xref: /openbmc/linux/drivers/iommu/arm/arm-smmu-v3/arm-smmu-v3.c (revision fe17b91a7777df140d0f1433991da67ba658796c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * IOMMU API for ARM architected SMMUv3 implementations.
4  *
5  * Copyright (C) 2015 ARM Limited
6  *
7  * Author: Will Deacon <will.deacon@arm.com>
8  *
9  * This driver is powered by bad coffee and bombay mix.
10  */
11 
12 #include <linux/acpi.h>
13 #include <linux/acpi_iort.h>
14 #include <linux/bitops.h>
15 #include <linux/crash_dump.h>
16 #include <linux/delay.h>
17 #include <linux/dma-iommu.h>
18 #include <linux/err.h>
19 #include <linux/interrupt.h>
20 #include <linux/io-pgtable.h>
21 #include <linux/iopoll.h>
22 #include <linux/module.h>
23 #include <linux/msi.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_platform.h>
27 #include <linux/pci.h>
28 #include <linux/pci-ats.h>
29 #include <linux/platform_device.h>
30 
31 #include <linux/amba/bus.h>
32 
33 #include "arm-smmu-v3.h"
34 #include "../../iommu-sva-lib.h"
35 
36 static bool disable_bypass = true;
37 module_param(disable_bypass, bool, 0444);
38 MODULE_PARM_DESC(disable_bypass,
39 	"Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
40 
41 static bool disable_msipolling;
42 module_param(disable_msipolling, bool, 0444);
43 MODULE_PARM_DESC(disable_msipolling,
44 	"Disable MSI-based polling for CMD_SYNC completion.");
45 
46 enum arm_smmu_msi_index {
47 	EVTQ_MSI_INDEX,
48 	GERROR_MSI_INDEX,
49 	PRIQ_MSI_INDEX,
50 	ARM_SMMU_MAX_MSIS,
51 };
52 
53 static phys_addr_t arm_smmu_msi_cfg[ARM_SMMU_MAX_MSIS][3] = {
54 	[EVTQ_MSI_INDEX] = {
55 		ARM_SMMU_EVTQ_IRQ_CFG0,
56 		ARM_SMMU_EVTQ_IRQ_CFG1,
57 		ARM_SMMU_EVTQ_IRQ_CFG2,
58 	},
59 	[GERROR_MSI_INDEX] = {
60 		ARM_SMMU_GERROR_IRQ_CFG0,
61 		ARM_SMMU_GERROR_IRQ_CFG1,
62 		ARM_SMMU_GERROR_IRQ_CFG2,
63 	},
64 	[PRIQ_MSI_INDEX] = {
65 		ARM_SMMU_PRIQ_IRQ_CFG0,
66 		ARM_SMMU_PRIQ_IRQ_CFG1,
67 		ARM_SMMU_PRIQ_IRQ_CFG2,
68 	},
69 };
70 
71 struct arm_smmu_option_prop {
72 	u32 opt;
73 	const char *prop;
74 };
75 
76 DEFINE_XARRAY_ALLOC1(arm_smmu_asid_xa);
77 DEFINE_MUTEX(arm_smmu_asid_lock);
78 
79 /*
80  * Special value used by SVA when a process dies, to quiesce a CD without
81  * disabling it.
82  */
83 struct arm_smmu_ctx_desc quiet_cd = { 0 };
84 
85 static struct arm_smmu_option_prop arm_smmu_options[] = {
86 	{ ARM_SMMU_OPT_SKIP_PREFETCH, "hisilicon,broken-prefetch-cmd" },
87 	{ ARM_SMMU_OPT_PAGE0_REGS_ONLY, "cavium,cn9900-broken-page1-regspace"},
88 	{ 0, NULL},
89 };
90 
91 static void parse_driver_options(struct arm_smmu_device *smmu)
92 {
93 	int i = 0;
94 
95 	do {
96 		if (of_property_read_bool(smmu->dev->of_node,
97 						arm_smmu_options[i].prop)) {
98 			smmu->options |= arm_smmu_options[i].opt;
99 			dev_notice(smmu->dev, "option %s\n",
100 				arm_smmu_options[i].prop);
101 		}
102 	} while (arm_smmu_options[++i].opt);
103 }
104 
105 /* Low-level queue manipulation functions */
106 static bool queue_has_space(struct arm_smmu_ll_queue *q, u32 n)
107 {
108 	u32 space, prod, cons;
109 
110 	prod = Q_IDX(q, q->prod);
111 	cons = Q_IDX(q, q->cons);
112 
113 	if (Q_WRP(q, q->prod) == Q_WRP(q, q->cons))
114 		space = (1 << q->max_n_shift) - (prod - cons);
115 	else
116 		space = cons - prod;
117 
118 	return space >= n;
119 }
120 
121 static bool queue_full(struct arm_smmu_ll_queue *q)
122 {
123 	return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
124 	       Q_WRP(q, q->prod) != Q_WRP(q, q->cons);
125 }
126 
127 static bool queue_empty(struct arm_smmu_ll_queue *q)
128 {
129 	return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
130 	       Q_WRP(q, q->prod) == Q_WRP(q, q->cons);
131 }
132 
133 static bool queue_consumed(struct arm_smmu_ll_queue *q, u32 prod)
134 {
135 	return ((Q_WRP(q, q->cons) == Q_WRP(q, prod)) &&
136 		(Q_IDX(q, q->cons) > Q_IDX(q, prod))) ||
137 	       ((Q_WRP(q, q->cons) != Q_WRP(q, prod)) &&
138 		(Q_IDX(q, q->cons) <= Q_IDX(q, prod)));
139 }
140 
141 static void queue_sync_cons_out(struct arm_smmu_queue *q)
142 {
143 	/*
144 	 * Ensure that all CPU accesses (reads and writes) to the queue
145 	 * are complete before we update the cons pointer.
146 	 */
147 	__iomb();
148 	writel_relaxed(q->llq.cons, q->cons_reg);
149 }
150 
151 static void queue_inc_cons(struct arm_smmu_ll_queue *q)
152 {
153 	u32 cons = (Q_WRP(q, q->cons) | Q_IDX(q, q->cons)) + 1;
154 	q->cons = Q_OVF(q->cons) | Q_WRP(q, cons) | Q_IDX(q, cons);
155 }
156 
157 static int queue_sync_prod_in(struct arm_smmu_queue *q)
158 {
159 	u32 prod;
160 	int ret = 0;
161 
162 	/*
163 	 * We can't use the _relaxed() variant here, as we must prevent
164 	 * speculative reads of the queue before we have determined that
165 	 * prod has indeed moved.
166 	 */
167 	prod = readl(q->prod_reg);
168 
169 	if (Q_OVF(prod) != Q_OVF(q->llq.prod))
170 		ret = -EOVERFLOW;
171 
172 	q->llq.prod = prod;
173 	return ret;
174 }
175 
176 static u32 queue_inc_prod_n(struct arm_smmu_ll_queue *q, int n)
177 {
178 	u32 prod = (Q_WRP(q, q->prod) | Q_IDX(q, q->prod)) + n;
179 	return Q_OVF(q->prod) | Q_WRP(q, prod) | Q_IDX(q, prod);
180 }
181 
182 static void queue_poll_init(struct arm_smmu_device *smmu,
183 			    struct arm_smmu_queue_poll *qp)
184 {
185 	qp->delay = 1;
186 	qp->spin_cnt = 0;
187 	qp->wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);
188 	qp->timeout = ktime_add_us(ktime_get(), ARM_SMMU_POLL_TIMEOUT_US);
189 }
190 
191 static int queue_poll(struct arm_smmu_queue_poll *qp)
192 {
193 	if (ktime_compare(ktime_get(), qp->timeout) > 0)
194 		return -ETIMEDOUT;
195 
196 	if (qp->wfe) {
197 		wfe();
198 	} else if (++qp->spin_cnt < ARM_SMMU_POLL_SPIN_COUNT) {
199 		cpu_relax();
200 	} else {
201 		udelay(qp->delay);
202 		qp->delay *= 2;
203 		qp->spin_cnt = 0;
204 	}
205 
206 	return 0;
207 }
208 
209 static void queue_write(__le64 *dst, u64 *src, size_t n_dwords)
210 {
211 	int i;
212 
213 	for (i = 0; i < n_dwords; ++i)
214 		*dst++ = cpu_to_le64(*src++);
215 }
216 
217 static void queue_read(u64 *dst, __le64 *src, size_t n_dwords)
218 {
219 	int i;
220 
221 	for (i = 0; i < n_dwords; ++i)
222 		*dst++ = le64_to_cpu(*src++);
223 }
224 
225 static int queue_remove_raw(struct arm_smmu_queue *q, u64 *ent)
226 {
227 	if (queue_empty(&q->llq))
228 		return -EAGAIN;
229 
230 	queue_read(ent, Q_ENT(q, q->llq.cons), q->ent_dwords);
231 	queue_inc_cons(&q->llq);
232 	queue_sync_cons_out(q);
233 	return 0;
234 }
235 
236 /* High-level queue accessors */
237 static int arm_smmu_cmdq_build_cmd(u64 *cmd, struct arm_smmu_cmdq_ent *ent)
238 {
239 	memset(cmd, 0, 1 << CMDQ_ENT_SZ_SHIFT);
240 	cmd[0] |= FIELD_PREP(CMDQ_0_OP, ent->opcode);
241 
242 	switch (ent->opcode) {
243 	case CMDQ_OP_TLBI_EL2_ALL:
244 	case CMDQ_OP_TLBI_NSNH_ALL:
245 		break;
246 	case CMDQ_OP_PREFETCH_CFG:
247 		cmd[0] |= FIELD_PREP(CMDQ_PREFETCH_0_SID, ent->prefetch.sid);
248 		break;
249 	case CMDQ_OP_CFGI_CD:
250 		cmd[0] |= FIELD_PREP(CMDQ_CFGI_0_SSID, ent->cfgi.ssid);
251 		fallthrough;
252 	case CMDQ_OP_CFGI_STE:
253 		cmd[0] |= FIELD_PREP(CMDQ_CFGI_0_SID, ent->cfgi.sid);
254 		cmd[1] |= FIELD_PREP(CMDQ_CFGI_1_LEAF, ent->cfgi.leaf);
255 		break;
256 	case CMDQ_OP_CFGI_CD_ALL:
257 		cmd[0] |= FIELD_PREP(CMDQ_CFGI_0_SID, ent->cfgi.sid);
258 		break;
259 	case CMDQ_OP_CFGI_ALL:
260 		/* Cover the entire SID range */
261 		cmd[1] |= FIELD_PREP(CMDQ_CFGI_1_RANGE, 31);
262 		break;
263 	case CMDQ_OP_TLBI_NH_VA:
264 		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_VMID, ent->tlbi.vmid);
265 		fallthrough;
266 	case CMDQ_OP_TLBI_EL2_VA:
267 		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_NUM, ent->tlbi.num);
268 		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_SCALE, ent->tlbi.scale);
269 		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_ASID, ent->tlbi.asid);
270 		cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_LEAF, ent->tlbi.leaf);
271 		cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_TTL, ent->tlbi.ttl);
272 		cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_TG, ent->tlbi.tg);
273 		cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_VA_MASK;
274 		break;
275 	case CMDQ_OP_TLBI_S2_IPA:
276 		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_NUM, ent->tlbi.num);
277 		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_SCALE, ent->tlbi.scale);
278 		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_VMID, ent->tlbi.vmid);
279 		cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_LEAF, ent->tlbi.leaf);
280 		cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_TTL, ent->tlbi.ttl);
281 		cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_TG, ent->tlbi.tg);
282 		cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_IPA_MASK;
283 		break;
284 	case CMDQ_OP_TLBI_NH_ASID:
285 		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_ASID, ent->tlbi.asid);
286 		fallthrough;
287 	case CMDQ_OP_TLBI_S12_VMALL:
288 		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_VMID, ent->tlbi.vmid);
289 		break;
290 	case CMDQ_OP_TLBI_EL2_ASID:
291 		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_ASID, ent->tlbi.asid);
292 		break;
293 	case CMDQ_OP_ATC_INV:
294 		cmd[0] |= FIELD_PREP(CMDQ_0_SSV, ent->substream_valid);
295 		cmd[0] |= FIELD_PREP(CMDQ_ATC_0_GLOBAL, ent->atc.global);
296 		cmd[0] |= FIELD_PREP(CMDQ_ATC_0_SSID, ent->atc.ssid);
297 		cmd[0] |= FIELD_PREP(CMDQ_ATC_0_SID, ent->atc.sid);
298 		cmd[1] |= FIELD_PREP(CMDQ_ATC_1_SIZE, ent->atc.size);
299 		cmd[1] |= ent->atc.addr & CMDQ_ATC_1_ADDR_MASK;
300 		break;
301 	case CMDQ_OP_PRI_RESP:
302 		cmd[0] |= FIELD_PREP(CMDQ_0_SSV, ent->substream_valid);
303 		cmd[0] |= FIELD_PREP(CMDQ_PRI_0_SSID, ent->pri.ssid);
304 		cmd[0] |= FIELD_PREP(CMDQ_PRI_0_SID, ent->pri.sid);
305 		cmd[1] |= FIELD_PREP(CMDQ_PRI_1_GRPID, ent->pri.grpid);
306 		switch (ent->pri.resp) {
307 		case PRI_RESP_DENY:
308 		case PRI_RESP_FAIL:
309 		case PRI_RESP_SUCC:
310 			break;
311 		default:
312 			return -EINVAL;
313 		}
314 		cmd[1] |= FIELD_PREP(CMDQ_PRI_1_RESP, ent->pri.resp);
315 		break;
316 	case CMDQ_OP_RESUME:
317 		cmd[0] |= FIELD_PREP(CMDQ_RESUME_0_SID, ent->resume.sid);
318 		cmd[0] |= FIELD_PREP(CMDQ_RESUME_0_RESP, ent->resume.resp);
319 		cmd[1] |= FIELD_PREP(CMDQ_RESUME_1_STAG, ent->resume.stag);
320 		break;
321 	case CMDQ_OP_CMD_SYNC:
322 		if (ent->sync.msiaddr) {
323 			cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_CS, CMDQ_SYNC_0_CS_IRQ);
324 			cmd[1] |= ent->sync.msiaddr & CMDQ_SYNC_1_MSIADDR_MASK;
325 		} else {
326 			cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_CS, CMDQ_SYNC_0_CS_SEV);
327 		}
328 		cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_MSH, ARM_SMMU_SH_ISH);
329 		cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_MSIATTR, ARM_SMMU_MEMATTR_OIWB);
330 		break;
331 	default:
332 		return -ENOENT;
333 	}
334 
335 	return 0;
336 }
337 
338 static struct arm_smmu_cmdq *arm_smmu_get_cmdq(struct arm_smmu_device *smmu)
339 {
340 	return &smmu->cmdq;
341 }
342 
343 static void arm_smmu_cmdq_build_sync_cmd(u64 *cmd, struct arm_smmu_device *smmu,
344 					 struct arm_smmu_queue *q, u32 prod)
345 {
346 	struct arm_smmu_cmdq_ent ent = {
347 		.opcode = CMDQ_OP_CMD_SYNC,
348 	};
349 
350 	/*
351 	 * Beware that Hi16xx adds an extra 32 bits of goodness to its MSI
352 	 * payload, so the write will zero the entire command on that platform.
353 	 */
354 	if (smmu->options & ARM_SMMU_OPT_MSIPOLL) {
355 		ent.sync.msiaddr = q->base_dma + Q_IDX(&q->llq, prod) *
356 				   q->ent_dwords * 8;
357 	}
358 
359 	arm_smmu_cmdq_build_cmd(cmd, &ent);
360 }
361 
362 static void __arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu,
363 				     struct arm_smmu_queue *q)
364 {
365 	static const char * const cerror_str[] = {
366 		[CMDQ_ERR_CERROR_NONE_IDX]	= "No error",
367 		[CMDQ_ERR_CERROR_ILL_IDX]	= "Illegal command",
368 		[CMDQ_ERR_CERROR_ABT_IDX]	= "Abort on command fetch",
369 		[CMDQ_ERR_CERROR_ATC_INV_IDX]	= "ATC invalidate timeout",
370 	};
371 
372 	int i;
373 	u64 cmd[CMDQ_ENT_DWORDS];
374 	u32 cons = readl_relaxed(q->cons_reg);
375 	u32 idx = FIELD_GET(CMDQ_CONS_ERR, cons);
376 	struct arm_smmu_cmdq_ent cmd_sync = {
377 		.opcode = CMDQ_OP_CMD_SYNC,
378 	};
379 
380 	dev_err(smmu->dev, "CMDQ error (cons 0x%08x): %s\n", cons,
381 		idx < ARRAY_SIZE(cerror_str) ?  cerror_str[idx] : "Unknown");
382 
383 	switch (idx) {
384 	case CMDQ_ERR_CERROR_ABT_IDX:
385 		dev_err(smmu->dev, "retrying command fetch\n");
386 		return;
387 	case CMDQ_ERR_CERROR_NONE_IDX:
388 		return;
389 	case CMDQ_ERR_CERROR_ATC_INV_IDX:
390 		/*
391 		 * ATC Invalidation Completion timeout. CONS is still pointing
392 		 * at the CMD_SYNC. Attempt to complete other pending commands
393 		 * by repeating the CMD_SYNC, though we might well end up back
394 		 * here since the ATC invalidation may still be pending.
395 		 */
396 		return;
397 	case CMDQ_ERR_CERROR_ILL_IDX:
398 	default:
399 		break;
400 	}
401 
402 	/*
403 	 * We may have concurrent producers, so we need to be careful
404 	 * not to touch any of the shadow cmdq state.
405 	 */
406 	queue_read(cmd, Q_ENT(q, cons), q->ent_dwords);
407 	dev_err(smmu->dev, "skipping command in error state:\n");
408 	for (i = 0; i < ARRAY_SIZE(cmd); ++i)
409 		dev_err(smmu->dev, "\t0x%016llx\n", (unsigned long long)cmd[i]);
410 
411 	/* Convert the erroneous command into a CMD_SYNC */
412 	arm_smmu_cmdq_build_cmd(cmd, &cmd_sync);
413 
414 	queue_write(Q_ENT(q, cons), cmd, q->ent_dwords);
415 }
416 
417 static void arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu)
418 {
419 	__arm_smmu_cmdq_skip_err(smmu, &smmu->cmdq.q);
420 }
421 
422 /*
423  * Command queue locking.
424  * This is a form of bastardised rwlock with the following major changes:
425  *
426  * - The only LOCK routines are exclusive_trylock() and shared_lock().
427  *   Neither have barrier semantics, and instead provide only a control
428  *   dependency.
429  *
430  * - The UNLOCK routines are supplemented with shared_tryunlock(), which
431  *   fails if the caller appears to be the last lock holder (yes, this is
432  *   racy). All successful UNLOCK routines have RELEASE semantics.
433  */
434 static void arm_smmu_cmdq_shared_lock(struct arm_smmu_cmdq *cmdq)
435 {
436 	int val;
437 
438 	/*
439 	 * We can try to avoid the cmpxchg() loop by simply incrementing the
440 	 * lock counter. When held in exclusive state, the lock counter is set
441 	 * to INT_MIN so these increments won't hurt as the value will remain
442 	 * negative.
443 	 */
444 	if (atomic_fetch_inc_relaxed(&cmdq->lock) >= 0)
445 		return;
446 
447 	do {
448 		val = atomic_cond_read_relaxed(&cmdq->lock, VAL >= 0);
449 	} while (atomic_cmpxchg_relaxed(&cmdq->lock, val, val + 1) != val);
450 }
451 
452 static void arm_smmu_cmdq_shared_unlock(struct arm_smmu_cmdq *cmdq)
453 {
454 	(void)atomic_dec_return_release(&cmdq->lock);
455 }
456 
457 static bool arm_smmu_cmdq_shared_tryunlock(struct arm_smmu_cmdq *cmdq)
458 {
459 	if (atomic_read(&cmdq->lock) == 1)
460 		return false;
461 
462 	arm_smmu_cmdq_shared_unlock(cmdq);
463 	return true;
464 }
465 
466 #define arm_smmu_cmdq_exclusive_trylock_irqsave(cmdq, flags)		\
467 ({									\
468 	bool __ret;							\
469 	local_irq_save(flags);						\
470 	__ret = !atomic_cmpxchg_relaxed(&cmdq->lock, 0, INT_MIN);	\
471 	if (!__ret)							\
472 		local_irq_restore(flags);				\
473 	__ret;								\
474 })
475 
476 #define arm_smmu_cmdq_exclusive_unlock_irqrestore(cmdq, flags)		\
477 ({									\
478 	atomic_set_release(&cmdq->lock, 0);				\
479 	local_irq_restore(flags);					\
480 })
481 
482 
483 /*
484  * Command queue insertion.
485  * This is made fiddly by our attempts to achieve some sort of scalability
486  * since there is one queue shared amongst all of the CPUs in the system.  If
487  * you like mixed-size concurrency, dependency ordering and relaxed atomics,
488  * then you'll *love* this monstrosity.
489  *
490  * The basic idea is to split the queue up into ranges of commands that are
491  * owned by a given CPU; the owner may not have written all of the commands
492  * itself, but is responsible for advancing the hardware prod pointer when
493  * the time comes. The algorithm is roughly:
494  *
495  * 	1. Allocate some space in the queue. At this point we also discover
496  *	   whether the head of the queue is currently owned by another CPU,
497  *	   or whether we are the owner.
498  *
499  *	2. Write our commands into our allocated slots in the queue.
500  *
501  *	3. Mark our slots as valid in arm_smmu_cmdq.valid_map.
502  *
503  *	4. If we are an owner:
504  *		a. Wait for the previous owner to finish.
505  *		b. Mark the queue head as unowned, which tells us the range
506  *		   that we are responsible for publishing.
507  *		c. Wait for all commands in our owned range to become valid.
508  *		d. Advance the hardware prod pointer.
509  *		e. Tell the next owner we've finished.
510  *
511  *	5. If we are inserting a CMD_SYNC (we may or may not have been an
512  *	   owner), then we need to stick around until it has completed:
513  *		a. If we have MSIs, the SMMU can write back into the CMD_SYNC
514  *		   to clear the first 4 bytes.
515  *		b. Otherwise, we spin waiting for the hardware cons pointer to
516  *		   advance past our command.
517  *
518  * The devil is in the details, particularly the use of locking for handling
519  * SYNC completion and freeing up space in the queue before we think that it is
520  * full.
521  */
522 static void __arm_smmu_cmdq_poll_set_valid_map(struct arm_smmu_cmdq *cmdq,
523 					       u32 sprod, u32 eprod, bool set)
524 {
525 	u32 swidx, sbidx, ewidx, ebidx;
526 	struct arm_smmu_ll_queue llq = {
527 		.max_n_shift	= cmdq->q.llq.max_n_shift,
528 		.prod		= sprod,
529 	};
530 
531 	ewidx = BIT_WORD(Q_IDX(&llq, eprod));
532 	ebidx = Q_IDX(&llq, eprod) % BITS_PER_LONG;
533 
534 	while (llq.prod != eprod) {
535 		unsigned long mask;
536 		atomic_long_t *ptr;
537 		u32 limit = BITS_PER_LONG;
538 
539 		swidx = BIT_WORD(Q_IDX(&llq, llq.prod));
540 		sbidx = Q_IDX(&llq, llq.prod) % BITS_PER_LONG;
541 
542 		ptr = &cmdq->valid_map[swidx];
543 
544 		if ((swidx == ewidx) && (sbidx < ebidx))
545 			limit = ebidx;
546 
547 		mask = GENMASK(limit - 1, sbidx);
548 
549 		/*
550 		 * The valid bit is the inverse of the wrap bit. This means
551 		 * that a zero-initialised queue is invalid and, after marking
552 		 * all entries as valid, they become invalid again when we
553 		 * wrap.
554 		 */
555 		if (set) {
556 			atomic_long_xor(mask, ptr);
557 		} else { /* Poll */
558 			unsigned long valid;
559 
560 			valid = (ULONG_MAX + !!Q_WRP(&llq, llq.prod)) & mask;
561 			atomic_long_cond_read_relaxed(ptr, (VAL & mask) == valid);
562 		}
563 
564 		llq.prod = queue_inc_prod_n(&llq, limit - sbidx);
565 	}
566 }
567 
568 /* Mark all entries in the range [sprod, eprod) as valid */
569 static void arm_smmu_cmdq_set_valid_map(struct arm_smmu_cmdq *cmdq,
570 					u32 sprod, u32 eprod)
571 {
572 	__arm_smmu_cmdq_poll_set_valid_map(cmdq, sprod, eprod, true);
573 }
574 
575 /* Wait for all entries in the range [sprod, eprod) to become valid */
576 static void arm_smmu_cmdq_poll_valid_map(struct arm_smmu_cmdq *cmdq,
577 					 u32 sprod, u32 eprod)
578 {
579 	__arm_smmu_cmdq_poll_set_valid_map(cmdq, sprod, eprod, false);
580 }
581 
582 /* Wait for the command queue to become non-full */
583 static int arm_smmu_cmdq_poll_until_not_full(struct arm_smmu_device *smmu,
584 					     struct arm_smmu_ll_queue *llq)
585 {
586 	unsigned long flags;
587 	struct arm_smmu_queue_poll qp;
588 	struct arm_smmu_cmdq *cmdq = arm_smmu_get_cmdq(smmu);
589 	int ret = 0;
590 
591 	/*
592 	 * Try to update our copy of cons by grabbing exclusive cmdq access. If
593 	 * that fails, spin until somebody else updates it for us.
594 	 */
595 	if (arm_smmu_cmdq_exclusive_trylock_irqsave(cmdq, flags)) {
596 		WRITE_ONCE(cmdq->q.llq.cons, readl_relaxed(cmdq->q.cons_reg));
597 		arm_smmu_cmdq_exclusive_unlock_irqrestore(cmdq, flags);
598 		llq->val = READ_ONCE(cmdq->q.llq.val);
599 		return 0;
600 	}
601 
602 	queue_poll_init(smmu, &qp);
603 	do {
604 		llq->val = READ_ONCE(cmdq->q.llq.val);
605 		if (!queue_full(llq))
606 			break;
607 
608 		ret = queue_poll(&qp);
609 	} while (!ret);
610 
611 	return ret;
612 }
613 
614 /*
615  * Wait until the SMMU signals a CMD_SYNC completion MSI.
616  * Must be called with the cmdq lock held in some capacity.
617  */
618 static int __arm_smmu_cmdq_poll_until_msi(struct arm_smmu_device *smmu,
619 					  struct arm_smmu_ll_queue *llq)
620 {
621 	int ret = 0;
622 	struct arm_smmu_queue_poll qp;
623 	struct arm_smmu_cmdq *cmdq = arm_smmu_get_cmdq(smmu);
624 	u32 *cmd = (u32 *)(Q_ENT(&cmdq->q, llq->prod));
625 
626 	queue_poll_init(smmu, &qp);
627 
628 	/*
629 	 * The MSI won't generate an event, since it's being written back
630 	 * into the command queue.
631 	 */
632 	qp.wfe = false;
633 	smp_cond_load_relaxed(cmd, !VAL || (ret = queue_poll(&qp)));
634 	llq->cons = ret ? llq->prod : queue_inc_prod_n(llq, 1);
635 	return ret;
636 }
637 
638 /*
639  * Wait until the SMMU cons index passes llq->prod.
640  * Must be called with the cmdq lock held in some capacity.
641  */
642 static int __arm_smmu_cmdq_poll_until_consumed(struct arm_smmu_device *smmu,
643 					       struct arm_smmu_ll_queue *llq)
644 {
645 	struct arm_smmu_queue_poll qp;
646 	struct arm_smmu_cmdq *cmdq = arm_smmu_get_cmdq(smmu);
647 	u32 prod = llq->prod;
648 	int ret = 0;
649 
650 	queue_poll_init(smmu, &qp);
651 	llq->val = READ_ONCE(cmdq->q.llq.val);
652 	do {
653 		if (queue_consumed(llq, prod))
654 			break;
655 
656 		ret = queue_poll(&qp);
657 
658 		/*
659 		 * This needs to be a readl() so that our subsequent call
660 		 * to arm_smmu_cmdq_shared_tryunlock() can fail accurately.
661 		 *
662 		 * Specifically, we need to ensure that we observe all
663 		 * shared_lock()s by other CMD_SYNCs that share our owner,
664 		 * so that a failing call to tryunlock() means that we're
665 		 * the last one out and therefore we can safely advance
666 		 * cmdq->q.llq.cons. Roughly speaking:
667 		 *
668 		 * CPU 0		CPU1			CPU2 (us)
669 		 *
670 		 * if (sync)
671 		 * 	shared_lock();
672 		 *
673 		 * dma_wmb();
674 		 * set_valid_map();
675 		 *
676 		 * 			if (owner) {
677 		 *				poll_valid_map();
678 		 *				<control dependency>
679 		 *				writel(prod_reg);
680 		 *
681 		 *						readl(cons_reg);
682 		 *						tryunlock();
683 		 *
684 		 * Requires us to see CPU 0's shared_lock() acquisition.
685 		 */
686 		llq->cons = readl(cmdq->q.cons_reg);
687 	} while (!ret);
688 
689 	return ret;
690 }
691 
692 static int arm_smmu_cmdq_poll_until_sync(struct arm_smmu_device *smmu,
693 					 struct arm_smmu_ll_queue *llq)
694 {
695 	if (smmu->options & ARM_SMMU_OPT_MSIPOLL)
696 		return __arm_smmu_cmdq_poll_until_msi(smmu, llq);
697 
698 	return __arm_smmu_cmdq_poll_until_consumed(smmu, llq);
699 }
700 
701 static void arm_smmu_cmdq_write_entries(struct arm_smmu_cmdq *cmdq, u64 *cmds,
702 					u32 prod, int n)
703 {
704 	int i;
705 	struct arm_smmu_ll_queue llq = {
706 		.max_n_shift	= cmdq->q.llq.max_n_shift,
707 		.prod		= prod,
708 	};
709 
710 	for (i = 0; i < n; ++i) {
711 		u64 *cmd = &cmds[i * CMDQ_ENT_DWORDS];
712 
713 		prod = queue_inc_prod_n(&llq, i);
714 		queue_write(Q_ENT(&cmdq->q, prod), cmd, CMDQ_ENT_DWORDS);
715 	}
716 }
717 
718 /*
719  * This is the actual insertion function, and provides the following
720  * ordering guarantees to callers:
721  *
722  * - There is a dma_wmb() before publishing any commands to the queue.
723  *   This can be relied upon to order prior writes to data structures
724  *   in memory (such as a CD or an STE) before the command.
725  *
726  * - On completion of a CMD_SYNC, there is a control dependency.
727  *   This can be relied upon to order subsequent writes to memory (e.g.
728  *   freeing an IOVA) after completion of the CMD_SYNC.
729  *
730  * - Command insertion is totally ordered, so if two CPUs each race to
731  *   insert their own list of commands then all of the commands from one
732  *   CPU will appear before any of the commands from the other CPU.
733  */
734 static int arm_smmu_cmdq_issue_cmdlist(struct arm_smmu_device *smmu,
735 				       u64 *cmds, int n, bool sync)
736 {
737 	u64 cmd_sync[CMDQ_ENT_DWORDS];
738 	u32 prod;
739 	unsigned long flags;
740 	bool owner;
741 	struct arm_smmu_cmdq *cmdq = arm_smmu_get_cmdq(smmu);
742 	struct arm_smmu_ll_queue llq, head;
743 	int ret = 0;
744 
745 	llq.max_n_shift = cmdq->q.llq.max_n_shift;
746 
747 	/* 1. Allocate some space in the queue */
748 	local_irq_save(flags);
749 	llq.val = READ_ONCE(cmdq->q.llq.val);
750 	do {
751 		u64 old;
752 
753 		while (!queue_has_space(&llq, n + sync)) {
754 			local_irq_restore(flags);
755 			if (arm_smmu_cmdq_poll_until_not_full(smmu, &llq))
756 				dev_err_ratelimited(smmu->dev, "CMDQ timeout\n");
757 			local_irq_save(flags);
758 		}
759 
760 		head.cons = llq.cons;
761 		head.prod = queue_inc_prod_n(&llq, n + sync) |
762 					     CMDQ_PROD_OWNED_FLAG;
763 
764 		old = cmpxchg_relaxed(&cmdq->q.llq.val, llq.val, head.val);
765 		if (old == llq.val)
766 			break;
767 
768 		llq.val = old;
769 	} while (1);
770 	owner = !(llq.prod & CMDQ_PROD_OWNED_FLAG);
771 	head.prod &= ~CMDQ_PROD_OWNED_FLAG;
772 	llq.prod &= ~CMDQ_PROD_OWNED_FLAG;
773 
774 	/*
775 	 * 2. Write our commands into the queue
776 	 * Dependency ordering from the cmpxchg() loop above.
777 	 */
778 	arm_smmu_cmdq_write_entries(cmdq, cmds, llq.prod, n);
779 	if (sync) {
780 		prod = queue_inc_prod_n(&llq, n);
781 		arm_smmu_cmdq_build_sync_cmd(cmd_sync, smmu, &cmdq->q, prod);
782 		queue_write(Q_ENT(&cmdq->q, prod), cmd_sync, CMDQ_ENT_DWORDS);
783 
784 		/*
785 		 * In order to determine completion of our CMD_SYNC, we must
786 		 * ensure that the queue can't wrap twice without us noticing.
787 		 * We achieve that by taking the cmdq lock as shared before
788 		 * marking our slot as valid.
789 		 */
790 		arm_smmu_cmdq_shared_lock(cmdq);
791 	}
792 
793 	/* 3. Mark our slots as valid, ensuring commands are visible first */
794 	dma_wmb();
795 	arm_smmu_cmdq_set_valid_map(cmdq, llq.prod, head.prod);
796 
797 	/* 4. If we are the owner, take control of the SMMU hardware */
798 	if (owner) {
799 		/* a. Wait for previous owner to finish */
800 		atomic_cond_read_relaxed(&cmdq->owner_prod, VAL == llq.prod);
801 
802 		/* b. Stop gathering work by clearing the owned flag */
803 		prod = atomic_fetch_andnot_relaxed(CMDQ_PROD_OWNED_FLAG,
804 						   &cmdq->q.llq.atomic.prod);
805 		prod &= ~CMDQ_PROD_OWNED_FLAG;
806 
807 		/*
808 		 * c. Wait for any gathered work to be written to the queue.
809 		 * Note that we read our own entries so that we have the control
810 		 * dependency required by (d).
811 		 */
812 		arm_smmu_cmdq_poll_valid_map(cmdq, llq.prod, prod);
813 
814 		/*
815 		 * d. Advance the hardware prod pointer
816 		 * Control dependency ordering from the entries becoming valid.
817 		 */
818 		writel_relaxed(prod, cmdq->q.prod_reg);
819 
820 		/*
821 		 * e. Tell the next owner we're done
822 		 * Make sure we've updated the hardware first, so that we don't
823 		 * race to update prod and potentially move it backwards.
824 		 */
825 		atomic_set_release(&cmdq->owner_prod, prod);
826 	}
827 
828 	/* 5. If we are inserting a CMD_SYNC, we must wait for it to complete */
829 	if (sync) {
830 		llq.prod = queue_inc_prod_n(&llq, n);
831 		ret = arm_smmu_cmdq_poll_until_sync(smmu, &llq);
832 		if (ret) {
833 			dev_err_ratelimited(smmu->dev,
834 					    "CMD_SYNC timeout at 0x%08x [hwprod 0x%08x, hwcons 0x%08x]\n",
835 					    llq.prod,
836 					    readl_relaxed(cmdq->q.prod_reg),
837 					    readl_relaxed(cmdq->q.cons_reg));
838 		}
839 
840 		/*
841 		 * Try to unlock the cmdq lock. This will fail if we're the last
842 		 * reader, in which case we can safely update cmdq->q.llq.cons
843 		 */
844 		if (!arm_smmu_cmdq_shared_tryunlock(cmdq)) {
845 			WRITE_ONCE(cmdq->q.llq.cons, llq.cons);
846 			arm_smmu_cmdq_shared_unlock(cmdq);
847 		}
848 	}
849 
850 	local_irq_restore(flags);
851 	return ret;
852 }
853 
854 static int __arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu,
855 				     struct arm_smmu_cmdq_ent *ent,
856 				     bool sync)
857 {
858 	u64 cmd[CMDQ_ENT_DWORDS];
859 
860 	if (unlikely(arm_smmu_cmdq_build_cmd(cmd, ent))) {
861 		dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n",
862 			 ent->opcode);
863 		return -EINVAL;
864 	}
865 
866 	return arm_smmu_cmdq_issue_cmdlist(smmu, cmd, 1, sync);
867 }
868 
869 static int arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu,
870 				   struct arm_smmu_cmdq_ent *ent)
871 {
872 	return __arm_smmu_cmdq_issue_cmd(smmu, ent, false);
873 }
874 
875 static int arm_smmu_cmdq_issue_cmd_with_sync(struct arm_smmu_device *smmu,
876 					     struct arm_smmu_cmdq_ent *ent)
877 {
878 	return __arm_smmu_cmdq_issue_cmd(smmu, ent, true);
879 }
880 
881 static void arm_smmu_cmdq_batch_add(struct arm_smmu_device *smmu,
882 				    struct arm_smmu_cmdq_batch *cmds,
883 				    struct arm_smmu_cmdq_ent *cmd)
884 {
885 	int index;
886 
887 	if (cmds->num == CMDQ_BATCH_ENTRIES) {
888 		arm_smmu_cmdq_issue_cmdlist(smmu, cmds->cmds, cmds->num, false);
889 		cmds->num = 0;
890 	}
891 
892 	index = cmds->num * CMDQ_ENT_DWORDS;
893 	if (unlikely(arm_smmu_cmdq_build_cmd(&cmds->cmds[index], cmd))) {
894 		dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n",
895 			 cmd->opcode);
896 		return;
897 	}
898 
899 	cmds->num++;
900 }
901 
902 static int arm_smmu_cmdq_batch_submit(struct arm_smmu_device *smmu,
903 				      struct arm_smmu_cmdq_batch *cmds)
904 {
905 	return arm_smmu_cmdq_issue_cmdlist(smmu, cmds->cmds, cmds->num, true);
906 }
907 
908 static int arm_smmu_page_response(struct device *dev,
909 				  struct iommu_fault_event *unused,
910 				  struct iommu_page_response *resp)
911 {
912 	struct arm_smmu_cmdq_ent cmd = {0};
913 	struct arm_smmu_master *master = dev_iommu_priv_get(dev);
914 	int sid = master->streams[0].id;
915 
916 	if (master->stall_enabled) {
917 		cmd.opcode		= CMDQ_OP_RESUME;
918 		cmd.resume.sid		= sid;
919 		cmd.resume.stag		= resp->grpid;
920 		switch (resp->code) {
921 		case IOMMU_PAGE_RESP_INVALID:
922 		case IOMMU_PAGE_RESP_FAILURE:
923 			cmd.resume.resp = CMDQ_RESUME_0_RESP_ABORT;
924 			break;
925 		case IOMMU_PAGE_RESP_SUCCESS:
926 			cmd.resume.resp = CMDQ_RESUME_0_RESP_RETRY;
927 			break;
928 		default:
929 			return -EINVAL;
930 		}
931 	} else {
932 		return -ENODEV;
933 	}
934 
935 	arm_smmu_cmdq_issue_cmd(master->smmu, &cmd);
936 	/*
937 	 * Don't send a SYNC, it doesn't do anything for RESUME or PRI_RESP.
938 	 * RESUME consumption guarantees that the stalled transaction will be
939 	 * terminated... at some point in the future. PRI_RESP is fire and
940 	 * forget.
941 	 */
942 
943 	return 0;
944 }
945 
946 /* Context descriptor manipulation functions */
947 void arm_smmu_tlb_inv_asid(struct arm_smmu_device *smmu, u16 asid)
948 {
949 	struct arm_smmu_cmdq_ent cmd = {
950 		.opcode	= smmu->features & ARM_SMMU_FEAT_E2H ?
951 			CMDQ_OP_TLBI_EL2_ASID : CMDQ_OP_TLBI_NH_ASID,
952 		.tlbi.asid = asid,
953 	};
954 
955 	arm_smmu_cmdq_issue_cmd_with_sync(smmu, &cmd);
956 }
957 
958 static void arm_smmu_sync_cd(struct arm_smmu_domain *smmu_domain,
959 			     int ssid, bool leaf)
960 {
961 	size_t i;
962 	unsigned long flags;
963 	struct arm_smmu_master *master;
964 	struct arm_smmu_cmdq_batch cmds;
965 	struct arm_smmu_device *smmu = smmu_domain->smmu;
966 	struct arm_smmu_cmdq_ent cmd = {
967 		.opcode	= CMDQ_OP_CFGI_CD,
968 		.cfgi	= {
969 			.ssid	= ssid,
970 			.leaf	= leaf,
971 		},
972 	};
973 
974 	cmds.num = 0;
975 
976 	spin_lock_irqsave(&smmu_domain->devices_lock, flags);
977 	list_for_each_entry(master, &smmu_domain->devices, domain_head) {
978 		for (i = 0; i < master->num_streams; i++) {
979 			cmd.cfgi.sid = master->streams[i].id;
980 			arm_smmu_cmdq_batch_add(smmu, &cmds, &cmd);
981 		}
982 	}
983 	spin_unlock_irqrestore(&smmu_domain->devices_lock, flags);
984 
985 	arm_smmu_cmdq_batch_submit(smmu, &cmds);
986 }
987 
988 static int arm_smmu_alloc_cd_leaf_table(struct arm_smmu_device *smmu,
989 					struct arm_smmu_l1_ctx_desc *l1_desc)
990 {
991 	size_t size = CTXDESC_L2_ENTRIES * (CTXDESC_CD_DWORDS << 3);
992 
993 	l1_desc->l2ptr = dmam_alloc_coherent(smmu->dev, size,
994 					     &l1_desc->l2ptr_dma, GFP_KERNEL);
995 	if (!l1_desc->l2ptr) {
996 		dev_warn(smmu->dev,
997 			 "failed to allocate context descriptor table\n");
998 		return -ENOMEM;
999 	}
1000 	return 0;
1001 }
1002 
1003 static void arm_smmu_write_cd_l1_desc(__le64 *dst,
1004 				      struct arm_smmu_l1_ctx_desc *l1_desc)
1005 {
1006 	u64 val = (l1_desc->l2ptr_dma & CTXDESC_L1_DESC_L2PTR_MASK) |
1007 		  CTXDESC_L1_DESC_V;
1008 
1009 	/* See comment in arm_smmu_write_ctx_desc() */
1010 	WRITE_ONCE(*dst, cpu_to_le64(val));
1011 }
1012 
1013 static __le64 *arm_smmu_get_cd_ptr(struct arm_smmu_domain *smmu_domain,
1014 				   u32 ssid)
1015 {
1016 	__le64 *l1ptr;
1017 	unsigned int idx;
1018 	struct arm_smmu_l1_ctx_desc *l1_desc;
1019 	struct arm_smmu_device *smmu = smmu_domain->smmu;
1020 	struct arm_smmu_ctx_desc_cfg *cdcfg = &smmu_domain->s1_cfg.cdcfg;
1021 
1022 	if (smmu_domain->s1_cfg.s1fmt == STRTAB_STE_0_S1FMT_LINEAR)
1023 		return cdcfg->cdtab + ssid * CTXDESC_CD_DWORDS;
1024 
1025 	idx = ssid >> CTXDESC_SPLIT;
1026 	l1_desc = &cdcfg->l1_desc[idx];
1027 	if (!l1_desc->l2ptr) {
1028 		if (arm_smmu_alloc_cd_leaf_table(smmu, l1_desc))
1029 			return NULL;
1030 
1031 		l1ptr = cdcfg->cdtab + idx * CTXDESC_L1_DESC_DWORDS;
1032 		arm_smmu_write_cd_l1_desc(l1ptr, l1_desc);
1033 		/* An invalid L1CD can be cached */
1034 		arm_smmu_sync_cd(smmu_domain, ssid, false);
1035 	}
1036 	idx = ssid & (CTXDESC_L2_ENTRIES - 1);
1037 	return l1_desc->l2ptr + idx * CTXDESC_CD_DWORDS;
1038 }
1039 
1040 int arm_smmu_write_ctx_desc(struct arm_smmu_domain *smmu_domain, int ssid,
1041 			    struct arm_smmu_ctx_desc *cd)
1042 {
1043 	/*
1044 	 * This function handles the following cases:
1045 	 *
1046 	 * (1) Install primary CD, for normal DMA traffic (SSID = 0).
1047 	 * (2) Install a secondary CD, for SID+SSID traffic.
1048 	 * (3) Update ASID of a CD. Atomically write the first 64 bits of the
1049 	 *     CD, then invalidate the old entry and mappings.
1050 	 * (4) Quiesce the context without clearing the valid bit. Disable
1051 	 *     translation, and ignore any translation fault.
1052 	 * (5) Remove a secondary CD.
1053 	 */
1054 	u64 val;
1055 	bool cd_live;
1056 	__le64 *cdptr;
1057 
1058 	if (WARN_ON(ssid >= (1 << smmu_domain->s1_cfg.s1cdmax)))
1059 		return -E2BIG;
1060 
1061 	cdptr = arm_smmu_get_cd_ptr(smmu_domain, ssid);
1062 	if (!cdptr)
1063 		return -ENOMEM;
1064 
1065 	val = le64_to_cpu(cdptr[0]);
1066 	cd_live = !!(val & CTXDESC_CD_0_V);
1067 
1068 	if (!cd) { /* (5) */
1069 		val = 0;
1070 	} else if (cd == &quiet_cd) { /* (4) */
1071 		val |= CTXDESC_CD_0_TCR_EPD0;
1072 	} else if (cd_live) { /* (3) */
1073 		val &= ~CTXDESC_CD_0_ASID;
1074 		val |= FIELD_PREP(CTXDESC_CD_0_ASID, cd->asid);
1075 		/*
1076 		 * Until CD+TLB invalidation, both ASIDs may be used for tagging
1077 		 * this substream's traffic
1078 		 */
1079 	} else { /* (1) and (2) */
1080 		cdptr[1] = cpu_to_le64(cd->ttbr & CTXDESC_CD_1_TTB0_MASK);
1081 		cdptr[2] = 0;
1082 		cdptr[3] = cpu_to_le64(cd->mair);
1083 
1084 		/*
1085 		 * STE is live, and the SMMU might read dwords of this CD in any
1086 		 * order. Ensure that it observes valid values before reading
1087 		 * V=1.
1088 		 */
1089 		arm_smmu_sync_cd(smmu_domain, ssid, true);
1090 
1091 		val = cd->tcr |
1092 #ifdef __BIG_ENDIAN
1093 			CTXDESC_CD_0_ENDI |
1094 #endif
1095 			CTXDESC_CD_0_R | CTXDESC_CD_0_A |
1096 			(cd->mm ? 0 : CTXDESC_CD_0_ASET) |
1097 			CTXDESC_CD_0_AA64 |
1098 			FIELD_PREP(CTXDESC_CD_0_ASID, cd->asid) |
1099 			CTXDESC_CD_0_V;
1100 
1101 		if (smmu_domain->stall_enabled)
1102 			val |= CTXDESC_CD_0_S;
1103 	}
1104 
1105 	/*
1106 	 * The SMMU accesses 64-bit values atomically. See IHI0070Ca 3.21.3
1107 	 * "Configuration structures and configuration invalidation completion"
1108 	 *
1109 	 *   The size of single-copy atomic reads made by the SMMU is
1110 	 *   IMPLEMENTATION DEFINED but must be at least 64 bits. Any single
1111 	 *   field within an aligned 64-bit span of a structure can be altered
1112 	 *   without first making the structure invalid.
1113 	 */
1114 	WRITE_ONCE(cdptr[0], cpu_to_le64(val));
1115 	arm_smmu_sync_cd(smmu_domain, ssid, true);
1116 	return 0;
1117 }
1118 
1119 static int arm_smmu_alloc_cd_tables(struct arm_smmu_domain *smmu_domain)
1120 {
1121 	int ret;
1122 	size_t l1size;
1123 	size_t max_contexts;
1124 	struct arm_smmu_device *smmu = smmu_domain->smmu;
1125 	struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1126 	struct arm_smmu_ctx_desc_cfg *cdcfg = &cfg->cdcfg;
1127 
1128 	max_contexts = 1 << cfg->s1cdmax;
1129 
1130 	if (!(smmu->features & ARM_SMMU_FEAT_2_LVL_CDTAB) ||
1131 	    max_contexts <= CTXDESC_L2_ENTRIES) {
1132 		cfg->s1fmt = STRTAB_STE_0_S1FMT_LINEAR;
1133 		cdcfg->num_l1_ents = max_contexts;
1134 
1135 		l1size = max_contexts * (CTXDESC_CD_DWORDS << 3);
1136 	} else {
1137 		cfg->s1fmt = STRTAB_STE_0_S1FMT_64K_L2;
1138 		cdcfg->num_l1_ents = DIV_ROUND_UP(max_contexts,
1139 						  CTXDESC_L2_ENTRIES);
1140 
1141 		cdcfg->l1_desc = devm_kcalloc(smmu->dev, cdcfg->num_l1_ents,
1142 					      sizeof(*cdcfg->l1_desc),
1143 					      GFP_KERNEL);
1144 		if (!cdcfg->l1_desc)
1145 			return -ENOMEM;
1146 
1147 		l1size = cdcfg->num_l1_ents * (CTXDESC_L1_DESC_DWORDS << 3);
1148 	}
1149 
1150 	cdcfg->cdtab = dmam_alloc_coherent(smmu->dev, l1size, &cdcfg->cdtab_dma,
1151 					   GFP_KERNEL);
1152 	if (!cdcfg->cdtab) {
1153 		dev_warn(smmu->dev, "failed to allocate context descriptor\n");
1154 		ret = -ENOMEM;
1155 		goto err_free_l1;
1156 	}
1157 
1158 	return 0;
1159 
1160 err_free_l1:
1161 	if (cdcfg->l1_desc) {
1162 		devm_kfree(smmu->dev, cdcfg->l1_desc);
1163 		cdcfg->l1_desc = NULL;
1164 	}
1165 	return ret;
1166 }
1167 
1168 static void arm_smmu_free_cd_tables(struct arm_smmu_domain *smmu_domain)
1169 {
1170 	int i;
1171 	size_t size, l1size;
1172 	struct arm_smmu_device *smmu = smmu_domain->smmu;
1173 	struct arm_smmu_ctx_desc_cfg *cdcfg = &smmu_domain->s1_cfg.cdcfg;
1174 
1175 	if (cdcfg->l1_desc) {
1176 		size = CTXDESC_L2_ENTRIES * (CTXDESC_CD_DWORDS << 3);
1177 
1178 		for (i = 0; i < cdcfg->num_l1_ents; i++) {
1179 			if (!cdcfg->l1_desc[i].l2ptr)
1180 				continue;
1181 
1182 			dmam_free_coherent(smmu->dev, size,
1183 					   cdcfg->l1_desc[i].l2ptr,
1184 					   cdcfg->l1_desc[i].l2ptr_dma);
1185 		}
1186 		devm_kfree(smmu->dev, cdcfg->l1_desc);
1187 		cdcfg->l1_desc = NULL;
1188 
1189 		l1size = cdcfg->num_l1_ents * (CTXDESC_L1_DESC_DWORDS << 3);
1190 	} else {
1191 		l1size = cdcfg->num_l1_ents * (CTXDESC_CD_DWORDS << 3);
1192 	}
1193 
1194 	dmam_free_coherent(smmu->dev, l1size, cdcfg->cdtab, cdcfg->cdtab_dma);
1195 	cdcfg->cdtab_dma = 0;
1196 	cdcfg->cdtab = NULL;
1197 }
1198 
1199 bool arm_smmu_free_asid(struct arm_smmu_ctx_desc *cd)
1200 {
1201 	bool free;
1202 	struct arm_smmu_ctx_desc *old_cd;
1203 
1204 	if (!cd->asid)
1205 		return false;
1206 
1207 	free = refcount_dec_and_test(&cd->refs);
1208 	if (free) {
1209 		old_cd = xa_erase(&arm_smmu_asid_xa, cd->asid);
1210 		WARN_ON(old_cd != cd);
1211 	}
1212 	return free;
1213 }
1214 
1215 /* Stream table manipulation functions */
1216 static void
1217 arm_smmu_write_strtab_l1_desc(__le64 *dst, struct arm_smmu_strtab_l1_desc *desc)
1218 {
1219 	u64 val = 0;
1220 
1221 	val |= FIELD_PREP(STRTAB_L1_DESC_SPAN, desc->span);
1222 	val |= desc->l2ptr_dma & STRTAB_L1_DESC_L2PTR_MASK;
1223 
1224 	/* See comment in arm_smmu_write_ctx_desc() */
1225 	WRITE_ONCE(*dst, cpu_to_le64(val));
1226 }
1227 
1228 static void arm_smmu_sync_ste_for_sid(struct arm_smmu_device *smmu, u32 sid)
1229 {
1230 	struct arm_smmu_cmdq_ent cmd = {
1231 		.opcode	= CMDQ_OP_CFGI_STE,
1232 		.cfgi	= {
1233 			.sid	= sid,
1234 			.leaf	= true,
1235 		},
1236 	};
1237 
1238 	arm_smmu_cmdq_issue_cmd_with_sync(smmu, &cmd);
1239 }
1240 
1241 static void arm_smmu_write_strtab_ent(struct arm_smmu_master *master, u32 sid,
1242 				      __le64 *dst)
1243 {
1244 	/*
1245 	 * This is hideously complicated, but we only really care about
1246 	 * three cases at the moment:
1247 	 *
1248 	 * 1. Invalid (all zero) -> bypass/fault (init)
1249 	 * 2. Bypass/fault -> translation/bypass (attach)
1250 	 * 3. Translation/bypass -> bypass/fault (detach)
1251 	 *
1252 	 * Given that we can't update the STE atomically and the SMMU
1253 	 * doesn't read the thing in a defined order, that leaves us
1254 	 * with the following maintenance requirements:
1255 	 *
1256 	 * 1. Update Config, return (init time STEs aren't live)
1257 	 * 2. Write everything apart from dword 0, sync, write dword 0, sync
1258 	 * 3. Update Config, sync
1259 	 */
1260 	u64 val = le64_to_cpu(dst[0]);
1261 	bool ste_live = false;
1262 	struct arm_smmu_device *smmu = NULL;
1263 	struct arm_smmu_s1_cfg *s1_cfg = NULL;
1264 	struct arm_smmu_s2_cfg *s2_cfg = NULL;
1265 	struct arm_smmu_domain *smmu_domain = NULL;
1266 	struct arm_smmu_cmdq_ent prefetch_cmd = {
1267 		.opcode		= CMDQ_OP_PREFETCH_CFG,
1268 		.prefetch	= {
1269 			.sid	= sid,
1270 		},
1271 	};
1272 
1273 	if (master) {
1274 		smmu_domain = master->domain;
1275 		smmu = master->smmu;
1276 	}
1277 
1278 	if (smmu_domain) {
1279 		switch (smmu_domain->stage) {
1280 		case ARM_SMMU_DOMAIN_S1:
1281 			s1_cfg = &smmu_domain->s1_cfg;
1282 			break;
1283 		case ARM_SMMU_DOMAIN_S2:
1284 		case ARM_SMMU_DOMAIN_NESTED:
1285 			s2_cfg = &smmu_domain->s2_cfg;
1286 			break;
1287 		default:
1288 			break;
1289 		}
1290 	}
1291 
1292 	if (val & STRTAB_STE_0_V) {
1293 		switch (FIELD_GET(STRTAB_STE_0_CFG, val)) {
1294 		case STRTAB_STE_0_CFG_BYPASS:
1295 			break;
1296 		case STRTAB_STE_0_CFG_S1_TRANS:
1297 		case STRTAB_STE_0_CFG_S2_TRANS:
1298 			ste_live = true;
1299 			break;
1300 		case STRTAB_STE_0_CFG_ABORT:
1301 			BUG_ON(!disable_bypass);
1302 			break;
1303 		default:
1304 			BUG(); /* STE corruption */
1305 		}
1306 	}
1307 
1308 	/* Nuke the existing STE_0 value, as we're going to rewrite it */
1309 	val = STRTAB_STE_0_V;
1310 
1311 	/* Bypass/fault */
1312 	if (!smmu_domain || !(s1_cfg || s2_cfg)) {
1313 		if (!smmu_domain && disable_bypass)
1314 			val |= FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_ABORT);
1315 		else
1316 			val |= FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_BYPASS);
1317 
1318 		dst[0] = cpu_to_le64(val);
1319 		dst[1] = cpu_to_le64(FIELD_PREP(STRTAB_STE_1_SHCFG,
1320 						STRTAB_STE_1_SHCFG_INCOMING));
1321 		dst[2] = 0; /* Nuke the VMID */
1322 		/*
1323 		 * The SMMU can perform negative caching, so we must sync
1324 		 * the STE regardless of whether the old value was live.
1325 		 */
1326 		if (smmu)
1327 			arm_smmu_sync_ste_for_sid(smmu, sid);
1328 		return;
1329 	}
1330 
1331 	if (s1_cfg) {
1332 		u64 strw = smmu->features & ARM_SMMU_FEAT_E2H ?
1333 			STRTAB_STE_1_STRW_EL2 : STRTAB_STE_1_STRW_NSEL1;
1334 
1335 		BUG_ON(ste_live);
1336 		dst[1] = cpu_to_le64(
1337 			 FIELD_PREP(STRTAB_STE_1_S1DSS, STRTAB_STE_1_S1DSS_SSID0) |
1338 			 FIELD_PREP(STRTAB_STE_1_S1CIR, STRTAB_STE_1_S1C_CACHE_WBRA) |
1339 			 FIELD_PREP(STRTAB_STE_1_S1COR, STRTAB_STE_1_S1C_CACHE_WBRA) |
1340 			 FIELD_PREP(STRTAB_STE_1_S1CSH, ARM_SMMU_SH_ISH) |
1341 			 FIELD_PREP(STRTAB_STE_1_STRW, strw));
1342 
1343 		if (smmu->features & ARM_SMMU_FEAT_STALLS &&
1344 		    !master->stall_enabled)
1345 			dst[1] |= cpu_to_le64(STRTAB_STE_1_S1STALLD);
1346 
1347 		val |= (s1_cfg->cdcfg.cdtab_dma & STRTAB_STE_0_S1CTXPTR_MASK) |
1348 			FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_S1_TRANS) |
1349 			FIELD_PREP(STRTAB_STE_0_S1CDMAX, s1_cfg->s1cdmax) |
1350 			FIELD_PREP(STRTAB_STE_0_S1FMT, s1_cfg->s1fmt);
1351 	}
1352 
1353 	if (s2_cfg) {
1354 		BUG_ON(ste_live);
1355 		dst[2] = cpu_to_le64(
1356 			 FIELD_PREP(STRTAB_STE_2_S2VMID, s2_cfg->vmid) |
1357 			 FIELD_PREP(STRTAB_STE_2_VTCR, s2_cfg->vtcr) |
1358 #ifdef __BIG_ENDIAN
1359 			 STRTAB_STE_2_S2ENDI |
1360 #endif
1361 			 STRTAB_STE_2_S2PTW | STRTAB_STE_2_S2AA64 |
1362 			 STRTAB_STE_2_S2R);
1363 
1364 		dst[3] = cpu_to_le64(s2_cfg->vttbr & STRTAB_STE_3_S2TTB_MASK);
1365 
1366 		val |= FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_S2_TRANS);
1367 	}
1368 
1369 	if (master->ats_enabled)
1370 		dst[1] |= cpu_to_le64(FIELD_PREP(STRTAB_STE_1_EATS,
1371 						 STRTAB_STE_1_EATS_TRANS));
1372 
1373 	arm_smmu_sync_ste_for_sid(smmu, sid);
1374 	/* See comment in arm_smmu_write_ctx_desc() */
1375 	WRITE_ONCE(dst[0], cpu_to_le64(val));
1376 	arm_smmu_sync_ste_for_sid(smmu, sid);
1377 
1378 	/* It's likely that we'll want to use the new STE soon */
1379 	if (!(smmu->options & ARM_SMMU_OPT_SKIP_PREFETCH))
1380 		arm_smmu_cmdq_issue_cmd(smmu, &prefetch_cmd);
1381 }
1382 
1383 static void arm_smmu_init_bypass_stes(__le64 *strtab, unsigned int nent)
1384 {
1385 	unsigned int i;
1386 
1387 	for (i = 0; i < nent; ++i) {
1388 		arm_smmu_write_strtab_ent(NULL, -1, strtab);
1389 		strtab += STRTAB_STE_DWORDS;
1390 	}
1391 }
1392 
1393 static int arm_smmu_init_l2_strtab(struct arm_smmu_device *smmu, u32 sid)
1394 {
1395 	size_t size;
1396 	void *strtab;
1397 	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1398 	struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[sid >> STRTAB_SPLIT];
1399 
1400 	if (desc->l2ptr)
1401 		return 0;
1402 
1403 	size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
1404 	strtab = &cfg->strtab[(sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS];
1405 
1406 	desc->span = STRTAB_SPLIT + 1;
1407 	desc->l2ptr = dmam_alloc_coherent(smmu->dev, size, &desc->l2ptr_dma,
1408 					  GFP_KERNEL);
1409 	if (!desc->l2ptr) {
1410 		dev_err(smmu->dev,
1411 			"failed to allocate l2 stream table for SID %u\n",
1412 			sid);
1413 		return -ENOMEM;
1414 	}
1415 
1416 	arm_smmu_init_bypass_stes(desc->l2ptr, 1 << STRTAB_SPLIT);
1417 	arm_smmu_write_strtab_l1_desc(strtab, desc);
1418 	return 0;
1419 }
1420 
1421 static struct arm_smmu_master *
1422 arm_smmu_find_master(struct arm_smmu_device *smmu, u32 sid)
1423 {
1424 	struct rb_node *node;
1425 	struct arm_smmu_stream *stream;
1426 
1427 	lockdep_assert_held(&smmu->streams_mutex);
1428 
1429 	node = smmu->streams.rb_node;
1430 	while (node) {
1431 		stream = rb_entry(node, struct arm_smmu_stream, node);
1432 		if (stream->id < sid)
1433 			node = node->rb_right;
1434 		else if (stream->id > sid)
1435 			node = node->rb_left;
1436 		else
1437 			return stream->master;
1438 	}
1439 
1440 	return NULL;
1441 }
1442 
1443 /* IRQ and event handlers */
1444 static int arm_smmu_handle_evt(struct arm_smmu_device *smmu, u64 *evt)
1445 {
1446 	int ret;
1447 	u32 reason;
1448 	u32 perm = 0;
1449 	struct arm_smmu_master *master;
1450 	bool ssid_valid = evt[0] & EVTQ_0_SSV;
1451 	u32 sid = FIELD_GET(EVTQ_0_SID, evt[0]);
1452 	struct iommu_fault_event fault_evt = { };
1453 	struct iommu_fault *flt = &fault_evt.fault;
1454 
1455 	switch (FIELD_GET(EVTQ_0_ID, evt[0])) {
1456 	case EVT_ID_TRANSLATION_FAULT:
1457 		reason = IOMMU_FAULT_REASON_PTE_FETCH;
1458 		break;
1459 	case EVT_ID_ADDR_SIZE_FAULT:
1460 		reason = IOMMU_FAULT_REASON_OOR_ADDRESS;
1461 		break;
1462 	case EVT_ID_ACCESS_FAULT:
1463 		reason = IOMMU_FAULT_REASON_ACCESS;
1464 		break;
1465 	case EVT_ID_PERMISSION_FAULT:
1466 		reason = IOMMU_FAULT_REASON_PERMISSION;
1467 		break;
1468 	default:
1469 		return -EOPNOTSUPP;
1470 	}
1471 
1472 	/* Stage-2 is always pinned at the moment */
1473 	if (evt[1] & EVTQ_1_S2)
1474 		return -EFAULT;
1475 
1476 	if (evt[1] & EVTQ_1_RnW)
1477 		perm |= IOMMU_FAULT_PERM_READ;
1478 	else
1479 		perm |= IOMMU_FAULT_PERM_WRITE;
1480 
1481 	if (evt[1] & EVTQ_1_InD)
1482 		perm |= IOMMU_FAULT_PERM_EXEC;
1483 
1484 	if (evt[1] & EVTQ_1_PnU)
1485 		perm |= IOMMU_FAULT_PERM_PRIV;
1486 
1487 	if (evt[1] & EVTQ_1_STALL) {
1488 		flt->type = IOMMU_FAULT_PAGE_REQ;
1489 		flt->prm = (struct iommu_fault_page_request) {
1490 			.flags = IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE,
1491 			.grpid = FIELD_GET(EVTQ_1_STAG, evt[1]),
1492 			.perm = perm,
1493 			.addr = FIELD_GET(EVTQ_2_ADDR, evt[2]),
1494 		};
1495 
1496 		if (ssid_valid) {
1497 			flt->prm.flags |= IOMMU_FAULT_PAGE_REQUEST_PASID_VALID;
1498 			flt->prm.pasid = FIELD_GET(EVTQ_0_SSID, evt[0]);
1499 		}
1500 	} else {
1501 		flt->type = IOMMU_FAULT_DMA_UNRECOV;
1502 		flt->event = (struct iommu_fault_unrecoverable) {
1503 			.reason = reason,
1504 			.flags = IOMMU_FAULT_UNRECOV_ADDR_VALID,
1505 			.perm = perm,
1506 			.addr = FIELD_GET(EVTQ_2_ADDR, evt[2]),
1507 		};
1508 
1509 		if (ssid_valid) {
1510 			flt->event.flags |= IOMMU_FAULT_UNRECOV_PASID_VALID;
1511 			flt->event.pasid = FIELD_GET(EVTQ_0_SSID, evt[0]);
1512 		}
1513 	}
1514 
1515 	mutex_lock(&smmu->streams_mutex);
1516 	master = arm_smmu_find_master(smmu, sid);
1517 	if (!master) {
1518 		ret = -EINVAL;
1519 		goto out_unlock;
1520 	}
1521 
1522 	ret = iommu_report_device_fault(master->dev, &fault_evt);
1523 	if (ret && flt->type == IOMMU_FAULT_PAGE_REQ) {
1524 		/* Nobody cared, abort the access */
1525 		struct iommu_page_response resp = {
1526 			.pasid		= flt->prm.pasid,
1527 			.grpid		= flt->prm.grpid,
1528 			.code		= IOMMU_PAGE_RESP_FAILURE,
1529 		};
1530 		arm_smmu_page_response(master->dev, &fault_evt, &resp);
1531 	}
1532 
1533 out_unlock:
1534 	mutex_unlock(&smmu->streams_mutex);
1535 	return ret;
1536 }
1537 
1538 static irqreturn_t arm_smmu_evtq_thread(int irq, void *dev)
1539 {
1540 	int i, ret;
1541 	struct arm_smmu_device *smmu = dev;
1542 	struct arm_smmu_queue *q = &smmu->evtq.q;
1543 	struct arm_smmu_ll_queue *llq = &q->llq;
1544 	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1545 				      DEFAULT_RATELIMIT_BURST);
1546 	u64 evt[EVTQ_ENT_DWORDS];
1547 
1548 	do {
1549 		while (!queue_remove_raw(q, evt)) {
1550 			u8 id = FIELD_GET(EVTQ_0_ID, evt[0]);
1551 
1552 			ret = arm_smmu_handle_evt(smmu, evt);
1553 			if (!ret || !__ratelimit(&rs))
1554 				continue;
1555 
1556 			dev_info(smmu->dev, "event 0x%02x received:\n", id);
1557 			for (i = 0; i < ARRAY_SIZE(evt); ++i)
1558 				dev_info(smmu->dev, "\t0x%016llx\n",
1559 					 (unsigned long long)evt[i]);
1560 
1561 			cond_resched();
1562 		}
1563 
1564 		/*
1565 		 * Not much we can do on overflow, so scream and pretend we're
1566 		 * trying harder.
1567 		 */
1568 		if (queue_sync_prod_in(q) == -EOVERFLOW)
1569 			dev_err(smmu->dev, "EVTQ overflow detected -- events lost\n");
1570 	} while (!queue_empty(llq));
1571 
1572 	/* Sync our overflow flag, as we believe we're up to speed */
1573 	llq->cons = Q_OVF(llq->prod) | Q_WRP(llq, llq->cons) |
1574 		    Q_IDX(llq, llq->cons);
1575 	return IRQ_HANDLED;
1576 }
1577 
1578 static void arm_smmu_handle_ppr(struct arm_smmu_device *smmu, u64 *evt)
1579 {
1580 	u32 sid, ssid;
1581 	u16 grpid;
1582 	bool ssv, last;
1583 
1584 	sid = FIELD_GET(PRIQ_0_SID, evt[0]);
1585 	ssv = FIELD_GET(PRIQ_0_SSID_V, evt[0]);
1586 	ssid = ssv ? FIELD_GET(PRIQ_0_SSID, evt[0]) : 0;
1587 	last = FIELD_GET(PRIQ_0_PRG_LAST, evt[0]);
1588 	grpid = FIELD_GET(PRIQ_1_PRG_IDX, evt[1]);
1589 
1590 	dev_info(smmu->dev, "unexpected PRI request received:\n");
1591 	dev_info(smmu->dev,
1592 		 "\tsid 0x%08x.0x%05x: [%u%s] %sprivileged %s%s%s access at iova 0x%016llx\n",
1593 		 sid, ssid, grpid, last ? "L" : "",
1594 		 evt[0] & PRIQ_0_PERM_PRIV ? "" : "un",
1595 		 evt[0] & PRIQ_0_PERM_READ ? "R" : "",
1596 		 evt[0] & PRIQ_0_PERM_WRITE ? "W" : "",
1597 		 evt[0] & PRIQ_0_PERM_EXEC ? "X" : "",
1598 		 evt[1] & PRIQ_1_ADDR_MASK);
1599 
1600 	if (last) {
1601 		struct arm_smmu_cmdq_ent cmd = {
1602 			.opcode			= CMDQ_OP_PRI_RESP,
1603 			.substream_valid	= ssv,
1604 			.pri			= {
1605 				.sid	= sid,
1606 				.ssid	= ssid,
1607 				.grpid	= grpid,
1608 				.resp	= PRI_RESP_DENY,
1609 			},
1610 		};
1611 
1612 		arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1613 	}
1614 }
1615 
1616 static irqreturn_t arm_smmu_priq_thread(int irq, void *dev)
1617 {
1618 	struct arm_smmu_device *smmu = dev;
1619 	struct arm_smmu_queue *q = &smmu->priq.q;
1620 	struct arm_smmu_ll_queue *llq = &q->llq;
1621 	u64 evt[PRIQ_ENT_DWORDS];
1622 
1623 	do {
1624 		while (!queue_remove_raw(q, evt))
1625 			arm_smmu_handle_ppr(smmu, evt);
1626 
1627 		if (queue_sync_prod_in(q) == -EOVERFLOW)
1628 			dev_err(smmu->dev, "PRIQ overflow detected -- requests lost\n");
1629 	} while (!queue_empty(llq));
1630 
1631 	/* Sync our overflow flag, as we believe we're up to speed */
1632 	llq->cons = Q_OVF(llq->prod) | Q_WRP(llq, llq->cons) |
1633 		      Q_IDX(llq, llq->cons);
1634 	queue_sync_cons_out(q);
1635 	return IRQ_HANDLED;
1636 }
1637 
1638 static int arm_smmu_device_disable(struct arm_smmu_device *smmu);
1639 
1640 static irqreturn_t arm_smmu_gerror_handler(int irq, void *dev)
1641 {
1642 	u32 gerror, gerrorn, active;
1643 	struct arm_smmu_device *smmu = dev;
1644 
1645 	gerror = readl_relaxed(smmu->base + ARM_SMMU_GERROR);
1646 	gerrorn = readl_relaxed(smmu->base + ARM_SMMU_GERRORN);
1647 
1648 	active = gerror ^ gerrorn;
1649 	if (!(active & GERROR_ERR_MASK))
1650 		return IRQ_NONE; /* No errors pending */
1651 
1652 	dev_warn(smmu->dev,
1653 		 "unexpected global error reported (0x%08x), this could be serious\n",
1654 		 active);
1655 
1656 	if (active & GERROR_SFM_ERR) {
1657 		dev_err(smmu->dev, "device has entered Service Failure Mode!\n");
1658 		arm_smmu_device_disable(smmu);
1659 	}
1660 
1661 	if (active & GERROR_MSI_GERROR_ABT_ERR)
1662 		dev_warn(smmu->dev, "GERROR MSI write aborted\n");
1663 
1664 	if (active & GERROR_MSI_PRIQ_ABT_ERR)
1665 		dev_warn(smmu->dev, "PRIQ MSI write aborted\n");
1666 
1667 	if (active & GERROR_MSI_EVTQ_ABT_ERR)
1668 		dev_warn(smmu->dev, "EVTQ MSI write aborted\n");
1669 
1670 	if (active & GERROR_MSI_CMDQ_ABT_ERR)
1671 		dev_warn(smmu->dev, "CMDQ MSI write aborted\n");
1672 
1673 	if (active & GERROR_PRIQ_ABT_ERR)
1674 		dev_err(smmu->dev, "PRIQ write aborted -- events may have been lost\n");
1675 
1676 	if (active & GERROR_EVTQ_ABT_ERR)
1677 		dev_err(smmu->dev, "EVTQ write aborted -- events may have been lost\n");
1678 
1679 	if (active & GERROR_CMDQ_ERR)
1680 		arm_smmu_cmdq_skip_err(smmu);
1681 
1682 	writel(gerror, smmu->base + ARM_SMMU_GERRORN);
1683 	return IRQ_HANDLED;
1684 }
1685 
1686 static irqreturn_t arm_smmu_combined_irq_thread(int irq, void *dev)
1687 {
1688 	struct arm_smmu_device *smmu = dev;
1689 
1690 	arm_smmu_evtq_thread(irq, dev);
1691 	if (smmu->features & ARM_SMMU_FEAT_PRI)
1692 		arm_smmu_priq_thread(irq, dev);
1693 
1694 	return IRQ_HANDLED;
1695 }
1696 
1697 static irqreturn_t arm_smmu_combined_irq_handler(int irq, void *dev)
1698 {
1699 	arm_smmu_gerror_handler(irq, dev);
1700 	return IRQ_WAKE_THREAD;
1701 }
1702 
1703 static void
1704 arm_smmu_atc_inv_to_cmd(int ssid, unsigned long iova, size_t size,
1705 			struct arm_smmu_cmdq_ent *cmd)
1706 {
1707 	size_t log2_span;
1708 	size_t span_mask;
1709 	/* ATC invalidates are always on 4096-bytes pages */
1710 	size_t inval_grain_shift = 12;
1711 	unsigned long page_start, page_end;
1712 
1713 	/*
1714 	 * ATS and PASID:
1715 	 *
1716 	 * If substream_valid is clear, the PCIe TLP is sent without a PASID
1717 	 * prefix. In that case all ATC entries within the address range are
1718 	 * invalidated, including those that were requested with a PASID! There
1719 	 * is no way to invalidate only entries without PASID.
1720 	 *
1721 	 * When using STRTAB_STE_1_S1DSS_SSID0 (reserving CD 0 for non-PASID
1722 	 * traffic), translation requests without PASID create ATC entries
1723 	 * without PASID, which must be invalidated with substream_valid clear.
1724 	 * This has the unpleasant side-effect of invalidating all PASID-tagged
1725 	 * ATC entries within the address range.
1726 	 */
1727 	*cmd = (struct arm_smmu_cmdq_ent) {
1728 		.opcode			= CMDQ_OP_ATC_INV,
1729 		.substream_valid	= !!ssid,
1730 		.atc.ssid		= ssid,
1731 	};
1732 
1733 	if (!size) {
1734 		cmd->atc.size = ATC_INV_SIZE_ALL;
1735 		return;
1736 	}
1737 
1738 	page_start	= iova >> inval_grain_shift;
1739 	page_end	= (iova + size - 1) >> inval_grain_shift;
1740 
1741 	/*
1742 	 * In an ATS Invalidate Request, the address must be aligned on the
1743 	 * range size, which must be a power of two number of page sizes. We
1744 	 * thus have to choose between grossly over-invalidating the region, or
1745 	 * splitting the invalidation into multiple commands. For simplicity
1746 	 * we'll go with the first solution, but should refine it in the future
1747 	 * if multiple commands are shown to be more efficient.
1748 	 *
1749 	 * Find the smallest power of two that covers the range. The most
1750 	 * significant differing bit between the start and end addresses,
1751 	 * fls(start ^ end), indicates the required span. For example:
1752 	 *
1753 	 * We want to invalidate pages [8; 11]. This is already the ideal range:
1754 	 *		x = 0b1000 ^ 0b1011 = 0b11
1755 	 *		span = 1 << fls(x) = 4
1756 	 *
1757 	 * To invalidate pages [7; 10], we need to invalidate [0; 15]:
1758 	 *		x = 0b0111 ^ 0b1010 = 0b1101
1759 	 *		span = 1 << fls(x) = 16
1760 	 */
1761 	log2_span	= fls_long(page_start ^ page_end);
1762 	span_mask	= (1ULL << log2_span) - 1;
1763 
1764 	page_start	&= ~span_mask;
1765 
1766 	cmd->atc.addr	= page_start << inval_grain_shift;
1767 	cmd->atc.size	= log2_span;
1768 }
1769 
1770 static int arm_smmu_atc_inv_master(struct arm_smmu_master *master)
1771 {
1772 	int i;
1773 	struct arm_smmu_cmdq_ent cmd;
1774 	struct arm_smmu_cmdq_batch cmds;
1775 
1776 	arm_smmu_atc_inv_to_cmd(0, 0, 0, &cmd);
1777 
1778 	cmds.num = 0;
1779 	for (i = 0; i < master->num_streams; i++) {
1780 		cmd.atc.sid = master->streams[i].id;
1781 		arm_smmu_cmdq_batch_add(master->smmu, &cmds, &cmd);
1782 	}
1783 
1784 	return arm_smmu_cmdq_batch_submit(master->smmu, &cmds);
1785 }
1786 
1787 int arm_smmu_atc_inv_domain(struct arm_smmu_domain *smmu_domain, int ssid,
1788 			    unsigned long iova, size_t size)
1789 {
1790 	int i;
1791 	unsigned long flags;
1792 	struct arm_smmu_cmdq_ent cmd;
1793 	struct arm_smmu_master *master;
1794 	struct arm_smmu_cmdq_batch cmds;
1795 
1796 	if (!(smmu_domain->smmu->features & ARM_SMMU_FEAT_ATS))
1797 		return 0;
1798 
1799 	/*
1800 	 * Ensure that we've completed prior invalidation of the main TLBs
1801 	 * before we read 'nr_ats_masters' in case of a concurrent call to
1802 	 * arm_smmu_enable_ats():
1803 	 *
1804 	 *	// unmap()			// arm_smmu_enable_ats()
1805 	 *	TLBI+SYNC			atomic_inc(&nr_ats_masters);
1806 	 *	smp_mb();			[...]
1807 	 *	atomic_read(&nr_ats_masters);	pci_enable_ats() // writel()
1808 	 *
1809 	 * Ensures that we always see the incremented 'nr_ats_masters' count if
1810 	 * ATS was enabled at the PCI device before completion of the TLBI.
1811 	 */
1812 	smp_mb();
1813 	if (!atomic_read(&smmu_domain->nr_ats_masters))
1814 		return 0;
1815 
1816 	arm_smmu_atc_inv_to_cmd(ssid, iova, size, &cmd);
1817 
1818 	cmds.num = 0;
1819 
1820 	spin_lock_irqsave(&smmu_domain->devices_lock, flags);
1821 	list_for_each_entry(master, &smmu_domain->devices, domain_head) {
1822 		if (!master->ats_enabled)
1823 			continue;
1824 
1825 		for (i = 0; i < master->num_streams; i++) {
1826 			cmd.atc.sid = master->streams[i].id;
1827 			arm_smmu_cmdq_batch_add(smmu_domain->smmu, &cmds, &cmd);
1828 		}
1829 	}
1830 	spin_unlock_irqrestore(&smmu_domain->devices_lock, flags);
1831 
1832 	return arm_smmu_cmdq_batch_submit(smmu_domain->smmu, &cmds);
1833 }
1834 
1835 /* IO_PGTABLE API */
1836 static void arm_smmu_tlb_inv_context(void *cookie)
1837 {
1838 	struct arm_smmu_domain *smmu_domain = cookie;
1839 	struct arm_smmu_device *smmu = smmu_domain->smmu;
1840 	struct arm_smmu_cmdq_ent cmd;
1841 
1842 	/*
1843 	 * NOTE: when io-pgtable is in non-strict mode, we may get here with
1844 	 * PTEs previously cleared by unmaps on the current CPU not yet visible
1845 	 * to the SMMU. We are relying on the dma_wmb() implicit during cmd
1846 	 * insertion to guarantee those are observed before the TLBI. Do be
1847 	 * careful, 007.
1848 	 */
1849 	if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1850 		arm_smmu_tlb_inv_asid(smmu, smmu_domain->s1_cfg.cd.asid);
1851 	} else {
1852 		cmd.opcode	= CMDQ_OP_TLBI_S12_VMALL;
1853 		cmd.tlbi.vmid	= smmu_domain->s2_cfg.vmid;
1854 		arm_smmu_cmdq_issue_cmd_with_sync(smmu, &cmd);
1855 	}
1856 	arm_smmu_atc_inv_domain(smmu_domain, 0, 0, 0);
1857 }
1858 
1859 static void __arm_smmu_tlb_inv_range(struct arm_smmu_cmdq_ent *cmd,
1860 				     unsigned long iova, size_t size,
1861 				     size_t granule,
1862 				     struct arm_smmu_domain *smmu_domain)
1863 {
1864 	struct arm_smmu_device *smmu = smmu_domain->smmu;
1865 	unsigned long end = iova + size, num_pages = 0, tg = 0;
1866 	size_t inv_range = granule;
1867 	struct arm_smmu_cmdq_batch cmds;
1868 
1869 	if (!size)
1870 		return;
1871 
1872 	if (smmu->features & ARM_SMMU_FEAT_RANGE_INV) {
1873 		/* Get the leaf page size */
1874 		tg = __ffs(smmu_domain->domain.pgsize_bitmap);
1875 
1876 		/* Convert page size of 12,14,16 (log2) to 1,2,3 */
1877 		cmd->tlbi.tg = (tg - 10) / 2;
1878 
1879 		/* Determine what level the granule is at */
1880 		cmd->tlbi.ttl = 4 - ((ilog2(granule) - 3) / (tg - 3));
1881 
1882 		num_pages = size >> tg;
1883 	}
1884 
1885 	cmds.num = 0;
1886 
1887 	while (iova < end) {
1888 		if (smmu->features & ARM_SMMU_FEAT_RANGE_INV) {
1889 			/*
1890 			 * On each iteration of the loop, the range is 5 bits
1891 			 * worth of the aligned size remaining.
1892 			 * The range in pages is:
1893 			 *
1894 			 * range = (num_pages & (0x1f << __ffs(num_pages)))
1895 			 */
1896 			unsigned long scale, num;
1897 
1898 			/* Determine the power of 2 multiple number of pages */
1899 			scale = __ffs(num_pages);
1900 			cmd->tlbi.scale = scale;
1901 
1902 			/* Determine how many chunks of 2^scale size we have */
1903 			num = (num_pages >> scale) & CMDQ_TLBI_RANGE_NUM_MAX;
1904 			cmd->tlbi.num = num - 1;
1905 
1906 			/* range is num * 2^scale * pgsize */
1907 			inv_range = num << (scale + tg);
1908 
1909 			/* Clear out the lower order bits for the next iteration */
1910 			num_pages -= num << scale;
1911 		}
1912 
1913 		cmd->tlbi.addr = iova;
1914 		arm_smmu_cmdq_batch_add(smmu, &cmds, cmd);
1915 		iova += inv_range;
1916 	}
1917 	arm_smmu_cmdq_batch_submit(smmu, &cmds);
1918 }
1919 
1920 static void arm_smmu_tlb_inv_range_domain(unsigned long iova, size_t size,
1921 					  size_t granule, bool leaf,
1922 					  struct arm_smmu_domain *smmu_domain)
1923 {
1924 	struct arm_smmu_cmdq_ent cmd = {
1925 		.tlbi = {
1926 			.leaf	= leaf,
1927 		},
1928 	};
1929 
1930 	if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1931 		cmd.opcode	= smmu_domain->smmu->features & ARM_SMMU_FEAT_E2H ?
1932 				  CMDQ_OP_TLBI_EL2_VA : CMDQ_OP_TLBI_NH_VA;
1933 		cmd.tlbi.asid	= smmu_domain->s1_cfg.cd.asid;
1934 	} else {
1935 		cmd.opcode	= CMDQ_OP_TLBI_S2_IPA;
1936 		cmd.tlbi.vmid	= smmu_domain->s2_cfg.vmid;
1937 	}
1938 	__arm_smmu_tlb_inv_range(&cmd, iova, size, granule, smmu_domain);
1939 
1940 	/*
1941 	 * Unfortunately, this can't be leaf-only since we may have
1942 	 * zapped an entire table.
1943 	 */
1944 	arm_smmu_atc_inv_domain(smmu_domain, 0, iova, size);
1945 }
1946 
1947 void arm_smmu_tlb_inv_range_asid(unsigned long iova, size_t size, int asid,
1948 				 size_t granule, bool leaf,
1949 				 struct arm_smmu_domain *smmu_domain)
1950 {
1951 	struct arm_smmu_cmdq_ent cmd = {
1952 		.opcode	= smmu_domain->smmu->features & ARM_SMMU_FEAT_E2H ?
1953 			  CMDQ_OP_TLBI_EL2_VA : CMDQ_OP_TLBI_NH_VA,
1954 		.tlbi = {
1955 			.asid	= asid,
1956 			.leaf	= leaf,
1957 		},
1958 	};
1959 
1960 	__arm_smmu_tlb_inv_range(&cmd, iova, size, granule, smmu_domain);
1961 }
1962 
1963 static void arm_smmu_tlb_inv_page_nosync(struct iommu_iotlb_gather *gather,
1964 					 unsigned long iova, size_t granule,
1965 					 void *cookie)
1966 {
1967 	struct arm_smmu_domain *smmu_domain = cookie;
1968 	struct iommu_domain *domain = &smmu_domain->domain;
1969 
1970 	iommu_iotlb_gather_add_page(domain, gather, iova, granule);
1971 }
1972 
1973 static void arm_smmu_tlb_inv_walk(unsigned long iova, size_t size,
1974 				  size_t granule, void *cookie)
1975 {
1976 	arm_smmu_tlb_inv_range_domain(iova, size, granule, false, cookie);
1977 }
1978 
1979 static const struct iommu_flush_ops arm_smmu_flush_ops = {
1980 	.tlb_flush_all	= arm_smmu_tlb_inv_context,
1981 	.tlb_flush_walk = arm_smmu_tlb_inv_walk,
1982 	.tlb_add_page	= arm_smmu_tlb_inv_page_nosync,
1983 };
1984 
1985 /* IOMMU API */
1986 static bool arm_smmu_capable(enum iommu_cap cap)
1987 {
1988 	switch (cap) {
1989 	case IOMMU_CAP_CACHE_COHERENCY:
1990 		return true;
1991 	case IOMMU_CAP_NOEXEC:
1992 		return true;
1993 	default:
1994 		return false;
1995 	}
1996 }
1997 
1998 static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
1999 {
2000 	struct arm_smmu_domain *smmu_domain;
2001 
2002 	if (type != IOMMU_DOMAIN_UNMANAGED &&
2003 	    type != IOMMU_DOMAIN_DMA &&
2004 	    type != IOMMU_DOMAIN_DMA_FQ &&
2005 	    type != IOMMU_DOMAIN_IDENTITY)
2006 		return NULL;
2007 
2008 	/*
2009 	 * Allocate the domain and initialise some of its data structures.
2010 	 * We can't really do anything meaningful until we've added a
2011 	 * master.
2012 	 */
2013 	smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
2014 	if (!smmu_domain)
2015 		return NULL;
2016 
2017 	mutex_init(&smmu_domain->init_mutex);
2018 	INIT_LIST_HEAD(&smmu_domain->devices);
2019 	spin_lock_init(&smmu_domain->devices_lock);
2020 	INIT_LIST_HEAD(&smmu_domain->mmu_notifiers);
2021 
2022 	return &smmu_domain->domain;
2023 }
2024 
2025 static int arm_smmu_bitmap_alloc(unsigned long *map, int span)
2026 {
2027 	int idx, size = 1 << span;
2028 
2029 	do {
2030 		idx = find_first_zero_bit(map, size);
2031 		if (idx == size)
2032 			return -ENOSPC;
2033 	} while (test_and_set_bit(idx, map));
2034 
2035 	return idx;
2036 }
2037 
2038 static void arm_smmu_bitmap_free(unsigned long *map, int idx)
2039 {
2040 	clear_bit(idx, map);
2041 }
2042 
2043 static void arm_smmu_domain_free(struct iommu_domain *domain)
2044 {
2045 	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
2046 	struct arm_smmu_device *smmu = smmu_domain->smmu;
2047 
2048 	free_io_pgtable_ops(smmu_domain->pgtbl_ops);
2049 
2050 	/* Free the CD and ASID, if we allocated them */
2051 	if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
2052 		struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
2053 
2054 		/* Prevent SVA from touching the CD while we're freeing it */
2055 		mutex_lock(&arm_smmu_asid_lock);
2056 		if (cfg->cdcfg.cdtab)
2057 			arm_smmu_free_cd_tables(smmu_domain);
2058 		arm_smmu_free_asid(&cfg->cd);
2059 		mutex_unlock(&arm_smmu_asid_lock);
2060 	} else {
2061 		struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
2062 		if (cfg->vmid)
2063 			arm_smmu_bitmap_free(smmu->vmid_map, cfg->vmid);
2064 	}
2065 
2066 	kfree(smmu_domain);
2067 }
2068 
2069 static int arm_smmu_domain_finalise_s1(struct arm_smmu_domain *smmu_domain,
2070 				       struct arm_smmu_master *master,
2071 				       struct io_pgtable_cfg *pgtbl_cfg)
2072 {
2073 	int ret;
2074 	u32 asid;
2075 	struct arm_smmu_device *smmu = smmu_domain->smmu;
2076 	struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
2077 	typeof(&pgtbl_cfg->arm_lpae_s1_cfg.tcr) tcr = &pgtbl_cfg->arm_lpae_s1_cfg.tcr;
2078 
2079 	refcount_set(&cfg->cd.refs, 1);
2080 
2081 	/* Prevent SVA from modifying the ASID until it is written to the CD */
2082 	mutex_lock(&arm_smmu_asid_lock);
2083 	ret = xa_alloc(&arm_smmu_asid_xa, &asid, &cfg->cd,
2084 		       XA_LIMIT(1, (1 << smmu->asid_bits) - 1), GFP_KERNEL);
2085 	if (ret)
2086 		goto out_unlock;
2087 
2088 	cfg->s1cdmax = master->ssid_bits;
2089 
2090 	smmu_domain->stall_enabled = master->stall_enabled;
2091 
2092 	ret = arm_smmu_alloc_cd_tables(smmu_domain);
2093 	if (ret)
2094 		goto out_free_asid;
2095 
2096 	cfg->cd.asid	= (u16)asid;
2097 	cfg->cd.ttbr	= pgtbl_cfg->arm_lpae_s1_cfg.ttbr;
2098 	cfg->cd.tcr	= FIELD_PREP(CTXDESC_CD_0_TCR_T0SZ, tcr->tsz) |
2099 			  FIELD_PREP(CTXDESC_CD_0_TCR_TG0, tcr->tg) |
2100 			  FIELD_PREP(CTXDESC_CD_0_TCR_IRGN0, tcr->irgn) |
2101 			  FIELD_PREP(CTXDESC_CD_0_TCR_ORGN0, tcr->orgn) |
2102 			  FIELD_PREP(CTXDESC_CD_0_TCR_SH0, tcr->sh) |
2103 			  FIELD_PREP(CTXDESC_CD_0_TCR_IPS, tcr->ips) |
2104 			  CTXDESC_CD_0_TCR_EPD1 | CTXDESC_CD_0_AA64;
2105 	cfg->cd.mair	= pgtbl_cfg->arm_lpae_s1_cfg.mair;
2106 
2107 	/*
2108 	 * Note that this will end up calling arm_smmu_sync_cd() before
2109 	 * the master has been added to the devices list for this domain.
2110 	 * This isn't an issue because the STE hasn't been installed yet.
2111 	 */
2112 	ret = arm_smmu_write_ctx_desc(smmu_domain, 0, &cfg->cd);
2113 	if (ret)
2114 		goto out_free_cd_tables;
2115 
2116 	mutex_unlock(&arm_smmu_asid_lock);
2117 	return 0;
2118 
2119 out_free_cd_tables:
2120 	arm_smmu_free_cd_tables(smmu_domain);
2121 out_free_asid:
2122 	arm_smmu_free_asid(&cfg->cd);
2123 out_unlock:
2124 	mutex_unlock(&arm_smmu_asid_lock);
2125 	return ret;
2126 }
2127 
2128 static int arm_smmu_domain_finalise_s2(struct arm_smmu_domain *smmu_domain,
2129 				       struct arm_smmu_master *master,
2130 				       struct io_pgtable_cfg *pgtbl_cfg)
2131 {
2132 	int vmid;
2133 	struct arm_smmu_device *smmu = smmu_domain->smmu;
2134 	struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
2135 	typeof(&pgtbl_cfg->arm_lpae_s2_cfg.vtcr) vtcr;
2136 
2137 	vmid = arm_smmu_bitmap_alloc(smmu->vmid_map, smmu->vmid_bits);
2138 	if (vmid < 0)
2139 		return vmid;
2140 
2141 	vtcr = &pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
2142 	cfg->vmid	= (u16)vmid;
2143 	cfg->vttbr	= pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
2144 	cfg->vtcr	= FIELD_PREP(STRTAB_STE_2_VTCR_S2T0SZ, vtcr->tsz) |
2145 			  FIELD_PREP(STRTAB_STE_2_VTCR_S2SL0, vtcr->sl) |
2146 			  FIELD_PREP(STRTAB_STE_2_VTCR_S2IR0, vtcr->irgn) |
2147 			  FIELD_PREP(STRTAB_STE_2_VTCR_S2OR0, vtcr->orgn) |
2148 			  FIELD_PREP(STRTAB_STE_2_VTCR_S2SH0, vtcr->sh) |
2149 			  FIELD_PREP(STRTAB_STE_2_VTCR_S2TG, vtcr->tg) |
2150 			  FIELD_PREP(STRTAB_STE_2_VTCR_S2PS, vtcr->ps);
2151 	return 0;
2152 }
2153 
2154 static int arm_smmu_domain_finalise(struct iommu_domain *domain,
2155 				    struct arm_smmu_master *master)
2156 {
2157 	int ret;
2158 	unsigned long ias, oas;
2159 	enum io_pgtable_fmt fmt;
2160 	struct io_pgtable_cfg pgtbl_cfg;
2161 	struct io_pgtable_ops *pgtbl_ops;
2162 	int (*finalise_stage_fn)(struct arm_smmu_domain *,
2163 				 struct arm_smmu_master *,
2164 				 struct io_pgtable_cfg *);
2165 	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
2166 	struct arm_smmu_device *smmu = smmu_domain->smmu;
2167 
2168 	if (domain->type == IOMMU_DOMAIN_IDENTITY) {
2169 		smmu_domain->stage = ARM_SMMU_DOMAIN_BYPASS;
2170 		return 0;
2171 	}
2172 
2173 	/* Restrict the stage to what we can actually support */
2174 	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
2175 		smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
2176 	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
2177 		smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
2178 
2179 	switch (smmu_domain->stage) {
2180 	case ARM_SMMU_DOMAIN_S1:
2181 		ias = (smmu->features & ARM_SMMU_FEAT_VAX) ? 52 : 48;
2182 		ias = min_t(unsigned long, ias, VA_BITS);
2183 		oas = smmu->ias;
2184 		fmt = ARM_64_LPAE_S1;
2185 		finalise_stage_fn = arm_smmu_domain_finalise_s1;
2186 		break;
2187 	case ARM_SMMU_DOMAIN_NESTED:
2188 	case ARM_SMMU_DOMAIN_S2:
2189 		ias = smmu->ias;
2190 		oas = smmu->oas;
2191 		fmt = ARM_64_LPAE_S2;
2192 		finalise_stage_fn = arm_smmu_domain_finalise_s2;
2193 		break;
2194 	default:
2195 		return -EINVAL;
2196 	}
2197 
2198 	pgtbl_cfg = (struct io_pgtable_cfg) {
2199 		.pgsize_bitmap	= smmu->pgsize_bitmap,
2200 		.ias		= ias,
2201 		.oas		= oas,
2202 		.coherent_walk	= smmu->features & ARM_SMMU_FEAT_COHERENCY,
2203 		.tlb		= &arm_smmu_flush_ops,
2204 		.iommu_dev	= smmu->dev,
2205 	};
2206 
2207 	pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
2208 	if (!pgtbl_ops)
2209 		return -ENOMEM;
2210 
2211 	domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
2212 	domain->geometry.aperture_end = (1UL << pgtbl_cfg.ias) - 1;
2213 	domain->geometry.force_aperture = true;
2214 
2215 	ret = finalise_stage_fn(smmu_domain, master, &pgtbl_cfg);
2216 	if (ret < 0) {
2217 		free_io_pgtable_ops(pgtbl_ops);
2218 		return ret;
2219 	}
2220 
2221 	smmu_domain->pgtbl_ops = pgtbl_ops;
2222 	return 0;
2223 }
2224 
2225 static __le64 *arm_smmu_get_step_for_sid(struct arm_smmu_device *smmu, u32 sid)
2226 {
2227 	__le64 *step;
2228 	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2229 
2230 	if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
2231 		struct arm_smmu_strtab_l1_desc *l1_desc;
2232 		int idx;
2233 
2234 		/* Two-level walk */
2235 		idx = (sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS;
2236 		l1_desc = &cfg->l1_desc[idx];
2237 		idx = (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS;
2238 		step = &l1_desc->l2ptr[idx];
2239 	} else {
2240 		/* Simple linear lookup */
2241 		step = &cfg->strtab[sid * STRTAB_STE_DWORDS];
2242 	}
2243 
2244 	return step;
2245 }
2246 
2247 static void arm_smmu_install_ste_for_dev(struct arm_smmu_master *master)
2248 {
2249 	int i, j;
2250 	struct arm_smmu_device *smmu = master->smmu;
2251 
2252 	for (i = 0; i < master->num_streams; ++i) {
2253 		u32 sid = master->streams[i].id;
2254 		__le64 *step = arm_smmu_get_step_for_sid(smmu, sid);
2255 
2256 		/* Bridged PCI devices may end up with duplicated IDs */
2257 		for (j = 0; j < i; j++)
2258 			if (master->streams[j].id == sid)
2259 				break;
2260 		if (j < i)
2261 			continue;
2262 
2263 		arm_smmu_write_strtab_ent(master, sid, step);
2264 	}
2265 }
2266 
2267 static bool arm_smmu_ats_supported(struct arm_smmu_master *master)
2268 {
2269 	struct device *dev = master->dev;
2270 	struct arm_smmu_device *smmu = master->smmu;
2271 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2272 
2273 	if (!(smmu->features & ARM_SMMU_FEAT_ATS))
2274 		return false;
2275 
2276 	if (!(fwspec->flags & IOMMU_FWSPEC_PCI_RC_ATS))
2277 		return false;
2278 
2279 	return dev_is_pci(dev) && pci_ats_supported(to_pci_dev(dev));
2280 }
2281 
2282 static void arm_smmu_enable_ats(struct arm_smmu_master *master)
2283 {
2284 	size_t stu;
2285 	struct pci_dev *pdev;
2286 	struct arm_smmu_device *smmu = master->smmu;
2287 	struct arm_smmu_domain *smmu_domain = master->domain;
2288 
2289 	/* Don't enable ATS at the endpoint if it's not enabled in the STE */
2290 	if (!master->ats_enabled)
2291 		return;
2292 
2293 	/* Smallest Translation Unit: log2 of the smallest supported granule */
2294 	stu = __ffs(smmu->pgsize_bitmap);
2295 	pdev = to_pci_dev(master->dev);
2296 
2297 	atomic_inc(&smmu_domain->nr_ats_masters);
2298 	arm_smmu_atc_inv_domain(smmu_domain, 0, 0, 0);
2299 	if (pci_enable_ats(pdev, stu))
2300 		dev_err(master->dev, "Failed to enable ATS (STU %zu)\n", stu);
2301 }
2302 
2303 static void arm_smmu_disable_ats(struct arm_smmu_master *master)
2304 {
2305 	struct arm_smmu_domain *smmu_domain = master->domain;
2306 
2307 	if (!master->ats_enabled)
2308 		return;
2309 
2310 	pci_disable_ats(to_pci_dev(master->dev));
2311 	/*
2312 	 * Ensure ATS is disabled at the endpoint before we issue the
2313 	 * ATC invalidation via the SMMU.
2314 	 */
2315 	wmb();
2316 	arm_smmu_atc_inv_master(master);
2317 	atomic_dec(&smmu_domain->nr_ats_masters);
2318 }
2319 
2320 static int arm_smmu_enable_pasid(struct arm_smmu_master *master)
2321 {
2322 	int ret;
2323 	int features;
2324 	int num_pasids;
2325 	struct pci_dev *pdev;
2326 
2327 	if (!dev_is_pci(master->dev))
2328 		return -ENODEV;
2329 
2330 	pdev = to_pci_dev(master->dev);
2331 
2332 	features = pci_pasid_features(pdev);
2333 	if (features < 0)
2334 		return features;
2335 
2336 	num_pasids = pci_max_pasids(pdev);
2337 	if (num_pasids <= 0)
2338 		return num_pasids;
2339 
2340 	ret = pci_enable_pasid(pdev, features);
2341 	if (ret) {
2342 		dev_err(&pdev->dev, "Failed to enable PASID\n");
2343 		return ret;
2344 	}
2345 
2346 	master->ssid_bits = min_t(u8, ilog2(num_pasids),
2347 				  master->smmu->ssid_bits);
2348 	return 0;
2349 }
2350 
2351 static void arm_smmu_disable_pasid(struct arm_smmu_master *master)
2352 {
2353 	struct pci_dev *pdev;
2354 
2355 	if (!dev_is_pci(master->dev))
2356 		return;
2357 
2358 	pdev = to_pci_dev(master->dev);
2359 
2360 	if (!pdev->pasid_enabled)
2361 		return;
2362 
2363 	master->ssid_bits = 0;
2364 	pci_disable_pasid(pdev);
2365 }
2366 
2367 static void arm_smmu_detach_dev(struct arm_smmu_master *master)
2368 {
2369 	unsigned long flags;
2370 	struct arm_smmu_domain *smmu_domain = master->domain;
2371 
2372 	if (!smmu_domain)
2373 		return;
2374 
2375 	arm_smmu_disable_ats(master);
2376 
2377 	spin_lock_irqsave(&smmu_domain->devices_lock, flags);
2378 	list_del(&master->domain_head);
2379 	spin_unlock_irqrestore(&smmu_domain->devices_lock, flags);
2380 
2381 	master->domain = NULL;
2382 	master->ats_enabled = false;
2383 	arm_smmu_install_ste_for_dev(master);
2384 }
2385 
2386 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
2387 {
2388 	int ret = 0;
2389 	unsigned long flags;
2390 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2391 	struct arm_smmu_device *smmu;
2392 	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
2393 	struct arm_smmu_master *master;
2394 
2395 	if (!fwspec)
2396 		return -ENOENT;
2397 
2398 	master = dev_iommu_priv_get(dev);
2399 	smmu = master->smmu;
2400 
2401 	/*
2402 	 * Checking that SVA is disabled ensures that this device isn't bound to
2403 	 * any mm, and can be safely detached from its old domain. Bonds cannot
2404 	 * be removed concurrently since we're holding the group mutex.
2405 	 */
2406 	if (arm_smmu_master_sva_enabled(master)) {
2407 		dev_err(dev, "cannot attach - SVA enabled\n");
2408 		return -EBUSY;
2409 	}
2410 
2411 	arm_smmu_detach_dev(master);
2412 
2413 	mutex_lock(&smmu_domain->init_mutex);
2414 
2415 	if (!smmu_domain->smmu) {
2416 		smmu_domain->smmu = smmu;
2417 		ret = arm_smmu_domain_finalise(domain, master);
2418 		if (ret) {
2419 			smmu_domain->smmu = NULL;
2420 			goto out_unlock;
2421 		}
2422 	} else if (smmu_domain->smmu != smmu) {
2423 		dev_err(dev,
2424 			"cannot attach to SMMU %s (upstream of %s)\n",
2425 			dev_name(smmu_domain->smmu->dev),
2426 			dev_name(smmu->dev));
2427 		ret = -ENXIO;
2428 		goto out_unlock;
2429 	} else if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1 &&
2430 		   master->ssid_bits != smmu_domain->s1_cfg.s1cdmax) {
2431 		dev_err(dev,
2432 			"cannot attach to incompatible domain (%u SSID bits != %u)\n",
2433 			smmu_domain->s1_cfg.s1cdmax, master->ssid_bits);
2434 		ret = -EINVAL;
2435 		goto out_unlock;
2436 	} else if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1 &&
2437 		   smmu_domain->stall_enabled != master->stall_enabled) {
2438 		dev_err(dev, "cannot attach to stall-%s domain\n",
2439 			smmu_domain->stall_enabled ? "enabled" : "disabled");
2440 		ret = -EINVAL;
2441 		goto out_unlock;
2442 	}
2443 
2444 	master->domain = smmu_domain;
2445 
2446 	if (smmu_domain->stage != ARM_SMMU_DOMAIN_BYPASS)
2447 		master->ats_enabled = arm_smmu_ats_supported(master);
2448 
2449 	arm_smmu_install_ste_for_dev(master);
2450 
2451 	spin_lock_irqsave(&smmu_domain->devices_lock, flags);
2452 	list_add(&master->domain_head, &smmu_domain->devices);
2453 	spin_unlock_irqrestore(&smmu_domain->devices_lock, flags);
2454 
2455 	arm_smmu_enable_ats(master);
2456 
2457 out_unlock:
2458 	mutex_unlock(&smmu_domain->init_mutex);
2459 	return ret;
2460 }
2461 
2462 static int arm_smmu_map_pages(struct iommu_domain *domain, unsigned long iova,
2463 			      phys_addr_t paddr, size_t pgsize, size_t pgcount,
2464 			      int prot, gfp_t gfp, size_t *mapped)
2465 {
2466 	struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;
2467 
2468 	if (!ops)
2469 		return -ENODEV;
2470 
2471 	return ops->map_pages(ops, iova, paddr, pgsize, pgcount, prot, gfp, mapped);
2472 }
2473 
2474 static size_t arm_smmu_unmap_pages(struct iommu_domain *domain, unsigned long iova,
2475 				   size_t pgsize, size_t pgcount,
2476 				   struct iommu_iotlb_gather *gather)
2477 {
2478 	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
2479 	struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
2480 
2481 	if (!ops)
2482 		return 0;
2483 
2484 	return ops->unmap_pages(ops, iova, pgsize, pgcount, gather);
2485 }
2486 
2487 static void arm_smmu_flush_iotlb_all(struct iommu_domain *domain)
2488 {
2489 	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
2490 
2491 	if (smmu_domain->smmu)
2492 		arm_smmu_tlb_inv_context(smmu_domain);
2493 }
2494 
2495 static void arm_smmu_iotlb_sync(struct iommu_domain *domain,
2496 				struct iommu_iotlb_gather *gather)
2497 {
2498 	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
2499 
2500 	if (!gather->pgsize)
2501 		return;
2502 
2503 	arm_smmu_tlb_inv_range_domain(gather->start,
2504 				      gather->end - gather->start + 1,
2505 				      gather->pgsize, true, smmu_domain);
2506 }
2507 
2508 static phys_addr_t
2509 arm_smmu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
2510 {
2511 	struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;
2512 
2513 	if (!ops)
2514 		return 0;
2515 
2516 	return ops->iova_to_phys(ops, iova);
2517 }
2518 
2519 static struct platform_driver arm_smmu_driver;
2520 
2521 static
2522 struct arm_smmu_device *arm_smmu_get_by_fwnode(struct fwnode_handle *fwnode)
2523 {
2524 	struct device *dev = driver_find_device_by_fwnode(&arm_smmu_driver.driver,
2525 							  fwnode);
2526 	put_device(dev);
2527 	return dev ? dev_get_drvdata(dev) : NULL;
2528 }
2529 
2530 static bool arm_smmu_sid_in_range(struct arm_smmu_device *smmu, u32 sid)
2531 {
2532 	unsigned long limit = smmu->strtab_cfg.num_l1_ents;
2533 
2534 	if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
2535 		limit *= 1UL << STRTAB_SPLIT;
2536 
2537 	return sid < limit;
2538 }
2539 
2540 static int arm_smmu_insert_master(struct arm_smmu_device *smmu,
2541 				  struct arm_smmu_master *master)
2542 {
2543 	int i;
2544 	int ret = 0;
2545 	struct arm_smmu_stream *new_stream, *cur_stream;
2546 	struct rb_node **new_node, *parent_node = NULL;
2547 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(master->dev);
2548 
2549 	master->streams = kcalloc(fwspec->num_ids, sizeof(*master->streams),
2550 				  GFP_KERNEL);
2551 	if (!master->streams)
2552 		return -ENOMEM;
2553 	master->num_streams = fwspec->num_ids;
2554 
2555 	mutex_lock(&smmu->streams_mutex);
2556 	for (i = 0; i < fwspec->num_ids; i++) {
2557 		u32 sid = fwspec->ids[i];
2558 
2559 		new_stream = &master->streams[i];
2560 		new_stream->id = sid;
2561 		new_stream->master = master;
2562 
2563 		/*
2564 		 * Check the SIDs are in range of the SMMU and our stream table
2565 		 */
2566 		if (!arm_smmu_sid_in_range(smmu, sid)) {
2567 			ret = -ERANGE;
2568 			break;
2569 		}
2570 
2571 		/* Ensure l2 strtab is initialised */
2572 		if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
2573 			ret = arm_smmu_init_l2_strtab(smmu, sid);
2574 			if (ret)
2575 				break;
2576 		}
2577 
2578 		/* Insert into SID tree */
2579 		new_node = &(smmu->streams.rb_node);
2580 		while (*new_node) {
2581 			cur_stream = rb_entry(*new_node, struct arm_smmu_stream,
2582 					      node);
2583 			parent_node = *new_node;
2584 			if (cur_stream->id > new_stream->id) {
2585 				new_node = &((*new_node)->rb_left);
2586 			} else if (cur_stream->id < new_stream->id) {
2587 				new_node = &((*new_node)->rb_right);
2588 			} else {
2589 				dev_warn(master->dev,
2590 					 "stream %u already in tree\n",
2591 					 cur_stream->id);
2592 				ret = -EINVAL;
2593 				break;
2594 			}
2595 		}
2596 		if (ret)
2597 			break;
2598 
2599 		rb_link_node(&new_stream->node, parent_node, new_node);
2600 		rb_insert_color(&new_stream->node, &smmu->streams);
2601 	}
2602 
2603 	if (ret) {
2604 		for (i--; i >= 0; i--)
2605 			rb_erase(&master->streams[i].node, &smmu->streams);
2606 		kfree(master->streams);
2607 	}
2608 	mutex_unlock(&smmu->streams_mutex);
2609 
2610 	return ret;
2611 }
2612 
2613 static void arm_smmu_remove_master(struct arm_smmu_master *master)
2614 {
2615 	int i;
2616 	struct arm_smmu_device *smmu = master->smmu;
2617 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(master->dev);
2618 
2619 	if (!smmu || !master->streams)
2620 		return;
2621 
2622 	mutex_lock(&smmu->streams_mutex);
2623 	for (i = 0; i < fwspec->num_ids; i++)
2624 		rb_erase(&master->streams[i].node, &smmu->streams);
2625 	mutex_unlock(&smmu->streams_mutex);
2626 
2627 	kfree(master->streams);
2628 }
2629 
2630 static struct iommu_ops arm_smmu_ops;
2631 
2632 static struct iommu_device *arm_smmu_probe_device(struct device *dev)
2633 {
2634 	int ret;
2635 	struct arm_smmu_device *smmu;
2636 	struct arm_smmu_master *master;
2637 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2638 
2639 	if (!fwspec || fwspec->ops != &arm_smmu_ops)
2640 		return ERR_PTR(-ENODEV);
2641 
2642 	if (WARN_ON_ONCE(dev_iommu_priv_get(dev)))
2643 		return ERR_PTR(-EBUSY);
2644 
2645 	smmu = arm_smmu_get_by_fwnode(fwspec->iommu_fwnode);
2646 	if (!smmu)
2647 		return ERR_PTR(-ENODEV);
2648 
2649 	master = kzalloc(sizeof(*master), GFP_KERNEL);
2650 	if (!master)
2651 		return ERR_PTR(-ENOMEM);
2652 
2653 	master->dev = dev;
2654 	master->smmu = smmu;
2655 	INIT_LIST_HEAD(&master->bonds);
2656 	dev_iommu_priv_set(dev, master);
2657 
2658 	ret = arm_smmu_insert_master(smmu, master);
2659 	if (ret)
2660 		goto err_free_master;
2661 
2662 	device_property_read_u32(dev, "pasid-num-bits", &master->ssid_bits);
2663 	master->ssid_bits = min(smmu->ssid_bits, master->ssid_bits);
2664 
2665 	/*
2666 	 * Note that PASID must be enabled before, and disabled after ATS:
2667 	 * PCI Express Base 4.0r1.0 - 10.5.1.3 ATS Control Register
2668 	 *
2669 	 *   Behavior is undefined if this bit is Set and the value of the PASID
2670 	 *   Enable, Execute Requested Enable, or Privileged Mode Requested bits
2671 	 *   are changed.
2672 	 */
2673 	arm_smmu_enable_pasid(master);
2674 
2675 	if (!(smmu->features & ARM_SMMU_FEAT_2_LVL_CDTAB))
2676 		master->ssid_bits = min_t(u8, master->ssid_bits,
2677 					  CTXDESC_LINEAR_CDMAX);
2678 
2679 	if ((smmu->features & ARM_SMMU_FEAT_STALLS &&
2680 	     device_property_read_bool(dev, "dma-can-stall")) ||
2681 	    smmu->features & ARM_SMMU_FEAT_STALL_FORCE)
2682 		master->stall_enabled = true;
2683 
2684 	return &smmu->iommu;
2685 
2686 err_free_master:
2687 	kfree(master);
2688 	dev_iommu_priv_set(dev, NULL);
2689 	return ERR_PTR(ret);
2690 }
2691 
2692 static void arm_smmu_release_device(struct device *dev)
2693 {
2694 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2695 	struct arm_smmu_master *master;
2696 
2697 	if (!fwspec || fwspec->ops != &arm_smmu_ops)
2698 		return;
2699 
2700 	master = dev_iommu_priv_get(dev);
2701 	if (WARN_ON(arm_smmu_master_sva_enabled(master)))
2702 		iopf_queue_remove_device(master->smmu->evtq.iopf, dev);
2703 	arm_smmu_detach_dev(master);
2704 	arm_smmu_disable_pasid(master);
2705 	arm_smmu_remove_master(master);
2706 	kfree(master);
2707 	iommu_fwspec_free(dev);
2708 }
2709 
2710 static struct iommu_group *arm_smmu_device_group(struct device *dev)
2711 {
2712 	struct iommu_group *group;
2713 
2714 	/*
2715 	 * We don't support devices sharing stream IDs other than PCI RID
2716 	 * aliases, since the necessary ID-to-device lookup becomes rather
2717 	 * impractical given a potential sparse 32-bit stream ID space.
2718 	 */
2719 	if (dev_is_pci(dev))
2720 		group = pci_device_group(dev);
2721 	else
2722 		group = generic_device_group(dev);
2723 
2724 	return group;
2725 }
2726 
2727 static int arm_smmu_enable_nesting(struct iommu_domain *domain)
2728 {
2729 	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
2730 	int ret = 0;
2731 
2732 	mutex_lock(&smmu_domain->init_mutex);
2733 	if (smmu_domain->smmu)
2734 		ret = -EPERM;
2735 	else
2736 		smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
2737 	mutex_unlock(&smmu_domain->init_mutex);
2738 
2739 	return ret;
2740 }
2741 
2742 static int arm_smmu_of_xlate(struct device *dev, struct of_phandle_args *args)
2743 {
2744 	return iommu_fwspec_add_ids(dev, args->args, 1);
2745 }
2746 
2747 static void arm_smmu_get_resv_regions(struct device *dev,
2748 				      struct list_head *head)
2749 {
2750 	struct iommu_resv_region *region;
2751 	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
2752 
2753 	region = iommu_alloc_resv_region(MSI_IOVA_BASE, MSI_IOVA_LENGTH,
2754 					 prot, IOMMU_RESV_SW_MSI);
2755 	if (!region)
2756 		return;
2757 
2758 	list_add_tail(&region->list, head);
2759 
2760 	iommu_dma_get_resv_regions(dev, head);
2761 }
2762 
2763 static bool arm_smmu_dev_has_feature(struct device *dev,
2764 				     enum iommu_dev_features feat)
2765 {
2766 	struct arm_smmu_master *master = dev_iommu_priv_get(dev);
2767 
2768 	if (!master)
2769 		return false;
2770 
2771 	switch (feat) {
2772 	case IOMMU_DEV_FEAT_IOPF:
2773 		return arm_smmu_master_iopf_supported(master);
2774 	case IOMMU_DEV_FEAT_SVA:
2775 		return arm_smmu_master_sva_supported(master);
2776 	default:
2777 		return false;
2778 	}
2779 }
2780 
2781 static bool arm_smmu_dev_feature_enabled(struct device *dev,
2782 					 enum iommu_dev_features feat)
2783 {
2784 	struct arm_smmu_master *master = dev_iommu_priv_get(dev);
2785 
2786 	if (!master)
2787 		return false;
2788 
2789 	switch (feat) {
2790 	case IOMMU_DEV_FEAT_IOPF:
2791 		return master->iopf_enabled;
2792 	case IOMMU_DEV_FEAT_SVA:
2793 		return arm_smmu_master_sva_enabled(master);
2794 	default:
2795 		return false;
2796 	}
2797 }
2798 
2799 static int arm_smmu_dev_enable_feature(struct device *dev,
2800 				       enum iommu_dev_features feat)
2801 {
2802 	struct arm_smmu_master *master = dev_iommu_priv_get(dev);
2803 
2804 	if (!arm_smmu_dev_has_feature(dev, feat))
2805 		return -ENODEV;
2806 
2807 	if (arm_smmu_dev_feature_enabled(dev, feat))
2808 		return -EBUSY;
2809 
2810 	switch (feat) {
2811 	case IOMMU_DEV_FEAT_IOPF:
2812 		master->iopf_enabled = true;
2813 		return 0;
2814 	case IOMMU_DEV_FEAT_SVA:
2815 		return arm_smmu_master_enable_sva(master);
2816 	default:
2817 		return -EINVAL;
2818 	}
2819 }
2820 
2821 static int arm_smmu_dev_disable_feature(struct device *dev,
2822 					enum iommu_dev_features feat)
2823 {
2824 	struct arm_smmu_master *master = dev_iommu_priv_get(dev);
2825 
2826 	if (!arm_smmu_dev_feature_enabled(dev, feat))
2827 		return -EINVAL;
2828 
2829 	switch (feat) {
2830 	case IOMMU_DEV_FEAT_IOPF:
2831 		if (master->sva_enabled)
2832 			return -EBUSY;
2833 		master->iopf_enabled = false;
2834 		return 0;
2835 	case IOMMU_DEV_FEAT_SVA:
2836 		return arm_smmu_master_disable_sva(master);
2837 	default:
2838 		return -EINVAL;
2839 	}
2840 }
2841 
2842 static struct iommu_ops arm_smmu_ops = {
2843 	.capable		= arm_smmu_capable,
2844 	.domain_alloc		= arm_smmu_domain_alloc,
2845 	.probe_device		= arm_smmu_probe_device,
2846 	.release_device		= arm_smmu_release_device,
2847 	.device_group		= arm_smmu_device_group,
2848 	.of_xlate		= arm_smmu_of_xlate,
2849 	.get_resv_regions	= arm_smmu_get_resv_regions,
2850 	.put_resv_regions	= generic_iommu_put_resv_regions,
2851 	.dev_has_feat		= arm_smmu_dev_has_feature,
2852 	.dev_feat_enabled	= arm_smmu_dev_feature_enabled,
2853 	.dev_enable_feat	= arm_smmu_dev_enable_feature,
2854 	.dev_disable_feat	= arm_smmu_dev_disable_feature,
2855 	.sva_bind		= arm_smmu_sva_bind,
2856 	.sva_unbind		= arm_smmu_sva_unbind,
2857 	.sva_get_pasid		= arm_smmu_sva_get_pasid,
2858 	.page_response		= arm_smmu_page_response,
2859 	.pgsize_bitmap		= -1UL, /* Restricted during device attach */
2860 	.owner			= THIS_MODULE,
2861 	.default_domain_ops = &(const struct iommu_domain_ops) {
2862 		.attach_dev		= arm_smmu_attach_dev,
2863 		.map_pages		= arm_smmu_map_pages,
2864 		.unmap_pages		= arm_smmu_unmap_pages,
2865 		.flush_iotlb_all	= arm_smmu_flush_iotlb_all,
2866 		.iotlb_sync		= arm_smmu_iotlb_sync,
2867 		.iova_to_phys		= arm_smmu_iova_to_phys,
2868 		.enable_nesting		= arm_smmu_enable_nesting,
2869 		.free			= arm_smmu_domain_free,
2870 	}
2871 };
2872 
2873 /* Probing and initialisation functions */
2874 static int arm_smmu_init_one_queue(struct arm_smmu_device *smmu,
2875 				   struct arm_smmu_queue *q,
2876 				   void __iomem *page,
2877 				   unsigned long prod_off,
2878 				   unsigned long cons_off,
2879 				   size_t dwords, const char *name)
2880 {
2881 	size_t qsz;
2882 
2883 	do {
2884 		qsz = ((1 << q->llq.max_n_shift) * dwords) << 3;
2885 		q->base = dmam_alloc_coherent(smmu->dev, qsz, &q->base_dma,
2886 					      GFP_KERNEL);
2887 		if (q->base || qsz < PAGE_SIZE)
2888 			break;
2889 
2890 		q->llq.max_n_shift--;
2891 	} while (1);
2892 
2893 	if (!q->base) {
2894 		dev_err(smmu->dev,
2895 			"failed to allocate queue (0x%zx bytes) for %s\n",
2896 			qsz, name);
2897 		return -ENOMEM;
2898 	}
2899 
2900 	if (!WARN_ON(q->base_dma & (qsz - 1))) {
2901 		dev_info(smmu->dev, "allocated %u entries for %s\n",
2902 			 1 << q->llq.max_n_shift, name);
2903 	}
2904 
2905 	q->prod_reg	= page + prod_off;
2906 	q->cons_reg	= page + cons_off;
2907 	q->ent_dwords	= dwords;
2908 
2909 	q->q_base  = Q_BASE_RWA;
2910 	q->q_base |= q->base_dma & Q_BASE_ADDR_MASK;
2911 	q->q_base |= FIELD_PREP(Q_BASE_LOG2SIZE, q->llq.max_n_shift);
2912 
2913 	q->llq.prod = q->llq.cons = 0;
2914 	return 0;
2915 }
2916 
2917 static int arm_smmu_cmdq_init(struct arm_smmu_device *smmu)
2918 {
2919 	struct arm_smmu_cmdq *cmdq = &smmu->cmdq;
2920 	unsigned int nents = 1 << cmdq->q.llq.max_n_shift;
2921 
2922 	atomic_set(&cmdq->owner_prod, 0);
2923 	atomic_set(&cmdq->lock, 0);
2924 
2925 	cmdq->valid_map = (atomic_long_t *)devm_bitmap_zalloc(smmu->dev, nents,
2926 							      GFP_KERNEL);
2927 	if (!cmdq->valid_map)
2928 		return -ENOMEM;
2929 
2930 	return 0;
2931 }
2932 
2933 static int arm_smmu_init_queues(struct arm_smmu_device *smmu)
2934 {
2935 	int ret;
2936 
2937 	/* cmdq */
2938 	ret = arm_smmu_init_one_queue(smmu, &smmu->cmdq.q, smmu->base,
2939 				      ARM_SMMU_CMDQ_PROD, ARM_SMMU_CMDQ_CONS,
2940 				      CMDQ_ENT_DWORDS, "cmdq");
2941 	if (ret)
2942 		return ret;
2943 
2944 	ret = arm_smmu_cmdq_init(smmu);
2945 	if (ret)
2946 		return ret;
2947 
2948 	/* evtq */
2949 	ret = arm_smmu_init_one_queue(smmu, &smmu->evtq.q, smmu->page1,
2950 				      ARM_SMMU_EVTQ_PROD, ARM_SMMU_EVTQ_CONS,
2951 				      EVTQ_ENT_DWORDS, "evtq");
2952 	if (ret)
2953 		return ret;
2954 
2955 	if ((smmu->features & ARM_SMMU_FEAT_SVA) &&
2956 	    (smmu->features & ARM_SMMU_FEAT_STALLS)) {
2957 		smmu->evtq.iopf = iopf_queue_alloc(dev_name(smmu->dev));
2958 		if (!smmu->evtq.iopf)
2959 			return -ENOMEM;
2960 	}
2961 
2962 	/* priq */
2963 	if (!(smmu->features & ARM_SMMU_FEAT_PRI))
2964 		return 0;
2965 
2966 	return arm_smmu_init_one_queue(smmu, &smmu->priq.q, smmu->page1,
2967 				       ARM_SMMU_PRIQ_PROD, ARM_SMMU_PRIQ_CONS,
2968 				       PRIQ_ENT_DWORDS, "priq");
2969 }
2970 
2971 static int arm_smmu_init_l1_strtab(struct arm_smmu_device *smmu)
2972 {
2973 	unsigned int i;
2974 	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2975 	void *strtab = smmu->strtab_cfg.strtab;
2976 
2977 	cfg->l1_desc = devm_kcalloc(smmu->dev, cfg->num_l1_ents,
2978 				    sizeof(*cfg->l1_desc), GFP_KERNEL);
2979 	if (!cfg->l1_desc)
2980 		return -ENOMEM;
2981 
2982 	for (i = 0; i < cfg->num_l1_ents; ++i) {
2983 		arm_smmu_write_strtab_l1_desc(strtab, &cfg->l1_desc[i]);
2984 		strtab += STRTAB_L1_DESC_DWORDS << 3;
2985 	}
2986 
2987 	return 0;
2988 }
2989 
2990 static int arm_smmu_init_strtab_2lvl(struct arm_smmu_device *smmu)
2991 {
2992 	void *strtab;
2993 	u64 reg;
2994 	u32 size, l1size;
2995 	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2996 
2997 	/* Calculate the L1 size, capped to the SIDSIZE. */
2998 	size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3);
2999 	size = min(size, smmu->sid_bits - STRTAB_SPLIT);
3000 	cfg->num_l1_ents = 1 << size;
3001 
3002 	size += STRTAB_SPLIT;
3003 	if (size < smmu->sid_bits)
3004 		dev_warn(smmu->dev,
3005 			 "2-level strtab only covers %u/%u bits of SID\n",
3006 			 size, smmu->sid_bits);
3007 
3008 	l1size = cfg->num_l1_ents * (STRTAB_L1_DESC_DWORDS << 3);
3009 	strtab = dmam_alloc_coherent(smmu->dev, l1size, &cfg->strtab_dma,
3010 				     GFP_KERNEL);
3011 	if (!strtab) {
3012 		dev_err(smmu->dev,
3013 			"failed to allocate l1 stream table (%u bytes)\n",
3014 			l1size);
3015 		return -ENOMEM;
3016 	}
3017 	cfg->strtab = strtab;
3018 
3019 	/* Configure strtab_base_cfg for 2 levels */
3020 	reg  = FIELD_PREP(STRTAB_BASE_CFG_FMT, STRTAB_BASE_CFG_FMT_2LVL);
3021 	reg |= FIELD_PREP(STRTAB_BASE_CFG_LOG2SIZE, size);
3022 	reg |= FIELD_PREP(STRTAB_BASE_CFG_SPLIT, STRTAB_SPLIT);
3023 	cfg->strtab_base_cfg = reg;
3024 
3025 	return arm_smmu_init_l1_strtab(smmu);
3026 }
3027 
3028 static int arm_smmu_init_strtab_linear(struct arm_smmu_device *smmu)
3029 {
3030 	void *strtab;
3031 	u64 reg;
3032 	u32 size;
3033 	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
3034 
3035 	size = (1 << smmu->sid_bits) * (STRTAB_STE_DWORDS << 3);
3036 	strtab = dmam_alloc_coherent(smmu->dev, size, &cfg->strtab_dma,
3037 				     GFP_KERNEL);
3038 	if (!strtab) {
3039 		dev_err(smmu->dev,
3040 			"failed to allocate linear stream table (%u bytes)\n",
3041 			size);
3042 		return -ENOMEM;
3043 	}
3044 	cfg->strtab = strtab;
3045 	cfg->num_l1_ents = 1 << smmu->sid_bits;
3046 
3047 	/* Configure strtab_base_cfg for a linear table covering all SIDs */
3048 	reg  = FIELD_PREP(STRTAB_BASE_CFG_FMT, STRTAB_BASE_CFG_FMT_LINEAR);
3049 	reg |= FIELD_PREP(STRTAB_BASE_CFG_LOG2SIZE, smmu->sid_bits);
3050 	cfg->strtab_base_cfg = reg;
3051 
3052 	arm_smmu_init_bypass_stes(strtab, cfg->num_l1_ents);
3053 	return 0;
3054 }
3055 
3056 static int arm_smmu_init_strtab(struct arm_smmu_device *smmu)
3057 {
3058 	u64 reg;
3059 	int ret;
3060 
3061 	if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
3062 		ret = arm_smmu_init_strtab_2lvl(smmu);
3063 	else
3064 		ret = arm_smmu_init_strtab_linear(smmu);
3065 
3066 	if (ret)
3067 		return ret;
3068 
3069 	/* Set the strtab base address */
3070 	reg  = smmu->strtab_cfg.strtab_dma & STRTAB_BASE_ADDR_MASK;
3071 	reg |= STRTAB_BASE_RA;
3072 	smmu->strtab_cfg.strtab_base = reg;
3073 
3074 	/* Allocate the first VMID for stage-2 bypass STEs */
3075 	set_bit(0, smmu->vmid_map);
3076 	return 0;
3077 }
3078 
3079 static int arm_smmu_init_structures(struct arm_smmu_device *smmu)
3080 {
3081 	int ret;
3082 
3083 	mutex_init(&smmu->streams_mutex);
3084 	smmu->streams = RB_ROOT;
3085 
3086 	ret = arm_smmu_init_queues(smmu);
3087 	if (ret)
3088 		return ret;
3089 
3090 	return arm_smmu_init_strtab(smmu);
3091 }
3092 
3093 static int arm_smmu_write_reg_sync(struct arm_smmu_device *smmu, u32 val,
3094 				   unsigned int reg_off, unsigned int ack_off)
3095 {
3096 	u32 reg;
3097 
3098 	writel_relaxed(val, smmu->base + reg_off);
3099 	return readl_relaxed_poll_timeout(smmu->base + ack_off, reg, reg == val,
3100 					  1, ARM_SMMU_POLL_TIMEOUT_US);
3101 }
3102 
3103 /* GBPA is "special" */
3104 static int arm_smmu_update_gbpa(struct arm_smmu_device *smmu, u32 set, u32 clr)
3105 {
3106 	int ret;
3107 	u32 reg, __iomem *gbpa = smmu->base + ARM_SMMU_GBPA;
3108 
3109 	ret = readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
3110 					 1, ARM_SMMU_POLL_TIMEOUT_US);
3111 	if (ret)
3112 		return ret;
3113 
3114 	reg &= ~clr;
3115 	reg |= set;
3116 	writel_relaxed(reg | GBPA_UPDATE, gbpa);
3117 	ret = readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
3118 					 1, ARM_SMMU_POLL_TIMEOUT_US);
3119 
3120 	if (ret)
3121 		dev_err(smmu->dev, "GBPA not responding to update\n");
3122 	return ret;
3123 }
3124 
3125 static void arm_smmu_free_msis(void *data)
3126 {
3127 	struct device *dev = data;
3128 	platform_msi_domain_free_irqs(dev);
3129 }
3130 
3131 static void arm_smmu_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
3132 {
3133 	phys_addr_t doorbell;
3134 	struct device *dev = msi_desc_to_dev(desc);
3135 	struct arm_smmu_device *smmu = dev_get_drvdata(dev);
3136 	phys_addr_t *cfg = arm_smmu_msi_cfg[desc->msi_index];
3137 
3138 	doorbell = (((u64)msg->address_hi) << 32) | msg->address_lo;
3139 	doorbell &= MSI_CFG0_ADDR_MASK;
3140 
3141 	writeq_relaxed(doorbell, smmu->base + cfg[0]);
3142 	writel_relaxed(msg->data, smmu->base + cfg[1]);
3143 	writel_relaxed(ARM_SMMU_MEMATTR_DEVICE_nGnRE, smmu->base + cfg[2]);
3144 }
3145 
3146 static void arm_smmu_setup_msis(struct arm_smmu_device *smmu)
3147 {
3148 	int ret, nvec = ARM_SMMU_MAX_MSIS;
3149 	struct device *dev = smmu->dev;
3150 
3151 	/* Clear the MSI address regs */
3152 	writeq_relaxed(0, smmu->base + ARM_SMMU_GERROR_IRQ_CFG0);
3153 	writeq_relaxed(0, smmu->base + ARM_SMMU_EVTQ_IRQ_CFG0);
3154 
3155 	if (smmu->features & ARM_SMMU_FEAT_PRI)
3156 		writeq_relaxed(0, smmu->base + ARM_SMMU_PRIQ_IRQ_CFG0);
3157 	else
3158 		nvec--;
3159 
3160 	if (!(smmu->features & ARM_SMMU_FEAT_MSI))
3161 		return;
3162 
3163 	if (!dev->msi.domain) {
3164 		dev_info(smmu->dev, "msi_domain absent - falling back to wired irqs\n");
3165 		return;
3166 	}
3167 
3168 	/* Allocate MSIs for evtq, gerror and priq. Ignore cmdq */
3169 	ret = platform_msi_domain_alloc_irqs(dev, nvec, arm_smmu_write_msi_msg);
3170 	if (ret) {
3171 		dev_warn(dev, "failed to allocate MSIs - falling back to wired irqs\n");
3172 		return;
3173 	}
3174 
3175 	smmu->evtq.q.irq = msi_get_virq(dev, EVTQ_MSI_INDEX);
3176 	smmu->gerr_irq = msi_get_virq(dev, GERROR_MSI_INDEX);
3177 	smmu->priq.q.irq = msi_get_virq(dev, PRIQ_MSI_INDEX);
3178 
3179 	/* Add callback to free MSIs on teardown */
3180 	devm_add_action(dev, arm_smmu_free_msis, dev);
3181 }
3182 
3183 static void arm_smmu_setup_unique_irqs(struct arm_smmu_device *smmu)
3184 {
3185 	int irq, ret;
3186 
3187 	arm_smmu_setup_msis(smmu);
3188 
3189 	/* Request interrupt lines */
3190 	irq = smmu->evtq.q.irq;
3191 	if (irq) {
3192 		ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
3193 						arm_smmu_evtq_thread,
3194 						IRQF_ONESHOT,
3195 						"arm-smmu-v3-evtq", smmu);
3196 		if (ret < 0)
3197 			dev_warn(smmu->dev, "failed to enable evtq irq\n");
3198 	} else {
3199 		dev_warn(smmu->dev, "no evtq irq - events will not be reported!\n");
3200 	}
3201 
3202 	irq = smmu->gerr_irq;
3203 	if (irq) {
3204 		ret = devm_request_irq(smmu->dev, irq, arm_smmu_gerror_handler,
3205 				       0, "arm-smmu-v3-gerror", smmu);
3206 		if (ret < 0)
3207 			dev_warn(smmu->dev, "failed to enable gerror irq\n");
3208 	} else {
3209 		dev_warn(smmu->dev, "no gerr irq - errors will not be reported!\n");
3210 	}
3211 
3212 	if (smmu->features & ARM_SMMU_FEAT_PRI) {
3213 		irq = smmu->priq.q.irq;
3214 		if (irq) {
3215 			ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
3216 							arm_smmu_priq_thread,
3217 							IRQF_ONESHOT,
3218 							"arm-smmu-v3-priq",
3219 							smmu);
3220 			if (ret < 0)
3221 				dev_warn(smmu->dev,
3222 					 "failed to enable priq irq\n");
3223 		} else {
3224 			dev_warn(smmu->dev, "no priq irq - PRI will be broken\n");
3225 		}
3226 	}
3227 }
3228 
3229 static int arm_smmu_setup_irqs(struct arm_smmu_device *smmu)
3230 {
3231 	int ret, irq;
3232 	u32 irqen_flags = IRQ_CTRL_EVTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN;
3233 
3234 	/* Disable IRQs first */
3235 	ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_IRQ_CTRL,
3236 				      ARM_SMMU_IRQ_CTRLACK);
3237 	if (ret) {
3238 		dev_err(smmu->dev, "failed to disable irqs\n");
3239 		return ret;
3240 	}
3241 
3242 	irq = smmu->combined_irq;
3243 	if (irq) {
3244 		/*
3245 		 * Cavium ThunderX2 implementation doesn't support unique irq
3246 		 * lines. Use a single irq line for all the SMMUv3 interrupts.
3247 		 */
3248 		ret = devm_request_threaded_irq(smmu->dev, irq,
3249 					arm_smmu_combined_irq_handler,
3250 					arm_smmu_combined_irq_thread,
3251 					IRQF_ONESHOT,
3252 					"arm-smmu-v3-combined-irq", smmu);
3253 		if (ret < 0)
3254 			dev_warn(smmu->dev, "failed to enable combined irq\n");
3255 	} else
3256 		arm_smmu_setup_unique_irqs(smmu);
3257 
3258 	if (smmu->features & ARM_SMMU_FEAT_PRI)
3259 		irqen_flags |= IRQ_CTRL_PRIQ_IRQEN;
3260 
3261 	/* Enable interrupt generation on the SMMU */
3262 	ret = arm_smmu_write_reg_sync(smmu, irqen_flags,
3263 				      ARM_SMMU_IRQ_CTRL, ARM_SMMU_IRQ_CTRLACK);
3264 	if (ret)
3265 		dev_warn(smmu->dev, "failed to enable irqs\n");
3266 
3267 	return 0;
3268 }
3269 
3270 static int arm_smmu_device_disable(struct arm_smmu_device *smmu)
3271 {
3272 	int ret;
3273 
3274 	ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_CR0, ARM_SMMU_CR0ACK);
3275 	if (ret)
3276 		dev_err(smmu->dev, "failed to clear cr0\n");
3277 
3278 	return ret;
3279 }
3280 
3281 static int arm_smmu_device_reset(struct arm_smmu_device *smmu, bool bypass)
3282 {
3283 	int ret;
3284 	u32 reg, enables;
3285 	struct arm_smmu_cmdq_ent cmd;
3286 
3287 	/* Clear CR0 and sync (disables SMMU and queue processing) */
3288 	reg = readl_relaxed(smmu->base + ARM_SMMU_CR0);
3289 	if (reg & CR0_SMMUEN) {
3290 		dev_warn(smmu->dev, "SMMU currently enabled! Resetting...\n");
3291 		WARN_ON(is_kdump_kernel() && !disable_bypass);
3292 		arm_smmu_update_gbpa(smmu, GBPA_ABORT, 0);
3293 	}
3294 
3295 	ret = arm_smmu_device_disable(smmu);
3296 	if (ret)
3297 		return ret;
3298 
3299 	/* CR1 (table and queue memory attributes) */
3300 	reg = FIELD_PREP(CR1_TABLE_SH, ARM_SMMU_SH_ISH) |
3301 	      FIELD_PREP(CR1_TABLE_OC, CR1_CACHE_WB) |
3302 	      FIELD_PREP(CR1_TABLE_IC, CR1_CACHE_WB) |
3303 	      FIELD_PREP(CR1_QUEUE_SH, ARM_SMMU_SH_ISH) |
3304 	      FIELD_PREP(CR1_QUEUE_OC, CR1_CACHE_WB) |
3305 	      FIELD_PREP(CR1_QUEUE_IC, CR1_CACHE_WB);
3306 	writel_relaxed(reg, smmu->base + ARM_SMMU_CR1);
3307 
3308 	/* CR2 (random crap) */
3309 	reg = CR2_PTM | CR2_RECINVSID;
3310 
3311 	if (smmu->features & ARM_SMMU_FEAT_E2H)
3312 		reg |= CR2_E2H;
3313 
3314 	writel_relaxed(reg, smmu->base + ARM_SMMU_CR2);
3315 
3316 	/* Stream table */
3317 	writeq_relaxed(smmu->strtab_cfg.strtab_base,
3318 		       smmu->base + ARM_SMMU_STRTAB_BASE);
3319 	writel_relaxed(smmu->strtab_cfg.strtab_base_cfg,
3320 		       smmu->base + ARM_SMMU_STRTAB_BASE_CFG);
3321 
3322 	/* Command queue */
3323 	writeq_relaxed(smmu->cmdq.q.q_base, smmu->base + ARM_SMMU_CMDQ_BASE);
3324 	writel_relaxed(smmu->cmdq.q.llq.prod, smmu->base + ARM_SMMU_CMDQ_PROD);
3325 	writel_relaxed(smmu->cmdq.q.llq.cons, smmu->base + ARM_SMMU_CMDQ_CONS);
3326 
3327 	enables = CR0_CMDQEN;
3328 	ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
3329 				      ARM_SMMU_CR0ACK);
3330 	if (ret) {
3331 		dev_err(smmu->dev, "failed to enable command queue\n");
3332 		return ret;
3333 	}
3334 
3335 	/* Invalidate any cached configuration */
3336 	cmd.opcode = CMDQ_OP_CFGI_ALL;
3337 	arm_smmu_cmdq_issue_cmd_with_sync(smmu, &cmd);
3338 
3339 	/* Invalidate any stale TLB entries */
3340 	if (smmu->features & ARM_SMMU_FEAT_HYP) {
3341 		cmd.opcode = CMDQ_OP_TLBI_EL2_ALL;
3342 		arm_smmu_cmdq_issue_cmd_with_sync(smmu, &cmd);
3343 	}
3344 
3345 	cmd.opcode = CMDQ_OP_TLBI_NSNH_ALL;
3346 	arm_smmu_cmdq_issue_cmd_with_sync(smmu, &cmd);
3347 
3348 	/* Event queue */
3349 	writeq_relaxed(smmu->evtq.q.q_base, smmu->base + ARM_SMMU_EVTQ_BASE);
3350 	writel_relaxed(smmu->evtq.q.llq.prod, smmu->page1 + ARM_SMMU_EVTQ_PROD);
3351 	writel_relaxed(smmu->evtq.q.llq.cons, smmu->page1 + ARM_SMMU_EVTQ_CONS);
3352 
3353 	enables |= CR0_EVTQEN;
3354 	ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
3355 				      ARM_SMMU_CR0ACK);
3356 	if (ret) {
3357 		dev_err(smmu->dev, "failed to enable event queue\n");
3358 		return ret;
3359 	}
3360 
3361 	/* PRI queue */
3362 	if (smmu->features & ARM_SMMU_FEAT_PRI) {
3363 		writeq_relaxed(smmu->priq.q.q_base,
3364 			       smmu->base + ARM_SMMU_PRIQ_BASE);
3365 		writel_relaxed(smmu->priq.q.llq.prod,
3366 			       smmu->page1 + ARM_SMMU_PRIQ_PROD);
3367 		writel_relaxed(smmu->priq.q.llq.cons,
3368 			       smmu->page1 + ARM_SMMU_PRIQ_CONS);
3369 
3370 		enables |= CR0_PRIQEN;
3371 		ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
3372 					      ARM_SMMU_CR0ACK);
3373 		if (ret) {
3374 			dev_err(smmu->dev, "failed to enable PRI queue\n");
3375 			return ret;
3376 		}
3377 	}
3378 
3379 	if (smmu->features & ARM_SMMU_FEAT_ATS) {
3380 		enables |= CR0_ATSCHK;
3381 		ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
3382 					      ARM_SMMU_CR0ACK);
3383 		if (ret) {
3384 			dev_err(smmu->dev, "failed to enable ATS check\n");
3385 			return ret;
3386 		}
3387 	}
3388 
3389 	ret = arm_smmu_setup_irqs(smmu);
3390 	if (ret) {
3391 		dev_err(smmu->dev, "failed to setup irqs\n");
3392 		return ret;
3393 	}
3394 
3395 	if (is_kdump_kernel())
3396 		enables &= ~(CR0_EVTQEN | CR0_PRIQEN);
3397 
3398 	/* Enable the SMMU interface, or ensure bypass */
3399 	if (!bypass || disable_bypass) {
3400 		enables |= CR0_SMMUEN;
3401 	} else {
3402 		ret = arm_smmu_update_gbpa(smmu, 0, GBPA_ABORT);
3403 		if (ret)
3404 			return ret;
3405 	}
3406 	ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
3407 				      ARM_SMMU_CR0ACK);
3408 	if (ret) {
3409 		dev_err(smmu->dev, "failed to enable SMMU interface\n");
3410 		return ret;
3411 	}
3412 
3413 	return 0;
3414 }
3415 
3416 static int arm_smmu_device_hw_probe(struct arm_smmu_device *smmu)
3417 {
3418 	u32 reg;
3419 	bool coherent = smmu->features & ARM_SMMU_FEAT_COHERENCY;
3420 
3421 	/* IDR0 */
3422 	reg = readl_relaxed(smmu->base + ARM_SMMU_IDR0);
3423 
3424 	/* 2-level structures */
3425 	if (FIELD_GET(IDR0_ST_LVL, reg) == IDR0_ST_LVL_2LVL)
3426 		smmu->features |= ARM_SMMU_FEAT_2_LVL_STRTAB;
3427 
3428 	if (reg & IDR0_CD2L)
3429 		smmu->features |= ARM_SMMU_FEAT_2_LVL_CDTAB;
3430 
3431 	/*
3432 	 * Translation table endianness.
3433 	 * We currently require the same endianness as the CPU, but this
3434 	 * could be changed later by adding a new IO_PGTABLE_QUIRK.
3435 	 */
3436 	switch (FIELD_GET(IDR0_TTENDIAN, reg)) {
3437 	case IDR0_TTENDIAN_MIXED:
3438 		smmu->features |= ARM_SMMU_FEAT_TT_LE | ARM_SMMU_FEAT_TT_BE;
3439 		break;
3440 #ifdef __BIG_ENDIAN
3441 	case IDR0_TTENDIAN_BE:
3442 		smmu->features |= ARM_SMMU_FEAT_TT_BE;
3443 		break;
3444 #else
3445 	case IDR0_TTENDIAN_LE:
3446 		smmu->features |= ARM_SMMU_FEAT_TT_LE;
3447 		break;
3448 #endif
3449 	default:
3450 		dev_err(smmu->dev, "unknown/unsupported TT endianness!\n");
3451 		return -ENXIO;
3452 	}
3453 
3454 	/* Boolean feature flags */
3455 	if (IS_ENABLED(CONFIG_PCI_PRI) && reg & IDR0_PRI)
3456 		smmu->features |= ARM_SMMU_FEAT_PRI;
3457 
3458 	if (IS_ENABLED(CONFIG_PCI_ATS) && reg & IDR0_ATS)
3459 		smmu->features |= ARM_SMMU_FEAT_ATS;
3460 
3461 	if (reg & IDR0_SEV)
3462 		smmu->features |= ARM_SMMU_FEAT_SEV;
3463 
3464 	if (reg & IDR0_MSI) {
3465 		smmu->features |= ARM_SMMU_FEAT_MSI;
3466 		if (coherent && !disable_msipolling)
3467 			smmu->options |= ARM_SMMU_OPT_MSIPOLL;
3468 	}
3469 
3470 	if (reg & IDR0_HYP) {
3471 		smmu->features |= ARM_SMMU_FEAT_HYP;
3472 		if (cpus_have_cap(ARM64_HAS_VIRT_HOST_EXTN))
3473 			smmu->features |= ARM_SMMU_FEAT_E2H;
3474 	}
3475 
3476 	/*
3477 	 * The coherency feature as set by FW is used in preference to the ID
3478 	 * register, but warn on mismatch.
3479 	 */
3480 	if (!!(reg & IDR0_COHACC) != coherent)
3481 		dev_warn(smmu->dev, "IDR0.COHACC overridden by FW configuration (%s)\n",
3482 			 coherent ? "true" : "false");
3483 
3484 	switch (FIELD_GET(IDR0_STALL_MODEL, reg)) {
3485 	case IDR0_STALL_MODEL_FORCE:
3486 		smmu->features |= ARM_SMMU_FEAT_STALL_FORCE;
3487 		fallthrough;
3488 	case IDR0_STALL_MODEL_STALL:
3489 		smmu->features |= ARM_SMMU_FEAT_STALLS;
3490 	}
3491 
3492 	if (reg & IDR0_S1P)
3493 		smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
3494 
3495 	if (reg & IDR0_S2P)
3496 		smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
3497 
3498 	if (!(reg & (IDR0_S1P | IDR0_S2P))) {
3499 		dev_err(smmu->dev, "no translation support!\n");
3500 		return -ENXIO;
3501 	}
3502 
3503 	/* We only support the AArch64 table format at present */
3504 	switch (FIELD_GET(IDR0_TTF, reg)) {
3505 	case IDR0_TTF_AARCH32_64:
3506 		smmu->ias = 40;
3507 		fallthrough;
3508 	case IDR0_TTF_AARCH64:
3509 		break;
3510 	default:
3511 		dev_err(smmu->dev, "AArch64 table format not supported!\n");
3512 		return -ENXIO;
3513 	}
3514 
3515 	/* ASID/VMID sizes */
3516 	smmu->asid_bits = reg & IDR0_ASID16 ? 16 : 8;
3517 	smmu->vmid_bits = reg & IDR0_VMID16 ? 16 : 8;
3518 
3519 	/* IDR1 */
3520 	reg = readl_relaxed(smmu->base + ARM_SMMU_IDR1);
3521 	if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) {
3522 		dev_err(smmu->dev, "embedded implementation not supported\n");
3523 		return -ENXIO;
3524 	}
3525 
3526 	/* Queue sizes, capped to ensure natural alignment */
3527 	smmu->cmdq.q.llq.max_n_shift = min_t(u32, CMDQ_MAX_SZ_SHIFT,
3528 					     FIELD_GET(IDR1_CMDQS, reg));
3529 	if (smmu->cmdq.q.llq.max_n_shift <= ilog2(CMDQ_BATCH_ENTRIES)) {
3530 		/*
3531 		 * We don't support splitting up batches, so one batch of
3532 		 * commands plus an extra sync needs to fit inside the command
3533 		 * queue. There's also no way we can handle the weird alignment
3534 		 * restrictions on the base pointer for a unit-length queue.
3535 		 */
3536 		dev_err(smmu->dev, "command queue size <= %d entries not supported\n",
3537 			CMDQ_BATCH_ENTRIES);
3538 		return -ENXIO;
3539 	}
3540 
3541 	smmu->evtq.q.llq.max_n_shift = min_t(u32, EVTQ_MAX_SZ_SHIFT,
3542 					     FIELD_GET(IDR1_EVTQS, reg));
3543 	smmu->priq.q.llq.max_n_shift = min_t(u32, PRIQ_MAX_SZ_SHIFT,
3544 					     FIELD_GET(IDR1_PRIQS, reg));
3545 
3546 	/* SID/SSID sizes */
3547 	smmu->ssid_bits = FIELD_GET(IDR1_SSIDSIZE, reg);
3548 	smmu->sid_bits = FIELD_GET(IDR1_SIDSIZE, reg);
3549 
3550 	/*
3551 	 * If the SMMU supports fewer bits than would fill a single L2 stream
3552 	 * table, use a linear table instead.
3553 	 */
3554 	if (smmu->sid_bits <= STRTAB_SPLIT)
3555 		smmu->features &= ~ARM_SMMU_FEAT_2_LVL_STRTAB;
3556 
3557 	/* IDR3 */
3558 	reg = readl_relaxed(smmu->base + ARM_SMMU_IDR3);
3559 	if (FIELD_GET(IDR3_RIL, reg))
3560 		smmu->features |= ARM_SMMU_FEAT_RANGE_INV;
3561 
3562 	/* IDR5 */
3563 	reg = readl_relaxed(smmu->base + ARM_SMMU_IDR5);
3564 
3565 	/* Maximum number of outstanding stalls */
3566 	smmu->evtq.max_stalls = FIELD_GET(IDR5_STALL_MAX, reg);
3567 
3568 	/* Page sizes */
3569 	if (reg & IDR5_GRAN64K)
3570 		smmu->pgsize_bitmap |= SZ_64K | SZ_512M;
3571 	if (reg & IDR5_GRAN16K)
3572 		smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
3573 	if (reg & IDR5_GRAN4K)
3574 		smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
3575 
3576 	/* Input address size */
3577 	if (FIELD_GET(IDR5_VAX, reg) == IDR5_VAX_52_BIT)
3578 		smmu->features |= ARM_SMMU_FEAT_VAX;
3579 
3580 	/* Output address size */
3581 	switch (FIELD_GET(IDR5_OAS, reg)) {
3582 	case IDR5_OAS_32_BIT:
3583 		smmu->oas = 32;
3584 		break;
3585 	case IDR5_OAS_36_BIT:
3586 		smmu->oas = 36;
3587 		break;
3588 	case IDR5_OAS_40_BIT:
3589 		smmu->oas = 40;
3590 		break;
3591 	case IDR5_OAS_42_BIT:
3592 		smmu->oas = 42;
3593 		break;
3594 	case IDR5_OAS_44_BIT:
3595 		smmu->oas = 44;
3596 		break;
3597 	case IDR5_OAS_52_BIT:
3598 		smmu->oas = 52;
3599 		smmu->pgsize_bitmap |= 1ULL << 42; /* 4TB */
3600 		break;
3601 	default:
3602 		dev_info(smmu->dev,
3603 			"unknown output address size. Truncating to 48-bit\n");
3604 		fallthrough;
3605 	case IDR5_OAS_48_BIT:
3606 		smmu->oas = 48;
3607 	}
3608 
3609 	if (arm_smmu_ops.pgsize_bitmap == -1UL)
3610 		arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
3611 	else
3612 		arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;
3613 
3614 	/* Set the DMA mask for our table walker */
3615 	if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(smmu->oas)))
3616 		dev_warn(smmu->dev,
3617 			 "failed to set DMA mask for table walker\n");
3618 
3619 	smmu->ias = max(smmu->ias, smmu->oas);
3620 
3621 	if (arm_smmu_sva_supported(smmu))
3622 		smmu->features |= ARM_SMMU_FEAT_SVA;
3623 
3624 	dev_info(smmu->dev, "ias %lu-bit, oas %lu-bit (features 0x%08x)\n",
3625 		 smmu->ias, smmu->oas, smmu->features);
3626 	return 0;
3627 }
3628 
3629 #ifdef CONFIG_ACPI
3630 static void acpi_smmu_get_options(u32 model, struct arm_smmu_device *smmu)
3631 {
3632 	switch (model) {
3633 	case ACPI_IORT_SMMU_V3_CAVIUM_CN99XX:
3634 		smmu->options |= ARM_SMMU_OPT_PAGE0_REGS_ONLY;
3635 		break;
3636 	case ACPI_IORT_SMMU_V3_HISILICON_HI161X:
3637 		smmu->options |= ARM_SMMU_OPT_SKIP_PREFETCH;
3638 		break;
3639 	}
3640 
3641 	dev_notice(smmu->dev, "option mask 0x%x\n", smmu->options);
3642 }
3643 
3644 static int arm_smmu_device_acpi_probe(struct platform_device *pdev,
3645 				      struct arm_smmu_device *smmu)
3646 {
3647 	struct acpi_iort_smmu_v3 *iort_smmu;
3648 	struct device *dev = smmu->dev;
3649 	struct acpi_iort_node *node;
3650 
3651 	node = *(struct acpi_iort_node **)dev_get_platdata(dev);
3652 
3653 	/* Retrieve SMMUv3 specific data */
3654 	iort_smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
3655 
3656 	acpi_smmu_get_options(iort_smmu->model, smmu);
3657 
3658 	if (iort_smmu->flags & ACPI_IORT_SMMU_V3_COHACC_OVERRIDE)
3659 		smmu->features |= ARM_SMMU_FEAT_COHERENCY;
3660 
3661 	return 0;
3662 }
3663 #else
3664 static inline int arm_smmu_device_acpi_probe(struct platform_device *pdev,
3665 					     struct arm_smmu_device *smmu)
3666 {
3667 	return -ENODEV;
3668 }
3669 #endif
3670 
3671 static int arm_smmu_device_dt_probe(struct platform_device *pdev,
3672 				    struct arm_smmu_device *smmu)
3673 {
3674 	struct device *dev = &pdev->dev;
3675 	u32 cells;
3676 	int ret = -EINVAL;
3677 
3678 	if (of_property_read_u32(dev->of_node, "#iommu-cells", &cells))
3679 		dev_err(dev, "missing #iommu-cells property\n");
3680 	else if (cells != 1)
3681 		dev_err(dev, "invalid #iommu-cells value (%d)\n", cells);
3682 	else
3683 		ret = 0;
3684 
3685 	parse_driver_options(smmu);
3686 
3687 	if (of_dma_is_coherent(dev->of_node))
3688 		smmu->features |= ARM_SMMU_FEAT_COHERENCY;
3689 
3690 	return ret;
3691 }
3692 
3693 static unsigned long arm_smmu_resource_size(struct arm_smmu_device *smmu)
3694 {
3695 	if (smmu->options & ARM_SMMU_OPT_PAGE0_REGS_ONLY)
3696 		return SZ_64K;
3697 	else
3698 		return SZ_128K;
3699 }
3700 
3701 static int arm_smmu_set_bus_ops(struct iommu_ops *ops)
3702 {
3703 	int err;
3704 
3705 #ifdef CONFIG_PCI
3706 	if (pci_bus_type.iommu_ops != ops) {
3707 		err = bus_set_iommu(&pci_bus_type, ops);
3708 		if (err)
3709 			return err;
3710 	}
3711 #endif
3712 #ifdef CONFIG_ARM_AMBA
3713 	if (amba_bustype.iommu_ops != ops) {
3714 		err = bus_set_iommu(&amba_bustype, ops);
3715 		if (err)
3716 			goto err_reset_pci_ops;
3717 	}
3718 #endif
3719 	if (platform_bus_type.iommu_ops != ops) {
3720 		err = bus_set_iommu(&platform_bus_type, ops);
3721 		if (err)
3722 			goto err_reset_amba_ops;
3723 	}
3724 
3725 	return 0;
3726 
3727 err_reset_amba_ops:
3728 #ifdef CONFIG_ARM_AMBA
3729 	bus_set_iommu(&amba_bustype, NULL);
3730 #endif
3731 err_reset_pci_ops: __maybe_unused;
3732 #ifdef CONFIG_PCI
3733 	bus_set_iommu(&pci_bus_type, NULL);
3734 #endif
3735 	return err;
3736 }
3737 
3738 static void __iomem *arm_smmu_ioremap(struct device *dev, resource_size_t start,
3739 				      resource_size_t size)
3740 {
3741 	struct resource res = DEFINE_RES_MEM(start, size);
3742 
3743 	return devm_ioremap_resource(dev, &res);
3744 }
3745 
3746 static int arm_smmu_device_probe(struct platform_device *pdev)
3747 {
3748 	int irq, ret;
3749 	struct resource *res;
3750 	resource_size_t ioaddr;
3751 	struct arm_smmu_device *smmu;
3752 	struct device *dev = &pdev->dev;
3753 	bool bypass;
3754 
3755 	smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
3756 	if (!smmu)
3757 		return -ENOMEM;
3758 	smmu->dev = dev;
3759 
3760 	if (dev->of_node) {
3761 		ret = arm_smmu_device_dt_probe(pdev, smmu);
3762 	} else {
3763 		ret = arm_smmu_device_acpi_probe(pdev, smmu);
3764 		if (ret == -ENODEV)
3765 			return ret;
3766 	}
3767 
3768 	/* Set bypass mode according to firmware probing result */
3769 	bypass = !!ret;
3770 
3771 	/* Base address */
3772 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3773 	if (!res)
3774 		return -EINVAL;
3775 	if (resource_size(res) < arm_smmu_resource_size(smmu)) {
3776 		dev_err(dev, "MMIO region too small (%pr)\n", res);
3777 		return -EINVAL;
3778 	}
3779 	ioaddr = res->start;
3780 
3781 	/*
3782 	 * Don't map the IMPLEMENTATION DEFINED regions, since they may contain
3783 	 * the PMCG registers which are reserved by the PMU driver.
3784 	 */
3785 	smmu->base = arm_smmu_ioremap(dev, ioaddr, ARM_SMMU_REG_SZ);
3786 	if (IS_ERR(smmu->base))
3787 		return PTR_ERR(smmu->base);
3788 
3789 	if (arm_smmu_resource_size(smmu) > SZ_64K) {
3790 		smmu->page1 = arm_smmu_ioremap(dev, ioaddr + SZ_64K,
3791 					       ARM_SMMU_REG_SZ);
3792 		if (IS_ERR(smmu->page1))
3793 			return PTR_ERR(smmu->page1);
3794 	} else {
3795 		smmu->page1 = smmu->base;
3796 	}
3797 
3798 	/* Interrupt lines */
3799 
3800 	irq = platform_get_irq_byname_optional(pdev, "combined");
3801 	if (irq > 0)
3802 		smmu->combined_irq = irq;
3803 	else {
3804 		irq = platform_get_irq_byname_optional(pdev, "eventq");
3805 		if (irq > 0)
3806 			smmu->evtq.q.irq = irq;
3807 
3808 		irq = platform_get_irq_byname_optional(pdev, "priq");
3809 		if (irq > 0)
3810 			smmu->priq.q.irq = irq;
3811 
3812 		irq = platform_get_irq_byname_optional(pdev, "gerror");
3813 		if (irq > 0)
3814 			smmu->gerr_irq = irq;
3815 	}
3816 	/* Probe the h/w */
3817 	ret = arm_smmu_device_hw_probe(smmu);
3818 	if (ret)
3819 		return ret;
3820 
3821 	/* Initialise in-memory data structures */
3822 	ret = arm_smmu_init_structures(smmu);
3823 	if (ret)
3824 		return ret;
3825 
3826 	/* Record our private device structure */
3827 	platform_set_drvdata(pdev, smmu);
3828 
3829 	/* Reset the device */
3830 	ret = arm_smmu_device_reset(smmu, bypass);
3831 	if (ret)
3832 		return ret;
3833 
3834 	/* And we're up. Go go go! */
3835 	ret = iommu_device_sysfs_add(&smmu->iommu, dev, NULL,
3836 				     "smmu3.%pa", &ioaddr);
3837 	if (ret)
3838 		return ret;
3839 
3840 	ret = iommu_device_register(&smmu->iommu, &arm_smmu_ops, dev);
3841 	if (ret) {
3842 		dev_err(dev, "Failed to register iommu\n");
3843 		goto err_sysfs_remove;
3844 	}
3845 
3846 	ret = arm_smmu_set_bus_ops(&arm_smmu_ops);
3847 	if (ret)
3848 		goto err_unregister_device;
3849 
3850 	return 0;
3851 
3852 err_unregister_device:
3853 	iommu_device_unregister(&smmu->iommu);
3854 err_sysfs_remove:
3855 	iommu_device_sysfs_remove(&smmu->iommu);
3856 	return ret;
3857 }
3858 
3859 static int arm_smmu_device_remove(struct platform_device *pdev)
3860 {
3861 	struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
3862 
3863 	arm_smmu_set_bus_ops(NULL);
3864 	iommu_device_unregister(&smmu->iommu);
3865 	iommu_device_sysfs_remove(&smmu->iommu);
3866 	arm_smmu_device_disable(smmu);
3867 	iopf_queue_free(smmu->evtq.iopf);
3868 
3869 	return 0;
3870 }
3871 
3872 static void arm_smmu_device_shutdown(struct platform_device *pdev)
3873 {
3874 	arm_smmu_device_remove(pdev);
3875 }
3876 
3877 static const struct of_device_id arm_smmu_of_match[] = {
3878 	{ .compatible = "arm,smmu-v3", },
3879 	{ },
3880 };
3881 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
3882 
3883 static void arm_smmu_driver_unregister(struct platform_driver *drv)
3884 {
3885 	arm_smmu_sva_notifier_synchronize();
3886 	platform_driver_unregister(drv);
3887 }
3888 
3889 static struct platform_driver arm_smmu_driver = {
3890 	.driver	= {
3891 		.name			= "arm-smmu-v3",
3892 		.of_match_table		= arm_smmu_of_match,
3893 		.suppress_bind_attrs	= true,
3894 	},
3895 	.probe	= arm_smmu_device_probe,
3896 	.remove	= arm_smmu_device_remove,
3897 	.shutdown = arm_smmu_device_shutdown,
3898 };
3899 module_driver(arm_smmu_driver, platform_driver_register,
3900 	      arm_smmu_driver_unregister);
3901 
3902 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMUv3 implementations");
3903 MODULE_AUTHOR("Will Deacon <will@kernel.org>");
3904 MODULE_ALIAS("platform:arm-smmu-v3");
3905 MODULE_LICENSE("GPL v2");
3906