xref: /openbmc/linux/drivers/iommu/arm/arm-smmu-v3/arm-smmu-v3.c (revision b206011bf05069797df1f4c5ce639398728978e2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * IOMMU API for ARM architected SMMUv3 implementations.
4  *
5  * Copyright (C) 2015 ARM Limited
6  *
7  * Author: Will Deacon <will.deacon@arm.com>
8  *
9  * This driver is powered by bad coffee and bombay mix.
10  */
11 
12 #include <linux/acpi.h>
13 #include <linux/acpi_iort.h>
14 #include <linux/bitops.h>
15 #include <linux/crash_dump.h>
16 #include <linux/delay.h>
17 #include <linux/err.h>
18 #include <linux/interrupt.h>
19 #include <linux/io-pgtable.h>
20 #include <linux/iopoll.h>
21 #include <linux/module.h>
22 #include <linux/msi.h>
23 #include <linux/of.h>
24 #include <linux/of_address.h>
25 #include <linux/of_platform.h>
26 #include <linux/pci.h>
27 #include <linux/pci-ats.h>
28 #include <linux/platform_device.h>
29 
30 #include "arm-smmu-v3.h"
31 #include "../../dma-iommu.h"
32 #include "../../iommu-sva.h"
33 
34 static bool disable_bypass = true;
35 module_param(disable_bypass, bool, 0444);
36 MODULE_PARM_DESC(disable_bypass,
37 	"Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
38 
39 static bool disable_msipolling;
40 module_param(disable_msipolling, bool, 0444);
41 MODULE_PARM_DESC(disable_msipolling,
42 	"Disable MSI-based polling for CMD_SYNC completion.");
43 
44 enum arm_smmu_msi_index {
45 	EVTQ_MSI_INDEX,
46 	GERROR_MSI_INDEX,
47 	PRIQ_MSI_INDEX,
48 	ARM_SMMU_MAX_MSIS,
49 };
50 
51 static phys_addr_t arm_smmu_msi_cfg[ARM_SMMU_MAX_MSIS][3] = {
52 	[EVTQ_MSI_INDEX] = {
53 		ARM_SMMU_EVTQ_IRQ_CFG0,
54 		ARM_SMMU_EVTQ_IRQ_CFG1,
55 		ARM_SMMU_EVTQ_IRQ_CFG2,
56 	},
57 	[GERROR_MSI_INDEX] = {
58 		ARM_SMMU_GERROR_IRQ_CFG0,
59 		ARM_SMMU_GERROR_IRQ_CFG1,
60 		ARM_SMMU_GERROR_IRQ_CFG2,
61 	},
62 	[PRIQ_MSI_INDEX] = {
63 		ARM_SMMU_PRIQ_IRQ_CFG0,
64 		ARM_SMMU_PRIQ_IRQ_CFG1,
65 		ARM_SMMU_PRIQ_IRQ_CFG2,
66 	},
67 };
68 
69 struct arm_smmu_option_prop {
70 	u32 opt;
71 	const char *prop;
72 };
73 
74 DEFINE_XARRAY_ALLOC1(arm_smmu_asid_xa);
75 DEFINE_MUTEX(arm_smmu_asid_lock);
76 
77 /*
78  * Special value used by SVA when a process dies, to quiesce a CD without
79  * disabling it.
80  */
81 struct arm_smmu_ctx_desc quiet_cd = { 0 };
82 
83 static struct arm_smmu_option_prop arm_smmu_options[] = {
84 	{ ARM_SMMU_OPT_SKIP_PREFETCH, "hisilicon,broken-prefetch-cmd" },
85 	{ ARM_SMMU_OPT_PAGE0_REGS_ONLY, "cavium,cn9900-broken-page1-regspace"},
86 	{ 0, NULL},
87 };
88 
89 static void parse_driver_options(struct arm_smmu_device *smmu)
90 {
91 	int i = 0;
92 
93 	do {
94 		if (of_property_read_bool(smmu->dev->of_node,
95 						arm_smmu_options[i].prop)) {
96 			smmu->options |= arm_smmu_options[i].opt;
97 			dev_notice(smmu->dev, "option %s\n",
98 				arm_smmu_options[i].prop);
99 		}
100 	} while (arm_smmu_options[++i].opt);
101 }
102 
103 /* Low-level queue manipulation functions */
104 static bool queue_has_space(struct arm_smmu_ll_queue *q, u32 n)
105 {
106 	u32 space, prod, cons;
107 
108 	prod = Q_IDX(q, q->prod);
109 	cons = Q_IDX(q, q->cons);
110 
111 	if (Q_WRP(q, q->prod) == Q_WRP(q, q->cons))
112 		space = (1 << q->max_n_shift) - (prod - cons);
113 	else
114 		space = cons - prod;
115 
116 	return space >= n;
117 }
118 
119 static bool queue_full(struct arm_smmu_ll_queue *q)
120 {
121 	return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
122 	       Q_WRP(q, q->prod) != Q_WRP(q, q->cons);
123 }
124 
125 static bool queue_empty(struct arm_smmu_ll_queue *q)
126 {
127 	return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
128 	       Q_WRP(q, q->prod) == Q_WRP(q, q->cons);
129 }
130 
131 static bool queue_consumed(struct arm_smmu_ll_queue *q, u32 prod)
132 {
133 	return ((Q_WRP(q, q->cons) == Q_WRP(q, prod)) &&
134 		(Q_IDX(q, q->cons) > Q_IDX(q, prod))) ||
135 	       ((Q_WRP(q, q->cons) != Q_WRP(q, prod)) &&
136 		(Q_IDX(q, q->cons) <= Q_IDX(q, prod)));
137 }
138 
139 static void queue_sync_cons_out(struct arm_smmu_queue *q)
140 {
141 	/*
142 	 * Ensure that all CPU accesses (reads and writes) to the queue
143 	 * are complete before we update the cons pointer.
144 	 */
145 	__iomb();
146 	writel_relaxed(q->llq.cons, q->cons_reg);
147 }
148 
149 static void queue_inc_cons(struct arm_smmu_ll_queue *q)
150 {
151 	u32 cons = (Q_WRP(q, q->cons) | Q_IDX(q, q->cons)) + 1;
152 	q->cons = Q_OVF(q->cons) | Q_WRP(q, cons) | Q_IDX(q, cons);
153 }
154 
155 static void queue_sync_cons_ovf(struct arm_smmu_queue *q)
156 {
157 	struct arm_smmu_ll_queue *llq = &q->llq;
158 
159 	if (likely(Q_OVF(llq->prod) == Q_OVF(llq->cons)))
160 		return;
161 
162 	llq->cons = Q_OVF(llq->prod) | Q_WRP(llq, llq->cons) |
163 		      Q_IDX(llq, llq->cons);
164 	queue_sync_cons_out(q);
165 }
166 
167 static int queue_sync_prod_in(struct arm_smmu_queue *q)
168 {
169 	u32 prod;
170 	int ret = 0;
171 
172 	/*
173 	 * We can't use the _relaxed() variant here, as we must prevent
174 	 * speculative reads of the queue before we have determined that
175 	 * prod has indeed moved.
176 	 */
177 	prod = readl(q->prod_reg);
178 
179 	if (Q_OVF(prod) != Q_OVF(q->llq.prod))
180 		ret = -EOVERFLOW;
181 
182 	q->llq.prod = prod;
183 	return ret;
184 }
185 
186 static u32 queue_inc_prod_n(struct arm_smmu_ll_queue *q, int n)
187 {
188 	u32 prod = (Q_WRP(q, q->prod) | Q_IDX(q, q->prod)) + n;
189 	return Q_OVF(q->prod) | Q_WRP(q, prod) | Q_IDX(q, prod);
190 }
191 
192 static void queue_poll_init(struct arm_smmu_device *smmu,
193 			    struct arm_smmu_queue_poll *qp)
194 {
195 	qp->delay = 1;
196 	qp->spin_cnt = 0;
197 	qp->wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);
198 	qp->timeout = ktime_add_us(ktime_get(), ARM_SMMU_POLL_TIMEOUT_US);
199 }
200 
201 static int queue_poll(struct arm_smmu_queue_poll *qp)
202 {
203 	if (ktime_compare(ktime_get(), qp->timeout) > 0)
204 		return -ETIMEDOUT;
205 
206 	if (qp->wfe) {
207 		wfe();
208 	} else if (++qp->spin_cnt < ARM_SMMU_POLL_SPIN_COUNT) {
209 		cpu_relax();
210 	} else {
211 		udelay(qp->delay);
212 		qp->delay *= 2;
213 		qp->spin_cnt = 0;
214 	}
215 
216 	return 0;
217 }
218 
219 static void queue_write(__le64 *dst, u64 *src, size_t n_dwords)
220 {
221 	int i;
222 
223 	for (i = 0; i < n_dwords; ++i)
224 		*dst++ = cpu_to_le64(*src++);
225 }
226 
227 static void queue_read(u64 *dst, __le64 *src, size_t n_dwords)
228 {
229 	int i;
230 
231 	for (i = 0; i < n_dwords; ++i)
232 		*dst++ = le64_to_cpu(*src++);
233 }
234 
235 static int queue_remove_raw(struct arm_smmu_queue *q, u64 *ent)
236 {
237 	if (queue_empty(&q->llq))
238 		return -EAGAIN;
239 
240 	queue_read(ent, Q_ENT(q, q->llq.cons), q->ent_dwords);
241 	queue_inc_cons(&q->llq);
242 	queue_sync_cons_out(q);
243 	return 0;
244 }
245 
246 /* High-level queue accessors */
247 static int arm_smmu_cmdq_build_cmd(u64 *cmd, struct arm_smmu_cmdq_ent *ent)
248 {
249 	memset(cmd, 0, 1 << CMDQ_ENT_SZ_SHIFT);
250 	cmd[0] |= FIELD_PREP(CMDQ_0_OP, ent->opcode);
251 
252 	switch (ent->opcode) {
253 	case CMDQ_OP_TLBI_EL2_ALL:
254 	case CMDQ_OP_TLBI_NSNH_ALL:
255 		break;
256 	case CMDQ_OP_PREFETCH_CFG:
257 		cmd[0] |= FIELD_PREP(CMDQ_PREFETCH_0_SID, ent->prefetch.sid);
258 		break;
259 	case CMDQ_OP_CFGI_CD:
260 		cmd[0] |= FIELD_PREP(CMDQ_CFGI_0_SSID, ent->cfgi.ssid);
261 		fallthrough;
262 	case CMDQ_OP_CFGI_STE:
263 		cmd[0] |= FIELD_PREP(CMDQ_CFGI_0_SID, ent->cfgi.sid);
264 		cmd[1] |= FIELD_PREP(CMDQ_CFGI_1_LEAF, ent->cfgi.leaf);
265 		break;
266 	case CMDQ_OP_CFGI_CD_ALL:
267 		cmd[0] |= FIELD_PREP(CMDQ_CFGI_0_SID, ent->cfgi.sid);
268 		break;
269 	case CMDQ_OP_CFGI_ALL:
270 		/* Cover the entire SID range */
271 		cmd[1] |= FIELD_PREP(CMDQ_CFGI_1_RANGE, 31);
272 		break;
273 	case CMDQ_OP_TLBI_NH_VA:
274 		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_VMID, ent->tlbi.vmid);
275 		fallthrough;
276 	case CMDQ_OP_TLBI_EL2_VA:
277 		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_NUM, ent->tlbi.num);
278 		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_SCALE, ent->tlbi.scale);
279 		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_ASID, ent->tlbi.asid);
280 		cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_LEAF, ent->tlbi.leaf);
281 		cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_TTL, ent->tlbi.ttl);
282 		cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_TG, ent->tlbi.tg);
283 		cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_VA_MASK;
284 		break;
285 	case CMDQ_OP_TLBI_S2_IPA:
286 		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_NUM, ent->tlbi.num);
287 		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_SCALE, ent->tlbi.scale);
288 		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_VMID, ent->tlbi.vmid);
289 		cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_LEAF, ent->tlbi.leaf);
290 		cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_TTL, ent->tlbi.ttl);
291 		cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_TG, ent->tlbi.tg);
292 		cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_IPA_MASK;
293 		break;
294 	case CMDQ_OP_TLBI_NH_ASID:
295 		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_ASID, ent->tlbi.asid);
296 		fallthrough;
297 	case CMDQ_OP_TLBI_S12_VMALL:
298 		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_VMID, ent->tlbi.vmid);
299 		break;
300 	case CMDQ_OP_TLBI_EL2_ASID:
301 		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_ASID, ent->tlbi.asid);
302 		break;
303 	case CMDQ_OP_ATC_INV:
304 		cmd[0] |= FIELD_PREP(CMDQ_0_SSV, ent->substream_valid);
305 		cmd[0] |= FIELD_PREP(CMDQ_ATC_0_GLOBAL, ent->atc.global);
306 		cmd[0] |= FIELD_PREP(CMDQ_ATC_0_SSID, ent->atc.ssid);
307 		cmd[0] |= FIELD_PREP(CMDQ_ATC_0_SID, ent->atc.sid);
308 		cmd[1] |= FIELD_PREP(CMDQ_ATC_1_SIZE, ent->atc.size);
309 		cmd[1] |= ent->atc.addr & CMDQ_ATC_1_ADDR_MASK;
310 		break;
311 	case CMDQ_OP_PRI_RESP:
312 		cmd[0] |= FIELD_PREP(CMDQ_0_SSV, ent->substream_valid);
313 		cmd[0] |= FIELD_PREP(CMDQ_PRI_0_SSID, ent->pri.ssid);
314 		cmd[0] |= FIELD_PREP(CMDQ_PRI_0_SID, ent->pri.sid);
315 		cmd[1] |= FIELD_PREP(CMDQ_PRI_1_GRPID, ent->pri.grpid);
316 		switch (ent->pri.resp) {
317 		case PRI_RESP_DENY:
318 		case PRI_RESP_FAIL:
319 		case PRI_RESP_SUCC:
320 			break;
321 		default:
322 			return -EINVAL;
323 		}
324 		cmd[1] |= FIELD_PREP(CMDQ_PRI_1_RESP, ent->pri.resp);
325 		break;
326 	case CMDQ_OP_RESUME:
327 		cmd[0] |= FIELD_PREP(CMDQ_RESUME_0_SID, ent->resume.sid);
328 		cmd[0] |= FIELD_PREP(CMDQ_RESUME_0_RESP, ent->resume.resp);
329 		cmd[1] |= FIELD_PREP(CMDQ_RESUME_1_STAG, ent->resume.stag);
330 		break;
331 	case CMDQ_OP_CMD_SYNC:
332 		if (ent->sync.msiaddr) {
333 			cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_CS, CMDQ_SYNC_0_CS_IRQ);
334 			cmd[1] |= ent->sync.msiaddr & CMDQ_SYNC_1_MSIADDR_MASK;
335 		} else {
336 			cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_CS, CMDQ_SYNC_0_CS_SEV);
337 		}
338 		cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_MSH, ARM_SMMU_SH_ISH);
339 		cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_MSIATTR, ARM_SMMU_MEMATTR_OIWB);
340 		break;
341 	default:
342 		return -ENOENT;
343 	}
344 
345 	return 0;
346 }
347 
348 static struct arm_smmu_cmdq *arm_smmu_get_cmdq(struct arm_smmu_device *smmu)
349 {
350 	return &smmu->cmdq;
351 }
352 
353 static void arm_smmu_cmdq_build_sync_cmd(u64 *cmd, struct arm_smmu_device *smmu,
354 					 struct arm_smmu_queue *q, u32 prod)
355 {
356 	struct arm_smmu_cmdq_ent ent = {
357 		.opcode = CMDQ_OP_CMD_SYNC,
358 	};
359 
360 	/*
361 	 * Beware that Hi16xx adds an extra 32 bits of goodness to its MSI
362 	 * payload, so the write will zero the entire command on that platform.
363 	 */
364 	if (smmu->options & ARM_SMMU_OPT_MSIPOLL) {
365 		ent.sync.msiaddr = q->base_dma + Q_IDX(&q->llq, prod) *
366 				   q->ent_dwords * 8;
367 	}
368 
369 	arm_smmu_cmdq_build_cmd(cmd, &ent);
370 }
371 
372 static void __arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu,
373 				     struct arm_smmu_queue *q)
374 {
375 	static const char * const cerror_str[] = {
376 		[CMDQ_ERR_CERROR_NONE_IDX]	= "No error",
377 		[CMDQ_ERR_CERROR_ILL_IDX]	= "Illegal command",
378 		[CMDQ_ERR_CERROR_ABT_IDX]	= "Abort on command fetch",
379 		[CMDQ_ERR_CERROR_ATC_INV_IDX]	= "ATC invalidate timeout",
380 	};
381 
382 	int i;
383 	u64 cmd[CMDQ_ENT_DWORDS];
384 	u32 cons = readl_relaxed(q->cons_reg);
385 	u32 idx = FIELD_GET(CMDQ_CONS_ERR, cons);
386 	struct arm_smmu_cmdq_ent cmd_sync = {
387 		.opcode = CMDQ_OP_CMD_SYNC,
388 	};
389 
390 	dev_err(smmu->dev, "CMDQ error (cons 0x%08x): %s\n", cons,
391 		idx < ARRAY_SIZE(cerror_str) ?  cerror_str[idx] : "Unknown");
392 
393 	switch (idx) {
394 	case CMDQ_ERR_CERROR_ABT_IDX:
395 		dev_err(smmu->dev, "retrying command fetch\n");
396 		return;
397 	case CMDQ_ERR_CERROR_NONE_IDX:
398 		return;
399 	case CMDQ_ERR_CERROR_ATC_INV_IDX:
400 		/*
401 		 * ATC Invalidation Completion timeout. CONS is still pointing
402 		 * at the CMD_SYNC. Attempt to complete other pending commands
403 		 * by repeating the CMD_SYNC, though we might well end up back
404 		 * here since the ATC invalidation may still be pending.
405 		 */
406 		return;
407 	case CMDQ_ERR_CERROR_ILL_IDX:
408 	default:
409 		break;
410 	}
411 
412 	/*
413 	 * We may have concurrent producers, so we need to be careful
414 	 * not to touch any of the shadow cmdq state.
415 	 */
416 	queue_read(cmd, Q_ENT(q, cons), q->ent_dwords);
417 	dev_err(smmu->dev, "skipping command in error state:\n");
418 	for (i = 0; i < ARRAY_SIZE(cmd); ++i)
419 		dev_err(smmu->dev, "\t0x%016llx\n", (unsigned long long)cmd[i]);
420 
421 	/* Convert the erroneous command into a CMD_SYNC */
422 	arm_smmu_cmdq_build_cmd(cmd, &cmd_sync);
423 
424 	queue_write(Q_ENT(q, cons), cmd, q->ent_dwords);
425 }
426 
427 static void arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu)
428 {
429 	__arm_smmu_cmdq_skip_err(smmu, &smmu->cmdq.q);
430 }
431 
432 /*
433  * Command queue locking.
434  * This is a form of bastardised rwlock with the following major changes:
435  *
436  * - The only LOCK routines are exclusive_trylock() and shared_lock().
437  *   Neither have barrier semantics, and instead provide only a control
438  *   dependency.
439  *
440  * - The UNLOCK routines are supplemented with shared_tryunlock(), which
441  *   fails if the caller appears to be the last lock holder (yes, this is
442  *   racy). All successful UNLOCK routines have RELEASE semantics.
443  */
444 static void arm_smmu_cmdq_shared_lock(struct arm_smmu_cmdq *cmdq)
445 {
446 	int val;
447 
448 	/*
449 	 * We can try to avoid the cmpxchg() loop by simply incrementing the
450 	 * lock counter. When held in exclusive state, the lock counter is set
451 	 * to INT_MIN so these increments won't hurt as the value will remain
452 	 * negative.
453 	 */
454 	if (atomic_fetch_inc_relaxed(&cmdq->lock) >= 0)
455 		return;
456 
457 	do {
458 		val = atomic_cond_read_relaxed(&cmdq->lock, VAL >= 0);
459 	} while (atomic_cmpxchg_relaxed(&cmdq->lock, val, val + 1) != val);
460 }
461 
462 static void arm_smmu_cmdq_shared_unlock(struct arm_smmu_cmdq *cmdq)
463 {
464 	(void)atomic_dec_return_release(&cmdq->lock);
465 }
466 
467 static bool arm_smmu_cmdq_shared_tryunlock(struct arm_smmu_cmdq *cmdq)
468 {
469 	if (atomic_read(&cmdq->lock) == 1)
470 		return false;
471 
472 	arm_smmu_cmdq_shared_unlock(cmdq);
473 	return true;
474 }
475 
476 #define arm_smmu_cmdq_exclusive_trylock_irqsave(cmdq, flags)		\
477 ({									\
478 	bool __ret;							\
479 	local_irq_save(flags);						\
480 	__ret = !atomic_cmpxchg_relaxed(&cmdq->lock, 0, INT_MIN);	\
481 	if (!__ret)							\
482 		local_irq_restore(flags);				\
483 	__ret;								\
484 })
485 
486 #define arm_smmu_cmdq_exclusive_unlock_irqrestore(cmdq, flags)		\
487 ({									\
488 	atomic_set_release(&cmdq->lock, 0);				\
489 	local_irq_restore(flags);					\
490 })
491 
492 
493 /*
494  * Command queue insertion.
495  * This is made fiddly by our attempts to achieve some sort of scalability
496  * since there is one queue shared amongst all of the CPUs in the system.  If
497  * you like mixed-size concurrency, dependency ordering and relaxed atomics,
498  * then you'll *love* this monstrosity.
499  *
500  * The basic idea is to split the queue up into ranges of commands that are
501  * owned by a given CPU; the owner may not have written all of the commands
502  * itself, but is responsible for advancing the hardware prod pointer when
503  * the time comes. The algorithm is roughly:
504  *
505  * 	1. Allocate some space in the queue. At this point we also discover
506  *	   whether the head of the queue is currently owned by another CPU,
507  *	   or whether we are the owner.
508  *
509  *	2. Write our commands into our allocated slots in the queue.
510  *
511  *	3. Mark our slots as valid in arm_smmu_cmdq.valid_map.
512  *
513  *	4. If we are an owner:
514  *		a. Wait for the previous owner to finish.
515  *		b. Mark the queue head as unowned, which tells us the range
516  *		   that we are responsible for publishing.
517  *		c. Wait for all commands in our owned range to become valid.
518  *		d. Advance the hardware prod pointer.
519  *		e. Tell the next owner we've finished.
520  *
521  *	5. If we are inserting a CMD_SYNC (we may or may not have been an
522  *	   owner), then we need to stick around until it has completed:
523  *		a. If we have MSIs, the SMMU can write back into the CMD_SYNC
524  *		   to clear the first 4 bytes.
525  *		b. Otherwise, we spin waiting for the hardware cons pointer to
526  *		   advance past our command.
527  *
528  * The devil is in the details, particularly the use of locking for handling
529  * SYNC completion and freeing up space in the queue before we think that it is
530  * full.
531  */
532 static void __arm_smmu_cmdq_poll_set_valid_map(struct arm_smmu_cmdq *cmdq,
533 					       u32 sprod, u32 eprod, bool set)
534 {
535 	u32 swidx, sbidx, ewidx, ebidx;
536 	struct arm_smmu_ll_queue llq = {
537 		.max_n_shift	= cmdq->q.llq.max_n_shift,
538 		.prod		= sprod,
539 	};
540 
541 	ewidx = BIT_WORD(Q_IDX(&llq, eprod));
542 	ebidx = Q_IDX(&llq, eprod) % BITS_PER_LONG;
543 
544 	while (llq.prod != eprod) {
545 		unsigned long mask;
546 		atomic_long_t *ptr;
547 		u32 limit = BITS_PER_LONG;
548 
549 		swidx = BIT_WORD(Q_IDX(&llq, llq.prod));
550 		sbidx = Q_IDX(&llq, llq.prod) % BITS_PER_LONG;
551 
552 		ptr = &cmdq->valid_map[swidx];
553 
554 		if ((swidx == ewidx) && (sbidx < ebidx))
555 			limit = ebidx;
556 
557 		mask = GENMASK(limit - 1, sbidx);
558 
559 		/*
560 		 * The valid bit is the inverse of the wrap bit. This means
561 		 * that a zero-initialised queue is invalid and, after marking
562 		 * all entries as valid, they become invalid again when we
563 		 * wrap.
564 		 */
565 		if (set) {
566 			atomic_long_xor(mask, ptr);
567 		} else { /* Poll */
568 			unsigned long valid;
569 
570 			valid = (ULONG_MAX + !!Q_WRP(&llq, llq.prod)) & mask;
571 			atomic_long_cond_read_relaxed(ptr, (VAL & mask) == valid);
572 		}
573 
574 		llq.prod = queue_inc_prod_n(&llq, limit - sbidx);
575 	}
576 }
577 
578 /* Mark all entries in the range [sprod, eprod) as valid */
579 static void arm_smmu_cmdq_set_valid_map(struct arm_smmu_cmdq *cmdq,
580 					u32 sprod, u32 eprod)
581 {
582 	__arm_smmu_cmdq_poll_set_valid_map(cmdq, sprod, eprod, true);
583 }
584 
585 /* Wait for all entries in the range [sprod, eprod) to become valid */
586 static void arm_smmu_cmdq_poll_valid_map(struct arm_smmu_cmdq *cmdq,
587 					 u32 sprod, u32 eprod)
588 {
589 	__arm_smmu_cmdq_poll_set_valid_map(cmdq, sprod, eprod, false);
590 }
591 
592 /* Wait for the command queue to become non-full */
593 static int arm_smmu_cmdq_poll_until_not_full(struct arm_smmu_device *smmu,
594 					     struct arm_smmu_ll_queue *llq)
595 {
596 	unsigned long flags;
597 	struct arm_smmu_queue_poll qp;
598 	struct arm_smmu_cmdq *cmdq = arm_smmu_get_cmdq(smmu);
599 	int ret = 0;
600 
601 	/*
602 	 * Try to update our copy of cons by grabbing exclusive cmdq access. If
603 	 * that fails, spin until somebody else updates it for us.
604 	 */
605 	if (arm_smmu_cmdq_exclusive_trylock_irqsave(cmdq, flags)) {
606 		WRITE_ONCE(cmdq->q.llq.cons, readl_relaxed(cmdq->q.cons_reg));
607 		arm_smmu_cmdq_exclusive_unlock_irqrestore(cmdq, flags);
608 		llq->val = READ_ONCE(cmdq->q.llq.val);
609 		return 0;
610 	}
611 
612 	queue_poll_init(smmu, &qp);
613 	do {
614 		llq->val = READ_ONCE(cmdq->q.llq.val);
615 		if (!queue_full(llq))
616 			break;
617 
618 		ret = queue_poll(&qp);
619 	} while (!ret);
620 
621 	return ret;
622 }
623 
624 /*
625  * Wait until the SMMU signals a CMD_SYNC completion MSI.
626  * Must be called with the cmdq lock held in some capacity.
627  */
628 static int __arm_smmu_cmdq_poll_until_msi(struct arm_smmu_device *smmu,
629 					  struct arm_smmu_ll_queue *llq)
630 {
631 	int ret = 0;
632 	struct arm_smmu_queue_poll qp;
633 	struct arm_smmu_cmdq *cmdq = arm_smmu_get_cmdq(smmu);
634 	u32 *cmd = (u32 *)(Q_ENT(&cmdq->q, llq->prod));
635 
636 	queue_poll_init(smmu, &qp);
637 
638 	/*
639 	 * The MSI won't generate an event, since it's being written back
640 	 * into the command queue.
641 	 */
642 	qp.wfe = false;
643 	smp_cond_load_relaxed(cmd, !VAL || (ret = queue_poll(&qp)));
644 	llq->cons = ret ? llq->prod : queue_inc_prod_n(llq, 1);
645 	return ret;
646 }
647 
648 /*
649  * Wait until the SMMU cons index passes llq->prod.
650  * Must be called with the cmdq lock held in some capacity.
651  */
652 static int __arm_smmu_cmdq_poll_until_consumed(struct arm_smmu_device *smmu,
653 					       struct arm_smmu_ll_queue *llq)
654 {
655 	struct arm_smmu_queue_poll qp;
656 	struct arm_smmu_cmdq *cmdq = arm_smmu_get_cmdq(smmu);
657 	u32 prod = llq->prod;
658 	int ret = 0;
659 
660 	queue_poll_init(smmu, &qp);
661 	llq->val = READ_ONCE(cmdq->q.llq.val);
662 	do {
663 		if (queue_consumed(llq, prod))
664 			break;
665 
666 		ret = queue_poll(&qp);
667 
668 		/*
669 		 * This needs to be a readl() so that our subsequent call
670 		 * to arm_smmu_cmdq_shared_tryunlock() can fail accurately.
671 		 *
672 		 * Specifically, we need to ensure that we observe all
673 		 * shared_lock()s by other CMD_SYNCs that share our owner,
674 		 * so that a failing call to tryunlock() means that we're
675 		 * the last one out and therefore we can safely advance
676 		 * cmdq->q.llq.cons. Roughly speaking:
677 		 *
678 		 * CPU 0		CPU1			CPU2 (us)
679 		 *
680 		 * if (sync)
681 		 * 	shared_lock();
682 		 *
683 		 * dma_wmb();
684 		 * set_valid_map();
685 		 *
686 		 * 			if (owner) {
687 		 *				poll_valid_map();
688 		 *				<control dependency>
689 		 *				writel(prod_reg);
690 		 *
691 		 *						readl(cons_reg);
692 		 *						tryunlock();
693 		 *
694 		 * Requires us to see CPU 0's shared_lock() acquisition.
695 		 */
696 		llq->cons = readl(cmdq->q.cons_reg);
697 	} while (!ret);
698 
699 	return ret;
700 }
701 
702 static int arm_smmu_cmdq_poll_until_sync(struct arm_smmu_device *smmu,
703 					 struct arm_smmu_ll_queue *llq)
704 {
705 	if (smmu->options & ARM_SMMU_OPT_MSIPOLL)
706 		return __arm_smmu_cmdq_poll_until_msi(smmu, llq);
707 
708 	return __arm_smmu_cmdq_poll_until_consumed(smmu, llq);
709 }
710 
711 static void arm_smmu_cmdq_write_entries(struct arm_smmu_cmdq *cmdq, u64 *cmds,
712 					u32 prod, int n)
713 {
714 	int i;
715 	struct arm_smmu_ll_queue llq = {
716 		.max_n_shift	= cmdq->q.llq.max_n_shift,
717 		.prod		= prod,
718 	};
719 
720 	for (i = 0; i < n; ++i) {
721 		u64 *cmd = &cmds[i * CMDQ_ENT_DWORDS];
722 
723 		prod = queue_inc_prod_n(&llq, i);
724 		queue_write(Q_ENT(&cmdq->q, prod), cmd, CMDQ_ENT_DWORDS);
725 	}
726 }
727 
728 /*
729  * This is the actual insertion function, and provides the following
730  * ordering guarantees to callers:
731  *
732  * - There is a dma_wmb() before publishing any commands to the queue.
733  *   This can be relied upon to order prior writes to data structures
734  *   in memory (such as a CD or an STE) before the command.
735  *
736  * - On completion of a CMD_SYNC, there is a control dependency.
737  *   This can be relied upon to order subsequent writes to memory (e.g.
738  *   freeing an IOVA) after completion of the CMD_SYNC.
739  *
740  * - Command insertion is totally ordered, so if two CPUs each race to
741  *   insert their own list of commands then all of the commands from one
742  *   CPU will appear before any of the commands from the other CPU.
743  */
744 static int arm_smmu_cmdq_issue_cmdlist(struct arm_smmu_device *smmu,
745 				       u64 *cmds, int n, bool sync)
746 {
747 	u64 cmd_sync[CMDQ_ENT_DWORDS];
748 	u32 prod;
749 	unsigned long flags;
750 	bool owner;
751 	struct arm_smmu_cmdq *cmdq = arm_smmu_get_cmdq(smmu);
752 	struct arm_smmu_ll_queue llq, head;
753 	int ret = 0;
754 
755 	llq.max_n_shift = cmdq->q.llq.max_n_shift;
756 
757 	/* 1. Allocate some space in the queue */
758 	local_irq_save(flags);
759 	llq.val = READ_ONCE(cmdq->q.llq.val);
760 	do {
761 		u64 old;
762 
763 		while (!queue_has_space(&llq, n + sync)) {
764 			local_irq_restore(flags);
765 			if (arm_smmu_cmdq_poll_until_not_full(smmu, &llq))
766 				dev_err_ratelimited(smmu->dev, "CMDQ timeout\n");
767 			local_irq_save(flags);
768 		}
769 
770 		head.cons = llq.cons;
771 		head.prod = queue_inc_prod_n(&llq, n + sync) |
772 					     CMDQ_PROD_OWNED_FLAG;
773 
774 		old = cmpxchg_relaxed(&cmdq->q.llq.val, llq.val, head.val);
775 		if (old == llq.val)
776 			break;
777 
778 		llq.val = old;
779 	} while (1);
780 	owner = !(llq.prod & CMDQ_PROD_OWNED_FLAG);
781 	head.prod &= ~CMDQ_PROD_OWNED_FLAG;
782 	llq.prod &= ~CMDQ_PROD_OWNED_FLAG;
783 
784 	/*
785 	 * 2. Write our commands into the queue
786 	 * Dependency ordering from the cmpxchg() loop above.
787 	 */
788 	arm_smmu_cmdq_write_entries(cmdq, cmds, llq.prod, n);
789 	if (sync) {
790 		prod = queue_inc_prod_n(&llq, n);
791 		arm_smmu_cmdq_build_sync_cmd(cmd_sync, smmu, &cmdq->q, prod);
792 		queue_write(Q_ENT(&cmdq->q, prod), cmd_sync, CMDQ_ENT_DWORDS);
793 
794 		/*
795 		 * In order to determine completion of our CMD_SYNC, we must
796 		 * ensure that the queue can't wrap twice without us noticing.
797 		 * We achieve that by taking the cmdq lock as shared before
798 		 * marking our slot as valid.
799 		 */
800 		arm_smmu_cmdq_shared_lock(cmdq);
801 	}
802 
803 	/* 3. Mark our slots as valid, ensuring commands are visible first */
804 	dma_wmb();
805 	arm_smmu_cmdq_set_valid_map(cmdq, llq.prod, head.prod);
806 
807 	/* 4. If we are the owner, take control of the SMMU hardware */
808 	if (owner) {
809 		/* a. Wait for previous owner to finish */
810 		atomic_cond_read_relaxed(&cmdq->owner_prod, VAL == llq.prod);
811 
812 		/* b. Stop gathering work by clearing the owned flag */
813 		prod = atomic_fetch_andnot_relaxed(CMDQ_PROD_OWNED_FLAG,
814 						   &cmdq->q.llq.atomic.prod);
815 		prod &= ~CMDQ_PROD_OWNED_FLAG;
816 
817 		/*
818 		 * c. Wait for any gathered work to be written to the queue.
819 		 * Note that we read our own entries so that we have the control
820 		 * dependency required by (d).
821 		 */
822 		arm_smmu_cmdq_poll_valid_map(cmdq, llq.prod, prod);
823 
824 		/*
825 		 * d. Advance the hardware prod pointer
826 		 * Control dependency ordering from the entries becoming valid.
827 		 */
828 		writel_relaxed(prod, cmdq->q.prod_reg);
829 
830 		/*
831 		 * e. Tell the next owner we're done
832 		 * Make sure we've updated the hardware first, so that we don't
833 		 * race to update prod and potentially move it backwards.
834 		 */
835 		atomic_set_release(&cmdq->owner_prod, prod);
836 	}
837 
838 	/* 5. If we are inserting a CMD_SYNC, we must wait for it to complete */
839 	if (sync) {
840 		llq.prod = queue_inc_prod_n(&llq, n);
841 		ret = arm_smmu_cmdq_poll_until_sync(smmu, &llq);
842 		if (ret) {
843 			dev_err_ratelimited(smmu->dev,
844 					    "CMD_SYNC timeout at 0x%08x [hwprod 0x%08x, hwcons 0x%08x]\n",
845 					    llq.prod,
846 					    readl_relaxed(cmdq->q.prod_reg),
847 					    readl_relaxed(cmdq->q.cons_reg));
848 		}
849 
850 		/*
851 		 * Try to unlock the cmdq lock. This will fail if we're the last
852 		 * reader, in which case we can safely update cmdq->q.llq.cons
853 		 */
854 		if (!arm_smmu_cmdq_shared_tryunlock(cmdq)) {
855 			WRITE_ONCE(cmdq->q.llq.cons, llq.cons);
856 			arm_smmu_cmdq_shared_unlock(cmdq);
857 		}
858 	}
859 
860 	local_irq_restore(flags);
861 	return ret;
862 }
863 
864 static int __arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu,
865 				     struct arm_smmu_cmdq_ent *ent,
866 				     bool sync)
867 {
868 	u64 cmd[CMDQ_ENT_DWORDS];
869 
870 	if (unlikely(arm_smmu_cmdq_build_cmd(cmd, ent))) {
871 		dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n",
872 			 ent->opcode);
873 		return -EINVAL;
874 	}
875 
876 	return arm_smmu_cmdq_issue_cmdlist(smmu, cmd, 1, sync);
877 }
878 
879 static int arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu,
880 				   struct arm_smmu_cmdq_ent *ent)
881 {
882 	return __arm_smmu_cmdq_issue_cmd(smmu, ent, false);
883 }
884 
885 static int arm_smmu_cmdq_issue_cmd_with_sync(struct arm_smmu_device *smmu,
886 					     struct arm_smmu_cmdq_ent *ent)
887 {
888 	return __arm_smmu_cmdq_issue_cmd(smmu, ent, true);
889 }
890 
891 static void arm_smmu_cmdq_batch_add(struct arm_smmu_device *smmu,
892 				    struct arm_smmu_cmdq_batch *cmds,
893 				    struct arm_smmu_cmdq_ent *cmd)
894 {
895 	int index;
896 
897 	if (cmds->num == CMDQ_BATCH_ENTRIES - 1 &&
898 	    (smmu->options & ARM_SMMU_OPT_CMDQ_FORCE_SYNC)) {
899 		arm_smmu_cmdq_issue_cmdlist(smmu, cmds->cmds, cmds->num, true);
900 		cmds->num = 0;
901 	}
902 
903 	if (cmds->num == CMDQ_BATCH_ENTRIES) {
904 		arm_smmu_cmdq_issue_cmdlist(smmu, cmds->cmds, cmds->num, false);
905 		cmds->num = 0;
906 	}
907 
908 	index = cmds->num * CMDQ_ENT_DWORDS;
909 	if (unlikely(arm_smmu_cmdq_build_cmd(&cmds->cmds[index], cmd))) {
910 		dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n",
911 			 cmd->opcode);
912 		return;
913 	}
914 
915 	cmds->num++;
916 }
917 
918 static int arm_smmu_cmdq_batch_submit(struct arm_smmu_device *smmu,
919 				      struct arm_smmu_cmdq_batch *cmds)
920 {
921 	return arm_smmu_cmdq_issue_cmdlist(smmu, cmds->cmds, cmds->num, true);
922 }
923 
924 static int arm_smmu_page_response(struct device *dev,
925 				  struct iommu_fault_event *unused,
926 				  struct iommu_page_response *resp)
927 {
928 	struct arm_smmu_cmdq_ent cmd = {0};
929 	struct arm_smmu_master *master = dev_iommu_priv_get(dev);
930 	int sid = master->streams[0].id;
931 
932 	if (master->stall_enabled) {
933 		cmd.opcode		= CMDQ_OP_RESUME;
934 		cmd.resume.sid		= sid;
935 		cmd.resume.stag		= resp->grpid;
936 		switch (resp->code) {
937 		case IOMMU_PAGE_RESP_INVALID:
938 		case IOMMU_PAGE_RESP_FAILURE:
939 			cmd.resume.resp = CMDQ_RESUME_0_RESP_ABORT;
940 			break;
941 		case IOMMU_PAGE_RESP_SUCCESS:
942 			cmd.resume.resp = CMDQ_RESUME_0_RESP_RETRY;
943 			break;
944 		default:
945 			return -EINVAL;
946 		}
947 	} else {
948 		return -ENODEV;
949 	}
950 
951 	arm_smmu_cmdq_issue_cmd(master->smmu, &cmd);
952 	/*
953 	 * Don't send a SYNC, it doesn't do anything for RESUME or PRI_RESP.
954 	 * RESUME consumption guarantees that the stalled transaction will be
955 	 * terminated... at some point in the future. PRI_RESP is fire and
956 	 * forget.
957 	 */
958 
959 	return 0;
960 }
961 
962 /* Context descriptor manipulation functions */
963 void arm_smmu_tlb_inv_asid(struct arm_smmu_device *smmu, u16 asid)
964 {
965 	struct arm_smmu_cmdq_ent cmd = {
966 		.opcode	= smmu->features & ARM_SMMU_FEAT_E2H ?
967 			CMDQ_OP_TLBI_EL2_ASID : CMDQ_OP_TLBI_NH_ASID,
968 		.tlbi.asid = asid,
969 	};
970 
971 	arm_smmu_cmdq_issue_cmd_with_sync(smmu, &cmd);
972 }
973 
974 static void arm_smmu_sync_cd(struct arm_smmu_domain *smmu_domain,
975 			     int ssid, bool leaf)
976 {
977 	size_t i;
978 	unsigned long flags;
979 	struct arm_smmu_master *master;
980 	struct arm_smmu_cmdq_batch cmds;
981 	struct arm_smmu_device *smmu = smmu_domain->smmu;
982 	struct arm_smmu_cmdq_ent cmd = {
983 		.opcode	= CMDQ_OP_CFGI_CD,
984 		.cfgi	= {
985 			.ssid	= ssid,
986 			.leaf	= leaf,
987 		},
988 	};
989 
990 	cmds.num = 0;
991 
992 	spin_lock_irqsave(&smmu_domain->devices_lock, flags);
993 	list_for_each_entry(master, &smmu_domain->devices, domain_head) {
994 		for (i = 0; i < master->num_streams; i++) {
995 			cmd.cfgi.sid = master->streams[i].id;
996 			arm_smmu_cmdq_batch_add(smmu, &cmds, &cmd);
997 		}
998 	}
999 	spin_unlock_irqrestore(&smmu_domain->devices_lock, flags);
1000 
1001 	arm_smmu_cmdq_batch_submit(smmu, &cmds);
1002 }
1003 
1004 static int arm_smmu_alloc_cd_leaf_table(struct arm_smmu_device *smmu,
1005 					struct arm_smmu_l1_ctx_desc *l1_desc)
1006 {
1007 	size_t size = CTXDESC_L2_ENTRIES * (CTXDESC_CD_DWORDS << 3);
1008 
1009 	l1_desc->l2ptr = dmam_alloc_coherent(smmu->dev, size,
1010 					     &l1_desc->l2ptr_dma, GFP_KERNEL);
1011 	if (!l1_desc->l2ptr) {
1012 		dev_warn(smmu->dev,
1013 			 "failed to allocate context descriptor table\n");
1014 		return -ENOMEM;
1015 	}
1016 	return 0;
1017 }
1018 
1019 static void arm_smmu_write_cd_l1_desc(__le64 *dst,
1020 				      struct arm_smmu_l1_ctx_desc *l1_desc)
1021 {
1022 	u64 val = (l1_desc->l2ptr_dma & CTXDESC_L1_DESC_L2PTR_MASK) |
1023 		  CTXDESC_L1_DESC_V;
1024 
1025 	/* See comment in arm_smmu_write_ctx_desc() */
1026 	WRITE_ONCE(*dst, cpu_to_le64(val));
1027 }
1028 
1029 static __le64 *arm_smmu_get_cd_ptr(struct arm_smmu_domain *smmu_domain,
1030 				   u32 ssid)
1031 {
1032 	__le64 *l1ptr;
1033 	unsigned int idx;
1034 	struct arm_smmu_l1_ctx_desc *l1_desc;
1035 	struct arm_smmu_device *smmu = smmu_domain->smmu;
1036 	struct arm_smmu_ctx_desc_cfg *cdcfg = &smmu_domain->s1_cfg.cdcfg;
1037 
1038 	if (smmu_domain->s1_cfg.s1fmt == STRTAB_STE_0_S1FMT_LINEAR)
1039 		return cdcfg->cdtab + ssid * CTXDESC_CD_DWORDS;
1040 
1041 	idx = ssid >> CTXDESC_SPLIT;
1042 	l1_desc = &cdcfg->l1_desc[idx];
1043 	if (!l1_desc->l2ptr) {
1044 		if (arm_smmu_alloc_cd_leaf_table(smmu, l1_desc))
1045 			return NULL;
1046 
1047 		l1ptr = cdcfg->cdtab + idx * CTXDESC_L1_DESC_DWORDS;
1048 		arm_smmu_write_cd_l1_desc(l1ptr, l1_desc);
1049 		/* An invalid L1CD can be cached */
1050 		arm_smmu_sync_cd(smmu_domain, ssid, false);
1051 	}
1052 	idx = ssid & (CTXDESC_L2_ENTRIES - 1);
1053 	return l1_desc->l2ptr + idx * CTXDESC_CD_DWORDS;
1054 }
1055 
1056 int arm_smmu_write_ctx_desc(struct arm_smmu_domain *smmu_domain, int ssid,
1057 			    struct arm_smmu_ctx_desc *cd)
1058 {
1059 	/*
1060 	 * This function handles the following cases:
1061 	 *
1062 	 * (1) Install primary CD, for normal DMA traffic (SSID = IOMMU_NO_PASID = 0).
1063 	 * (2) Install a secondary CD, for SID+SSID traffic.
1064 	 * (3) Update ASID of a CD. Atomically write the first 64 bits of the
1065 	 *     CD, then invalidate the old entry and mappings.
1066 	 * (4) Quiesce the context without clearing the valid bit. Disable
1067 	 *     translation, and ignore any translation fault.
1068 	 * (5) Remove a secondary CD.
1069 	 */
1070 	u64 val;
1071 	bool cd_live;
1072 	__le64 *cdptr;
1073 
1074 	if (WARN_ON(ssid >= (1 << smmu_domain->s1_cfg.s1cdmax)))
1075 		return -E2BIG;
1076 
1077 	cdptr = arm_smmu_get_cd_ptr(smmu_domain, ssid);
1078 	if (!cdptr)
1079 		return -ENOMEM;
1080 
1081 	val = le64_to_cpu(cdptr[0]);
1082 	cd_live = !!(val & CTXDESC_CD_0_V);
1083 
1084 	if (!cd) { /* (5) */
1085 		val = 0;
1086 	} else if (cd == &quiet_cd) { /* (4) */
1087 		val |= CTXDESC_CD_0_TCR_EPD0;
1088 	} else if (cd_live) { /* (3) */
1089 		val &= ~CTXDESC_CD_0_ASID;
1090 		val |= FIELD_PREP(CTXDESC_CD_0_ASID, cd->asid);
1091 		/*
1092 		 * Until CD+TLB invalidation, both ASIDs may be used for tagging
1093 		 * this substream's traffic
1094 		 */
1095 	} else { /* (1) and (2) */
1096 		cdptr[1] = cpu_to_le64(cd->ttbr & CTXDESC_CD_1_TTB0_MASK);
1097 		cdptr[2] = 0;
1098 		cdptr[3] = cpu_to_le64(cd->mair);
1099 
1100 		/*
1101 		 * STE is live, and the SMMU might read dwords of this CD in any
1102 		 * order. Ensure that it observes valid values before reading
1103 		 * V=1.
1104 		 */
1105 		arm_smmu_sync_cd(smmu_domain, ssid, true);
1106 
1107 		val = cd->tcr |
1108 #ifdef __BIG_ENDIAN
1109 			CTXDESC_CD_0_ENDI |
1110 #endif
1111 			CTXDESC_CD_0_R | CTXDESC_CD_0_A |
1112 			(cd->mm ? 0 : CTXDESC_CD_0_ASET) |
1113 			CTXDESC_CD_0_AA64 |
1114 			FIELD_PREP(CTXDESC_CD_0_ASID, cd->asid) |
1115 			CTXDESC_CD_0_V;
1116 
1117 		if (smmu_domain->stall_enabled)
1118 			val |= CTXDESC_CD_0_S;
1119 	}
1120 
1121 	/*
1122 	 * The SMMU accesses 64-bit values atomically. See IHI0070Ca 3.21.3
1123 	 * "Configuration structures and configuration invalidation completion"
1124 	 *
1125 	 *   The size of single-copy atomic reads made by the SMMU is
1126 	 *   IMPLEMENTATION DEFINED but must be at least 64 bits. Any single
1127 	 *   field within an aligned 64-bit span of a structure can be altered
1128 	 *   without first making the structure invalid.
1129 	 */
1130 	WRITE_ONCE(cdptr[0], cpu_to_le64(val));
1131 	arm_smmu_sync_cd(smmu_domain, ssid, true);
1132 	return 0;
1133 }
1134 
1135 static int arm_smmu_alloc_cd_tables(struct arm_smmu_domain *smmu_domain)
1136 {
1137 	int ret;
1138 	size_t l1size;
1139 	size_t max_contexts;
1140 	struct arm_smmu_device *smmu = smmu_domain->smmu;
1141 	struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1142 	struct arm_smmu_ctx_desc_cfg *cdcfg = &cfg->cdcfg;
1143 
1144 	max_contexts = 1 << cfg->s1cdmax;
1145 
1146 	if (!(smmu->features & ARM_SMMU_FEAT_2_LVL_CDTAB) ||
1147 	    max_contexts <= CTXDESC_L2_ENTRIES) {
1148 		cfg->s1fmt = STRTAB_STE_0_S1FMT_LINEAR;
1149 		cdcfg->num_l1_ents = max_contexts;
1150 
1151 		l1size = max_contexts * (CTXDESC_CD_DWORDS << 3);
1152 	} else {
1153 		cfg->s1fmt = STRTAB_STE_0_S1FMT_64K_L2;
1154 		cdcfg->num_l1_ents = DIV_ROUND_UP(max_contexts,
1155 						  CTXDESC_L2_ENTRIES);
1156 
1157 		cdcfg->l1_desc = devm_kcalloc(smmu->dev, cdcfg->num_l1_ents,
1158 					      sizeof(*cdcfg->l1_desc),
1159 					      GFP_KERNEL);
1160 		if (!cdcfg->l1_desc)
1161 			return -ENOMEM;
1162 
1163 		l1size = cdcfg->num_l1_ents * (CTXDESC_L1_DESC_DWORDS << 3);
1164 	}
1165 
1166 	cdcfg->cdtab = dmam_alloc_coherent(smmu->dev, l1size, &cdcfg->cdtab_dma,
1167 					   GFP_KERNEL);
1168 	if (!cdcfg->cdtab) {
1169 		dev_warn(smmu->dev, "failed to allocate context descriptor\n");
1170 		ret = -ENOMEM;
1171 		goto err_free_l1;
1172 	}
1173 
1174 	return 0;
1175 
1176 err_free_l1:
1177 	if (cdcfg->l1_desc) {
1178 		devm_kfree(smmu->dev, cdcfg->l1_desc);
1179 		cdcfg->l1_desc = NULL;
1180 	}
1181 	return ret;
1182 }
1183 
1184 static void arm_smmu_free_cd_tables(struct arm_smmu_domain *smmu_domain)
1185 {
1186 	int i;
1187 	size_t size, l1size;
1188 	struct arm_smmu_device *smmu = smmu_domain->smmu;
1189 	struct arm_smmu_ctx_desc_cfg *cdcfg = &smmu_domain->s1_cfg.cdcfg;
1190 
1191 	if (cdcfg->l1_desc) {
1192 		size = CTXDESC_L2_ENTRIES * (CTXDESC_CD_DWORDS << 3);
1193 
1194 		for (i = 0; i < cdcfg->num_l1_ents; i++) {
1195 			if (!cdcfg->l1_desc[i].l2ptr)
1196 				continue;
1197 
1198 			dmam_free_coherent(smmu->dev, size,
1199 					   cdcfg->l1_desc[i].l2ptr,
1200 					   cdcfg->l1_desc[i].l2ptr_dma);
1201 		}
1202 		devm_kfree(smmu->dev, cdcfg->l1_desc);
1203 		cdcfg->l1_desc = NULL;
1204 
1205 		l1size = cdcfg->num_l1_ents * (CTXDESC_L1_DESC_DWORDS << 3);
1206 	} else {
1207 		l1size = cdcfg->num_l1_ents * (CTXDESC_CD_DWORDS << 3);
1208 	}
1209 
1210 	dmam_free_coherent(smmu->dev, l1size, cdcfg->cdtab, cdcfg->cdtab_dma);
1211 	cdcfg->cdtab_dma = 0;
1212 	cdcfg->cdtab = NULL;
1213 }
1214 
1215 bool arm_smmu_free_asid(struct arm_smmu_ctx_desc *cd)
1216 {
1217 	bool free;
1218 	struct arm_smmu_ctx_desc *old_cd;
1219 
1220 	if (!cd->asid)
1221 		return false;
1222 
1223 	free = refcount_dec_and_test(&cd->refs);
1224 	if (free) {
1225 		old_cd = xa_erase(&arm_smmu_asid_xa, cd->asid);
1226 		WARN_ON(old_cd != cd);
1227 	}
1228 	return free;
1229 }
1230 
1231 /* Stream table manipulation functions */
1232 static void
1233 arm_smmu_write_strtab_l1_desc(__le64 *dst, struct arm_smmu_strtab_l1_desc *desc)
1234 {
1235 	u64 val = 0;
1236 
1237 	val |= FIELD_PREP(STRTAB_L1_DESC_SPAN, desc->span);
1238 	val |= desc->l2ptr_dma & STRTAB_L1_DESC_L2PTR_MASK;
1239 
1240 	/* See comment in arm_smmu_write_ctx_desc() */
1241 	WRITE_ONCE(*dst, cpu_to_le64(val));
1242 }
1243 
1244 static void arm_smmu_sync_ste_for_sid(struct arm_smmu_device *smmu, u32 sid)
1245 {
1246 	struct arm_smmu_cmdq_ent cmd = {
1247 		.opcode	= CMDQ_OP_CFGI_STE,
1248 		.cfgi	= {
1249 			.sid	= sid,
1250 			.leaf	= true,
1251 		},
1252 	};
1253 
1254 	arm_smmu_cmdq_issue_cmd_with_sync(smmu, &cmd);
1255 }
1256 
1257 static void arm_smmu_write_strtab_ent(struct arm_smmu_master *master, u32 sid,
1258 				      __le64 *dst)
1259 {
1260 	/*
1261 	 * This is hideously complicated, but we only really care about
1262 	 * three cases at the moment:
1263 	 *
1264 	 * 1. Invalid (all zero) -> bypass/fault (init)
1265 	 * 2. Bypass/fault -> translation/bypass (attach)
1266 	 * 3. Translation/bypass -> bypass/fault (detach)
1267 	 *
1268 	 * Given that we can't update the STE atomically and the SMMU
1269 	 * doesn't read the thing in a defined order, that leaves us
1270 	 * with the following maintenance requirements:
1271 	 *
1272 	 * 1. Update Config, return (init time STEs aren't live)
1273 	 * 2. Write everything apart from dword 0, sync, write dword 0, sync
1274 	 * 3. Update Config, sync
1275 	 */
1276 	u64 val = le64_to_cpu(dst[0]);
1277 	bool ste_live = false;
1278 	struct arm_smmu_device *smmu = NULL;
1279 	struct arm_smmu_s1_cfg *s1_cfg = NULL;
1280 	struct arm_smmu_s2_cfg *s2_cfg = NULL;
1281 	struct arm_smmu_domain *smmu_domain = NULL;
1282 	struct arm_smmu_cmdq_ent prefetch_cmd = {
1283 		.opcode		= CMDQ_OP_PREFETCH_CFG,
1284 		.prefetch	= {
1285 			.sid	= sid,
1286 		},
1287 	};
1288 
1289 	if (master) {
1290 		smmu_domain = master->domain;
1291 		smmu = master->smmu;
1292 	}
1293 
1294 	if (smmu_domain) {
1295 		switch (smmu_domain->stage) {
1296 		case ARM_SMMU_DOMAIN_S1:
1297 			s1_cfg = &smmu_domain->s1_cfg;
1298 			break;
1299 		case ARM_SMMU_DOMAIN_S2:
1300 		case ARM_SMMU_DOMAIN_NESTED:
1301 			s2_cfg = &smmu_domain->s2_cfg;
1302 			break;
1303 		default:
1304 			break;
1305 		}
1306 	}
1307 
1308 	if (val & STRTAB_STE_0_V) {
1309 		switch (FIELD_GET(STRTAB_STE_0_CFG, val)) {
1310 		case STRTAB_STE_0_CFG_BYPASS:
1311 			break;
1312 		case STRTAB_STE_0_CFG_S1_TRANS:
1313 		case STRTAB_STE_0_CFG_S2_TRANS:
1314 			ste_live = true;
1315 			break;
1316 		case STRTAB_STE_0_CFG_ABORT:
1317 			BUG_ON(!disable_bypass);
1318 			break;
1319 		default:
1320 			BUG(); /* STE corruption */
1321 		}
1322 	}
1323 
1324 	/* Nuke the existing STE_0 value, as we're going to rewrite it */
1325 	val = STRTAB_STE_0_V;
1326 
1327 	/* Bypass/fault */
1328 	if (!smmu_domain || !(s1_cfg || s2_cfg)) {
1329 		if (!smmu_domain && disable_bypass)
1330 			val |= FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_ABORT);
1331 		else
1332 			val |= FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_BYPASS);
1333 
1334 		dst[0] = cpu_to_le64(val);
1335 		dst[1] = cpu_to_le64(FIELD_PREP(STRTAB_STE_1_SHCFG,
1336 						STRTAB_STE_1_SHCFG_INCOMING));
1337 		dst[2] = 0; /* Nuke the VMID */
1338 		/*
1339 		 * The SMMU can perform negative caching, so we must sync
1340 		 * the STE regardless of whether the old value was live.
1341 		 */
1342 		if (smmu)
1343 			arm_smmu_sync_ste_for_sid(smmu, sid);
1344 		return;
1345 	}
1346 
1347 	if (s1_cfg) {
1348 		u64 strw = smmu->features & ARM_SMMU_FEAT_E2H ?
1349 			STRTAB_STE_1_STRW_EL2 : STRTAB_STE_1_STRW_NSEL1;
1350 
1351 		BUG_ON(ste_live);
1352 		dst[1] = cpu_to_le64(
1353 			 FIELD_PREP(STRTAB_STE_1_S1DSS, STRTAB_STE_1_S1DSS_SSID0) |
1354 			 FIELD_PREP(STRTAB_STE_1_S1CIR, STRTAB_STE_1_S1C_CACHE_WBRA) |
1355 			 FIELD_PREP(STRTAB_STE_1_S1COR, STRTAB_STE_1_S1C_CACHE_WBRA) |
1356 			 FIELD_PREP(STRTAB_STE_1_S1CSH, ARM_SMMU_SH_ISH) |
1357 			 FIELD_PREP(STRTAB_STE_1_STRW, strw));
1358 
1359 		if (smmu->features & ARM_SMMU_FEAT_STALLS &&
1360 		    !master->stall_enabled)
1361 			dst[1] |= cpu_to_le64(STRTAB_STE_1_S1STALLD);
1362 
1363 		val |= (s1_cfg->cdcfg.cdtab_dma & STRTAB_STE_0_S1CTXPTR_MASK) |
1364 			FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_S1_TRANS) |
1365 			FIELD_PREP(STRTAB_STE_0_S1CDMAX, s1_cfg->s1cdmax) |
1366 			FIELD_PREP(STRTAB_STE_0_S1FMT, s1_cfg->s1fmt);
1367 	}
1368 
1369 	if (s2_cfg) {
1370 		BUG_ON(ste_live);
1371 		dst[2] = cpu_to_le64(
1372 			 FIELD_PREP(STRTAB_STE_2_S2VMID, s2_cfg->vmid) |
1373 			 FIELD_PREP(STRTAB_STE_2_VTCR, s2_cfg->vtcr) |
1374 #ifdef __BIG_ENDIAN
1375 			 STRTAB_STE_2_S2ENDI |
1376 #endif
1377 			 STRTAB_STE_2_S2PTW | STRTAB_STE_2_S2AA64 |
1378 			 STRTAB_STE_2_S2R);
1379 
1380 		dst[3] = cpu_to_le64(s2_cfg->vttbr & STRTAB_STE_3_S2TTB_MASK);
1381 
1382 		val |= FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_S2_TRANS);
1383 	}
1384 
1385 	if (master->ats_enabled)
1386 		dst[1] |= cpu_to_le64(FIELD_PREP(STRTAB_STE_1_EATS,
1387 						 STRTAB_STE_1_EATS_TRANS));
1388 
1389 	arm_smmu_sync_ste_for_sid(smmu, sid);
1390 	/* See comment in arm_smmu_write_ctx_desc() */
1391 	WRITE_ONCE(dst[0], cpu_to_le64(val));
1392 	arm_smmu_sync_ste_for_sid(smmu, sid);
1393 
1394 	/* It's likely that we'll want to use the new STE soon */
1395 	if (!(smmu->options & ARM_SMMU_OPT_SKIP_PREFETCH))
1396 		arm_smmu_cmdq_issue_cmd(smmu, &prefetch_cmd);
1397 }
1398 
1399 static void arm_smmu_init_bypass_stes(__le64 *strtab, unsigned int nent, bool force)
1400 {
1401 	unsigned int i;
1402 	u64 val = STRTAB_STE_0_V;
1403 
1404 	if (disable_bypass && !force)
1405 		val |= FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_ABORT);
1406 	else
1407 		val |= FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_BYPASS);
1408 
1409 	for (i = 0; i < nent; ++i) {
1410 		strtab[0] = cpu_to_le64(val);
1411 		strtab[1] = cpu_to_le64(FIELD_PREP(STRTAB_STE_1_SHCFG,
1412 						   STRTAB_STE_1_SHCFG_INCOMING));
1413 		strtab[2] = 0;
1414 		strtab += STRTAB_STE_DWORDS;
1415 	}
1416 }
1417 
1418 static int arm_smmu_init_l2_strtab(struct arm_smmu_device *smmu, u32 sid)
1419 {
1420 	size_t size;
1421 	void *strtab;
1422 	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1423 	struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[sid >> STRTAB_SPLIT];
1424 
1425 	if (desc->l2ptr)
1426 		return 0;
1427 
1428 	size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
1429 	strtab = &cfg->strtab[(sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS];
1430 
1431 	desc->span = STRTAB_SPLIT + 1;
1432 	desc->l2ptr = dmam_alloc_coherent(smmu->dev, size, &desc->l2ptr_dma,
1433 					  GFP_KERNEL);
1434 	if (!desc->l2ptr) {
1435 		dev_err(smmu->dev,
1436 			"failed to allocate l2 stream table for SID %u\n",
1437 			sid);
1438 		return -ENOMEM;
1439 	}
1440 
1441 	arm_smmu_init_bypass_stes(desc->l2ptr, 1 << STRTAB_SPLIT, false);
1442 	arm_smmu_write_strtab_l1_desc(strtab, desc);
1443 	return 0;
1444 }
1445 
1446 static struct arm_smmu_master *
1447 arm_smmu_find_master(struct arm_smmu_device *smmu, u32 sid)
1448 {
1449 	struct rb_node *node;
1450 	struct arm_smmu_stream *stream;
1451 
1452 	lockdep_assert_held(&smmu->streams_mutex);
1453 
1454 	node = smmu->streams.rb_node;
1455 	while (node) {
1456 		stream = rb_entry(node, struct arm_smmu_stream, node);
1457 		if (stream->id < sid)
1458 			node = node->rb_right;
1459 		else if (stream->id > sid)
1460 			node = node->rb_left;
1461 		else
1462 			return stream->master;
1463 	}
1464 
1465 	return NULL;
1466 }
1467 
1468 /* IRQ and event handlers */
1469 static int arm_smmu_handle_evt(struct arm_smmu_device *smmu, u64 *evt)
1470 {
1471 	int ret;
1472 	u32 reason;
1473 	u32 perm = 0;
1474 	struct arm_smmu_master *master;
1475 	bool ssid_valid = evt[0] & EVTQ_0_SSV;
1476 	u32 sid = FIELD_GET(EVTQ_0_SID, evt[0]);
1477 	struct iommu_fault_event fault_evt = { };
1478 	struct iommu_fault *flt = &fault_evt.fault;
1479 
1480 	switch (FIELD_GET(EVTQ_0_ID, evt[0])) {
1481 	case EVT_ID_TRANSLATION_FAULT:
1482 		reason = IOMMU_FAULT_REASON_PTE_FETCH;
1483 		break;
1484 	case EVT_ID_ADDR_SIZE_FAULT:
1485 		reason = IOMMU_FAULT_REASON_OOR_ADDRESS;
1486 		break;
1487 	case EVT_ID_ACCESS_FAULT:
1488 		reason = IOMMU_FAULT_REASON_ACCESS;
1489 		break;
1490 	case EVT_ID_PERMISSION_FAULT:
1491 		reason = IOMMU_FAULT_REASON_PERMISSION;
1492 		break;
1493 	default:
1494 		return -EOPNOTSUPP;
1495 	}
1496 
1497 	/* Stage-2 is always pinned at the moment */
1498 	if (evt[1] & EVTQ_1_S2)
1499 		return -EFAULT;
1500 
1501 	if (evt[1] & EVTQ_1_RnW)
1502 		perm |= IOMMU_FAULT_PERM_READ;
1503 	else
1504 		perm |= IOMMU_FAULT_PERM_WRITE;
1505 
1506 	if (evt[1] & EVTQ_1_InD)
1507 		perm |= IOMMU_FAULT_PERM_EXEC;
1508 
1509 	if (evt[1] & EVTQ_1_PnU)
1510 		perm |= IOMMU_FAULT_PERM_PRIV;
1511 
1512 	if (evt[1] & EVTQ_1_STALL) {
1513 		flt->type = IOMMU_FAULT_PAGE_REQ;
1514 		flt->prm = (struct iommu_fault_page_request) {
1515 			.flags = IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE,
1516 			.grpid = FIELD_GET(EVTQ_1_STAG, evt[1]),
1517 			.perm = perm,
1518 			.addr = FIELD_GET(EVTQ_2_ADDR, evt[2]),
1519 		};
1520 
1521 		if (ssid_valid) {
1522 			flt->prm.flags |= IOMMU_FAULT_PAGE_REQUEST_PASID_VALID;
1523 			flt->prm.pasid = FIELD_GET(EVTQ_0_SSID, evt[0]);
1524 		}
1525 	} else {
1526 		flt->type = IOMMU_FAULT_DMA_UNRECOV;
1527 		flt->event = (struct iommu_fault_unrecoverable) {
1528 			.reason = reason,
1529 			.flags = IOMMU_FAULT_UNRECOV_ADDR_VALID,
1530 			.perm = perm,
1531 			.addr = FIELD_GET(EVTQ_2_ADDR, evt[2]),
1532 		};
1533 
1534 		if (ssid_valid) {
1535 			flt->event.flags |= IOMMU_FAULT_UNRECOV_PASID_VALID;
1536 			flt->event.pasid = FIELD_GET(EVTQ_0_SSID, evt[0]);
1537 		}
1538 	}
1539 
1540 	mutex_lock(&smmu->streams_mutex);
1541 	master = arm_smmu_find_master(smmu, sid);
1542 	if (!master) {
1543 		ret = -EINVAL;
1544 		goto out_unlock;
1545 	}
1546 
1547 	ret = iommu_report_device_fault(master->dev, &fault_evt);
1548 	if (ret && flt->type == IOMMU_FAULT_PAGE_REQ) {
1549 		/* Nobody cared, abort the access */
1550 		struct iommu_page_response resp = {
1551 			.pasid		= flt->prm.pasid,
1552 			.grpid		= flt->prm.grpid,
1553 			.code		= IOMMU_PAGE_RESP_FAILURE,
1554 		};
1555 		arm_smmu_page_response(master->dev, &fault_evt, &resp);
1556 	}
1557 
1558 out_unlock:
1559 	mutex_unlock(&smmu->streams_mutex);
1560 	return ret;
1561 }
1562 
1563 static irqreturn_t arm_smmu_evtq_thread(int irq, void *dev)
1564 {
1565 	int i, ret;
1566 	struct arm_smmu_device *smmu = dev;
1567 	struct arm_smmu_queue *q = &smmu->evtq.q;
1568 	struct arm_smmu_ll_queue *llq = &q->llq;
1569 	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1570 				      DEFAULT_RATELIMIT_BURST);
1571 	u64 evt[EVTQ_ENT_DWORDS];
1572 
1573 	do {
1574 		while (!queue_remove_raw(q, evt)) {
1575 			u8 id = FIELD_GET(EVTQ_0_ID, evt[0]);
1576 
1577 			ret = arm_smmu_handle_evt(smmu, evt);
1578 			if (!ret || !__ratelimit(&rs))
1579 				continue;
1580 
1581 			dev_info(smmu->dev, "event 0x%02x received:\n", id);
1582 			for (i = 0; i < ARRAY_SIZE(evt); ++i)
1583 				dev_info(smmu->dev, "\t0x%016llx\n",
1584 					 (unsigned long long)evt[i]);
1585 
1586 			cond_resched();
1587 		}
1588 
1589 		/*
1590 		 * Not much we can do on overflow, so scream and pretend we're
1591 		 * trying harder.
1592 		 */
1593 		if (queue_sync_prod_in(q) == -EOVERFLOW)
1594 			dev_err(smmu->dev, "EVTQ overflow detected -- events lost\n");
1595 	} while (!queue_empty(llq));
1596 
1597 	/* Sync our overflow flag, as we believe we're up to speed */
1598 	queue_sync_cons_ovf(q);
1599 	return IRQ_HANDLED;
1600 }
1601 
1602 static void arm_smmu_handle_ppr(struct arm_smmu_device *smmu, u64 *evt)
1603 {
1604 	u32 sid, ssid;
1605 	u16 grpid;
1606 	bool ssv, last;
1607 
1608 	sid = FIELD_GET(PRIQ_0_SID, evt[0]);
1609 	ssv = FIELD_GET(PRIQ_0_SSID_V, evt[0]);
1610 	ssid = ssv ? FIELD_GET(PRIQ_0_SSID, evt[0]) : IOMMU_NO_PASID;
1611 	last = FIELD_GET(PRIQ_0_PRG_LAST, evt[0]);
1612 	grpid = FIELD_GET(PRIQ_1_PRG_IDX, evt[1]);
1613 
1614 	dev_info(smmu->dev, "unexpected PRI request received:\n");
1615 	dev_info(smmu->dev,
1616 		 "\tsid 0x%08x.0x%05x: [%u%s] %sprivileged %s%s%s access at iova 0x%016llx\n",
1617 		 sid, ssid, grpid, last ? "L" : "",
1618 		 evt[0] & PRIQ_0_PERM_PRIV ? "" : "un",
1619 		 evt[0] & PRIQ_0_PERM_READ ? "R" : "",
1620 		 evt[0] & PRIQ_0_PERM_WRITE ? "W" : "",
1621 		 evt[0] & PRIQ_0_PERM_EXEC ? "X" : "",
1622 		 evt[1] & PRIQ_1_ADDR_MASK);
1623 
1624 	if (last) {
1625 		struct arm_smmu_cmdq_ent cmd = {
1626 			.opcode			= CMDQ_OP_PRI_RESP,
1627 			.substream_valid	= ssv,
1628 			.pri			= {
1629 				.sid	= sid,
1630 				.ssid	= ssid,
1631 				.grpid	= grpid,
1632 				.resp	= PRI_RESP_DENY,
1633 			},
1634 		};
1635 
1636 		arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1637 	}
1638 }
1639 
1640 static irqreturn_t arm_smmu_priq_thread(int irq, void *dev)
1641 {
1642 	struct arm_smmu_device *smmu = dev;
1643 	struct arm_smmu_queue *q = &smmu->priq.q;
1644 	struct arm_smmu_ll_queue *llq = &q->llq;
1645 	u64 evt[PRIQ_ENT_DWORDS];
1646 
1647 	do {
1648 		while (!queue_remove_raw(q, evt))
1649 			arm_smmu_handle_ppr(smmu, evt);
1650 
1651 		if (queue_sync_prod_in(q) == -EOVERFLOW)
1652 			dev_err(smmu->dev, "PRIQ overflow detected -- requests lost\n");
1653 	} while (!queue_empty(llq));
1654 
1655 	/* Sync our overflow flag, as we believe we're up to speed */
1656 	queue_sync_cons_ovf(q);
1657 	return IRQ_HANDLED;
1658 }
1659 
1660 static int arm_smmu_device_disable(struct arm_smmu_device *smmu);
1661 
1662 static irqreturn_t arm_smmu_gerror_handler(int irq, void *dev)
1663 {
1664 	u32 gerror, gerrorn, active;
1665 	struct arm_smmu_device *smmu = dev;
1666 
1667 	gerror = readl_relaxed(smmu->base + ARM_SMMU_GERROR);
1668 	gerrorn = readl_relaxed(smmu->base + ARM_SMMU_GERRORN);
1669 
1670 	active = gerror ^ gerrorn;
1671 	if (!(active & GERROR_ERR_MASK))
1672 		return IRQ_NONE; /* No errors pending */
1673 
1674 	dev_warn(smmu->dev,
1675 		 "unexpected global error reported (0x%08x), this could be serious\n",
1676 		 active);
1677 
1678 	if (active & GERROR_SFM_ERR) {
1679 		dev_err(smmu->dev, "device has entered Service Failure Mode!\n");
1680 		arm_smmu_device_disable(smmu);
1681 	}
1682 
1683 	if (active & GERROR_MSI_GERROR_ABT_ERR)
1684 		dev_warn(smmu->dev, "GERROR MSI write aborted\n");
1685 
1686 	if (active & GERROR_MSI_PRIQ_ABT_ERR)
1687 		dev_warn(smmu->dev, "PRIQ MSI write aborted\n");
1688 
1689 	if (active & GERROR_MSI_EVTQ_ABT_ERR)
1690 		dev_warn(smmu->dev, "EVTQ MSI write aborted\n");
1691 
1692 	if (active & GERROR_MSI_CMDQ_ABT_ERR)
1693 		dev_warn(smmu->dev, "CMDQ MSI write aborted\n");
1694 
1695 	if (active & GERROR_PRIQ_ABT_ERR)
1696 		dev_err(smmu->dev, "PRIQ write aborted -- events may have been lost\n");
1697 
1698 	if (active & GERROR_EVTQ_ABT_ERR)
1699 		dev_err(smmu->dev, "EVTQ write aborted -- events may have been lost\n");
1700 
1701 	if (active & GERROR_CMDQ_ERR)
1702 		arm_smmu_cmdq_skip_err(smmu);
1703 
1704 	writel(gerror, smmu->base + ARM_SMMU_GERRORN);
1705 	return IRQ_HANDLED;
1706 }
1707 
1708 static irqreturn_t arm_smmu_combined_irq_thread(int irq, void *dev)
1709 {
1710 	struct arm_smmu_device *smmu = dev;
1711 
1712 	arm_smmu_evtq_thread(irq, dev);
1713 	if (smmu->features & ARM_SMMU_FEAT_PRI)
1714 		arm_smmu_priq_thread(irq, dev);
1715 
1716 	return IRQ_HANDLED;
1717 }
1718 
1719 static irqreturn_t arm_smmu_combined_irq_handler(int irq, void *dev)
1720 {
1721 	arm_smmu_gerror_handler(irq, dev);
1722 	return IRQ_WAKE_THREAD;
1723 }
1724 
1725 static void
1726 arm_smmu_atc_inv_to_cmd(int ssid, unsigned long iova, size_t size,
1727 			struct arm_smmu_cmdq_ent *cmd)
1728 {
1729 	size_t log2_span;
1730 	size_t span_mask;
1731 	/* ATC invalidates are always on 4096-bytes pages */
1732 	size_t inval_grain_shift = 12;
1733 	unsigned long page_start, page_end;
1734 
1735 	/*
1736 	 * ATS and PASID:
1737 	 *
1738 	 * If substream_valid is clear, the PCIe TLP is sent without a PASID
1739 	 * prefix. In that case all ATC entries within the address range are
1740 	 * invalidated, including those that were requested with a PASID! There
1741 	 * is no way to invalidate only entries without PASID.
1742 	 *
1743 	 * When using STRTAB_STE_1_S1DSS_SSID0 (reserving CD 0 for non-PASID
1744 	 * traffic), translation requests without PASID create ATC entries
1745 	 * without PASID, which must be invalidated with substream_valid clear.
1746 	 * This has the unpleasant side-effect of invalidating all PASID-tagged
1747 	 * ATC entries within the address range.
1748 	 */
1749 	*cmd = (struct arm_smmu_cmdq_ent) {
1750 		.opcode			= CMDQ_OP_ATC_INV,
1751 		.substream_valid	= (ssid != IOMMU_NO_PASID),
1752 		.atc.ssid		= ssid,
1753 	};
1754 
1755 	if (!size) {
1756 		cmd->atc.size = ATC_INV_SIZE_ALL;
1757 		return;
1758 	}
1759 
1760 	page_start	= iova >> inval_grain_shift;
1761 	page_end	= (iova + size - 1) >> inval_grain_shift;
1762 
1763 	/*
1764 	 * In an ATS Invalidate Request, the address must be aligned on the
1765 	 * range size, which must be a power of two number of page sizes. We
1766 	 * thus have to choose between grossly over-invalidating the region, or
1767 	 * splitting the invalidation into multiple commands. For simplicity
1768 	 * we'll go with the first solution, but should refine it in the future
1769 	 * if multiple commands are shown to be more efficient.
1770 	 *
1771 	 * Find the smallest power of two that covers the range. The most
1772 	 * significant differing bit between the start and end addresses,
1773 	 * fls(start ^ end), indicates the required span. For example:
1774 	 *
1775 	 * We want to invalidate pages [8; 11]. This is already the ideal range:
1776 	 *		x = 0b1000 ^ 0b1011 = 0b11
1777 	 *		span = 1 << fls(x) = 4
1778 	 *
1779 	 * To invalidate pages [7; 10], we need to invalidate [0; 15]:
1780 	 *		x = 0b0111 ^ 0b1010 = 0b1101
1781 	 *		span = 1 << fls(x) = 16
1782 	 */
1783 	log2_span	= fls_long(page_start ^ page_end);
1784 	span_mask	= (1ULL << log2_span) - 1;
1785 
1786 	page_start	&= ~span_mask;
1787 
1788 	cmd->atc.addr	= page_start << inval_grain_shift;
1789 	cmd->atc.size	= log2_span;
1790 }
1791 
1792 static int arm_smmu_atc_inv_master(struct arm_smmu_master *master)
1793 {
1794 	int i;
1795 	struct arm_smmu_cmdq_ent cmd;
1796 	struct arm_smmu_cmdq_batch cmds;
1797 
1798 	arm_smmu_atc_inv_to_cmd(IOMMU_NO_PASID, 0, 0, &cmd);
1799 
1800 	cmds.num = 0;
1801 	for (i = 0; i < master->num_streams; i++) {
1802 		cmd.atc.sid = master->streams[i].id;
1803 		arm_smmu_cmdq_batch_add(master->smmu, &cmds, &cmd);
1804 	}
1805 
1806 	return arm_smmu_cmdq_batch_submit(master->smmu, &cmds);
1807 }
1808 
1809 int arm_smmu_atc_inv_domain(struct arm_smmu_domain *smmu_domain, int ssid,
1810 			    unsigned long iova, size_t size)
1811 {
1812 	int i;
1813 	unsigned long flags;
1814 	struct arm_smmu_cmdq_ent cmd;
1815 	struct arm_smmu_master *master;
1816 	struct arm_smmu_cmdq_batch cmds;
1817 
1818 	if (!(smmu_domain->smmu->features & ARM_SMMU_FEAT_ATS))
1819 		return 0;
1820 
1821 	/*
1822 	 * Ensure that we've completed prior invalidation of the main TLBs
1823 	 * before we read 'nr_ats_masters' in case of a concurrent call to
1824 	 * arm_smmu_enable_ats():
1825 	 *
1826 	 *	// unmap()			// arm_smmu_enable_ats()
1827 	 *	TLBI+SYNC			atomic_inc(&nr_ats_masters);
1828 	 *	smp_mb();			[...]
1829 	 *	atomic_read(&nr_ats_masters);	pci_enable_ats() // writel()
1830 	 *
1831 	 * Ensures that we always see the incremented 'nr_ats_masters' count if
1832 	 * ATS was enabled at the PCI device before completion of the TLBI.
1833 	 */
1834 	smp_mb();
1835 	if (!atomic_read(&smmu_domain->nr_ats_masters))
1836 		return 0;
1837 
1838 	arm_smmu_atc_inv_to_cmd(ssid, iova, size, &cmd);
1839 
1840 	cmds.num = 0;
1841 
1842 	spin_lock_irqsave(&smmu_domain->devices_lock, flags);
1843 	list_for_each_entry(master, &smmu_domain->devices, domain_head) {
1844 		if (!master->ats_enabled)
1845 			continue;
1846 
1847 		for (i = 0; i < master->num_streams; i++) {
1848 			cmd.atc.sid = master->streams[i].id;
1849 			arm_smmu_cmdq_batch_add(smmu_domain->smmu, &cmds, &cmd);
1850 		}
1851 	}
1852 	spin_unlock_irqrestore(&smmu_domain->devices_lock, flags);
1853 
1854 	return arm_smmu_cmdq_batch_submit(smmu_domain->smmu, &cmds);
1855 }
1856 
1857 /* IO_PGTABLE API */
1858 static void arm_smmu_tlb_inv_context(void *cookie)
1859 {
1860 	struct arm_smmu_domain *smmu_domain = cookie;
1861 	struct arm_smmu_device *smmu = smmu_domain->smmu;
1862 	struct arm_smmu_cmdq_ent cmd;
1863 
1864 	/*
1865 	 * NOTE: when io-pgtable is in non-strict mode, we may get here with
1866 	 * PTEs previously cleared by unmaps on the current CPU not yet visible
1867 	 * to the SMMU. We are relying on the dma_wmb() implicit during cmd
1868 	 * insertion to guarantee those are observed before the TLBI. Do be
1869 	 * careful, 007.
1870 	 */
1871 	if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1872 		arm_smmu_tlb_inv_asid(smmu, smmu_domain->s1_cfg.cd.asid);
1873 	} else {
1874 		cmd.opcode	= CMDQ_OP_TLBI_S12_VMALL;
1875 		cmd.tlbi.vmid	= smmu_domain->s2_cfg.vmid;
1876 		arm_smmu_cmdq_issue_cmd_with_sync(smmu, &cmd);
1877 	}
1878 	arm_smmu_atc_inv_domain(smmu_domain, IOMMU_NO_PASID, 0, 0);
1879 }
1880 
1881 static void __arm_smmu_tlb_inv_range(struct arm_smmu_cmdq_ent *cmd,
1882 				     unsigned long iova, size_t size,
1883 				     size_t granule,
1884 				     struct arm_smmu_domain *smmu_domain)
1885 {
1886 	struct arm_smmu_device *smmu = smmu_domain->smmu;
1887 	unsigned long end = iova + size, num_pages = 0, tg = 0;
1888 	size_t inv_range = granule;
1889 	struct arm_smmu_cmdq_batch cmds;
1890 
1891 	if (!size)
1892 		return;
1893 
1894 	if (smmu->features & ARM_SMMU_FEAT_RANGE_INV) {
1895 		/* Get the leaf page size */
1896 		tg = __ffs(smmu_domain->domain.pgsize_bitmap);
1897 
1898 		/* Convert page size of 12,14,16 (log2) to 1,2,3 */
1899 		cmd->tlbi.tg = (tg - 10) / 2;
1900 
1901 		/*
1902 		 * Determine what level the granule is at. For non-leaf, io-pgtable
1903 		 * assumes .tlb_flush_walk can invalidate multiple levels at once,
1904 		 * so ignore the nominal last-level granule and leave TTL=0.
1905 		 */
1906 		if (cmd->tlbi.leaf)
1907 			cmd->tlbi.ttl = 4 - ((ilog2(granule) - 3) / (tg - 3));
1908 
1909 		num_pages = size >> tg;
1910 	}
1911 
1912 	cmds.num = 0;
1913 
1914 	while (iova < end) {
1915 		if (smmu->features & ARM_SMMU_FEAT_RANGE_INV) {
1916 			/*
1917 			 * On each iteration of the loop, the range is 5 bits
1918 			 * worth of the aligned size remaining.
1919 			 * The range in pages is:
1920 			 *
1921 			 * range = (num_pages & (0x1f << __ffs(num_pages)))
1922 			 */
1923 			unsigned long scale, num;
1924 
1925 			/* Determine the power of 2 multiple number of pages */
1926 			scale = __ffs(num_pages);
1927 			cmd->tlbi.scale = scale;
1928 
1929 			/* Determine how many chunks of 2^scale size we have */
1930 			num = (num_pages >> scale) & CMDQ_TLBI_RANGE_NUM_MAX;
1931 			cmd->tlbi.num = num - 1;
1932 
1933 			/* range is num * 2^scale * pgsize */
1934 			inv_range = num << (scale + tg);
1935 
1936 			/* Clear out the lower order bits for the next iteration */
1937 			num_pages -= num << scale;
1938 		}
1939 
1940 		cmd->tlbi.addr = iova;
1941 		arm_smmu_cmdq_batch_add(smmu, &cmds, cmd);
1942 		iova += inv_range;
1943 	}
1944 	arm_smmu_cmdq_batch_submit(smmu, &cmds);
1945 }
1946 
1947 static void arm_smmu_tlb_inv_range_domain(unsigned long iova, size_t size,
1948 					  size_t granule, bool leaf,
1949 					  struct arm_smmu_domain *smmu_domain)
1950 {
1951 	struct arm_smmu_cmdq_ent cmd = {
1952 		.tlbi = {
1953 			.leaf	= leaf,
1954 		},
1955 	};
1956 
1957 	if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1958 		cmd.opcode	= smmu_domain->smmu->features & ARM_SMMU_FEAT_E2H ?
1959 				  CMDQ_OP_TLBI_EL2_VA : CMDQ_OP_TLBI_NH_VA;
1960 		cmd.tlbi.asid	= smmu_domain->s1_cfg.cd.asid;
1961 	} else {
1962 		cmd.opcode	= CMDQ_OP_TLBI_S2_IPA;
1963 		cmd.tlbi.vmid	= smmu_domain->s2_cfg.vmid;
1964 	}
1965 	__arm_smmu_tlb_inv_range(&cmd, iova, size, granule, smmu_domain);
1966 
1967 	/*
1968 	 * Unfortunately, this can't be leaf-only since we may have
1969 	 * zapped an entire table.
1970 	 */
1971 	arm_smmu_atc_inv_domain(smmu_domain, IOMMU_NO_PASID, iova, size);
1972 }
1973 
1974 void arm_smmu_tlb_inv_range_asid(unsigned long iova, size_t size, int asid,
1975 				 size_t granule, bool leaf,
1976 				 struct arm_smmu_domain *smmu_domain)
1977 {
1978 	struct arm_smmu_cmdq_ent cmd = {
1979 		.opcode	= smmu_domain->smmu->features & ARM_SMMU_FEAT_E2H ?
1980 			  CMDQ_OP_TLBI_EL2_VA : CMDQ_OP_TLBI_NH_VA,
1981 		.tlbi = {
1982 			.asid	= asid,
1983 			.leaf	= leaf,
1984 		},
1985 	};
1986 
1987 	__arm_smmu_tlb_inv_range(&cmd, iova, size, granule, smmu_domain);
1988 }
1989 
1990 static void arm_smmu_tlb_inv_page_nosync(struct iommu_iotlb_gather *gather,
1991 					 unsigned long iova, size_t granule,
1992 					 void *cookie)
1993 {
1994 	struct arm_smmu_domain *smmu_domain = cookie;
1995 	struct iommu_domain *domain = &smmu_domain->domain;
1996 
1997 	iommu_iotlb_gather_add_page(domain, gather, iova, granule);
1998 }
1999 
2000 static void arm_smmu_tlb_inv_walk(unsigned long iova, size_t size,
2001 				  size_t granule, void *cookie)
2002 {
2003 	arm_smmu_tlb_inv_range_domain(iova, size, granule, false, cookie);
2004 }
2005 
2006 static const struct iommu_flush_ops arm_smmu_flush_ops = {
2007 	.tlb_flush_all	= arm_smmu_tlb_inv_context,
2008 	.tlb_flush_walk = arm_smmu_tlb_inv_walk,
2009 	.tlb_add_page	= arm_smmu_tlb_inv_page_nosync,
2010 };
2011 
2012 /* IOMMU API */
2013 static bool arm_smmu_capable(struct device *dev, enum iommu_cap cap)
2014 {
2015 	struct arm_smmu_master *master = dev_iommu_priv_get(dev);
2016 
2017 	switch (cap) {
2018 	case IOMMU_CAP_CACHE_COHERENCY:
2019 		/* Assume that a coherent TCU implies coherent TBUs */
2020 		return master->smmu->features & ARM_SMMU_FEAT_COHERENCY;
2021 	case IOMMU_CAP_NOEXEC:
2022 	case IOMMU_CAP_DEFERRED_FLUSH:
2023 		return true;
2024 	default:
2025 		return false;
2026 	}
2027 }
2028 
2029 static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
2030 {
2031 	struct arm_smmu_domain *smmu_domain;
2032 
2033 	if (type == IOMMU_DOMAIN_SVA)
2034 		return arm_smmu_sva_domain_alloc();
2035 
2036 	if (type != IOMMU_DOMAIN_UNMANAGED &&
2037 	    type != IOMMU_DOMAIN_DMA &&
2038 	    type != IOMMU_DOMAIN_IDENTITY)
2039 		return NULL;
2040 
2041 	/*
2042 	 * Allocate the domain and initialise some of its data structures.
2043 	 * We can't really do anything meaningful until we've added a
2044 	 * master.
2045 	 */
2046 	smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
2047 	if (!smmu_domain)
2048 		return NULL;
2049 
2050 	mutex_init(&smmu_domain->init_mutex);
2051 	INIT_LIST_HEAD(&smmu_domain->devices);
2052 	spin_lock_init(&smmu_domain->devices_lock);
2053 	INIT_LIST_HEAD(&smmu_domain->mmu_notifiers);
2054 
2055 	return &smmu_domain->domain;
2056 }
2057 
2058 static void arm_smmu_domain_free(struct iommu_domain *domain)
2059 {
2060 	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
2061 	struct arm_smmu_device *smmu = smmu_domain->smmu;
2062 
2063 	free_io_pgtable_ops(smmu_domain->pgtbl_ops);
2064 
2065 	/* Free the CD and ASID, if we allocated them */
2066 	if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
2067 		struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
2068 
2069 		/* Prevent SVA from touching the CD while we're freeing it */
2070 		mutex_lock(&arm_smmu_asid_lock);
2071 		if (cfg->cdcfg.cdtab)
2072 			arm_smmu_free_cd_tables(smmu_domain);
2073 		arm_smmu_free_asid(&cfg->cd);
2074 		mutex_unlock(&arm_smmu_asid_lock);
2075 	} else {
2076 		struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
2077 		if (cfg->vmid)
2078 			ida_free(&smmu->vmid_map, cfg->vmid);
2079 	}
2080 
2081 	kfree(smmu_domain);
2082 }
2083 
2084 static int arm_smmu_domain_finalise_s1(struct arm_smmu_domain *smmu_domain,
2085 				       struct arm_smmu_master *master,
2086 				       struct io_pgtable_cfg *pgtbl_cfg)
2087 {
2088 	int ret;
2089 	u32 asid;
2090 	struct arm_smmu_device *smmu = smmu_domain->smmu;
2091 	struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
2092 	typeof(&pgtbl_cfg->arm_lpae_s1_cfg.tcr) tcr = &pgtbl_cfg->arm_lpae_s1_cfg.tcr;
2093 
2094 	refcount_set(&cfg->cd.refs, 1);
2095 
2096 	/* Prevent SVA from modifying the ASID until it is written to the CD */
2097 	mutex_lock(&arm_smmu_asid_lock);
2098 	ret = xa_alloc(&arm_smmu_asid_xa, &asid, &cfg->cd,
2099 		       XA_LIMIT(1, (1 << smmu->asid_bits) - 1), GFP_KERNEL);
2100 	if (ret)
2101 		goto out_unlock;
2102 
2103 	cfg->s1cdmax = master->ssid_bits;
2104 
2105 	smmu_domain->stall_enabled = master->stall_enabled;
2106 
2107 	ret = arm_smmu_alloc_cd_tables(smmu_domain);
2108 	if (ret)
2109 		goto out_free_asid;
2110 
2111 	cfg->cd.asid	= (u16)asid;
2112 	cfg->cd.ttbr	= pgtbl_cfg->arm_lpae_s1_cfg.ttbr;
2113 	cfg->cd.tcr	= FIELD_PREP(CTXDESC_CD_0_TCR_T0SZ, tcr->tsz) |
2114 			  FIELD_PREP(CTXDESC_CD_0_TCR_TG0, tcr->tg) |
2115 			  FIELD_PREP(CTXDESC_CD_0_TCR_IRGN0, tcr->irgn) |
2116 			  FIELD_PREP(CTXDESC_CD_0_TCR_ORGN0, tcr->orgn) |
2117 			  FIELD_PREP(CTXDESC_CD_0_TCR_SH0, tcr->sh) |
2118 			  FIELD_PREP(CTXDESC_CD_0_TCR_IPS, tcr->ips) |
2119 			  CTXDESC_CD_0_TCR_EPD1 | CTXDESC_CD_0_AA64;
2120 	cfg->cd.mair	= pgtbl_cfg->arm_lpae_s1_cfg.mair;
2121 
2122 	/*
2123 	 * Note that this will end up calling arm_smmu_sync_cd() before
2124 	 * the master has been added to the devices list for this domain.
2125 	 * This isn't an issue because the STE hasn't been installed yet.
2126 	 */
2127 	ret = arm_smmu_write_ctx_desc(smmu_domain, IOMMU_NO_PASID, &cfg->cd);
2128 	if (ret)
2129 		goto out_free_cd_tables;
2130 
2131 	mutex_unlock(&arm_smmu_asid_lock);
2132 	return 0;
2133 
2134 out_free_cd_tables:
2135 	arm_smmu_free_cd_tables(smmu_domain);
2136 out_free_asid:
2137 	arm_smmu_free_asid(&cfg->cd);
2138 out_unlock:
2139 	mutex_unlock(&arm_smmu_asid_lock);
2140 	return ret;
2141 }
2142 
2143 static int arm_smmu_domain_finalise_s2(struct arm_smmu_domain *smmu_domain,
2144 				       struct arm_smmu_master *master,
2145 				       struct io_pgtable_cfg *pgtbl_cfg)
2146 {
2147 	int vmid;
2148 	struct arm_smmu_device *smmu = smmu_domain->smmu;
2149 	struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
2150 	typeof(&pgtbl_cfg->arm_lpae_s2_cfg.vtcr) vtcr;
2151 
2152 	/* Reserve VMID 0 for stage-2 bypass STEs */
2153 	vmid = ida_alloc_range(&smmu->vmid_map, 1, (1 << smmu->vmid_bits) - 1,
2154 			       GFP_KERNEL);
2155 	if (vmid < 0)
2156 		return vmid;
2157 
2158 	vtcr = &pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
2159 	cfg->vmid	= (u16)vmid;
2160 	cfg->vttbr	= pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
2161 	cfg->vtcr	= FIELD_PREP(STRTAB_STE_2_VTCR_S2T0SZ, vtcr->tsz) |
2162 			  FIELD_PREP(STRTAB_STE_2_VTCR_S2SL0, vtcr->sl) |
2163 			  FIELD_PREP(STRTAB_STE_2_VTCR_S2IR0, vtcr->irgn) |
2164 			  FIELD_PREP(STRTAB_STE_2_VTCR_S2OR0, vtcr->orgn) |
2165 			  FIELD_PREP(STRTAB_STE_2_VTCR_S2SH0, vtcr->sh) |
2166 			  FIELD_PREP(STRTAB_STE_2_VTCR_S2TG, vtcr->tg) |
2167 			  FIELD_PREP(STRTAB_STE_2_VTCR_S2PS, vtcr->ps);
2168 	return 0;
2169 }
2170 
2171 static int arm_smmu_domain_finalise(struct iommu_domain *domain,
2172 				    struct arm_smmu_master *master)
2173 {
2174 	int ret;
2175 	unsigned long ias, oas;
2176 	enum io_pgtable_fmt fmt;
2177 	struct io_pgtable_cfg pgtbl_cfg;
2178 	struct io_pgtable_ops *pgtbl_ops;
2179 	int (*finalise_stage_fn)(struct arm_smmu_domain *,
2180 				 struct arm_smmu_master *,
2181 				 struct io_pgtable_cfg *);
2182 	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
2183 	struct arm_smmu_device *smmu = smmu_domain->smmu;
2184 
2185 	if (domain->type == IOMMU_DOMAIN_IDENTITY) {
2186 		smmu_domain->stage = ARM_SMMU_DOMAIN_BYPASS;
2187 		return 0;
2188 	}
2189 
2190 	/* Restrict the stage to what we can actually support */
2191 	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
2192 		smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
2193 	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
2194 		smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
2195 
2196 	switch (smmu_domain->stage) {
2197 	case ARM_SMMU_DOMAIN_S1:
2198 		ias = (smmu->features & ARM_SMMU_FEAT_VAX) ? 52 : 48;
2199 		ias = min_t(unsigned long, ias, VA_BITS);
2200 		oas = smmu->ias;
2201 		fmt = ARM_64_LPAE_S1;
2202 		finalise_stage_fn = arm_smmu_domain_finalise_s1;
2203 		break;
2204 	case ARM_SMMU_DOMAIN_NESTED:
2205 	case ARM_SMMU_DOMAIN_S2:
2206 		ias = smmu->ias;
2207 		oas = smmu->oas;
2208 		fmt = ARM_64_LPAE_S2;
2209 		finalise_stage_fn = arm_smmu_domain_finalise_s2;
2210 		break;
2211 	default:
2212 		return -EINVAL;
2213 	}
2214 
2215 	pgtbl_cfg = (struct io_pgtable_cfg) {
2216 		.pgsize_bitmap	= smmu->pgsize_bitmap,
2217 		.ias		= ias,
2218 		.oas		= oas,
2219 		.coherent_walk	= smmu->features & ARM_SMMU_FEAT_COHERENCY,
2220 		.tlb		= &arm_smmu_flush_ops,
2221 		.iommu_dev	= smmu->dev,
2222 	};
2223 
2224 	pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
2225 	if (!pgtbl_ops)
2226 		return -ENOMEM;
2227 
2228 	domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
2229 	domain->geometry.aperture_end = (1UL << pgtbl_cfg.ias) - 1;
2230 	domain->geometry.force_aperture = true;
2231 
2232 	ret = finalise_stage_fn(smmu_domain, master, &pgtbl_cfg);
2233 	if (ret < 0) {
2234 		free_io_pgtable_ops(pgtbl_ops);
2235 		return ret;
2236 	}
2237 
2238 	smmu_domain->pgtbl_ops = pgtbl_ops;
2239 	return 0;
2240 }
2241 
2242 static __le64 *arm_smmu_get_step_for_sid(struct arm_smmu_device *smmu, u32 sid)
2243 {
2244 	__le64 *step;
2245 	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2246 
2247 	if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
2248 		struct arm_smmu_strtab_l1_desc *l1_desc;
2249 		int idx;
2250 
2251 		/* Two-level walk */
2252 		idx = (sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS;
2253 		l1_desc = &cfg->l1_desc[idx];
2254 		idx = (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS;
2255 		step = &l1_desc->l2ptr[idx];
2256 	} else {
2257 		/* Simple linear lookup */
2258 		step = &cfg->strtab[sid * STRTAB_STE_DWORDS];
2259 	}
2260 
2261 	return step;
2262 }
2263 
2264 static void arm_smmu_install_ste_for_dev(struct arm_smmu_master *master)
2265 {
2266 	int i, j;
2267 	struct arm_smmu_device *smmu = master->smmu;
2268 
2269 	for (i = 0; i < master->num_streams; ++i) {
2270 		u32 sid = master->streams[i].id;
2271 		__le64 *step = arm_smmu_get_step_for_sid(smmu, sid);
2272 
2273 		/* Bridged PCI devices may end up with duplicated IDs */
2274 		for (j = 0; j < i; j++)
2275 			if (master->streams[j].id == sid)
2276 				break;
2277 		if (j < i)
2278 			continue;
2279 
2280 		arm_smmu_write_strtab_ent(master, sid, step);
2281 	}
2282 }
2283 
2284 static bool arm_smmu_ats_supported(struct arm_smmu_master *master)
2285 {
2286 	struct device *dev = master->dev;
2287 	struct arm_smmu_device *smmu = master->smmu;
2288 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2289 
2290 	if (!(smmu->features & ARM_SMMU_FEAT_ATS))
2291 		return false;
2292 
2293 	if (!(fwspec->flags & IOMMU_FWSPEC_PCI_RC_ATS))
2294 		return false;
2295 
2296 	return dev_is_pci(dev) && pci_ats_supported(to_pci_dev(dev));
2297 }
2298 
2299 static void arm_smmu_enable_ats(struct arm_smmu_master *master)
2300 {
2301 	size_t stu;
2302 	struct pci_dev *pdev;
2303 	struct arm_smmu_device *smmu = master->smmu;
2304 	struct arm_smmu_domain *smmu_domain = master->domain;
2305 
2306 	/* Don't enable ATS at the endpoint if it's not enabled in the STE */
2307 	if (!master->ats_enabled)
2308 		return;
2309 
2310 	/* Smallest Translation Unit: log2 of the smallest supported granule */
2311 	stu = __ffs(smmu->pgsize_bitmap);
2312 	pdev = to_pci_dev(master->dev);
2313 
2314 	atomic_inc(&smmu_domain->nr_ats_masters);
2315 	arm_smmu_atc_inv_domain(smmu_domain, IOMMU_NO_PASID, 0, 0);
2316 	if (pci_enable_ats(pdev, stu))
2317 		dev_err(master->dev, "Failed to enable ATS (STU %zu)\n", stu);
2318 }
2319 
2320 static void arm_smmu_disable_ats(struct arm_smmu_master *master)
2321 {
2322 	struct arm_smmu_domain *smmu_domain = master->domain;
2323 
2324 	if (!master->ats_enabled)
2325 		return;
2326 
2327 	pci_disable_ats(to_pci_dev(master->dev));
2328 	/*
2329 	 * Ensure ATS is disabled at the endpoint before we issue the
2330 	 * ATC invalidation via the SMMU.
2331 	 */
2332 	wmb();
2333 	arm_smmu_atc_inv_master(master);
2334 	atomic_dec(&smmu_domain->nr_ats_masters);
2335 }
2336 
2337 static int arm_smmu_enable_pasid(struct arm_smmu_master *master)
2338 {
2339 	int ret;
2340 	int features;
2341 	int num_pasids;
2342 	struct pci_dev *pdev;
2343 
2344 	if (!dev_is_pci(master->dev))
2345 		return -ENODEV;
2346 
2347 	pdev = to_pci_dev(master->dev);
2348 
2349 	features = pci_pasid_features(pdev);
2350 	if (features < 0)
2351 		return features;
2352 
2353 	num_pasids = pci_max_pasids(pdev);
2354 	if (num_pasids <= 0)
2355 		return num_pasids;
2356 
2357 	ret = pci_enable_pasid(pdev, features);
2358 	if (ret) {
2359 		dev_err(&pdev->dev, "Failed to enable PASID\n");
2360 		return ret;
2361 	}
2362 
2363 	master->ssid_bits = min_t(u8, ilog2(num_pasids),
2364 				  master->smmu->ssid_bits);
2365 	return 0;
2366 }
2367 
2368 static void arm_smmu_disable_pasid(struct arm_smmu_master *master)
2369 {
2370 	struct pci_dev *pdev;
2371 
2372 	if (!dev_is_pci(master->dev))
2373 		return;
2374 
2375 	pdev = to_pci_dev(master->dev);
2376 
2377 	if (!pdev->pasid_enabled)
2378 		return;
2379 
2380 	master->ssid_bits = 0;
2381 	pci_disable_pasid(pdev);
2382 }
2383 
2384 static void arm_smmu_detach_dev(struct arm_smmu_master *master)
2385 {
2386 	unsigned long flags;
2387 	struct arm_smmu_domain *smmu_domain = master->domain;
2388 
2389 	if (!smmu_domain)
2390 		return;
2391 
2392 	arm_smmu_disable_ats(master);
2393 
2394 	spin_lock_irqsave(&smmu_domain->devices_lock, flags);
2395 	list_del(&master->domain_head);
2396 	spin_unlock_irqrestore(&smmu_domain->devices_lock, flags);
2397 
2398 	master->domain = NULL;
2399 	master->ats_enabled = false;
2400 	arm_smmu_install_ste_for_dev(master);
2401 }
2402 
2403 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
2404 {
2405 	int ret = 0;
2406 	unsigned long flags;
2407 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2408 	struct arm_smmu_device *smmu;
2409 	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
2410 	struct arm_smmu_master *master;
2411 
2412 	if (!fwspec)
2413 		return -ENOENT;
2414 
2415 	master = dev_iommu_priv_get(dev);
2416 	smmu = master->smmu;
2417 
2418 	/*
2419 	 * Checking that SVA is disabled ensures that this device isn't bound to
2420 	 * any mm, and can be safely detached from its old domain. Bonds cannot
2421 	 * be removed concurrently since we're holding the group mutex.
2422 	 */
2423 	if (arm_smmu_master_sva_enabled(master)) {
2424 		dev_err(dev, "cannot attach - SVA enabled\n");
2425 		return -EBUSY;
2426 	}
2427 
2428 	arm_smmu_detach_dev(master);
2429 
2430 	mutex_lock(&smmu_domain->init_mutex);
2431 
2432 	if (!smmu_domain->smmu) {
2433 		smmu_domain->smmu = smmu;
2434 		ret = arm_smmu_domain_finalise(domain, master);
2435 		if (ret) {
2436 			smmu_domain->smmu = NULL;
2437 			goto out_unlock;
2438 		}
2439 	} else if (smmu_domain->smmu != smmu) {
2440 		ret = -EINVAL;
2441 		goto out_unlock;
2442 	} else if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1 &&
2443 		   master->ssid_bits != smmu_domain->s1_cfg.s1cdmax) {
2444 		ret = -EINVAL;
2445 		goto out_unlock;
2446 	} else if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1 &&
2447 		   smmu_domain->stall_enabled != master->stall_enabled) {
2448 		ret = -EINVAL;
2449 		goto out_unlock;
2450 	}
2451 
2452 	master->domain = smmu_domain;
2453 
2454 	/*
2455 	 * The SMMU does not support enabling ATS with bypass. When the STE is
2456 	 * in bypass (STE.Config[2:0] == 0b100), ATS Translation Requests and
2457 	 * Translated transactions are denied as though ATS is disabled for the
2458 	 * stream (STE.EATS == 0b00), causing F_BAD_ATS_TREQ and
2459 	 * F_TRANSL_FORBIDDEN events (IHI0070Ea 5.2 Stream Table Entry).
2460 	 */
2461 	if (smmu_domain->stage != ARM_SMMU_DOMAIN_BYPASS)
2462 		master->ats_enabled = arm_smmu_ats_supported(master);
2463 
2464 	arm_smmu_install_ste_for_dev(master);
2465 
2466 	spin_lock_irqsave(&smmu_domain->devices_lock, flags);
2467 	list_add(&master->domain_head, &smmu_domain->devices);
2468 	spin_unlock_irqrestore(&smmu_domain->devices_lock, flags);
2469 
2470 	arm_smmu_enable_ats(master);
2471 
2472 out_unlock:
2473 	mutex_unlock(&smmu_domain->init_mutex);
2474 	return ret;
2475 }
2476 
2477 static int arm_smmu_map_pages(struct iommu_domain *domain, unsigned long iova,
2478 			      phys_addr_t paddr, size_t pgsize, size_t pgcount,
2479 			      int prot, gfp_t gfp, size_t *mapped)
2480 {
2481 	struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;
2482 
2483 	if (!ops)
2484 		return -ENODEV;
2485 
2486 	return ops->map_pages(ops, iova, paddr, pgsize, pgcount, prot, gfp, mapped);
2487 }
2488 
2489 static size_t arm_smmu_unmap_pages(struct iommu_domain *domain, unsigned long iova,
2490 				   size_t pgsize, size_t pgcount,
2491 				   struct iommu_iotlb_gather *gather)
2492 {
2493 	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
2494 	struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
2495 
2496 	if (!ops)
2497 		return 0;
2498 
2499 	return ops->unmap_pages(ops, iova, pgsize, pgcount, gather);
2500 }
2501 
2502 static void arm_smmu_flush_iotlb_all(struct iommu_domain *domain)
2503 {
2504 	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
2505 
2506 	if (smmu_domain->smmu)
2507 		arm_smmu_tlb_inv_context(smmu_domain);
2508 }
2509 
2510 static void arm_smmu_iotlb_sync(struct iommu_domain *domain,
2511 				struct iommu_iotlb_gather *gather)
2512 {
2513 	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
2514 
2515 	if (!gather->pgsize)
2516 		return;
2517 
2518 	arm_smmu_tlb_inv_range_domain(gather->start,
2519 				      gather->end - gather->start + 1,
2520 				      gather->pgsize, true, smmu_domain);
2521 }
2522 
2523 static phys_addr_t
2524 arm_smmu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
2525 {
2526 	struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;
2527 
2528 	if (!ops)
2529 		return 0;
2530 
2531 	return ops->iova_to_phys(ops, iova);
2532 }
2533 
2534 static struct platform_driver arm_smmu_driver;
2535 
2536 static
2537 struct arm_smmu_device *arm_smmu_get_by_fwnode(struct fwnode_handle *fwnode)
2538 {
2539 	struct device *dev = driver_find_device_by_fwnode(&arm_smmu_driver.driver,
2540 							  fwnode);
2541 	put_device(dev);
2542 	return dev ? dev_get_drvdata(dev) : NULL;
2543 }
2544 
2545 static bool arm_smmu_sid_in_range(struct arm_smmu_device *smmu, u32 sid)
2546 {
2547 	unsigned long limit = smmu->strtab_cfg.num_l1_ents;
2548 
2549 	if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
2550 		limit *= 1UL << STRTAB_SPLIT;
2551 
2552 	return sid < limit;
2553 }
2554 
2555 static int arm_smmu_init_sid_strtab(struct arm_smmu_device *smmu, u32 sid)
2556 {
2557 	/* Check the SIDs are in range of the SMMU and our stream table */
2558 	if (!arm_smmu_sid_in_range(smmu, sid))
2559 		return -ERANGE;
2560 
2561 	/* Ensure l2 strtab is initialised */
2562 	if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
2563 		return arm_smmu_init_l2_strtab(smmu, sid);
2564 
2565 	return 0;
2566 }
2567 
2568 static int arm_smmu_insert_master(struct arm_smmu_device *smmu,
2569 				  struct arm_smmu_master *master)
2570 {
2571 	int i;
2572 	int ret = 0;
2573 	struct arm_smmu_stream *new_stream, *cur_stream;
2574 	struct rb_node **new_node, *parent_node = NULL;
2575 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(master->dev);
2576 
2577 	master->streams = kcalloc(fwspec->num_ids, sizeof(*master->streams),
2578 				  GFP_KERNEL);
2579 	if (!master->streams)
2580 		return -ENOMEM;
2581 	master->num_streams = fwspec->num_ids;
2582 
2583 	mutex_lock(&smmu->streams_mutex);
2584 	for (i = 0; i < fwspec->num_ids; i++) {
2585 		u32 sid = fwspec->ids[i];
2586 
2587 		new_stream = &master->streams[i];
2588 		new_stream->id = sid;
2589 		new_stream->master = master;
2590 
2591 		ret = arm_smmu_init_sid_strtab(smmu, sid);
2592 		if (ret)
2593 			break;
2594 
2595 		/* Insert into SID tree */
2596 		new_node = &(smmu->streams.rb_node);
2597 		while (*new_node) {
2598 			cur_stream = rb_entry(*new_node, struct arm_smmu_stream,
2599 					      node);
2600 			parent_node = *new_node;
2601 			if (cur_stream->id > new_stream->id) {
2602 				new_node = &((*new_node)->rb_left);
2603 			} else if (cur_stream->id < new_stream->id) {
2604 				new_node = &((*new_node)->rb_right);
2605 			} else {
2606 				dev_warn(master->dev,
2607 					 "stream %u already in tree\n",
2608 					 cur_stream->id);
2609 				ret = -EINVAL;
2610 				break;
2611 			}
2612 		}
2613 		if (ret)
2614 			break;
2615 
2616 		rb_link_node(&new_stream->node, parent_node, new_node);
2617 		rb_insert_color(&new_stream->node, &smmu->streams);
2618 	}
2619 
2620 	if (ret) {
2621 		for (i--; i >= 0; i--)
2622 			rb_erase(&master->streams[i].node, &smmu->streams);
2623 		kfree(master->streams);
2624 	}
2625 	mutex_unlock(&smmu->streams_mutex);
2626 
2627 	return ret;
2628 }
2629 
2630 static void arm_smmu_remove_master(struct arm_smmu_master *master)
2631 {
2632 	int i;
2633 	struct arm_smmu_device *smmu = master->smmu;
2634 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(master->dev);
2635 
2636 	if (!smmu || !master->streams)
2637 		return;
2638 
2639 	mutex_lock(&smmu->streams_mutex);
2640 	for (i = 0; i < fwspec->num_ids; i++)
2641 		rb_erase(&master->streams[i].node, &smmu->streams);
2642 	mutex_unlock(&smmu->streams_mutex);
2643 
2644 	kfree(master->streams);
2645 }
2646 
2647 static struct iommu_ops arm_smmu_ops;
2648 
2649 static struct iommu_device *arm_smmu_probe_device(struct device *dev)
2650 {
2651 	int ret;
2652 	struct arm_smmu_device *smmu;
2653 	struct arm_smmu_master *master;
2654 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2655 
2656 	if (!fwspec || fwspec->ops != &arm_smmu_ops)
2657 		return ERR_PTR(-ENODEV);
2658 
2659 	if (WARN_ON_ONCE(dev_iommu_priv_get(dev)))
2660 		return ERR_PTR(-EBUSY);
2661 
2662 	smmu = arm_smmu_get_by_fwnode(fwspec->iommu_fwnode);
2663 	if (!smmu)
2664 		return ERR_PTR(-ENODEV);
2665 
2666 	master = kzalloc(sizeof(*master), GFP_KERNEL);
2667 	if (!master)
2668 		return ERR_PTR(-ENOMEM);
2669 
2670 	master->dev = dev;
2671 	master->smmu = smmu;
2672 	INIT_LIST_HEAD(&master->bonds);
2673 	dev_iommu_priv_set(dev, master);
2674 
2675 	ret = arm_smmu_insert_master(smmu, master);
2676 	if (ret)
2677 		goto err_free_master;
2678 
2679 	device_property_read_u32(dev, "pasid-num-bits", &master->ssid_bits);
2680 	master->ssid_bits = min(smmu->ssid_bits, master->ssid_bits);
2681 
2682 	/*
2683 	 * Note that PASID must be enabled before, and disabled after ATS:
2684 	 * PCI Express Base 4.0r1.0 - 10.5.1.3 ATS Control Register
2685 	 *
2686 	 *   Behavior is undefined if this bit is Set and the value of the PASID
2687 	 *   Enable, Execute Requested Enable, or Privileged Mode Requested bits
2688 	 *   are changed.
2689 	 */
2690 	arm_smmu_enable_pasid(master);
2691 
2692 	if (!(smmu->features & ARM_SMMU_FEAT_2_LVL_CDTAB))
2693 		master->ssid_bits = min_t(u8, master->ssid_bits,
2694 					  CTXDESC_LINEAR_CDMAX);
2695 
2696 	if ((smmu->features & ARM_SMMU_FEAT_STALLS &&
2697 	     device_property_read_bool(dev, "dma-can-stall")) ||
2698 	    smmu->features & ARM_SMMU_FEAT_STALL_FORCE)
2699 		master->stall_enabled = true;
2700 
2701 	return &smmu->iommu;
2702 
2703 err_free_master:
2704 	kfree(master);
2705 	dev_iommu_priv_set(dev, NULL);
2706 	return ERR_PTR(ret);
2707 }
2708 
2709 static void arm_smmu_release_device(struct device *dev)
2710 {
2711 	struct arm_smmu_master *master = dev_iommu_priv_get(dev);
2712 
2713 	if (WARN_ON(arm_smmu_master_sva_enabled(master)))
2714 		iopf_queue_remove_device(master->smmu->evtq.iopf, dev);
2715 	arm_smmu_detach_dev(master);
2716 	arm_smmu_disable_pasid(master);
2717 	arm_smmu_remove_master(master);
2718 	kfree(master);
2719 }
2720 
2721 static struct iommu_group *arm_smmu_device_group(struct device *dev)
2722 {
2723 	struct iommu_group *group;
2724 
2725 	/*
2726 	 * We don't support devices sharing stream IDs other than PCI RID
2727 	 * aliases, since the necessary ID-to-device lookup becomes rather
2728 	 * impractical given a potential sparse 32-bit stream ID space.
2729 	 */
2730 	if (dev_is_pci(dev))
2731 		group = pci_device_group(dev);
2732 	else
2733 		group = generic_device_group(dev);
2734 
2735 	return group;
2736 }
2737 
2738 static int arm_smmu_enable_nesting(struct iommu_domain *domain)
2739 {
2740 	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
2741 	int ret = 0;
2742 
2743 	mutex_lock(&smmu_domain->init_mutex);
2744 	if (smmu_domain->smmu)
2745 		ret = -EPERM;
2746 	else
2747 		smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
2748 	mutex_unlock(&smmu_domain->init_mutex);
2749 
2750 	return ret;
2751 }
2752 
2753 static int arm_smmu_of_xlate(struct device *dev, struct of_phandle_args *args)
2754 {
2755 	return iommu_fwspec_add_ids(dev, args->args, 1);
2756 }
2757 
2758 static void arm_smmu_get_resv_regions(struct device *dev,
2759 				      struct list_head *head)
2760 {
2761 	struct iommu_resv_region *region;
2762 	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
2763 
2764 	region = iommu_alloc_resv_region(MSI_IOVA_BASE, MSI_IOVA_LENGTH,
2765 					 prot, IOMMU_RESV_SW_MSI, GFP_KERNEL);
2766 	if (!region)
2767 		return;
2768 
2769 	list_add_tail(&region->list, head);
2770 
2771 	iommu_dma_get_resv_regions(dev, head);
2772 }
2773 
2774 static int arm_smmu_dev_enable_feature(struct device *dev,
2775 				       enum iommu_dev_features feat)
2776 {
2777 	struct arm_smmu_master *master = dev_iommu_priv_get(dev);
2778 
2779 	if (!master)
2780 		return -ENODEV;
2781 
2782 	switch (feat) {
2783 	case IOMMU_DEV_FEAT_IOPF:
2784 		if (!arm_smmu_master_iopf_supported(master))
2785 			return -EINVAL;
2786 		if (master->iopf_enabled)
2787 			return -EBUSY;
2788 		master->iopf_enabled = true;
2789 		return 0;
2790 	case IOMMU_DEV_FEAT_SVA:
2791 		if (!arm_smmu_master_sva_supported(master))
2792 			return -EINVAL;
2793 		if (arm_smmu_master_sva_enabled(master))
2794 			return -EBUSY;
2795 		return arm_smmu_master_enable_sva(master);
2796 	default:
2797 		return -EINVAL;
2798 	}
2799 }
2800 
2801 static int arm_smmu_dev_disable_feature(struct device *dev,
2802 					enum iommu_dev_features feat)
2803 {
2804 	struct arm_smmu_master *master = dev_iommu_priv_get(dev);
2805 
2806 	if (!master)
2807 		return -EINVAL;
2808 
2809 	switch (feat) {
2810 	case IOMMU_DEV_FEAT_IOPF:
2811 		if (!master->iopf_enabled)
2812 			return -EINVAL;
2813 		if (master->sva_enabled)
2814 			return -EBUSY;
2815 		master->iopf_enabled = false;
2816 		return 0;
2817 	case IOMMU_DEV_FEAT_SVA:
2818 		if (!arm_smmu_master_sva_enabled(master))
2819 			return -EINVAL;
2820 		return arm_smmu_master_disable_sva(master);
2821 	default:
2822 		return -EINVAL;
2823 	}
2824 }
2825 
2826 /*
2827  * HiSilicon PCIe tune and trace device can be used to trace TLP headers on the
2828  * PCIe link and save the data to memory by DMA. The hardware is restricted to
2829  * use identity mapping only.
2830  */
2831 #define IS_HISI_PTT_DEVICE(pdev)	((pdev)->vendor == PCI_VENDOR_ID_HUAWEI && \
2832 					 (pdev)->device == 0xa12e)
2833 
2834 static int arm_smmu_def_domain_type(struct device *dev)
2835 {
2836 	if (dev_is_pci(dev)) {
2837 		struct pci_dev *pdev = to_pci_dev(dev);
2838 
2839 		if (IS_HISI_PTT_DEVICE(pdev))
2840 			return IOMMU_DOMAIN_IDENTITY;
2841 	}
2842 
2843 	return 0;
2844 }
2845 
2846 static void arm_smmu_remove_dev_pasid(struct device *dev, ioasid_t pasid)
2847 {
2848 	struct iommu_domain *domain;
2849 
2850 	domain = iommu_get_domain_for_dev_pasid(dev, pasid, IOMMU_DOMAIN_SVA);
2851 	if (WARN_ON(IS_ERR(domain)) || !domain)
2852 		return;
2853 
2854 	arm_smmu_sva_remove_dev_pasid(domain, dev, pasid);
2855 }
2856 
2857 static struct iommu_ops arm_smmu_ops = {
2858 	.capable		= arm_smmu_capable,
2859 	.domain_alloc		= arm_smmu_domain_alloc,
2860 	.probe_device		= arm_smmu_probe_device,
2861 	.release_device		= arm_smmu_release_device,
2862 	.device_group		= arm_smmu_device_group,
2863 	.of_xlate		= arm_smmu_of_xlate,
2864 	.get_resv_regions	= arm_smmu_get_resv_regions,
2865 	.remove_dev_pasid	= arm_smmu_remove_dev_pasid,
2866 	.dev_enable_feat	= arm_smmu_dev_enable_feature,
2867 	.dev_disable_feat	= arm_smmu_dev_disable_feature,
2868 	.page_response		= arm_smmu_page_response,
2869 	.def_domain_type	= arm_smmu_def_domain_type,
2870 	.pgsize_bitmap		= -1UL, /* Restricted during device attach */
2871 	.owner			= THIS_MODULE,
2872 	.default_domain_ops = &(const struct iommu_domain_ops) {
2873 		.attach_dev		= arm_smmu_attach_dev,
2874 		.map_pages		= arm_smmu_map_pages,
2875 		.unmap_pages		= arm_smmu_unmap_pages,
2876 		.flush_iotlb_all	= arm_smmu_flush_iotlb_all,
2877 		.iotlb_sync		= arm_smmu_iotlb_sync,
2878 		.iova_to_phys		= arm_smmu_iova_to_phys,
2879 		.enable_nesting		= arm_smmu_enable_nesting,
2880 		.free			= arm_smmu_domain_free,
2881 	}
2882 };
2883 
2884 /* Probing and initialisation functions */
2885 static int arm_smmu_init_one_queue(struct arm_smmu_device *smmu,
2886 				   struct arm_smmu_queue *q,
2887 				   void __iomem *page,
2888 				   unsigned long prod_off,
2889 				   unsigned long cons_off,
2890 				   size_t dwords, const char *name)
2891 {
2892 	size_t qsz;
2893 
2894 	do {
2895 		qsz = ((1 << q->llq.max_n_shift) * dwords) << 3;
2896 		q->base = dmam_alloc_coherent(smmu->dev, qsz, &q->base_dma,
2897 					      GFP_KERNEL);
2898 		if (q->base || qsz < PAGE_SIZE)
2899 			break;
2900 
2901 		q->llq.max_n_shift--;
2902 	} while (1);
2903 
2904 	if (!q->base) {
2905 		dev_err(smmu->dev,
2906 			"failed to allocate queue (0x%zx bytes) for %s\n",
2907 			qsz, name);
2908 		return -ENOMEM;
2909 	}
2910 
2911 	if (!WARN_ON(q->base_dma & (qsz - 1))) {
2912 		dev_info(smmu->dev, "allocated %u entries for %s\n",
2913 			 1 << q->llq.max_n_shift, name);
2914 	}
2915 
2916 	q->prod_reg	= page + prod_off;
2917 	q->cons_reg	= page + cons_off;
2918 	q->ent_dwords	= dwords;
2919 
2920 	q->q_base  = Q_BASE_RWA;
2921 	q->q_base |= q->base_dma & Q_BASE_ADDR_MASK;
2922 	q->q_base |= FIELD_PREP(Q_BASE_LOG2SIZE, q->llq.max_n_shift);
2923 
2924 	q->llq.prod = q->llq.cons = 0;
2925 	return 0;
2926 }
2927 
2928 static int arm_smmu_cmdq_init(struct arm_smmu_device *smmu)
2929 {
2930 	struct arm_smmu_cmdq *cmdq = &smmu->cmdq;
2931 	unsigned int nents = 1 << cmdq->q.llq.max_n_shift;
2932 
2933 	atomic_set(&cmdq->owner_prod, 0);
2934 	atomic_set(&cmdq->lock, 0);
2935 
2936 	cmdq->valid_map = (atomic_long_t *)devm_bitmap_zalloc(smmu->dev, nents,
2937 							      GFP_KERNEL);
2938 	if (!cmdq->valid_map)
2939 		return -ENOMEM;
2940 
2941 	return 0;
2942 }
2943 
2944 static int arm_smmu_init_queues(struct arm_smmu_device *smmu)
2945 {
2946 	int ret;
2947 
2948 	/* cmdq */
2949 	ret = arm_smmu_init_one_queue(smmu, &smmu->cmdq.q, smmu->base,
2950 				      ARM_SMMU_CMDQ_PROD, ARM_SMMU_CMDQ_CONS,
2951 				      CMDQ_ENT_DWORDS, "cmdq");
2952 	if (ret)
2953 		return ret;
2954 
2955 	ret = arm_smmu_cmdq_init(smmu);
2956 	if (ret)
2957 		return ret;
2958 
2959 	/* evtq */
2960 	ret = arm_smmu_init_one_queue(smmu, &smmu->evtq.q, smmu->page1,
2961 				      ARM_SMMU_EVTQ_PROD, ARM_SMMU_EVTQ_CONS,
2962 				      EVTQ_ENT_DWORDS, "evtq");
2963 	if (ret)
2964 		return ret;
2965 
2966 	if ((smmu->features & ARM_SMMU_FEAT_SVA) &&
2967 	    (smmu->features & ARM_SMMU_FEAT_STALLS)) {
2968 		smmu->evtq.iopf = iopf_queue_alloc(dev_name(smmu->dev));
2969 		if (!smmu->evtq.iopf)
2970 			return -ENOMEM;
2971 	}
2972 
2973 	/* priq */
2974 	if (!(smmu->features & ARM_SMMU_FEAT_PRI))
2975 		return 0;
2976 
2977 	return arm_smmu_init_one_queue(smmu, &smmu->priq.q, smmu->page1,
2978 				       ARM_SMMU_PRIQ_PROD, ARM_SMMU_PRIQ_CONS,
2979 				       PRIQ_ENT_DWORDS, "priq");
2980 }
2981 
2982 static int arm_smmu_init_l1_strtab(struct arm_smmu_device *smmu)
2983 {
2984 	unsigned int i;
2985 	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2986 	void *strtab = smmu->strtab_cfg.strtab;
2987 
2988 	cfg->l1_desc = devm_kcalloc(smmu->dev, cfg->num_l1_ents,
2989 				    sizeof(*cfg->l1_desc), GFP_KERNEL);
2990 	if (!cfg->l1_desc)
2991 		return -ENOMEM;
2992 
2993 	for (i = 0; i < cfg->num_l1_ents; ++i) {
2994 		arm_smmu_write_strtab_l1_desc(strtab, &cfg->l1_desc[i]);
2995 		strtab += STRTAB_L1_DESC_DWORDS << 3;
2996 	}
2997 
2998 	return 0;
2999 }
3000 
3001 static int arm_smmu_init_strtab_2lvl(struct arm_smmu_device *smmu)
3002 {
3003 	void *strtab;
3004 	u64 reg;
3005 	u32 size, l1size;
3006 	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
3007 
3008 	/* Calculate the L1 size, capped to the SIDSIZE. */
3009 	size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3);
3010 	size = min(size, smmu->sid_bits - STRTAB_SPLIT);
3011 	cfg->num_l1_ents = 1 << size;
3012 
3013 	size += STRTAB_SPLIT;
3014 	if (size < smmu->sid_bits)
3015 		dev_warn(smmu->dev,
3016 			 "2-level strtab only covers %u/%u bits of SID\n",
3017 			 size, smmu->sid_bits);
3018 
3019 	l1size = cfg->num_l1_ents * (STRTAB_L1_DESC_DWORDS << 3);
3020 	strtab = dmam_alloc_coherent(smmu->dev, l1size, &cfg->strtab_dma,
3021 				     GFP_KERNEL);
3022 	if (!strtab) {
3023 		dev_err(smmu->dev,
3024 			"failed to allocate l1 stream table (%u bytes)\n",
3025 			l1size);
3026 		return -ENOMEM;
3027 	}
3028 	cfg->strtab = strtab;
3029 
3030 	/* Configure strtab_base_cfg for 2 levels */
3031 	reg  = FIELD_PREP(STRTAB_BASE_CFG_FMT, STRTAB_BASE_CFG_FMT_2LVL);
3032 	reg |= FIELD_PREP(STRTAB_BASE_CFG_LOG2SIZE, size);
3033 	reg |= FIELD_PREP(STRTAB_BASE_CFG_SPLIT, STRTAB_SPLIT);
3034 	cfg->strtab_base_cfg = reg;
3035 
3036 	return arm_smmu_init_l1_strtab(smmu);
3037 }
3038 
3039 static int arm_smmu_init_strtab_linear(struct arm_smmu_device *smmu)
3040 {
3041 	void *strtab;
3042 	u64 reg;
3043 	u32 size;
3044 	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
3045 
3046 	size = (1 << smmu->sid_bits) * (STRTAB_STE_DWORDS << 3);
3047 	strtab = dmam_alloc_coherent(smmu->dev, size, &cfg->strtab_dma,
3048 				     GFP_KERNEL);
3049 	if (!strtab) {
3050 		dev_err(smmu->dev,
3051 			"failed to allocate linear stream table (%u bytes)\n",
3052 			size);
3053 		return -ENOMEM;
3054 	}
3055 	cfg->strtab = strtab;
3056 	cfg->num_l1_ents = 1 << smmu->sid_bits;
3057 
3058 	/* Configure strtab_base_cfg for a linear table covering all SIDs */
3059 	reg  = FIELD_PREP(STRTAB_BASE_CFG_FMT, STRTAB_BASE_CFG_FMT_LINEAR);
3060 	reg |= FIELD_PREP(STRTAB_BASE_CFG_LOG2SIZE, smmu->sid_bits);
3061 	cfg->strtab_base_cfg = reg;
3062 
3063 	arm_smmu_init_bypass_stes(strtab, cfg->num_l1_ents, false);
3064 	return 0;
3065 }
3066 
3067 static int arm_smmu_init_strtab(struct arm_smmu_device *smmu)
3068 {
3069 	u64 reg;
3070 	int ret;
3071 
3072 	if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
3073 		ret = arm_smmu_init_strtab_2lvl(smmu);
3074 	else
3075 		ret = arm_smmu_init_strtab_linear(smmu);
3076 
3077 	if (ret)
3078 		return ret;
3079 
3080 	/* Set the strtab base address */
3081 	reg  = smmu->strtab_cfg.strtab_dma & STRTAB_BASE_ADDR_MASK;
3082 	reg |= STRTAB_BASE_RA;
3083 	smmu->strtab_cfg.strtab_base = reg;
3084 
3085 	ida_init(&smmu->vmid_map);
3086 
3087 	return 0;
3088 }
3089 
3090 static int arm_smmu_init_structures(struct arm_smmu_device *smmu)
3091 {
3092 	int ret;
3093 
3094 	mutex_init(&smmu->streams_mutex);
3095 	smmu->streams = RB_ROOT;
3096 
3097 	ret = arm_smmu_init_queues(smmu);
3098 	if (ret)
3099 		return ret;
3100 
3101 	return arm_smmu_init_strtab(smmu);
3102 }
3103 
3104 static int arm_smmu_write_reg_sync(struct arm_smmu_device *smmu, u32 val,
3105 				   unsigned int reg_off, unsigned int ack_off)
3106 {
3107 	u32 reg;
3108 
3109 	writel_relaxed(val, smmu->base + reg_off);
3110 	return readl_relaxed_poll_timeout(smmu->base + ack_off, reg, reg == val,
3111 					  1, ARM_SMMU_POLL_TIMEOUT_US);
3112 }
3113 
3114 /* GBPA is "special" */
3115 static int arm_smmu_update_gbpa(struct arm_smmu_device *smmu, u32 set, u32 clr)
3116 {
3117 	int ret;
3118 	u32 reg, __iomem *gbpa = smmu->base + ARM_SMMU_GBPA;
3119 
3120 	ret = readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
3121 					 1, ARM_SMMU_POLL_TIMEOUT_US);
3122 	if (ret)
3123 		return ret;
3124 
3125 	reg &= ~clr;
3126 	reg |= set;
3127 	writel_relaxed(reg | GBPA_UPDATE, gbpa);
3128 	ret = readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
3129 					 1, ARM_SMMU_POLL_TIMEOUT_US);
3130 
3131 	if (ret)
3132 		dev_err(smmu->dev, "GBPA not responding to update\n");
3133 	return ret;
3134 }
3135 
3136 static void arm_smmu_free_msis(void *data)
3137 {
3138 	struct device *dev = data;
3139 	platform_msi_domain_free_irqs(dev);
3140 }
3141 
3142 static void arm_smmu_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
3143 {
3144 	phys_addr_t doorbell;
3145 	struct device *dev = msi_desc_to_dev(desc);
3146 	struct arm_smmu_device *smmu = dev_get_drvdata(dev);
3147 	phys_addr_t *cfg = arm_smmu_msi_cfg[desc->msi_index];
3148 
3149 	doorbell = (((u64)msg->address_hi) << 32) | msg->address_lo;
3150 	doorbell &= MSI_CFG0_ADDR_MASK;
3151 
3152 	writeq_relaxed(doorbell, smmu->base + cfg[0]);
3153 	writel_relaxed(msg->data, smmu->base + cfg[1]);
3154 	writel_relaxed(ARM_SMMU_MEMATTR_DEVICE_nGnRE, smmu->base + cfg[2]);
3155 }
3156 
3157 static void arm_smmu_setup_msis(struct arm_smmu_device *smmu)
3158 {
3159 	int ret, nvec = ARM_SMMU_MAX_MSIS;
3160 	struct device *dev = smmu->dev;
3161 
3162 	/* Clear the MSI address regs */
3163 	writeq_relaxed(0, smmu->base + ARM_SMMU_GERROR_IRQ_CFG0);
3164 	writeq_relaxed(0, smmu->base + ARM_SMMU_EVTQ_IRQ_CFG0);
3165 
3166 	if (smmu->features & ARM_SMMU_FEAT_PRI)
3167 		writeq_relaxed(0, smmu->base + ARM_SMMU_PRIQ_IRQ_CFG0);
3168 	else
3169 		nvec--;
3170 
3171 	if (!(smmu->features & ARM_SMMU_FEAT_MSI))
3172 		return;
3173 
3174 	if (!dev->msi.domain) {
3175 		dev_info(smmu->dev, "msi_domain absent - falling back to wired irqs\n");
3176 		return;
3177 	}
3178 
3179 	/* Allocate MSIs for evtq, gerror and priq. Ignore cmdq */
3180 	ret = platform_msi_domain_alloc_irqs(dev, nvec, arm_smmu_write_msi_msg);
3181 	if (ret) {
3182 		dev_warn(dev, "failed to allocate MSIs - falling back to wired irqs\n");
3183 		return;
3184 	}
3185 
3186 	smmu->evtq.q.irq = msi_get_virq(dev, EVTQ_MSI_INDEX);
3187 	smmu->gerr_irq = msi_get_virq(dev, GERROR_MSI_INDEX);
3188 	smmu->priq.q.irq = msi_get_virq(dev, PRIQ_MSI_INDEX);
3189 
3190 	/* Add callback to free MSIs on teardown */
3191 	devm_add_action(dev, arm_smmu_free_msis, dev);
3192 }
3193 
3194 static void arm_smmu_setup_unique_irqs(struct arm_smmu_device *smmu)
3195 {
3196 	int irq, ret;
3197 
3198 	arm_smmu_setup_msis(smmu);
3199 
3200 	/* Request interrupt lines */
3201 	irq = smmu->evtq.q.irq;
3202 	if (irq) {
3203 		ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
3204 						arm_smmu_evtq_thread,
3205 						IRQF_ONESHOT,
3206 						"arm-smmu-v3-evtq", smmu);
3207 		if (ret < 0)
3208 			dev_warn(smmu->dev, "failed to enable evtq irq\n");
3209 	} else {
3210 		dev_warn(smmu->dev, "no evtq irq - events will not be reported!\n");
3211 	}
3212 
3213 	irq = smmu->gerr_irq;
3214 	if (irq) {
3215 		ret = devm_request_irq(smmu->dev, irq, arm_smmu_gerror_handler,
3216 				       0, "arm-smmu-v3-gerror", smmu);
3217 		if (ret < 0)
3218 			dev_warn(smmu->dev, "failed to enable gerror irq\n");
3219 	} else {
3220 		dev_warn(smmu->dev, "no gerr irq - errors will not be reported!\n");
3221 	}
3222 
3223 	if (smmu->features & ARM_SMMU_FEAT_PRI) {
3224 		irq = smmu->priq.q.irq;
3225 		if (irq) {
3226 			ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
3227 							arm_smmu_priq_thread,
3228 							IRQF_ONESHOT,
3229 							"arm-smmu-v3-priq",
3230 							smmu);
3231 			if (ret < 0)
3232 				dev_warn(smmu->dev,
3233 					 "failed to enable priq irq\n");
3234 		} else {
3235 			dev_warn(smmu->dev, "no priq irq - PRI will be broken\n");
3236 		}
3237 	}
3238 }
3239 
3240 static int arm_smmu_setup_irqs(struct arm_smmu_device *smmu)
3241 {
3242 	int ret, irq;
3243 	u32 irqen_flags = IRQ_CTRL_EVTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN;
3244 
3245 	/* Disable IRQs first */
3246 	ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_IRQ_CTRL,
3247 				      ARM_SMMU_IRQ_CTRLACK);
3248 	if (ret) {
3249 		dev_err(smmu->dev, "failed to disable irqs\n");
3250 		return ret;
3251 	}
3252 
3253 	irq = smmu->combined_irq;
3254 	if (irq) {
3255 		/*
3256 		 * Cavium ThunderX2 implementation doesn't support unique irq
3257 		 * lines. Use a single irq line for all the SMMUv3 interrupts.
3258 		 */
3259 		ret = devm_request_threaded_irq(smmu->dev, irq,
3260 					arm_smmu_combined_irq_handler,
3261 					arm_smmu_combined_irq_thread,
3262 					IRQF_ONESHOT,
3263 					"arm-smmu-v3-combined-irq", smmu);
3264 		if (ret < 0)
3265 			dev_warn(smmu->dev, "failed to enable combined irq\n");
3266 	} else
3267 		arm_smmu_setup_unique_irqs(smmu);
3268 
3269 	if (smmu->features & ARM_SMMU_FEAT_PRI)
3270 		irqen_flags |= IRQ_CTRL_PRIQ_IRQEN;
3271 
3272 	/* Enable interrupt generation on the SMMU */
3273 	ret = arm_smmu_write_reg_sync(smmu, irqen_flags,
3274 				      ARM_SMMU_IRQ_CTRL, ARM_SMMU_IRQ_CTRLACK);
3275 	if (ret)
3276 		dev_warn(smmu->dev, "failed to enable irqs\n");
3277 
3278 	return 0;
3279 }
3280 
3281 static int arm_smmu_device_disable(struct arm_smmu_device *smmu)
3282 {
3283 	int ret;
3284 
3285 	ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_CR0, ARM_SMMU_CR0ACK);
3286 	if (ret)
3287 		dev_err(smmu->dev, "failed to clear cr0\n");
3288 
3289 	return ret;
3290 }
3291 
3292 static int arm_smmu_device_reset(struct arm_smmu_device *smmu, bool bypass)
3293 {
3294 	int ret;
3295 	u32 reg, enables;
3296 	struct arm_smmu_cmdq_ent cmd;
3297 
3298 	/* Clear CR0 and sync (disables SMMU and queue processing) */
3299 	reg = readl_relaxed(smmu->base + ARM_SMMU_CR0);
3300 	if (reg & CR0_SMMUEN) {
3301 		dev_warn(smmu->dev, "SMMU currently enabled! Resetting...\n");
3302 		WARN_ON(is_kdump_kernel() && !disable_bypass);
3303 		arm_smmu_update_gbpa(smmu, GBPA_ABORT, 0);
3304 	}
3305 
3306 	ret = arm_smmu_device_disable(smmu);
3307 	if (ret)
3308 		return ret;
3309 
3310 	/* CR1 (table and queue memory attributes) */
3311 	reg = FIELD_PREP(CR1_TABLE_SH, ARM_SMMU_SH_ISH) |
3312 	      FIELD_PREP(CR1_TABLE_OC, CR1_CACHE_WB) |
3313 	      FIELD_PREP(CR1_TABLE_IC, CR1_CACHE_WB) |
3314 	      FIELD_PREP(CR1_QUEUE_SH, ARM_SMMU_SH_ISH) |
3315 	      FIELD_PREP(CR1_QUEUE_OC, CR1_CACHE_WB) |
3316 	      FIELD_PREP(CR1_QUEUE_IC, CR1_CACHE_WB);
3317 	writel_relaxed(reg, smmu->base + ARM_SMMU_CR1);
3318 
3319 	/* CR2 (random crap) */
3320 	reg = CR2_PTM | CR2_RECINVSID;
3321 
3322 	if (smmu->features & ARM_SMMU_FEAT_E2H)
3323 		reg |= CR2_E2H;
3324 
3325 	writel_relaxed(reg, smmu->base + ARM_SMMU_CR2);
3326 
3327 	/* Stream table */
3328 	writeq_relaxed(smmu->strtab_cfg.strtab_base,
3329 		       smmu->base + ARM_SMMU_STRTAB_BASE);
3330 	writel_relaxed(smmu->strtab_cfg.strtab_base_cfg,
3331 		       smmu->base + ARM_SMMU_STRTAB_BASE_CFG);
3332 
3333 	/* Command queue */
3334 	writeq_relaxed(smmu->cmdq.q.q_base, smmu->base + ARM_SMMU_CMDQ_BASE);
3335 	writel_relaxed(smmu->cmdq.q.llq.prod, smmu->base + ARM_SMMU_CMDQ_PROD);
3336 	writel_relaxed(smmu->cmdq.q.llq.cons, smmu->base + ARM_SMMU_CMDQ_CONS);
3337 
3338 	enables = CR0_CMDQEN;
3339 	ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
3340 				      ARM_SMMU_CR0ACK);
3341 	if (ret) {
3342 		dev_err(smmu->dev, "failed to enable command queue\n");
3343 		return ret;
3344 	}
3345 
3346 	/* Invalidate any cached configuration */
3347 	cmd.opcode = CMDQ_OP_CFGI_ALL;
3348 	arm_smmu_cmdq_issue_cmd_with_sync(smmu, &cmd);
3349 
3350 	/* Invalidate any stale TLB entries */
3351 	if (smmu->features & ARM_SMMU_FEAT_HYP) {
3352 		cmd.opcode = CMDQ_OP_TLBI_EL2_ALL;
3353 		arm_smmu_cmdq_issue_cmd_with_sync(smmu, &cmd);
3354 	}
3355 
3356 	cmd.opcode = CMDQ_OP_TLBI_NSNH_ALL;
3357 	arm_smmu_cmdq_issue_cmd_with_sync(smmu, &cmd);
3358 
3359 	/* Event queue */
3360 	writeq_relaxed(smmu->evtq.q.q_base, smmu->base + ARM_SMMU_EVTQ_BASE);
3361 	writel_relaxed(smmu->evtq.q.llq.prod, smmu->page1 + ARM_SMMU_EVTQ_PROD);
3362 	writel_relaxed(smmu->evtq.q.llq.cons, smmu->page1 + ARM_SMMU_EVTQ_CONS);
3363 
3364 	enables |= CR0_EVTQEN;
3365 	ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
3366 				      ARM_SMMU_CR0ACK);
3367 	if (ret) {
3368 		dev_err(smmu->dev, "failed to enable event queue\n");
3369 		return ret;
3370 	}
3371 
3372 	/* PRI queue */
3373 	if (smmu->features & ARM_SMMU_FEAT_PRI) {
3374 		writeq_relaxed(smmu->priq.q.q_base,
3375 			       smmu->base + ARM_SMMU_PRIQ_BASE);
3376 		writel_relaxed(smmu->priq.q.llq.prod,
3377 			       smmu->page1 + ARM_SMMU_PRIQ_PROD);
3378 		writel_relaxed(smmu->priq.q.llq.cons,
3379 			       smmu->page1 + ARM_SMMU_PRIQ_CONS);
3380 
3381 		enables |= CR0_PRIQEN;
3382 		ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
3383 					      ARM_SMMU_CR0ACK);
3384 		if (ret) {
3385 			dev_err(smmu->dev, "failed to enable PRI queue\n");
3386 			return ret;
3387 		}
3388 	}
3389 
3390 	if (smmu->features & ARM_SMMU_FEAT_ATS) {
3391 		enables |= CR0_ATSCHK;
3392 		ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
3393 					      ARM_SMMU_CR0ACK);
3394 		if (ret) {
3395 			dev_err(smmu->dev, "failed to enable ATS check\n");
3396 			return ret;
3397 		}
3398 	}
3399 
3400 	ret = arm_smmu_setup_irqs(smmu);
3401 	if (ret) {
3402 		dev_err(smmu->dev, "failed to setup irqs\n");
3403 		return ret;
3404 	}
3405 
3406 	if (is_kdump_kernel())
3407 		enables &= ~(CR0_EVTQEN | CR0_PRIQEN);
3408 
3409 	/* Enable the SMMU interface, or ensure bypass */
3410 	if (!bypass || disable_bypass) {
3411 		enables |= CR0_SMMUEN;
3412 	} else {
3413 		ret = arm_smmu_update_gbpa(smmu, 0, GBPA_ABORT);
3414 		if (ret)
3415 			return ret;
3416 	}
3417 	ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
3418 				      ARM_SMMU_CR0ACK);
3419 	if (ret) {
3420 		dev_err(smmu->dev, "failed to enable SMMU interface\n");
3421 		return ret;
3422 	}
3423 
3424 	return 0;
3425 }
3426 
3427 #define IIDR_IMPLEMENTER_ARM		0x43b
3428 #define IIDR_PRODUCTID_ARM_MMU_600	0x483
3429 #define IIDR_PRODUCTID_ARM_MMU_700	0x487
3430 
3431 static void arm_smmu_device_iidr_probe(struct arm_smmu_device *smmu)
3432 {
3433 	u32 reg;
3434 	unsigned int implementer, productid, variant, revision;
3435 
3436 	reg = readl_relaxed(smmu->base + ARM_SMMU_IIDR);
3437 	implementer = FIELD_GET(IIDR_IMPLEMENTER, reg);
3438 	productid = FIELD_GET(IIDR_PRODUCTID, reg);
3439 	variant = FIELD_GET(IIDR_VARIANT, reg);
3440 	revision = FIELD_GET(IIDR_REVISION, reg);
3441 
3442 	switch (implementer) {
3443 	case IIDR_IMPLEMENTER_ARM:
3444 		switch (productid) {
3445 		case IIDR_PRODUCTID_ARM_MMU_600:
3446 			/* Arm erratum 1076982 */
3447 			if (variant == 0 && revision <= 2)
3448 				smmu->features &= ~ARM_SMMU_FEAT_SEV;
3449 			/* Arm erratum 1209401 */
3450 			if (variant < 2)
3451 				smmu->features &= ~ARM_SMMU_FEAT_NESTING;
3452 			break;
3453 		case IIDR_PRODUCTID_ARM_MMU_700:
3454 			/* Arm erratum 2812531 */
3455 			smmu->features &= ~ARM_SMMU_FEAT_BTM;
3456 			smmu->options |= ARM_SMMU_OPT_CMDQ_FORCE_SYNC;
3457 			/* Arm errata 2268618, 2812531 */
3458 			smmu->features &= ~ARM_SMMU_FEAT_NESTING;
3459 			break;
3460 		}
3461 		break;
3462 	}
3463 }
3464 
3465 static int arm_smmu_device_hw_probe(struct arm_smmu_device *smmu)
3466 {
3467 	u32 reg;
3468 	bool coherent = smmu->features & ARM_SMMU_FEAT_COHERENCY;
3469 
3470 	/* IDR0 */
3471 	reg = readl_relaxed(smmu->base + ARM_SMMU_IDR0);
3472 
3473 	/* 2-level structures */
3474 	if (FIELD_GET(IDR0_ST_LVL, reg) == IDR0_ST_LVL_2LVL)
3475 		smmu->features |= ARM_SMMU_FEAT_2_LVL_STRTAB;
3476 
3477 	if (reg & IDR0_CD2L)
3478 		smmu->features |= ARM_SMMU_FEAT_2_LVL_CDTAB;
3479 
3480 	/*
3481 	 * Translation table endianness.
3482 	 * We currently require the same endianness as the CPU, but this
3483 	 * could be changed later by adding a new IO_PGTABLE_QUIRK.
3484 	 */
3485 	switch (FIELD_GET(IDR0_TTENDIAN, reg)) {
3486 	case IDR0_TTENDIAN_MIXED:
3487 		smmu->features |= ARM_SMMU_FEAT_TT_LE | ARM_SMMU_FEAT_TT_BE;
3488 		break;
3489 #ifdef __BIG_ENDIAN
3490 	case IDR0_TTENDIAN_BE:
3491 		smmu->features |= ARM_SMMU_FEAT_TT_BE;
3492 		break;
3493 #else
3494 	case IDR0_TTENDIAN_LE:
3495 		smmu->features |= ARM_SMMU_FEAT_TT_LE;
3496 		break;
3497 #endif
3498 	default:
3499 		dev_err(smmu->dev, "unknown/unsupported TT endianness!\n");
3500 		return -ENXIO;
3501 	}
3502 
3503 	/* Boolean feature flags */
3504 	if (IS_ENABLED(CONFIG_PCI_PRI) && reg & IDR0_PRI)
3505 		smmu->features |= ARM_SMMU_FEAT_PRI;
3506 
3507 	if (IS_ENABLED(CONFIG_PCI_ATS) && reg & IDR0_ATS)
3508 		smmu->features |= ARM_SMMU_FEAT_ATS;
3509 
3510 	if (reg & IDR0_SEV)
3511 		smmu->features |= ARM_SMMU_FEAT_SEV;
3512 
3513 	if (reg & IDR0_MSI) {
3514 		smmu->features |= ARM_SMMU_FEAT_MSI;
3515 		if (coherent && !disable_msipolling)
3516 			smmu->options |= ARM_SMMU_OPT_MSIPOLL;
3517 	}
3518 
3519 	if (reg & IDR0_HYP) {
3520 		smmu->features |= ARM_SMMU_FEAT_HYP;
3521 		if (cpus_have_cap(ARM64_HAS_VIRT_HOST_EXTN))
3522 			smmu->features |= ARM_SMMU_FEAT_E2H;
3523 	}
3524 
3525 	/*
3526 	 * The coherency feature as set by FW is used in preference to the ID
3527 	 * register, but warn on mismatch.
3528 	 */
3529 	if (!!(reg & IDR0_COHACC) != coherent)
3530 		dev_warn(smmu->dev, "IDR0.COHACC overridden by FW configuration (%s)\n",
3531 			 coherent ? "true" : "false");
3532 
3533 	switch (FIELD_GET(IDR0_STALL_MODEL, reg)) {
3534 	case IDR0_STALL_MODEL_FORCE:
3535 		smmu->features |= ARM_SMMU_FEAT_STALL_FORCE;
3536 		fallthrough;
3537 	case IDR0_STALL_MODEL_STALL:
3538 		smmu->features |= ARM_SMMU_FEAT_STALLS;
3539 	}
3540 
3541 	if (reg & IDR0_S1P)
3542 		smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
3543 
3544 	if (reg & IDR0_S2P)
3545 		smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
3546 
3547 	if (!(reg & (IDR0_S1P | IDR0_S2P))) {
3548 		dev_err(smmu->dev, "no translation support!\n");
3549 		return -ENXIO;
3550 	}
3551 
3552 	/* We only support the AArch64 table format at present */
3553 	switch (FIELD_GET(IDR0_TTF, reg)) {
3554 	case IDR0_TTF_AARCH32_64:
3555 		smmu->ias = 40;
3556 		fallthrough;
3557 	case IDR0_TTF_AARCH64:
3558 		break;
3559 	default:
3560 		dev_err(smmu->dev, "AArch64 table format not supported!\n");
3561 		return -ENXIO;
3562 	}
3563 
3564 	/* ASID/VMID sizes */
3565 	smmu->asid_bits = reg & IDR0_ASID16 ? 16 : 8;
3566 	smmu->vmid_bits = reg & IDR0_VMID16 ? 16 : 8;
3567 
3568 	/* IDR1 */
3569 	reg = readl_relaxed(smmu->base + ARM_SMMU_IDR1);
3570 	if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) {
3571 		dev_err(smmu->dev, "embedded implementation not supported\n");
3572 		return -ENXIO;
3573 	}
3574 
3575 	/* Queue sizes, capped to ensure natural alignment */
3576 	smmu->cmdq.q.llq.max_n_shift = min_t(u32, CMDQ_MAX_SZ_SHIFT,
3577 					     FIELD_GET(IDR1_CMDQS, reg));
3578 	if (smmu->cmdq.q.llq.max_n_shift <= ilog2(CMDQ_BATCH_ENTRIES)) {
3579 		/*
3580 		 * We don't support splitting up batches, so one batch of
3581 		 * commands plus an extra sync needs to fit inside the command
3582 		 * queue. There's also no way we can handle the weird alignment
3583 		 * restrictions on the base pointer for a unit-length queue.
3584 		 */
3585 		dev_err(smmu->dev, "command queue size <= %d entries not supported\n",
3586 			CMDQ_BATCH_ENTRIES);
3587 		return -ENXIO;
3588 	}
3589 
3590 	smmu->evtq.q.llq.max_n_shift = min_t(u32, EVTQ_MAX_SZ_SHIFT,
3591 					     FIELD_GET(IDR1_EVTQS, reg));
3592 	smmu->priq.q.llq.max_n_shift = min_t(u32, PRIQ_MAX_SZ_SHIFT,
3593 					     FIELD_GET(IDR1_PRIQS, reg));
3594 
3595 	/* SID/SSID sizes */
3596 	smmu->ssid_bits = FIELD_GET(IDR1_SSIDSIZE, reg);
3597 	smmu->sid_bits = FIELD_GET(IDR1_SIDSIZE, reg);
3598 	smmu->iommu.max_pasids = 1UL << smmu->ssid_bits;
3599 
3600 	/*
3601 	 * If the SMMU supports fewer bits than would fill a single L2 stream
3602 	 * table, use a linear table instead.
3603 	 */
3604 	if (smmu->sid_bits <= STRTAB_SPLIT)
3605 		smmu->features &= ~ARM_SMMU_FEAT_2_LVL_STRTAB;
3606 
3607 	/* IDR3 */
3608 	reg = readl_relaxed(smmu->base + ARM_SMMU_IDR3);
3609 	if (FIELD_GET(IDR3_RIL, reg))
3610 		smmu->features |= ARM_SMMU_FEAT_RANGE_INV;
3611 
3612 	/* IDR5 */
3613 	reg = readl_relaxed(smmu->base + ARM_SMMU_IDR5);
3614 
3615 	/* Maximum number of outstanding stalls */
3616 	smmu->evtq.max_stalls = FIELD_GET(IDR5_STALL_MAX, reg);
3617 
3618 	/* Page sizes */
3619 	if (reg & IDR5_GRAN64K)
3620 		smmu->pgsize_bitmap |= SZ_64K | SZ_512M;
3621 	if (reg & IDR5_GRAN16K)
3622 		smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
3623 	if (reg & IDR5_GRAN4K)
3624 		smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
3625 
3626 	/* Input address size */
3627 	if (FIELD_GET(IDR5_VAX, reg) == IDR5_VAX_52_BIT)
3628 		smmu->features |= ARM_SMMU_FEAT_VAX;
3629 
3630 	/* Output address size */
3631 	switch (FIELD_GET(IDR5_OAS, reg)) {
3632 	case IDR5_OAS_32_BIT:
3633 		smmu->oas = 32;
3634 		break;
3635 	case IDR5_OAS_36_BIT:
3636 		smmu->oas = 36;
3637 		break;
3638 	case IDR5_OAS_40_BIT:
3639 		smmu->oas = 40;
3640 		break;
3641 	case IDR5_OAS_42_BIT:
3642 		smmu->oas = 42;
3643 		break;
3644 	case IDR5_OAS_44_BIT:
3645 		smmu->oas = 44;
3646 		break;
3647 	case IDR5_OAS_52_BIT:
3648 		smmu->oas = 52;
3649 		smmu->pgsize_bitmap |= 1ULL << 42; /* 4TB */
3650 		break;
3651 	default:
3652 		dev_info(smmu->dev,
3653 			"unknown output address size. Truncating to 48-bit\n");
3654 		fallthrough;
3655 	case IDR5_OAS_48_BIT:
3656 		smmu->oas = 48;
3657 	}
3658 
3659 	if (arm_smmu_ops.pgsize_bitmap == -1UL)
3660 		arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
3661 	else
3662 		arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;
3663 
3664 	/* Set the DMA mask for our table walker */
3665 	if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(smmu->oas)))
3666 		dev_warn(smmu->dev,
3667 			 "failed to set DMA mask for table walker\n");
3668 
3669 	smmu->ias = max(smmu->ias, smmu->oas);
3670 
3671 	if ((smmu->features & ARM_SMMU_FEAT_TRANS_S1) &&
3672 	    (smmu->features & ARM_SMMU_FEAT_TRANS_S2))
3673 		smmu->features |= ARM_SMMU_FEAT_NESTING;
3674 
3675 	arm_smmu_device_iidr_probe(smmu);
3676 
3677 	if (arm_smmu_sva_supported(smmu))
3678 		smmu->features |= ARM_SMMU_FEAT_SVA;
3679 
3680 	dev_info(smmu->dev, "ias %lu-bit, oas %lu-bit (features 0x%08x)\n",
3681 		 smmu->ias, smmu->oas, smmu->features);
3682 	return 0;
3683 }
3684 
3685 #ifdef CONFIG_ACPI
3686 static void acpi_smmu_get_options(u32 model, struct arm_smmu_device *smmu)
3687 {
3688 	switch (model) {
3689 	case ACPI_IORT_SMMU_V3_CAVIUM_CN99XX:
3690 		smmu->options |= ARM_SMMU_OPT_PAGE0_REGS_ONLY;
3691 		break;
3692 	case ACPI_IORT_SMMU_V3_HISILICON_HI161X:
3693 		smmu->options |= ARM_SMMU_OPT_SKIP_PREFETCH;
3694 		break;
3695 	}
3696 
3697 	dev_notice(smmu->dev, "option mask 0x%x\n", smmu->options);
3698 }
3699 
3700 static int arm_smmu_device_acpi_probe(struct platform_device *pdev,
3701 				      struct arm_smmu_device *smmu)
3702 {
3703 	struct acpi_iort_smmu_v3 *iort_smmu;
3704 	struct device *dev = smmu->dev;
3705 	struct acpi_iort_node *node;
3706 
3707 	node = *(struct acpi_iort_node **)dev_get_platdata(dev);
3708 
3709 	/* Retrieve SMMUv3 specific data */
3710 	iort_smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
3711 
3712 	acpi_smmu_get_options(iort_smmu->model, smmu);
3713 
3714 	if (iort_smmu->flags & ACPI_IORT_SMMU_V3_COHACC_OVERRIDE)
3715 		smmu->features |= ARM_SMMU_FEAT_COHERENCY;
3716 
3717 	return 0;
3718 }
3719 #else
3720 static inline int arm_smmu_device_acpi_probe(struct platform_device *pdev,
3721 					     struct arm_smmu_device *smmu)
3722 {
3723 	return -ENODEV;
3724 }
3725 #endif
3726 
3727 static int arm_smmu_device_dt_probe(struct platform_device *pdev,
3728 				    struct arm_smmu_device *smmu)
3729 {
3730 	struct device *dev = &pdev->dev;
3731 	u32 cells;
3732 	int ret = -EINVAL;
3733 
3734 	if (of_property_read_u32(dev->of_node, "#iommu-cells", &cells))
3735 		dev_err(dev, "missing #iommu-cells property\n");
3736 	else if (cells != 1)
3737 		dev_err(dev, "invalid #iommu-cells value (%d)\n", cells);
3738 	else
3739 		ret = 0;
3740 
3741 	parse_driver_options(smmu);
3742 
3743 	if (of_dma_is_coherent(dev->of_node))
3744 		smmu->features |= ARM_SMMU_FEAT_COHERENCY;
3745 
3746 	return ret;
3747 }
3748 
3749 static unsigned long arm_smmu_resource_size(struct arm_smmu_device *smmu)
3750 {
3751 	if (smmu->options & ARM_SMMU_OPT_PAGE0_REGS_ONLY)
3752 		return SZ_64K;
3753 	else
3754 		return SZ_128K;
3755 }
3756 
3757 static void __iomem *arm_smmu_ioremap(struct device *dev, resource_size_t start,
3758 				      resource_size_t size)
3759 {
3760 	struct resource res = DEFINE_RES_MEM(start, size);
3761 
3762 	return devm_ioremap_resource(dev, &res);
3763 }
3764 
3765 static void arm_smmu_rmr_install_bypass_ste(struct arm_smmu_device *smmu)
3766 {
3767 	struct list_head rmr_list;
3768 	struct iommu_resv_region *e;
3769 
3770 	INIT_LIST_HEAD(&rmr_list);
3771 	iort_get_rmr_sids(dev_fwnode(smmu->dev), &rmr_list);
3772 
3773 	list_for_each_entry(e, &rmr_list, list) {
3774 		__le64 *step;
3775 		struct iommu_iort_rmr_data *rmr;
3776 		int ret, i;
3777 
3778 		rmr = container_of(e, struct iommu_iort_rmr_data, rr);
3779 		for (i = 0; i < rmr->num_sids; i++) {
3780 			ret = arm_smmu_init_sid_strtab(smmu, rmr->sids[i]);
3781 			if (ret) {
3782 				dev_err(smmu->dev, "RMR SID(0x%x) bypass failed\n",
3783 					rmr->sids[i]);
3784 				continue;
3785 			}
3786 
3787 			step = arm_smmu_get_step_for_sid(smmu, rmr->sids[i]);
3788 			arm_smmu_init_bypass_stes(step, 1, true);
3789 		}
3790 	}
3791 
3792 	iort_put_rmr_sids(dev_fwnode(smmu->dev), &rmr_list);
3793 }
3794 
3795 static int arm_smmu_device_probe(struct platform_device *pdev)
3796 {
3797 	int irq, ret;
3798 	struct resource *res;
3799 	resource_size_t ioaddr;
3800 	struct arm_smmu_device *smmu;
3801 	struct device *dev = &pdev->dev;
3802 	bool bypass;
3803 
3804 	smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
3805 	if (!smmu)
3806 		return -ENOMEM;
3807 	smmu->dev = dev;
3808 
3809 	if (dev->of_node) {
3810 		ret = arm_smmu_device_dt_probe(pdev, smmu);
3811 	} else {
3812 		ret = arm_smmu_device_acpi_probe(pdev, smmu);
3813 		if (ret == -ENODEV)
3814 			return ret;
3815 	}
3816 
3817 	/* Set bypass mode according to firmware probing result */
3818 	bypass = !!ret;
3819 
3820 	/* Base address */
3821 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3822 	if (!res)
3823 		return -EINVAL;
3824 	if (resource_size(res) < arm_smmu_resource_size(smmu)) {
3825 		dev_err(dev, "MMIO region too small (%pr)\n", res);
3826 		return -EINVAL;
3827 	}
3828 	ioaddr = res->start;
3829 
3830 	/*
3831 	 * Don't map the IMPLEMENTATION DEFINED regions, since they may contain
3832 	 * the PMCG registers which are reserved by the PMU driver.
3833 	 */
3834 	smmu->base = arm_smmu_ioremap(dev, ioaddr, ARM_SMMU_REG_SZ);
3835 	if (IS_ERR(smmu->base))
3836 		return PTR_ERR(smmu->base);
3837 
3838 	if (arm_smmu_resource_size(smmu) > SZ_64K) {
3839 		smmu->page1 = arm_smmu_ioremap(dev, ioaddr + SZ_64K,
3840 					       ARM_SMMU_REG_SZ);
3841 		if (IS_ERR(smmu->page1))
3842 			return PTR_ERR(smmu->page1);
3843 	} else {
3844 		smmu->page1 = smmu->base;
3845 	}
3846 
3847 	/* Interrupt lines */
3848 
3849 	irq = platform_get_irq_byname_optional(pdev, "combined");
3850 	if (irq > 0)
3851 		smmu->combined_irq = irq;
3852 	else {
3853 		irq = platform_get_irq_byname_optional(pdev, "eventq");
3854 		if (irq > 0)
3855 			smmu->evtq.q.irq = irq;
3856 
3857 		irq = platform_get_irq_byname_optional(pdev, "priq");
3858 		if (irq > 0)
3859 			smmu->priq.q.irq = irq;
3860 
3861 		irq = platform_get_irq_byname_optional(pdev, "gerror");
3862 		if (irq > 0)
3863 			smmu->gerr_irq = irq;
3864 	}
3865 	/* Probe the h/w */
3866 	ret = arm_smmu_device_hw_probe(smmu);
3867 	if (ret)
3868 		return ret;
3869 
3870 	/* Initialise in-memory data structures */
3871 	ret = arm_smmu_init_structures(smmu);
3872 	if (ret)
3873 		return ret;
3874 
3875 	/* Record our private device structure */
3876 	platform_set_drvdata(pdev, smmu);
3877 
3878 	/* Check for RMRs and install bypass STEs if any */
3879 	arm_smmu_rmr_install_bypass_ste(smmu);
3880 
3881 	/* Reset the device */
3882 	ret = arm_smmu_device_reset(smmu, bypass);
3883 	if (ret)
3884 		return ret;
3885 
3886 	/* And we're up. Go go go! */
3887 	ret = iommu_device_sysfs_add(&smmu->iommu, dev, NULL,
3888 				     "smmu3.%pa", &ioaddr);
3889 	if (ret)
3890 		return ret;
3891 
3892 	ret = iommu_device_register(&smmu->iommu, &arm_smmu_ops, dev);
3893 	if (ret) {
3894 		dev_err(dev, "Failed to register iommu\n");
3895 		iommu_device_sysfs_remove(&smmu->iommu);
3896 		return ret;
3897 	}
3898 
3899 	return 0;
3900 }
3901 
3902 static void arm_smmu_device_remove(struct platform_device *pdev)
3903 {
3904 	struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
3905 
3906 	iommu_device_unregister(&smmu->iommu);
3907 	iommu_device_sysfs_remove(&smmu->iommu);
3908 	arm_smmu_device_disable(smmu);
3909 	iopf_queue_free(smmu->evtq.iopf);
3910 	ida_destroy(&smmu->vmid_map);
3911 }
3912 
3913 static void arm_smmu_device_shutdown(struct platform_device *pdev)
3914 {
3915 	struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
3916 
3917 	arm_smmu_device_disable(smmu);
3918 }
3919 
3920 static const struct of_device_id arm_smmu_of_match[] = {
3921 	{ .compatible = "arm,smmu-v3", },
3922 	{ },
3923 };
3924 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
3925 
3926 static void arm_smmu_driver_unregister(struct platform_driver *drv)
3927 {
3928 	arm_smmu_sva_notifier_synchronize();
3929 	platform_driver_unregister(drv);
3930 }
3931 
3932 static struct platform_driver arm_smmu_driver = {
3933 	.driver	= {
3934 		.name			= "arm-smmu-v3",
3935 		.of_match_table		= arm_smmu_of_match,
3936 		.suppress_bind_attrs	= true,
3937 	},
3938 	.probe	= arm_smmu_device_probe,
3939 	.remove_new = arm_smmu_device_remove,
3940 	.shutdown = arm_smmu_device_shutdown,
3941 };
3942 module_driver(arm_smmu_driver, platform_driver_register,
3943 	      arm_smmu_driver_unregister);
3944 
3945 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMUv3 implementations");
3946 MODULE_AUTHOR("Will Deacon <will@kernel.org>");
3947 MODULE_ALIAS("platform:arm-smmu-v3");
3948 MODULE_LICENSE("GPL v2");
3949