENABLED(CONFIG_ARM_SMMU_LEGACY_DT_BINDINGS) ? "DMA API" : "SMMU"); 2013 } 2014 using_legacy_binding = true; 2015 } else if (!legacy_binding && !using_legacy_binding) { 2016 using_generic_binding = true; 2017 } else { 2018 dev_err(dev, "not probing due to mismatched DT properties\n"); 2019 return -ENODEV; 2020 } 2021 2022 if (of_dma_is_coherent(dev->of_node)) 2023 smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK; 2024 2025 return 0; 2026 } 2027 2028 static int arm_smmu_bus_init(struct iommu_ops *ops) 2029 { 2030 int err; 2031 2032 /* Oh, for a proper bus abstraction */ 2033 if (!iommu_present(&platform_bus_type)) { 2034 err = bus_set_iommu(&platform_bus_type, ops); 2035 if (err) 2036 return err; 2037 } 2038 #ifdef CONFIG_ARM_AMBA 2039 if (!iommu_present(&amba_bustype)) { 2040 err = bus_set_iommu(&amba_bustype, ops); 2041 if (err) 2042 goto err_reset_platform_ops; 2043 } 2044 #endif 2045 #ifdef CONFIG_PCI 2046 if (!iommu_present(&pci_bus_type)) { 2047 err = bus_set_iommu(&pci_bus_type, ops); 2048 if (err) 2049 goto err_reset_amba_ops; 2050 } 2051 #endif 2052 #ifdef CONFIG_FSL_MC_BUS 2053 if (!iommu_present(&fsl_mc_bus_type)) { 2054 err = bus_set_iommu(&fsl_mc_bus_type, ops); 2055 if (err) 2056 goto err_reset_pci_ops; 2057 } 2058 #endif 2059 return 0; 2060 2061 err_reset_pci_ops: __maybe_unused; 2062 #ifdef CONFIG_PCI 2063 bus_set_iommu(&pci_bus_type, NULL); 2064 #endif 2065 err_reset_amba_ops: __maybe_unused; 2066 #ifdef CONFIG_ARM_AMBA 2067 bus_set_iommu(&amba_bustype, NULL); 2068 #endif 2069 err_reset_platform_ops: __maybe_unused; 2070 bus_set_iommu(&platform_bus_type, NULL); 2071 return err; 2072 } 2073 2074 static int arm_smmu_device_probe(struct platform_device *pdev) 2075 { 2076 struct resource *res; 2077 resource_size_t ioaddr; 2078 struct arm_smmu_device *smmu; 2079 struct device *dev = &pdev->dev; 2080 int num_irqs, i, err; 2081 u32 global_irqs, pmu_irqs; 2082 irqreturn_t (*global_fault)(int irq, void *dev); 2083 2084 smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL); 2085 if (!smmu) { 2086 dev_err(dev, "failed to allocate arm_smmu_device\n"); 2087 return -ENOMEM; 2088 } 2089 smmu->dev = dev; 2090 2091 if (dev->of_node) 2092 err = arm_smmu_device_dt_probe(smmu, &global_irqs, &pmu_irqs); 2093 else 2094 err = arm_smmu_device_acpi_probe(smmu, &global_irqs, &pmu_irqs); 2095 if (err) 2096 return err; 2097 2098 smmu->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); 2099 if (IS_ERR(smmu->base)) 2100 return PTR_ERR(smmu->base); 2101 ioaddr = res->start; 2102 /* 2103 * The resource size should effectively match the value of SMMU_TOP; 2104 * stash that temporarily until we know PAGESIZE to validate it with. 2105 */ 2106 smmu->numpage = resource_size(res); 2107 2108 smmu = arm_smmu_impl_init(smmu); 2109 if (IS_ERR(smmu)) 2110 return PTR_ERR(smmu); 2111 2112 num_irqs = platform_irq_count(pdev); 2113 2114 smmu->num_context_irqs = num_irqs - global_irqs - pmu_irqs; 2115 if (smmu->num_context_irqs <= 0) 2116 return dev_err_probe(dev, -ENODEV, 2117 "found %d interrupts but expected at least %d\n", 2118 num_irqs, global_irqs + pmu_irqs + 1); 2119 2120 smmu->irqs = devm_kcalloc(dev, smmu->num_context_irqs, 2121 sizeof(*smmu->irqs), GFP_KERNEL); 2122 if (!smmu->irqs) 2123 return dev_err_probe(dev, -ENOMEM, "failed to allocate %d irqs\n", 2124 smmu->num_context_irqs); 2125 2126 for (i = 0; i < smmu->num_context_irqs; i++) { 2127 int irq = platform_get_irq(pdev, global_irqs + pmu_irqs + i); 2128 2129 if (irq < 0) 2130 return irq; 2131 smmu->irqs[i] = irq; 2132 } 2133 2134 err = devm_clk_bulk_get_all(dev, &smmu->clks); 2135 if (err < 0) { 2136 dev_err(dev, "failed to get clocks %d\n", err); 2137 return err; 2138 } 2139 smmu->num_clks = err; 2140 2141 err = clk_bulk_prepare_enable(smmu->num_clks, smmu->clks); 2142 if (err) 2143 return err; 2144 2145 err = arm_smmu_device_cfg_probe(smmu); 2146 if (err) 2147 return err; 2148 2149 if (smmu->version == ARM_SMMU_V2) { 2150 if (smmu->num_context_banks > smmu->num_context_irqs) { 2151 dev_err(dev, 2152 "found only %d context irq(s) but %d required\n", 2153 smmu->num_context_irqs, smmu->num_context_banks); 2154 return -ENODEV; 2155 } 2156 2157 /* Ignore superfluous interrupts */ 2158 smmu->num_context_irqs = smmu->num_context_banks; 2159 } 2160 2161 if (smmu->impl && smmu->impl->global_fault) 2162 global_fault = smmu->impl->global_fault; 2163 else 2164 global_fault = arm_smmu_global_fault; 2165 2166 for (i = 0; i < global_irqs; i++) { 2167 int irq = platform_get_irq(pdev, i); 2168 2169 if (irq < 0) 2170 return irq; 2171 2172 err = devm_request_irq(dev, irq, global_fault, IRQF_SHARED, 2173 "arm-smmu global fault", smmu); 2174 if (err) 2175 return dev_err_probe(dev, err, 2176 "failed to request global IRQ %d (%u)\n", 2177 i, irq); 2178 } 2179 2180 err = iommu_device_sysfs_add(&smmu->iommu, smmu->dev, NULL, 2181 "smmu.%pa", &ioaddr); 2182 if (err) { 2183 dev_err(dev, "Failed to register iommu in sysfs\n"); 2184 return err; 2185 } 2186 2187 err = iommu_device_register(&smmu->iommu, &arm_smmu_ops, dev); 2188 if (err) { 2189 dev_err(dev, "Failed to register iommu\n"); 2190 goto err_sysfs_remove; 2191 } 2192 2193 platform_set_drvdata(pdev, smmu); 2194 arm_smmu_device_reset(smmu); 2195 arm_smmu_test_smr_masks(smmu); 2196 2197 /* 2198 * We want to avoid touching dev->power.lock in fastpaths unless 2199 * it's really going to do something useful - pm_runtime_enabled() 2200 * can serve as an ideal proxy for that decision. So, conditionally 2201 * enable pm_runtime. 2202 */ 2203 if (dev->pm_domain) { 2204 pm_runtime_set_active(dev); 2205 pm_runtime_enable(dev); 2206 } 2207 2208 /* 2209 * For ACPI and generic DT bindings, an SMMU will be probed before 2210 * any device which might need it, so we want the bus ops in place 2211 * ready to handle default domain setup as soon as any SMMU exists. 2212 */ 2213 if (!using_legacy_binding) { 2214 err = arm_smmu_bus_init(&arm_smmu_ops); 2215 if (err) 2216 goto err_unregister_device; 2217 } 2218 2219 return 0; 2220 2221 err_unregister_device: 2222 iommu_device_unregister(&smmu->iommu); 2223 err_sysfs_remove: 2224 iommu_device_sysfs_remove(&smmu->iommu); 2225 return err; 2226 } 2227 2228 static int arm_smmu_device_remove(struct platform_device *pdev) 2229 { 2230 struct arm_smmu_device *smmu = platform_get_drvdata(pdev); 2231 2232 if (!smmu) 2233 return -ENODEV; 2234 2235 if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS)) 2236 dev_notice(&pdev->dev, "disabling translation\n"); 2237 2238 arm_smmu_bus_init(NULL); 2239 iommu_device_unregister(&smmu->iommu); 2240 iommu_device_sysfs_remove(&smmu->iommu); 2241 2242 arm_smmu_rpm_get(smmu); 2243 /* Turn the thing off */ 2244 arm_smmu_gr0_write(smmu, ARM_SMMU_GR0_sCR0, ARM_SMMU_sCR0_CLIENTPD); 2245 arm_smmu_rpm_put(smmu); 2246 2247 if (pm_runtime_enabled(smmu->dev)) 2248 pm_runtime_force_suspend(smmu->dev); 2249 else 2250 clk_bulk_disable(smmu->num_clks, smmu->clks); 2251 2252 clk_bulk_unprepare(smmu->num_clks, smmu->clks); 2253 return 0; 2254 } 2255 2256 static void arm_smmu_device_shutdown(struct platform_device *pdev) 2257 { 2258 arm_smmu_device_remove(pdev); 2259 } 2260 2261 static int __maybe_unused arm_smmu_runtime_resume(struct device *dev) 2262 { 2263 struct arm_smmu_device *smmu = dev_get_drvdata(dev); 2264 int ret; 2265 2266 ret = clk_bulk_enable(smmu->num_clks, smmu->clks); 2267 if (ret) 2268 return ret; 2269 2270 arm_smmu_device_reset(smmu); 2271 2272 return 0; 2273 } 2274 2275 static int __maybe_unused arm_smmu_runtime_suspend(struct device *dev) 2276 { 2277 struct arm_smmu_device *smmu = dev_get_drvdata(dev); 2278 2279 clk_bulk_disable(smmu->num_clks, smmu->clks); 2280 2281 return 0; 2282 } 2283 2284 static int __maybe_unused arm_smmu_pm_resume(struct device *dev) 2285 { 2286 int ret; 2287 struct arm_smmu_device *smmu = dev_get_drvdata(dev); 2288 2289 ret = clk_bulk_prepare(smmu->num_clks, smmu->clks); 2290 if (ret) 2291 return ret; 2292 2293 if (pm_runtime_suspended(dev)) 2294 return 0; 2295 2296 ret = arm_smmu_runtime_resume(dev); 2297 if (ret) 2298 clk_bulk_unprepare(smmu->num_clks, smmu->clks); 2299 2300 return ret; 2301 } 2302 2303 static int __maybe_unused arm_smmu_pm_suspend(struct device *dev) 2304 { 2305 int ret = 0; 2306 struct arm_smmu_device *smmu = dev_get_drvdata(dev); 2307 2308 if (pm_runtime_suspended(dev)) 2309 goto clk_unprepare; 2310 2311 ret = arm_smmu_runtime_suspend(dev); 2312 if (ret) 2313 return ret; 2314 2315 clk_unprepare: 2316 clk_bulk_unprepare(smmu->num_clks, smmu->clks); 2317 return ret; 2318 } 2319 2320 static const struct dev_pm_ops arm_smmu_pm_ops = { 2321 SET_SYSTEM_SLEEP_PM_OPS(arm_smmu_pm_suspend, arm_smmu_pm_resume) 2322 SET_RUNTIME_PM_OPS(arm_smmu_runtime_suspend, 2323 arm_smmu_runtime_resume, NULL) 2324 }; 2325 2326 static struct platform_driver arm_smmu_driver = { 2327 .driver = { 2328 .name = "arm-smmu", 2329 .of_match_table = arm_smmu_of_match, 2330 .pm = &arm_smmu_pm_ops, 2331 .suppress_bind_attrs = true, 2332 }, 2333 .probe = arm_smmu_device_probe, 2334 .remove = arm_smmu_device_remove, 2335 .shutdown = arm_smmu_device_shutdown, 2336 }; 2337 module_platform_driver(arm_smmu_driver); 2338 2339 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations"); 2340 MODULE_AUTHOR("Will Deacon <will@kernel.org>"); 2341 MODULE_ALIAS("platform:arm-smmu"); 2342 MODULE_LICENSE("GPL v2"); 2343