1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * IOMMU API for ARM architected SMMUv3 implementations. 4 * 5 * Copyright (C) 2015 ARM Limited 6 * 7 * Author: Will Deacon <will.deacon@arm.com> 8 * 9 * This driver is powered by bad coffee and bombay mix. 10 */ 11 12 #include <linux/acpi.h> 13 #include <linux/acpi_iort.h> 14 #include <linux/bitops.h> 15 #include <linux/crash_dump.h> 16 #include <linux/delay.h> 17 #include <linux/dma-iommu.h> 18 #include <linux/err.h> 19 #include <linux/interrupt.h> 20 #include <linux/io-pgtable.h> 21 #include <linux/iopoll.h> 22 #include <linux/module.h> 23 #include <linux/msi.h> 24 #include <linux/of.h> 25 #include <linux/of_address.h> 26 #include <linux/of_platform.h> 27 #include <linux/pci.h> 28 #include <linux/pci-ats.h> 29 #include <linux/platform_device.h> 30 31 #include <linux/amba/bus.h> 32 33 #include "arm-smmu-v3.h" 34 #include "../../iommu-sva-lib.h" 35 36 static bool disable_bypass = true; 37 module_param(disable_bypass, bool, 0444); 38 MODULE_PARM_DESC(disable_bypass, 39 "Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU."); 40 41 static bool disable_msipolling; 42 module_param(disable_msipolling, bool, 0444); 43 MODULE_PARM_DESC(disable_msipolling, 44 "Disable MSI-based polling for CMD_SYNC completion."); 45 46 enum arm_smmu_msi_index { 47 EVTQ_MSI_INDEX, 48 GERROR_MSI_INDEX, 49 PRIQ_MSI_INDEX, 50 ARM_SMMU_MAX_MSIS, 51 }; 52 53 static phys_addr_t arm_smmu_msi_cfg[ARM_SMMU_MAX_MSIS][3] = { 54 [EVTQ_MSI_INDEX] = { 55 ARM_SMMU_EVTQ_IRQ_CFG0, 56 ARM_SMMU_EVTQ_IRQ_CFG1, 57 ARM_SMMU_EVTQ_IRQ_CFG2, 58 }, 59 [GERROR_MSI_INDEX] = { 60 ARM_SMMU_GERROR_IRQ_CFG0, 61 ARM_SMMU_GERROR_IRQ_CFG1, 62 ARM_SMMU_GERROR_IRQ_CFG2, 63 }, 64 [PRIQ_MSI_INDEX] = { 65 ARM_SMMU_PRIQ_IRQ_CFG0, 66 ARM_SMMU_PRIQ_IRQ_CFG1, 67 ARM_SMMU_PRIQ_IRQ_CFG2, 68 }, 69 }; 70 71 struct arm_smmu_option_prop { 72 u32 opt; 73 const char *prop; 74 }; 75 76 DEFINE_XARRAY_ALLOC1(arm_smmu_asid_xa); 77 DEFINE_MUTEX(arm_smmu_asid_lock); 78 79 /* 80 * Special value used by SVA when a process dies, to quiesce a CD without 81 * disabling it. 82 */ 83 struct arm_smmu_ctx_desc quiet_cd = { 0 }; 84 85 static struct arm_smmu_option_prop arm_smmu_options[] = { 86 { ARM_SMMU_OPT_SKIP_PREFETCH, "hisilicon,broken-prefetch-cmd" }, 87 { ARM_SMMU_OPT_PAGE0_REGS_ONLY, "cavium,cn9900-broken-page1-regspace"}, 88 { 0, NULL}, 89 }; 90 91 static void parse_driver_options(struct arm_smmu_device *smmu) 92 { 93 int i = 0; 94 95 do { 96 if (of_property_read_bool(smmu->dev->of_node, 97 arm_smmu_options[i].prop)) { 98 smmu->options |= arm_smmu_options[i].opt; 99 dev_notice(smmu->dev, "option %s\n", 100 arm_smmu_options[i].prop); 101 } 102 } while (arm_smmu_options[++i].opt); 103 } 104 105 /* Low-level queue manipulation functions */ 106 static bool queue_has_space(struct arm_smmu_ll_queue *q, u32 n) 107 { 108 u32 space, prod, cons; 109 110 prod = Q_IDX(q, q->prod); 111 cons = Q_IDX(q, q->cons); 112 113 if (Q_WRP(q, q->prod) == Q_WRP(q, q->cons)) 114 space = (1 << q->max_n_shift) - (prod - cons); 115 else 116 space = cons - prod; 117 118 return space >= n; 119 } 120 121 static bool queue_full(struct arm_smmu_ll_queue *q) 122 { 123 return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) && 124 Q_WRP(q, q->prod) != Q_WRP(q, q->cons); 125 } 126 127 static bool queue_empty(struct arm_smmu_ll_queue *q) 128 { 129 return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) && 130 Q_WRP(q, q->prod) == Q_WRP(q, q->cons); 131 } 132 133 static bool queue_consumed(struct arm_smmu_ll_queue *q, u32 prod) 134 { 135 return ((Q_WRP(q, q->cons) == Q_WRP(q, prod)) && 136 (Q_IDX(q, q->cons) > Q_IDX(q, prod))) || 137 ((Q_WRP(q, q->cons) != Q_WRP(q, prod)) && 138 (Q_IDX(q, q->cons) <= Q_IDX(q, prod))); 139 } 140 141 static void queue_sync_cons_out(struct arm_smmu_queue *q) 142 { 143 /* 144 * Ensure that all CPU accesses (reads and writes) to the queue 145 * are complete before we update the cons pointer. 146 */ 147 __iomb(); 148 writel_relaxed(q->llq.cons, q->cons_reg); 149 } 150 151 static void queue_inc_cons(struct arm_smmu_ll_queue *q) 152 { 153 u32 cons = (Q_WRP(q, q->cons) | Q_IDX(q, q->cons)) + 1; 154 q->cons = Q_OVF(q->cons) | Q_WRP(q, cons) | Q_IDX(q, cons); 155 } 156 157 static int queue_sync_prod_in(struct arm_smmu_queue *q) 158 { 159 u32 prod; 160 int ret = 0; 161 162 /* 163 * We can't use the _relaxed() variant here, as we must prevent 164 * speculative reads of the queue before we have determined that 165 * prod has indeed moved. 166 */ 167 prod = readl(q->prod_reg); 168 169 if (Q_OVF(prod) != Q_OVF(q->llq.prod)) 170 ret = -EOVERFLOW; 171 172 q->llq.prod = prod; 173 return ret; 174 } 175 176 static u32 queue_inc_prod_n(struct arm_smmu_ll_queue *q, int n) 177 { 178 u32 prod = (Q_WRP(q, q->prod) | Q_IDX(q, q->prod)) + n; 179 return Q_OVF(q->prod) | Q_WRP(q, prod) | Q_IDX(q, prod); 180 } 181 182 static void queue_poll_init(struct arm_smmu_device *smmu, 183 struct arm_smmu_queue_poll *qp) 184 { 185 qp->delay = 1; 186 qp->spin_cnt = 0; 187 qp->wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV); 188 qp->timeout = ktime_add_us(ktime_get(), ARM_SMMU_POLL_TIMEOUT_US); 189 } 190 191 static int queue_poll(struct arm_smmu_queue_poll *qp) 192 { 193 if (ktime_compare(ktime_get(), qp->timeout) > 0) 194 return -ETIMEDOUT; 195 196 if (qp->wfe) { 197 wfe(); 198 } else if (++qp->spin_cnt < ARM_SMMU_POLL_SPIN_COUNT) { 199 cpu_relax(); 200 } else { 201 udelay(qp->delay); 202 qp->delay *= 2; 203 qp->spin_cnt = 0; 204 } 205 206 return 0; 207 } 208 209 static void queue_write(__le64 *dst, u64 *src, size_t n_dwords) 210 { 211 int i; 212 213 for (i = 0; i < n_dwords; ++i) 214 *dst++ = cpu_to_le64(*src++); 215 } 216 217 static void queue_read(u64 *dst, __le64 *src, size_t n_dwords) 218 { 219 int i; 220 221 for (i = 0; i < n_dwords; ++i) 222 *dst++ = le64_to_cpu(*src++); 223 } 224 225 static int queue_remove_raw(struct arm_smmu_queue *q, u64 *ent) 226 { 227 if (queue_empty(&q->llq)) 228 return -EAGAIN; 229 230 queue_read(ent, Q_ENT(q, q->llq.cons), q->ent_dwords); 231 queue_inc_cons(&q->llq); 232 queue_sync_cons_out(q); 233 return 0; 234 } 235 236 /* High-level queue accessors */ 237 static int arm_smmu_cmdq_build_cmd(u64 *cmd, struct arm_smmu_cmdq_ent *ent) 238 { 239 memset(cmd, 0, 1 << CMDQ_ENT_SZ_SHIFT); 240 cmd[0] |= FIELD_PREP(CMDQ_0_OP, ent->opcode); 241 242 switch (ent->opcode) { 243 case CMDQ_OP_TLBI_EL2_ALL: 244 case CMDQ_OP_TLBI_NSNH_ALL: 245 break; 246 case CMDQ_OP_PREFETCH_CFG: 247 cmd[0] |= FIELD_PREP(CMDQ_PREFETCH_0_SID, ent->prefetch.sid); 248 break; 249 case CMDQ_OP_CFGI_CD: 250 cmd[0] |= FIELD_PREP(CMDQ_CFGI_0_SSID, ent->cfgi.ssid); 251 fallthrough; 252 case CMDQ_OP_CFGI_STE: 253 cmd[0] |= FIELD_PREP(CMDQ_CFGI_0_SID, ent->cfgi.sid); 254 cmd[1] |= FIELD_PREP(CMDQ_CFGI_1_LEAF, ent->cfgi.leaf); 255 break; 256 case CMDQ_OP_CFGI_CD_ALL: 257 cmd[0] |= FIELD_PREP(CMDQ_CFGI_0_SID, ent->cfgi.sid); 258 break; 259 case CMDQ_OP_CFGI_ALL: 260 /* Cover the entire SID range */ 261 cmd[1] |= FIELD_PREP(CMDQ_CFGI_1_RANGE, 31); 262 break; 263 case CMDQ_OP_TLBI_NH_VA: 264 cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_VMID, ent->tlbi.vmid); 265 fallthrough; 266 case CMDQ_OP_TLBI_EL2_VA: 267 cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_NUM, ent->tlbi.num); 268 cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_SCALE, ent->tlbi.scale); 269 cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_ASID, ent->tlbi.asid); 270 cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_LEAF, ent->tlbi.leaf); 271 cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_TTL, ent->tlbi.ttl); 272 cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_TG, ent->tlbi.tg); 273 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_VA_MASK; 274 break; 275 case CMDQ_OP_TLBI_S2_IPA: 276 cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_NUM, ent->tlbi.num); 277 cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_SCALE, ent->tlbi.scale); 278 cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_VMID, ent->tlbi.vmid); 279 cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_LEAF, ent->tlbi.leaf); 280 cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_TTL, ent->tlbi.ttl); 281 cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_TG, ent->tlbi.tg); 282 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_IPA_MASK; 283 break; 284 case CMDQ_OP_TLBI_NH_ASID: 285 cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_ASID, ent->tlbi.asid); 286 fallthrough; 287 case CMDQ_OP_TLBI_S12_VMALL: 288 cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_VMID, ent->tlbi.vmid); 289 break; 290 case CMDQ_OP_TLBI_EL2_ASID: 291 cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_ASID, ent->tlbi.asid); 292 break; 293 case CMDQ_OP_ATC_INV: 294 cmd[0] |= FIELD_PREP(CMDQ_0_SSV, ent->substream_valid); 295 cmd[0] |= FIELD_PREP(CMDQ_ATC_0_GLOBAL, ent->atc.global); 296 cmd[0] |= FIELD_PREP(CMDQ_ATC_0_SSID, ent->atc.ssid); 297 cmd[0] |= FIELD_PREP(CMDQ_ATC_0_SID, ent->atc.sid); 298 cmd[1] |= FIELD_PREP(CMDQ_ATC_1_SIZE, ent->atc.size); 299 cmd[1] |= ent->atc.addr & CMDQ_ATC_1_ADDR_MASK; 300 break; 301 case CMDQ_OP_PRI_RESP: 302 cmd[0] |= FIELD_PREP(CMDQ_0_SSV, ent->substream_valid); 303 cmd[0] |= FIELD_PREP(CMDQ_PRI_0_SSID, ent->pri.ssid); 304 cmd[0] |= FIELD_PREP(CMDQ_PRI_0_SID, ent->pri.sid); 305 cmd[1] |= FIELD_PREP(CMDQ_PRI_1_GRPID, ent->pri.grpid); 306 switch (ent->pri.resp) { 307 case PRI_RESP_DENY: 308 case PRI_RESP_FAIL: 309 case PRI_RESP_SUCC: 310 break; 311 default: 312 return -EINVAL; 313 } 314 cmd[1] |= FIELD_PREP(CMDQ_PRI_1_RESP, ent->pri.resp); 315 break; 316 case CMDQ_OP_RESUME: 317 cmd[0] |= FIELD_PREP(CMDQ_RESUME_0_SID, ent->resume.sid); 318 cmd[0] |= FIELD_PREP(CMDQ_RESUME_0_RESP, ent->resume.resp); 319 cmd[1] |= FIELD_PREP(CMDQ_RESUME_1_STAG, ent->resume.stag); 320 break; 321 case CMDQ_OP_CMD_SYNC: 322 if (ent->sync.msiaddr) { 323 cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_CS, CMDQ_SYNC_0_CS_IRQ); 324 cmd[1] |= ent->sync.msiaddr & CMDQ_SYNC_1_MSIADDR_MASK; 325 } else { 326 cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_CS, CMDQ_SYNC_0_CS_SEV); 327 } 328 cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_MSH, ARM_SMMU_SH_ISH); 329 cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_MSIATTR, ARM_SMMU_MEMATTR_OIWB); 330 break; 331 default: 332 return -ENOENT; 333 } 334 335 return 0; 336 } 337 338 static struct arm_smmu_cmdq *arm_smmu_get_cmdq(struct arm_smmu_device *smmu) 339 { 340 return &smmu->cmdq; 341 } 342 343 static void arm_smmu_cmdq_build_sync_cmd(u64 *cmd, struct arm_smmu_device *smmu, 344 struct arm_smmu_queue *q, u32 prod) 345 { 346 struct arm_smmu_cmdq_ent ent = { 347 .opcode = CMDQ_OP_CMD_SYNC, 348 }; 349 350 /* 351 * Beware that Hi16xx adds an extra 32 bits of goodness to its MSI 352 * payload, so the write will zero the entire command on that platform. 353 */ 354 if (smmu->options & ARM_SMMU_OPT_MSIPOLL) { 355 ent.sync.msiaddr = q->base_dma + Q_IDX(&q->llq, prod) * 356 q->ent_dwords * 8; 357 } 358 359 arm_smmu_cmdq_build_cmd(cmd, &ent); 360 } 361 362 static void __arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu, 363 struct arm_smmu_queue *q) 364 { 365 static const char * const cerror_str[] = { 366 [CMDQ_ERR_CERROR_NONE_IDX] = "No error", 367 [CMDQ_ERR_CERROR_ILL_IDX] = "Illegal command", 368 [CMDQ_ERR_CERROR_ABT_IDX] = "Abort on command fetch", 369 [CMDQ_ERR_CERROR_ATC_INV_IDX] = "ATC invalidate timeout", 370 }; 371 372 int i; 373 u64 cmd[CMDQ_ENT_DWORDS]; 374 u32 cons = readl_relaxed(q->cons_reg); 375 u32 idx = FIELD_GET(CMDQ_CONS_ERR, cons); 376 struct arm_smmu_cmdq_ent cmd_sync = { 377 .opcode = CMDQ_OP_CMD_SYNC, 378 }; 379 380 dev_err(smmu->dev, "CMDQ error (cons 0x%08x): %s\n", cons, 381 idx < ARRAY_SIZE(cerror_str) ? cerror_str[idx] : "Unknown"); 382 383 switch (idx) { 384 case CMDQ_ERR_CERROR_ABT_IDX: 385 dev_err(smmu->dev, "retrying command fetch\n"); 386 return; 387 case CMDQ_ERR_CERROR_NONE_IDX: 388 return; 389 case CMDQ_ERR_CERROR_ATC_INV_IDX: 390 /* 391 * ATC Invalidation Completion timeout. CONS is still pointing 392 * at the CMD_SYNC. Attempt to complete other pending commands 393 * by repeating the CMD_SYNC, though we might well end up back 394 * here since the ATC invalidation may still be pending. 395 */ 396 return; 397 case CMDQ_ERR_CERROR_ILL_IDX: 398 default: 399 break; 400 } 401 402 /* 403 * We may have concurrent producers, so we need to be careful 404 * not to touch any of the shadow cmdq state. 405 */ 406 queue_read(cmd, Q_ENT(q, cons), q->ent_dwords); 407 dev_err(smmu->dev, "skipping command in error state:\n"); 408 for (i = 0; i < ARRAY_SIZE(cmd); ++i) 409 dev_err(smmu->dev, "\t0x%016llx\n", (unsigned long long)cmd[i]); 410 411 /* Convert the erroneous command into a CMD_SYNC */ 412 arm_smmu_cmdq_build_cmd(cmd, &cmd_sync); 413 414 queue_write(Q_ENT(q, cons), cmd, q->ent_dwords); 415 } 416 417 static void arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu) 418 { 419 __arm_smmu_cmdq_skip_err(smmu, &smmu->cmdq.q); 420 } 421 422 /* 423 * Command queue locking. 424 * This is a form of bastardised rwlock with the following major changes: 425 * 426 * - The only LOCK routines are exclusive_trylock() and shared_lock(). 427 * Neither have barrier semantics, and instead provide only a control 428 * dependency. 429 * 430 * - The UNLOCK routines are supplemented with shared_tryunlock(), which 431 * fails if the caller appears to be the last lock holder (yes, this is 432 * racy). All successful UNLOCK routines have RELEASE semantics. 433 */ 434 static void arm_smmu_cmdq_shared_lock(struct arm_smmu_cmdq *cmdq) 435 { 436 int val; 437 438 /* 439 * We can try to avoid the cmpxchg() loop by simply incrementing the 440 * lock counter. When held in exclusive state, the lock counter is set 441 * to INT_MIN so these increments won't hurt as the value will remain 442 * negative. 443 */ 444 if (atomic_fetch_inc_relaxed(&cmdq->lock) >= 0) 445 return; 446 447 do { 448 val = atomic_cond_read_relaxed(&cmdq->lock, VAL >= 0); 449 } while (atomic_cmpxchg_relaxed(&cmdq->lock, val, val + 1) != val); 450 } 451 452 static void arm_smmu_cmdq_shared_unlock(struct arm_smmu_cmdq *cmdq) 453 { 454 (void)atomic_dec_return_release(&cmdq->lock); 455 } 456 457 static bool arm_smmu_cmdq_shared_tryunlock(struct arm_smmu_cmdq *cmdq) 458 { 459 if (atomic_read(&cmdq->lock) == 1) 460 return false; 461 462 arm_smmu_cmdq_shared_unlock(cmdq); 463 return true; 464 } 465 466 #define arm_smmu_cmdq_exclusive_trylock_irqsave(cmdq, flags) \ 467 ({ \ 468 bool __ret; \ 469 local_irq_save(flags); \ 470 __ret = !atomic_cmpxchg_relaxed(&cmdq->lock, 0, INT_MIN); \ 471 if (!__ret) \ 472 local_irq_restore(flags); \ 473 __ret; \ 474 }) 475 476 #define arm_smmu_cmdq_exclusive_unlock_irqrestore(cmdq, flags) \ 477 ({ \ 478 atomic_set_release(&cmdq->lock, 0); \ 479 local_irq_restore(flags); \ 480 }) 481 482 483 /* 484 * Command queue insertion. 485 * This is made fiddly by our attempts to achieve some sort of scalability 486 * since there is one queue shared amongst all of the CPUs in the system. If 487 * you like mixed-size concurrency, dependency ordering and relaxed atomics, 488 * then you'll *love* this monstrosity. 489 * 490 * The basic idea is to split the queue up into ranges of commands that are 491 * owned by a given CPU; the owner may not have written all of the commands 492 * itself, but is responsible for advancing the hardware prod pointer when 493 * the time comes. The algorithm is roughly: 494 * 495 * 1. Allocate some space in the queue. At this point we also discover 496 * whether the head of the queue is currently owned by another CPU, 497 * or whether we are the owner. 498 * 499 * 2. Write our commands into our allocated slots in the queue. 500 * 501 * 3. Mark our slots as valid in arm_smmu_cmdq.valid_map. 502 * 503 * 4. If we are an owner: 504 * a. Wait for the previous owner to finish. 505 * b. Mark the queue head as unowned, which tells us the range 506 * that we are responsible for publishing. 507 * c. Wait for all commands in our owned range to become valid. 508 * d. Advance the hardware prod pointer. 509 * e. Tell the next owner we've finished. 510 * 511 * 5. If we are inserting a CMD_SYNC (we may or may not have been an 512 * owner), then we need to stick around until it has completed: 513 * a. If we have MSIs, the SMMU can write back into the CMD_SYNC 514 * to clear the first 4 bytes. 515 * b. Otherwise, we spin waiting for the hardware cons pointer to 516 * advance past our command. 517 * 518 * The devil is in the details, particularly the use of locking for handling 519 * SYNC completion and freeing up space in the queue before we think that it is 520 * full. 521 */ 522 static void __arm_smmu_cmdq_poll_set_valid_map(struct arm_smmu_cmdq *cmdq, 523 u32 sprod, u32 eprod, bool set) 524 { 525 u32 swidx, sbidx, ewidx, ebidx; 526 struct arm_smmu_ll_queue llq = { 527 .max_n_shift = cmdq->q.llq.max_n_shift, 528 .prod = sprod, 529 }; 530 531 ewidx = BIT_WORD(Q_IDX(&llq, eprod)); 532 ebidx = Q_IDX(&llq, eprod) % BITS_PER_LONG; 533 534 while (llq.prod != eprod) { 535 unsigned long mask; 536 atomic_long_t *ptr; 537 u32 limit = BITS_PER_LONG; 538 539 swidx = BIT_WORD(Q_IDX(&llq, llq.prod)); 540 sbidx = Q_IDX(&llq, llq.prod) % BITS_PER_LONG; 541 542 ptr = &cmdq->valid_map[swidx]; 543 544 if ((swidx == ewidx) && (sbidx < ebidx)) 545 limit = ebidx; 546 547 mask = GENMASK(limit - 1, sbidx); 548 549 /* 550 * The valid bit is the inverse of the wrap bit. This means 551 * that a zero-initialised queue is invalid and, after marking 552 * all entries as valid, they become invalid again when we 553 * wrap. 554 */ 555 if (set) { 556 atomic_long_xor(mask, ptr); 557 } else { /* Poll */ 558 unsigned long valid; 559 560 valid = (ULONG_MAX + !!Q_WRP(&llq, llq.prod)) & mask; 561 atomic_long_cond_read_relaxed(ptr, (VAL & mask) == valid); 562 } 563 564 llq.prod = queue_inc_prod_n(&llq, limit - sbidx); 565 } 566 } 567 568 /* Mark all entries in the range [sprod, eprod) as valid */ 569 static void arm_smmu_cmdq_set_valid_map(struct arm_smmu_cmdq *cmdq, 570 u32 sprod, u32 eprod) 571 { 572 __arm_smmu_cmdq_poll_set_valid_map(cmdq, sprod, eprod, true); 573 } 574 575 /* Wait for all entries in the range [sprod, eprod) to become valid */ 576 static void arm_smmu_cmdq_poll_valid_map(struct arm_smmu_cmdq *cmdq, 577 u32 sprod, u32 eprod) 578 { 579 __arm_smmu_cmdq_poll_set_valid_map(cmdq, sprod, eprod, false); 580 } 581 582 /* Wait for the command queue to become non-full */ 583 static int arm_smmu_cmdq_poll_until_not_full(struct arm_smmu_device *smmu, 584 struct arm_smmu_ll_queue *llq) 585 { 586 unsigned long flags; 587 struct arm_smmu_queue_poll qp; 588 struct arm_smmu_cmdq *cmdq = arm_smmu_get_cmdq(smmu); 589 int ret = 0; 590 591 /* 592 * Try to update our copy of cons by grabbing exclusive cmdq access. If 593 * that fails, spin until somebody else updates it for us. 594 */ 595 if (arm_smmu_cmdq_exclusive_trylock_irqsave(cmdq, flags)) { 596 WRITE_ONCE(cmdq->q.llq.cons, readl_relaxed(cmdq->q.cons_reg)); 597 arm_smmu_cmdq_exclusive_unlock_irqrestore(cmdq, flags); 598 llq->val = READ_ONCE(cmdq->q.llq.val); 599 return 0; 600 } 601 602 queue_poll_init(smmu, &qp); 603 do { 604 llq->val = READ_ONCE(cmdq->q.llq.val); 605 if (!queue_full(llq)) 606 break; 607 608 ret = queue_poll(&qp); 609 } while (!ret); 610 611 return ret; 612 } 613 614 /* 615 * Wait until the SMMU signals a CMD_SYNC completion MSI. 616 * Must be called with the cmdq lock held in some capacity. 617 */ 618 static int __arm_smmu_cmdq_poll_until_msi(struct arm_smmu_device *smmu, 619 struct arm_smmu_ll_queue *llq) 620 { 621 int ret = 0; 622 struct arm_smmu_queue_poll qp; 623 struct arm_smmu_cmdq *cmdq = arm_smmu_get_cmdq(smmu); 624 u32 *cmd = (u32 *)(Q_ENT(&cmdq->q, llq->prod)); 625 626 queue_poll_init(smmu, &qp); 627 628 /* 629 * The MSI won't generate an event, since it's being written back 630 * into the command queue. 631 */ 632 qp.wfe = false; 633 smp_cond_load_relaxed(cmd, !VAL || (ret = queue_poll(&qp))); 634 llq->cons = ret ? llq->prod : queue_inc_prod_n(llq, 1); 635 return ret; 636 } 637 638 /* 639 * Wait until the SMMU cons index passes llq->prod. 640 * Must be called with the cmdq lock held in some capacity. 641 */ 642 static int __arm_smmu_cmdq_poll_until_consumed(struct arm_smmu_device *smmu, 643 struct arm_smmu_ll_queue *llq) 644 { 645 struct arm_smmu_queue_poll qp; 646 struct arm_smmu_cmdq *cmdq = arm_smmu_get_cmdq(smmu); 647 u32 prod = llq->prod; 648 int ret = 0; 649 650 queue_poll_init(smmu, &qp); 651 llq->val = READ_ONCE(cmdq->q.llq.val); 652 do { 653 if (queue_consumed(llq, prod)) 654 break; 655 656 ret = queue_poll(&qp); 657 658 /* 659 * This needs to be a readl() so that our subsequent call 660 * to arm_smmu_cmdq_shared_tryunlock() can fail accurately. 661 * 662 * Specifically, we need to ensure that we observe all 663 * shared_lock()s by other CMD_SYNCs that share our owner, 664 * so that a failing call to tryunlock() means that we're 665 * the last one out and therefore we can safely advance 666 * cmdq->q.llq.cons. Roughly speaking: 667 * 668 * CPU 0 CPU1 CPU2 (us) 669 * 670 * if (sync) 671 * shared_lock(); 672 * 673 * dma_wmb(); 674 * set_valid_map(); 675 * 676 * if (owner) { 677 * poll_valid_map(); 678 * <control dependency> 679 * writel(prod_reg); 680 * 681 * readl(cons_reg); 682 * tryunlock(); 683 * 684 * Requires us to see CPU 0's shared_lock() acquisition. 685 */ 686 llq->cons = readl(cmdq->q.cons_reg); 687 } while (!ret); 688 689 return ret; 690 } 691 692 static int arm_smmu_cmdq_poll_until_sync(struct arm_smmu_device *smmu, 693 struct arm_smmu_ll_queue *llq) 694 { 695 if (smmu->options & ARM_SMMU_OPT_MSIPOLL) 696 return __arm_smmu_cmdq_poll_until_msi(smmu, llq); 697 698 return __arm_smmu_cmdq_poll_until_consumed(smmu, llq); 699 } 700 701 static void arm_smmu_cmdq_write_entries(struct arm_smmu_cmdq *cmdq, u64 *cmds, 702 u32 prod, int n) 703 { 704 int i; 705 struct arm_smmu_ll_queue llq = { 706 .max_n_shift = cmdq->q.llq.max_n_shift, 707 .prod = prod, 708 }; 709 710 for (i = 0; i < n; ++i) { 711 u64 *cmd = &cmds[i * CMDQ_ENT_DWORDS]; 712 713 prod = queue_inc_prod_n(&llq, i); 714 queue_write(Q_ENT(&cmdq->q, prod), cmd, CMDQ_ENT_DWORDS); 715 } 716 } 717 718 /* 719 * This is the actual insertion function, and provides the following 720 * ordering guarantees to callers: 721 * 722 * - There is a dma_wmb() before publishing any commands to the queue. 723 * This can be relied upon to order prior writes to data structures 724 * in memory (such as a CD or an STE) before the command. 725 * 726 * - On completion of a CMD_SYNC, there is a control dependency. 727 * This can be relied upon to order subsequent writes to memory (e.g. 728 * freeing an IOVA) after completion of the CMD_SYNC. 729 * 730 * - Command insertion is totally ordered, so if two CPUs each race to 731 * insert their own list of commands then all of the commands from one 732 * CPU will appear before any of the commands from the other CPU. 733 */ 734 static int arm_smmu_cmdq_issue_cmdlist(struct arm_smmu_device *smmu, 735 u64 *cmds, int n, bool sync) 736 { 737 u64 cmd_sync[CMDQ_ENT_DWORDS]; 738 u32 prod; 739 unsigned long flags; 740 bool owner; 741 struct arm_smmu_cmdq *cmdq = arm_smmu_get_cmdq(smmu); 742 struct arm_smmu_ll_queue llq, head; 743 int ret = 0; 744 745 llq.max_n_shift = cmdq->q.llq.max_n_shift; 746 747 /* 1. Allocate some space in the queue */ 748 local_irq_save(flags); 749 llq.val = READ_ONCE(cmdq->q.llq.val); 750 do { 751 u64 old; 752 753 while (!queue_has_space(&llq, n + sync)) { 754 local_irq_restore(flags); 755 if (arm_smmu_cmdq_poll_until_not_full(smmu, &llq)) 756 dev_err_ratelimited(smmu->dev, "CMDQ timeout\n"); 757 local_irq_save(flags); 758 } 759 760 head.cons = llq.cons; 761 head.prod = queue_inc_prod_n(&llq, n + sync) | 762 CMDQ_PROD_OWNED_FLAG; 763 764 old = cmpxchg_relaxed(&cmdq->q.llq.val, llq.val, head.val); 765 if (old == llq.val) 766 break; 767 768 llq.val = old; 769 } while (1); 770 owner = !(llq.prod & CMDQ_PROD_OWNED_FLAG); 771 head.prod &= ~CMDQ_PROD_OWNED_FLAG; 772 llq.prod &= ~CMDQ_PROD_OWNED_FLAG; 773 774 /* 775 * 2. Write our commands into the queue 776 * Dependency ordering from the cmpxchg() loop above. 777 */ 778 arm_smmu_cmdq_write_entries(cmdq, cmds, llq.prod, n); 779 if (sync) { 780 prod = queue_inc_prod_n(&llq, n); 781 arm_smmu_cmdq_build_sync_cmd(cmd_sync, smmu, &cmdq->q, prod); 782 queue_write(Q_ENT(&cmdq->q, prod), cmd_sync, CMDQ_ENT_DWORDS); 783 784 /* 785 * In order to determine completion of our CMD_SYNC, we must 786 * ensure that the queue can't wrap twice without us noticing. 787 * We achieve that by taking the cmdq lock as shared before 788 * marking our slot as valid. 789 */ 790 arm_smmu_cmdq_shared_lock(cmdq); 791 } 792 793 /* 3. Mark our slots as valid, ensuring commands are visible first */ 794 dma_wmb(); 795 arm_smmu_cmdq_set_valid_map(cmdq, llq.prod, head.prod); 796 797 /* 4. If we are the owner, take control of the SMMU hardware */ 798 if (owner) { 799 /* a. Wait for previous owner to finish */ 800 atomic_cond_read_relaxed(&cmdq->owner_prod, VAL == llq.prod); 801 802 /* b. Stop gathering work by clearing the owned flag */ 803 prod = atomic_fetch_andnot_relaxed(CMDQ_PROD_OWNED_FLAG, 804 &cmdq->q.llq.atomic.prod); 805 prod &= ~CMDQ_PROD_OWNED_FLAG; 806 807 /* 808 * c. Wait for any gathered work to be written to the queue. 809 * Note that we read our own entries so that we have the control 810 * dependency required by (d). 811 */ 812 arm_smmu_cmdq_poll_valid_map(cmdq, llq.prod, prod); 813 814 /* 815 * d. Advance the hardware prod pointer 816 * Control dependency ordering from the entries becoming valid. 817 */ 818 writel_relaxed(prod, cmdq->q.prod_reg); 819 820 /* 821 * e. Tell the next owner we're done 822 * Make sure we've updated the hardware first, so that we don't 823 * race to update prod and potentially move it backwards. 824 */ 825 atomic_set_release(&cmdq->owner_prod, prod); 826 } 827 828 /* 5. If we are inserting a CMD_SYNC, we must wait for it to complete */ 829 if (sync) { 830 llq.prod = queue_inc_prod_n(&llq, n); 831 ret = arm_smmu_cmdq_poll_until_sync(smmu, &llq); 832 if (ret) { 833 dev_err_ratelimited(smmu->dev, 834 "CMD_SYNC timeout at 0x%08x [hwprod 0x%08x, hwcons 0x%08x]\n", 835 llq.prod, 836 readl_relaxed(cmdq->q.prod_reg), 837 readl_relaxed(cmdq->q.cons_reg)); 838 } 839 840 /* 841 * Try to unlock the cmdq lock. This will fail if we're the last 842 * reader, in which case we can safely update cmdq->q.llq.cons 843 */ 844 if (!arm_smmu_cmdq_shared_tryunlock(cmdq)) { 845 WRITE_ONCE(cmdq->q.llq.cons, llq.cons); 846 arm_smmu_cmdq_shared_unlock(cmdq); 847 } 848 } 849 850 local_irq_restore(flags); 851 return ret; 852 } 853 854 static int __arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu, 855 struct arm_smmu_cmdq_ent *ent, 856 bool sync) 857 { 858 u64 cmd[CMDQ_ENT_DWORDS]; 859 860 if (unlikely(arm_smmu_cmdq_build_cmd(cmd, ent))) { 861 dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n", 862 ent->opcode); 863 return -EINVAL; 864 } 865 866 return arm_smmu_cmdq_issue_cmdlist(smmu, cmd, 1, sync); 867 } 868 869 static int arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu, 870 struct arm_smmu_cmdq_ent *ent) 871 { 872 return __arm_smmu_cmdq_issue_cmd(smmu, ent, false); 873 } 874 875 static int arm_smmu_cmdq_issue_cmd_with_sync(struct arm_smmu_device *smmu, 876 struct arm_smmu_cmdq_ent *ent) 877 { 878 return __arm_smmu_cmdq_issue_cmd(smmu, ent, true); 879 } 880 881 static void arm_smmu_cmdq_batch_add(struct arm_smmu_device *smmu, 882 struct arm_smmu_cmdq_batch *cmds, 883 struct arm_smmu_cmdq_ent *cmd) 884 { 885 int index; 886 887 if (cmds->num == CMDQ_BATCH_ENTRIES) { 888 arm_smmu_cmdq_issue_cmdlist(smmu, cmds->cmds, cmds->num, false); 889 cmds->num = 0; 890 } 891 892 index = cmds->num * CMDQ_ENT_DWORDS; 893 if (unlikely(arm_smmu_cmdq_build_cmd(&cmds->cmds[index], cmd))) { 894 dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n", 895 cmd->opcode); 896 return; 897 } 898 899 cmds->num++; 900 } 901 902 static int arm_smmu_cmdq_batch_submit(struct arm_smmu_device *smmu, 903 struct arm_smmu_cmdq_batch *cmds) 904 { 905 return arm_smmu_cmdq_issue_cmdlist(smmu, cmds->cmds, cmds->num, true); 906 } 907 908 static int arm_smmu_page_response(struct device *dev, 909 struct iommu_fault_event *unused, 910 struct iommu_page_response *resp) 911 { 912 struct arm_smmu_cmdq_ent cmd = {0}; 913 struct arm_smmu_master *master = dev_iommu_priv_get(dev); 914 int sid = master->streams[0].id; 915 916 if (master->stall_enabled) { 917 cmd.opcode = CMDQ_OP_RESUME; 918 cmd.resume.sid = sid; 919 cmd.resume.stag = resp->grpid; 920 switch (resp->code) { 921 case IOMMU_PAGE_RESP_INVALID: 922 case IOMMU_PAGE_RESP_FAILURE: 923 cmd.resume.resp = CMDQ_RESUME_0_RESP_ABORT; 924 break; 925 case IOMMU_PAGE_RESP_SUCCESS: 926 cmd.resume.resp = CMDQ_RESUME_0_RESP_RETRY; 927 break; 928 default: 929 return -EINVAL; 930 } 931 } else { 932 return -ENODEV; 933 } 934 935 arm_smmu_cmdq_issue_cmd(master->smmu, &cmd); 936 /* 937 * Don't send a SYNC, it doesn't do anything for RESUME or PRI_RESP. 938 * RESUME consumption guarantees that the stalled transaction will be 939 * terminated... at some point in the future. PRI_RESP is fire and 940 * forget. 941 */ 942 943 return 0; 944 } 945 946 /* Context descriptor manipulation functions */ 947 void arm_smmu_tlb_inv_asid(struct arm_smmu_device *smmu, u16 asid) 948 { 949 struct arm_smmu_cmdq_ent cmd = { 950 .opcode = smmu->features & ARM_SMMU_FEAT_E2H ? 951 CMDQ_OP_TLBI_EL2_ASID : CMDQ_OP_TLBI_NH_ASID, 952 .tlbi.asid = asid, 953 }; 954 955 arm_smmu_cmdq_issue_cmd_with_sync(smmu, &cmd); 956 } 957 958 static void arm_smmu_sync_cd(struct arm_smmu_domain *smmu_domain, 959 int ssid, bool leaf) 960 { 961 size_t i; 962 unsigned long flags; 963 struct arm_smmu_master *master; 964 struct arm_smmu_cmdq_batch cmds; 965 struct arm_smmu_device *smmu = smmu_domain->smmu; 966 struct arm_smmu_cmdq_ent cmd = { 967 .opcode = CMDQ_OP_CFGI_CD, 968 .cfgi = { 969 .ssid = ssid, 970 .leaf = leaf, 971 }, 972 }; 973 974 cmds.num = 0; 975 976 spin_lock_irqsave(&smmu_domain->devices_lock, flags); 977 list_for_each_entry(master, &smmu_domain->devices, domain_head) { 978 for (i = 0; i < master->num_streams; i++) { 979 cmd.cfgi.sid = master->streams[i].id; 980 arm_smmu_cmdq_batch_add(smmu, &cmds, &cmd); 981 } 982 } 983 spin_unlock_irqrestore(&smmu_domain->devices_lock, flags); 984 985 arm_smmu_cmdq_batch_submit(smmu, &cmds); 986 } 987 988 static int arm_smmu_alloc_cd_leaf_table(struct arm_smmu_device *smmu, 989 struct arm_smmu_l1_ctx_desc *l1_desc) 990 { 991 size_t size = CTXDESC_L2_ENTRIES * (CTXDESC_CD_DWORDS << 3); 992 993 l1_desc->l2ptr = dmam_alloc_coherent(smmu->dev, size, 994 &l1_desc->l2ptr_dma, GFP_KERNEL); 995 if (!l1_desc->l2ptr) { 996 dev_warn(smmu->dev, 997 "failed to allocate context descriptor table\n"); 998 return -ENOMEM; 999 } 1000 return 0; 1001 } 1002 1003 static void arm_smmu_write_cd_l1_desc(__le64 *dst, 1004 struct arm_smmu_l1_ctx_desc *l1_desc) 1005 { 1006 u64 val = (l1_desc->l2ptr_dma & CTXDESC_L1_DESC_L2PTR_MASK) | 1007 CTXDESC_L1_DESC_V; 1008 1009 /* See comment in arm_smmu_write_ctx_desc() */ 1010 WRITE_ONCE(*dst, cpu_to_le64(val)); 1011 } 1012 1013 static __le64 *arm_smmu_get_cd_ptr(struct arm_smmu_domain *smmu_domain, 1014 u32 ssid) 1015 { 1016 __le64 *l1ptr; 1017 unsigned int idx; 1018 struct arm_smmu_l1_ctx_desc *l1_desc; 1019 struct arm_smmu_device *smmu = smmu_domain->smmu; 1020 struct arm_smmu_ctx_desc_cfg *cdcfg = &smmu_domain->s1_cfg.cdcfg; 1021 1022 if (smmu_domain->s1_cfg.s1fmt == STRTAB_STE_0_S1FMT_LINEAR) 1023 return cdcfg->cdtab + ssid * CTXDESC_CD_DWORDS; 1024 1025 idx = ssid >> CTXDESC_SPLIT; 1026 l1_desc = &cdcfg->l1_desc[idx]; 1027 if (!l1_desc->l2ptr) { 1028 if (arm_smmu_alloc_cd_leaf_table(smmu, l1_desc)) 1029 return NULL; 1030 1031 l1ptr = cdcfg->cdtab + idx * CTXDESC_L1_DESC_DWORDS; 1032 arm_smmu_write_cd_l1_desc(l1ptr, l1_desc); 1033 /* An invalid L1CD can be cached */ 1034 arm_smmu_sync_cd(smmu_domain, ssid, false); 1035 } 1036 idx = ssid & (CTXDESC_L2_ENTRIES - 1); 1037 return l1_desc->l2ptr + idx * CTXDESC_CD_DWORDS; 1038 } 1039 1040 int arm_smmu_write_ctx_desc(struct arm_smmu_domain *smmu_domain, int ssid, 1041 struct arm_smmu_ctx_desc *cd) 1042 { 1043 /* 1044 * This function handles the following cases: 1045 * 1046 * (1) Install primary CD, for normal DMA traffic (SSID = 0). 1047 * (2) Install a secondary CD, for SID+SSID traffic. 1048 * (3) Update ASID of a CD. Atomically write the first 64 bits of the 1049 * CD, then invalidate the old entry and mappings. 1050 * (4) Quiesce the context without clearing the valid bit. Disable 1051 * translation, and ignore any translation fault. 1052 * (5) Remove a secondary CD. 1053 */ 1054 u64 val; 1055 bool cd_live; 1056 __le64 *cdptr; 1057 1058 if (WARN_ON(ssid >= (1 << smmu_domain->s1_cfg.s1cdmax))) 1059 return -E2BIG; 1060 1061 cdptr = arm_smmu_get_cd_ptr(smmu_domain, ssid); 1062 if (!cdptr) 1063 return -ENOMEM; 1064 1065 val = le64_to_cpu(cdptr[0]); 1066 cd_live = !!(val & CTXDESC_CD_0_V); 1067 1068 if (!cd) { /* (5) */ 1069 val = 0; 1070 } else if (cd == &quiet_cd) { /* (4) */ 1071 val |= CTXDESC_CD_0_TCR_EPD0; 1072 } else if (cd_live) { /* (3) */ 1073 val &= ~CTXDESC_CD_0_ASID; 1074 val |= FIELD_PREP(CTXDESC_CD_0_ASID, cd->asid); 1075 /* 1076 * Until CD+TLB invalidation, both ASIDs may be used for tagging 1077 * this substream's traffic 1078 */ 1079 } else { /* (1) and (2) */ 1080 cdptr[1] = cpu_to_le64(cd->ttbr & CTXDESC_CD_1_TTB0_MASK); 1081 cdptr[2] = 0; 1082 cdptr[3] = cpu_to_le64(cd->mair); 1083 1084 /* 1085 * STE is live, and the SMMU might read dwords of this CD in any 1086 * order. Ensure that it observes valid values before reading 1087 * V=1. 1088 */ 1089 arm_smmu_sync_cd(smmu_domain, ssid, true); 1090 1091 val = cd->tcr | 1092 #ifdef __BIG_ENDIAN 1093 CTXDESC_CD_0_ENDI | 1094 #endif 1095 CTXDESC_CD_0_R | CTXDESC_CD_0_A | 1096 (cd->mm ? 0 : CTXDESC_CD_0_ASET) | 1097 CTXDESC_CD_0_AA64 | 1098 FIELD_PREP(CTXDESC_CD_0_ASID, cd->asid) | 1099 CTXDESC_CD_0_V; 1100 1101 if (smmu_domain->stall_enabled) 1102 val |= CTXDESC_CD_0_S; 1103 } 1104 1105 /* 1106 * The SMMU accesses 64-bit values atomically. See IHI0070Ca 3.21.3 1107 * "Configuration structures and configuration invalidation completion" 1108 * 1109 * The size of single-copy atomic reads made by the SMMU is 1110 * IMPLEMENTATION DEFINED but must be at least 64 bits. Any single 1111 * field within an aligned 64-bit span of a structure can be altered 1112 * without first making the structure invalid. 1113 */ 1114 WRITE_ONCE(cdptr[0], cpu_to_le64(val)); 1115 arm_smmu_sync_cd(smmu_domain, ssid, true); 1116 return 0; 1117 } 1118 1119 static int arm_smmu_alloc_cd_tables(struct arm_smmu_domain *smmu_domain) 1120 { 1121 int ret; 1122 size_t l1size; 1123 size_t max_contexts; 1124 struct arm_smmu_device *smmu = smmu_domain->smmu; 1125 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg; 1126 struct arm_smmu_ctx_desc_cfg *cdcfg = &cfg->cdcfg; 1127 1128 max_contexts = 1 << cfg->s1cdmax; 1129 1130 if (!(smmu->features & ARM_SMMU_FEAT_2_LVL_CDTAB) || 1131 max_contexts <= CTXDESC_L2_ENTRIES) { 1132 cfg->s1fmt = STRTAB_STE_0_S1FMT_LINEAR; 1133 cdcfg->num_l1_ents = max_contexts; 1134 1135 l1size = max_contexts * (CTXDESC_CD_DWORDS << 3); 1136 } else { 1137 cfg->s1fmt = STRTAB_STE_0_S1FMT_64K_L2; 1138 cdcfg->num_l1_ents = DIV_ROUND_UP(max_contexts, 1139 CTXDESC_L2_ENTRIES); 1140 1141 cdcfg->l1_desc = devm_kcalloc(smmu->dev, cdcfg->num_l1_ents, 1142 sizeof(*cdcfg->l1_desc), 1143 GFP_KERNEL); 1144 if (!cdcfg->l1_desc) 1145 return -ENOMEM; 1146 1147 l1size = cdcfg->num_l1_ents * (CTXDESC_L1_DESC_DWORDS << 3); 1148 } 1149 1150 cdcfg->cdtab = dmam_alloc_coherent(smmu->dev, l1size, &cdcfg->cdtab_dma, 1151 GFP_KERNEL); 1152 if (!cdcfg->cdtab) { 1153 dev_warn(smmu->dev, "failed to allocate context descriptor\n"); 1154 ret = -ENOMEM; 1155 goto err_free_l1; 1156 } 1157 1158 return 0; 1159 1160 err_free_l1: 1161 if (cdcfg->l1_desc) { 1162 devm_kfree(smmu->dev, cdcfg->l1_desc); 1163 cdcfg->l1_desc = NULL; 1164 } 1165 return ret; 1166 } 1167 1168 static void arm_smmu_free_cd_tables(struct arm_smmu_domain *smmu_domain) 1169 { 1170 int i; 1171 size_t size, l1size; 1172 struct arm_smmu_device *smmu = smmu_domain->smmu; 1173 struct arm_smmu_ctx_desc_cfg *cdcfg = &smmu_domain->s1_cfg.cdcfg; 1174 1175 if (cdcfg->l1_desc) { 1176 size = CTXDESC_L2_ENTRIES * (CTXDESC_CD_DWORDS << 3); 1177 1178 for (i = 0; i < cdcfg->num_l1_ents; i++) { 1179 if (!cdcfg->l1_desc[i].l2ptr) 1180 continue; 1181 1182 dmam_free_coherent(smmu->dev, size, 1183 cdcfg->l1_desc[i].l2ptr, 1184 cdcfg->l1_desc[i].l2ptr_dma); 1185 } 1186 devm_kfree(smmu->dev, cdcfg->l1_desc); 1187 cdcfg->l1_desc = NULL; 1188 1189 l1size = cdcfg->num_l1_ents * (CTXDESC_L1_DESC_DWORDS << 3); 1190 } else { 1191 l1size = cdcfg->num_l1_ents * (CTXDESC_CD_DWORDS << 3); 1192 } 1193 1194 dmam_free_coherent(smmu->dev, l1size, cdcfg->cdtab, cdcfg->cdtab_dma); 1195 cdcfg->cdtab_dma = 0; 1196 cdcfg->cdtab = NULL; 1197 } 1198 1199 bool arm_smmu_free_asid(struct arm_smmu_ctx_desc *cd) 1200 { 1201 bool free; 1202 struct arm_smmu_ctx_desc *old_cd; 1203 1204 if (!cd->asid) 1205 return false; 1206 1207 free = refcount_dec_and_test(&cd->refs); 1208 if (free) { 1209 old_cd = xa_erase(&arm_smmu_asid_xa, cd->asid); 1210 WARN_ON(old_cd != cd); 1211 } 1212 return free; 1213 } 1214 1215 /* Stream table manipulation functions */ 1216 static void 1217 arm_smmu_write_strtab_l1_desc(__le64 *dst, struct arm_smmu_strtab_l1_desc *desc) 1218 { 1219 u64 val = 0; 1220 1221 val |= FIELD_PREP(STRTAB_L1_DESC_SPAN, desc->span); 1222 val |= desc->l2ptr_dma & STRTAB_L1_DESC_L2PTR_MASK; 1223 1224 /* See comment in arm_smmu_write_ctx_desc() */ 1225 WRITE_ONCE(*dst, cpu_to_le64(val)); 1226 } 1227 1228 static void arm_smmu_sync_ste_for_sid(struct arm_smmu_device *smmu, u32 sid) 1229 { 1230 struct arm_smmu_cmdq_ent cmd = { 1231 .opcode = CMDQ_OP_CFGI_STE, 1232 .cfgi = { 1233 .sid = sid, 1234 .leaf = true, 1235 }, 1236 }; 1237 1238 arm_smmu_cmdq_issue_cmd_with_sync(smmu, &cmd); 1239 } 1240 1241 static void arm_smmu_write_strtab_ent(struct arm_smmu_master *master, u32 sid, 1242 __le64 *dst) 1243 { 1244 /* 1245 * This is hideously complicated, but we only really care about 1246 * three cases at the moment: 1247 * 1248 * 1. Invalid (all zero) -> bypass/fault (init) 1249 * 2. Bypass/fault -> translation/bypass (attach) 1250 * 3. Translation/bypass -> bypass/fault (detach) 1251 * 1252 * Given that we can't update the STE atomically and the SMMU 1253 * doesn't read the thing in a defined order, that leaves us 1254 * with the following maintenance requirements: 1255 * 1256 * 1. Update Config, return (init time STEs aren't live) 1257 * 2. Write everything apart from dword 0, sync, write dword 0, sync 1258 * 3. Update Config, sync 1259 */ 1260 u64 val = le64_to_cpu(dst[0]); 1261 bool ste_live = false; 1262 struct arm_smmu_device *smmu = NULL; 1263 struct arm_smmu_s1_cfg *s1_cfg = NULL; 1264 struct arm_smmu_s2_cfg *s2_cfg = NULL; 1265 struct arm_smmu_domain *smmu_domain = NULL; 1266 struct arm_smmu_cmdq_ent prefetch_cmd = { 1267 .opcode = CMDQ_OP_PREFETCH_CFG, 1268 .prefetch = { 1269 .sid = sid, 1270 }, 1271 }; 1272 1273 if (master) { 1274 smmu_domain = master->domain; 1275 smmu = master->smmu; 1276 } 1277 1278 if (smmu_domain) { 1279 switch (smmu_domain->stage) { 1280 case ARM_SMMU_DOMAIN_S1: 1281 s1_cfg = &smmu_domain->s1_cfg; 1282 break; 1283 case ARM_SMMU_DOMAIN_S2: 1284 case ARM_SMMU_DOMAIN_NESTED: 1285 s2_cfg = &smmu_domain->s2_cfg; 1286 break; 1287 default: 1288 break; 1289 } 1290 } 1291 1292 if (val & STRTAB_STE_0_V) { 1293 switch (FIELD_GET(STRTAB_STE_0_CFG, val)) { 1294 case STRTAB_STE_0_CFG_BYPASS: 1295 break; 1296 case STRTAB_STE_0_CFG_S1_TRANS: 1297 case STRTAB_STE_0_CFG_S2_TRANS: 1298 ste_live = true; 1299 break; 1300 case STRTAB_STE_0_CFG_ABORT: 1301 BUG_ON(!disable_bypass); 1302 break; 1303 default: 1304 BUG(); /* STE corruption */ 1305 } 1306 } 1307 1308 /* Nuke the existing STE_0 value, as we're going to rewrite it */ 1309 val = STRTAB_STE_0_V; 1310 1311 /* Bypass/fault */ 1312 if (!smmu_domain || !(s1_cfg || s2_cfg)) { 1313 if (!smmu_domain && disable_bypass) 1314 val |= FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_ABORT); 1315 else 1316 val |= FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_BYPASS); 1317 1318 dst[0] = cpu_to_le64(val); 1319 dst[1] = cpu_to_le64(FIELD_PREP(STRTAB_STE_1_SHCFG, 1320 STRTAB_STE_1_SHCFG_INCOMING)); 1321 dst[2] = 0; /* Nuke the VMID */ 1322 /* 1323 * The SMMU can perform negative caching, so we must sync 1324 * the STE regardless of whether the old value was live. 1325 */ 1326 if (smmu) 1327 arm_smmu_sync_ste_for_sid(smmu, sid); 1328 return; 1329 } 1330 1331 if (s1_cfg) { 1332 u64 strw = smmu->features & ARM_SMMU_FEAT_E2H ? 1333 STRTAB_STE_1_STRW_EL2 : STRTAB_STE_1_STRW_NSEL1; 1334 1335 BUG_ON(ste_live); 1336 dst[1] = cpu_to_le64( 1337 FIELD_PREP(STRTAB_STE_1_S1DSS, STRTAB_STE_1_S1DSS_SSID0) | 1338 FIELD_PREP(STRTAB_STE_1_S1CIR, STRTAB_STE_1_S1C_CACHE_WBRA) | 1339 FIELD_PREP(STRTAB_STE_1_S1COR, STRTAB_STE_1_S1C_CACHE_WBRA) | 1340 FIELD_PREP(STRTAB_STE_1_S1CSH, ARM_SMMU_SH_ISH) | 1341 FIELD_PREP(STRTAB_STE_1_STRW, strw)); 1342 1343 if (smmu->features & ARM_SMMU_FEAT_STALLS && 1344 !master->stall_enabled) 1345 dst[1] |= cpu_to_le64(STRTAB_STE_1_S1STALLD); 1346 1347 val |= (s1_cfg->cdcfg.cdtab_dma & STRTAB_STE_0_S1CTXPTR_MASK) | 1348 FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_S1_TRANS) | 1349 FIELD_PREP(STRTAB_STE_0_S1CDMAX, s1_cfg->s1cdmax) | 1350 FIELD_PREP(STRTAB_STE_0_S1FMT, s1_cfg->s1fmt); 1351 } 1352 1353 if (s2_cfg) { 1354 BUG_ON(ste_live); 1355 dst[2] = cpu_to_le64( 1356 FIELD_PREP(STRTAB_STE_2_S2VMID, s2_cfg->vmid) | 1357 FIELD_PREP(STRTAB_STE_2_VTCR, s2_cfg->vtcr) | 1358 #ifdef __BIG_ENDIAN 1359 STRTAB_STE_2_S2ENDI | 1360 #endif 1361 STRTAB_STE_2_S2PTW | STRTAB_STE_2_S2AA64 | 1362 STRTAB_STE_2_S2R); 1363 1364 dst[3] = cpu_to_le64(s2_cfg->vttbr & STRTAB_STE_3_S2TTB_MASK); 1365 1366 val |= FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_S2_TRANS); 1367 } 1368 1369 if (master->ats_enabled) 1370 dst[1] |= cpu_to_le64(FIELD_PREP(STRTAB_STE_1_EATS, 1371 STRTAB_STE_1_EATS_TRANS)); 1372 1373 arm_smmu_sync_ste_for_sid(smmu, sid); 1374 /* See comment in arm_smmu_write_ctx_desc() */ 1375 WRITE_ONCE(dst[0], cpu_to_le64(val)); 1376 arm_smmu_sync_ste_for_sid(smmu, sid); 1377 1378 /* It's likely that we'll want to use the new STE soon */ 1379 if (!(smmu->options & ARM_SMMU_OPT_SKIP_PREFETCH)) 1380 arm_smmu_cmdq_issue_cmd(smmu, &prefetch_cmd); 1381 } 1382 1383 static void arm_smmu_init_bypass_stes(__le64 *strtab, unsigned int nent, bool force) 1384 { 1385 unsigned int i; 1386 u64 val = STRTAB_STE_0_V; 1387 1388 if (disable_bypass && !force) 1389 val |= FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_ABORT); 1390 else 1391 val |= FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_BYPASS); 1392 1393 for (i = 0; i < nent; ++i) { 1394 strtab[0] = cpu_to_le64(val); 1395 strtab[1] = cpu_to_le64(FIELD_PREP(STRTAB_STE_1_SHCFG, 1396 STRTAB_STE_1_SHCFG_INCOMING)); 1397 strtab[2] = 0; 1398 strtab += STRTAB_STE_DWORDS; 1399 } 1400 } 1401 1402 static int arm_smmu_init_l2_strtab(struct arm_smmu_device *smmu, u32 sid) 1403 { 1404 size_t size; 1405 void *strtab; 1406 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg; 1407 struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[sid >> STRTAB_SPLIT]; 1408 1409 if (desc->l2ptr) 1410 return 0; 1411 1412 size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3); 1413 strtab = &cfg->strtab[(sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS]; 1414 1415 desc->span = STRTAB_SPLIT + 1; 1416 desc->l2ptr = dmam_alloc_coherent(smmu->dev, size, &desc->l2ptr_dma, 1417 GFP_KERNEL); 1418 if (!desc->l2ptr) { 1419 dev_err(smmu->dev, 1420 "failed to allocate l2 stream table for SID %u\n", 1421 sid); 1422 return -ENOMEM; 1423 } 1424 1425 arm_smmu_init_bypass_stes(desc->l2ptr, 1 << STRTAB_SPLIT, false); 1426 arm_smmu_write_strtab_l1_desc(strtab, desc); 1427 return 0; 1428 } 1429 1430 static struct arm_smmu_master * 1431 arm_smmu_find_master(struct arm_smmu_device *smmu, u32 sid) 1432 { 1433 struct rb_node *node; 1434 struct arm_smmu_stream *stream; 1435 1436 lockdep_assert_held(&smmu->streams_mutex); 1437 1438 node = smmu->streams.rb_node; 1439 while (node) { 1440 stream = rb_entry(node, struct arm_smmu_stream, node); 1441 if (stream->id < sid) 1442 node = node->rb_right; 1443 else if (stream->id > sid) 1444 node = node->rb_left; 1445 else 1446 return stream->master; 1447 } 1448 1449 return NULL; 1450 } 1451 1452 /* IRQ and event handlers */ 1453 static int arm_smmu_handle_evt(struct arm_smmu_device *smmu, u64 *evt) 1454 { 1455 int ret; 1456 u32 reason; 1457 u32 perm = 0; 1458 struct arm_smmu_master *master; 1459 bool ssid_valid = evt[0] & EVTQ_0_SSV; 1460 u32 sid = FIELD_GET(EVTQ_0_SID, evt[0]); 1461 struct iommu_fault_event fault_evt = { }; 1462 struct iommu_fault *flt = &fault_evt.fault; 1463 1464 switch (FIELD_GET(EVTQ_0_ID, evt[0])) { 1465 case EVT_ID_TRANSLATION_FAULT: 1466 reason = IOMMU_FAULT_REASON_PTE_FETCH; 1467 break; 1468 case EVT_ID_ADDR_SIZE_FAULT: 1469 reason = IOMMU_FAULT_REASON_OOR_ADDRESS; 1470 break; 1471 case EVT_ID_ACCESS_FAULT: 1472 reason = IOMMU_FAULT_REASON_ACCESS; 1473 break; 1474 case EVT_ID_PERMISSION_FAULT: 1475 reason = IOMMU_FAULT_REASON_PERMISSION; 1476 break; 1477 default: 1478 return -EOPNOTSUPP; 1479 } 1480 1481 /* Stage-2 is always pinned at the moment */ 1482 if (evt[1] & EVTQ_1_S2) 1483 return -EFAULT; 1484 1485 if (evt[1] & EVTQ_1_RnW) 1486 perm |= IOMMU_FAULT_PERM_READ; 1487 else 1488 perm |= IOMMU_FAULT_PERM_WRITE; 1489 1490 if (evt[1] & EVTQ_1_InD) 1491 perm |= IOMMU_FAULT_PERM_EXEC; 1492 1493 if (evt[1] & EVTQ_1_PnU) 1494 perm |= IOMMU_FAULT_PERM_PRIV; 1495 1496 if (evt[1] & EVTQ_1_STALL) { 1497 flt->type = IOMMU_FAULT_PAGE_REQ; 1498 flt->prm = (struct iommu_fault_page_request) { 1499 .flags = IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE, 1500 .grpid = FIELD_GET(EVTQ_1_STAG, evt[1]), 1501 .perm = perm, 1502 .addr = FIELD_GET(EVTQ_2_ADDR, evt[2]), 1503 }; 1504 1505 if (ssid_valid) { 1506 flt->prm.flags |= IOMMU_FAULT_PAGE_REQUEST_PASID_VALID; 1507 flt->prm.pasid = FIELD_GET(EVTQ_0_SSID, evt[0]); 1508 } 1509 } else { 1510 flt->type = IOMMU_FAULT_DMA_UNRECOV; 1511 flt->event = (struct iommu_fault_unrecoverable) { 1512 .reason = reason, 1513 .flags = IOMMU_FAULT_UNRECOV_ADDR_VALID, 1514 .perm = perm, 1515 .addr = FIELD_GET(EVTQ_2_ADDR, evt[2]), 1516 }; 1517 1518 if (ssid_valid) { 1519 flt->event.flags |= IOMMU_FAULT_UNRECOV_PASID_VALID; 1520 flt->event.pasid = FIELD_GET(EVTQ_0_SSID, evt[0]); 1521 } 1522 } 1523 1524 mutex_lock(&smmu->streams_mutex); 1525 master = arm_smmu_find_master(smmu, sid); 1526 if (!master) { 1527 ret = -EINVAL; 1528 goto out_unlock; 1529 } 1530 1531 ret = iommu_report_device_fault(master->dev, &fault_evt); 1532 if (ret && flt->type == IOMMU_FAULT_PAGE_REQ) { 1533 /* Nobody cared, abort the access */ 1534 struct iommu_page_response resp = { 1535 .pasid = flt->prm.pasid, 1536 .grpid = flt->prm.grpid, 1537 .code = IOMMU_PAGE_RESP_FAILURE, 1538 }; 1539 arm_smmu_page_response(master->dev, &fault_evt, &resp); 1540 } 1541 1542 out_unlock: 1543 mutex_unlock(&smmu->streams_mutex); 1544 return ret; 1545 } 1546 1547 static irqreturn_t arm_smmu_evtq_thread(int irq, void *dev) 1548 { 1549 int i, ret; 1550 struct arm_smmu_device *smmu = dev; 1551 struct arm_smmu_queue *q = &smmu->evtq.q; 1552 struct arm_smmu_ll_queue *llq = &q->llq; 1553 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, 1554 DEFAULT_RATELIMIT_BURST); 1555 u64 evt[EVTQ_ENT_DWORDS]; 1556 1557 do { 1558 while (!queue_remove_raw(q, evt)) { 1559 u8 id = FIELD_GET(EVTQ_0_ID, evt[0]); 1560 1561 ret = arm_smmu_handle_evt(smmu, evt); 1562 if (!ret || !__ratelimit(&rs)) 1563 continue; 1564 1565 dev_info(smmu->dev, "event 0x%02x received:\n", id); 1566 for (i = 0; i < ARRAY_SIZE(evt); ++i) 1567 dev_info(smmu->dev, "\t0x%016llx\n", 1568 (unsigned long long)evt[i]); 1569 1570 cond_resched(); 1571 } 1572 1573 /* 1574 * Not much we can do on overflow, so scream and pretend we're 1575 * trying harder. 1576 */ 1577 if (queue_sync_prod_in(q) == -EOVERFLOW) 1578 dev_err(smmu->dev, "EVTQ overflow detected -- events lost\n"); 1579 } while (!queue_empty(llq)); 1580 1581 /* Sync our overflow flag, as we believe we're up to speed */ 1582 llq->cons = Q_OVF(llq->prod) | Q_WRP(llq, llq->cons) | 1583 Q_IDX(llq, llq->cons); 1584 return IRQ_HANDLED; 1585 } 1586 1587 static void arm_smmu_handle_ppr(struct arm_smmu_device *smmu, u64 *evt) 1588 { 1589 u32 sid, ssid; 1590 u16 grpid; 1591 bool ssv, last; 1592 1593 sid = FIELD_GET(PRIQ_0_SID, evt[0]); 1594 ssv = FIELD_GET(PRIQ_0_SSID_V, evt[0]); 1595 ssid = ssv ? FIELD_GET(PRIQ_0_SSID, evt[0]) : 0; 1596 last = FIELD_GET(PRIQ_0_PRG_LAST, evt[0]); 1597 grpid = FIELD_GET(PRIQ_1_PRG_IDX, evt[1]); 1598 1599 dev_info(smmu->dev, "unexpected PRI request received:\n"); 1600 dev_info(smmu->dev, 1601 "\tsid 0x%08x.0x%05x: [%u%s] %sprivileged %s%s%s access at iova 0x%016llx\n", 1602 sid, ssid, grpid, last ? "L" : "", 1603 evt[0] & PRIQ_0_PERM_PRIV ? "" : "un", 1604 evt[0] & PRIQ_0_PERM_READ ? "R" : "", 1605 evt[0] & PRIQ_0_PERM_WRITE ? "W" : "", 1606 evt[0] & PRIQ_0_PERM_EXEC ? "X" : "", 1607 evt[1] & PRIQ_1_ADDR_MASK); 1608 1609 if (last) { 1610 struct arm_smmu_cmdq_ent cmd = { 1611 .opcode = CMDQ_OP_PRI_RESP, 1612 .substream_valid = ssv, 1613 .pri = { 1614 .sid = sid, 1615 .ssid = ssid, 1616 .grpid = grpid, 1617 .resp = PRI_RESP_DENY, 1618 }, 1619 }; 1620 1621 arm_smmu_cmdq_issue_cmd(smmu, &cmd); 1622 } 1623 } 1624 1625 static irqreturn_t arm_smmu_priq_thread(int irq, void *dev) 1626 { 1627 struct arm_smmu_device *smmu = dev; 1628 struct arm_smmu_queue *q = &smmu->priq.q; 1629 struct arm_smmu_ll_queue *llq = &q->llq; 1630 u64 evt[PRIQ_ENT_DWORDS]; 1631 1632 do { 1633 while (!queue_remove_raw(q, evt)) 1634 arm_smmu_handle_ppr(smmu, evt); 1635 1636 if (queue_sync_prod_in(q) == -EOVERFLOW) 1637 dev_err(smmu->dev, "PRIQ overflow detected -- requests lost\n"); 1638 } while (!queue_empty(llq)); 1639 1640 /* Sync our overflow flag, as we believe we're up to speed */ 1641 llq->cons = Q_OVF(llq->prod) | Q_WRP(llq, llq->cons) | 1642 Q_IDX(llq, llq->cons); 1643 queue_sync_cons_out(q); 1644 return IRQ_HANDLED; 1645 } 1646 1647 static int arm_smmu_device_disable(struct arm_smmu_device *smmu); 1648 1649 static irqreturn_t arm_smmu_gerror_handler(int irq, void *dev) 1650 { 1651 u32 gerror, gerrorn, active; 1652 struct arm_smmu_device *smmu = dev; 1653 1654 gerror = readl_relaxed(smmu->base + ARM_SMMU_GERROR); 1655 gerrorn = readl_relaxed(smmu->base + ARM_SMMU_GERRORN); 1656 1657 active = gerror ^ gerrorn; 1658 if (!(active & GERROR_ERR_MASK)) 1659 return IRQ_NONE; /* No errors pending */ 1660 1661 dev_warn(smmu->dev, 1662 "unexpected global error reported (0x%08x), this could be serious\n", 1663 active); 1664 1665 if (active & GERROR_SFM_ERR) { 1666 dev_err(smmu->dev, "device has entered Service Failure Mode!\n"); 1667 arm_smmu_device_disable(smmu); 1668 } 1669 1670 if (active & GERROR_MSI_GERROR_ABT_ERR) 1671 dev_warn(smmu->dev, "GERROR MSI write aborted\n"); 1672 1673 if (active & GERROR_MSI_PRIQ_ABT_ERR) 1674 dev_warn(smmu->dev, "PRIQ MSI write aborted\n"); 1675 1676 if (active & GERROR_MSI_EVTQ_ABT_ERR) 1677 dev_warn(smmu->dev, "EVTQ MSI write aborted\n"); 1678 1679 if (active & GERROR_MSI_CMDQ_ABT_ERR) 1680 dev_warn(smmu->dev, "CMDQ MSI write aborted\n"); 1681 1682 if (active & GERROR_PRIQ_ABT_ERR) 1683 dev_err(smmu->dev, "PRIQ write aborted -- events may have been lost\n"); 1684 1685 if (active & GERROR_EVTQ_ABT_ERR) 1686 dev_err(smmu->dev, "EVTQ write aborted -- events may have been lost\n"); 1687 1688 if (active & GERROR_CMDQ_ERR) 1689 arm_smmu_cmdq_skip_err(smmu); 1690 1691 writel(gerror, smmu->base + ARM_SMMU_GERRORN); 1692 return IRQ_HANDLED; 1693 } 1694 1695 static irqreturn_t arm_smmu_combined_irq_thread(int irq, void *dev) 1696 { 1697 struct arm_smmu_device *smmu = dev; 1698 1699 arm_smmu_evtq_thread(irq, dev); 1700 if (smmu->features & ARM_SMMU_FEAT_PRI) 1701 arm_smmu_priq_thread(irq, dev); 1702 1703 return IRQ_HANDLED; 1704 } 1705 1706 static irqreturn_t arm_smmu_combined_irq_handler(int irq, void *dev) 1707 { 1708 arm_smmu_gerror_handler(irq, dev); 1709 return IRQ_WAKE_THREAD; 1710 } 1711 1712 static void 1713 arm_smmu_atc_inv_to_cmd(int ssid, unsigned long iova, size_t size, 1714 struct arm_smmu_cmdq_ent *cmd) 1715 { 1716 size_t log2_span; 1717 size_t span_mask; 1718 /* ATC invalidates are always on 4096-bytes pages */ 1719 size_t inval_grain_shift = 12; 1720 unsigned long page_start, page_end; 1721 1722 /* 1723 * ATS and PASID: 1724 * 1725 * If substream_valid is clear, the PCIe TLP is sent without a PASID 1726 * prefix. In that case all ATC entries within the address range are 1727 * invalidated, including those that were requested with a PASID! There 1728 * is no way to invalidate only entries without PASID. 1729 * 1730 * When using STRTAB_STE_1_S1DSS_SSID0 (reserving CD 0 for non-PASID 1731 * traffic), translation requests without PASID create ATC entries 1732 * without PASID, which must be invalidated with substream_valid clear. 1733 * This has the unpleasant side-effect of invalidating all PASID-tagged 1734 * ATC entries within the address range. 1735 */ 1736 *cmd = (struct arm_smmu_cmdq_ent) { 1737 .opcode = CMDQ_OP_ATC_INV, 1738 .substream_valid = !!ssid, 1739 .atc.ssid = ssid, 1740 }; 1741 1742 if (!size) { 1743 cmd->atc.size = ATC_INV_SIZE_ALL; 1744 return; 1745 } 1746 1747 page_start = iova >> inval_grain_shift; 1748 page_end = (iova + size - 1) >> inval_grain_shift; 1749 1750 /* 1751 * In an ATS Invalidate Request, the address must be aligned on the 1752 * range size, which must be a power of two number of page sizes. We 1753 * thus have to choose between grossly over-invalidating the region, or 1754 * splitting the invalidation into multiple commands. For simplicity 1755 * we'll go with the first solution, but should refine it in the future 1756 * if multiple commands are shown to be more efficient. 1757 * 1758 * Find the smallest power of two that covers the range. The most 1759 * significant differing bit between the start and end addresses, 1760 * fls(start ^ end), indicates the required span. For example: 1761 * 1762 * We want to invalidate pages [8; 11]. This is already the ideal range: 1763 * x = 0b1000 ^ 0b1011 = 0b11 1764 * span = 1 << fls(x) = 4 1765 * 1766 * To invalidate pages [7; 10], we need to invalidate [0; 15]: 1767 * x = 0b0111 ^ 0b1010 = 0b1101 1768 * span = 1 << fls(x) = 16 1769 */ 1770 log2_span = fls_long(page_start ^ page_end); 1771 span_mask = (1ULL << log2_span) - 1; 1772 1773 page_start &= ~span_mask; 1774 1775 cmd->atc.addr = page_start << inval_grain_shift; 1776 cmd->atc.size = log2_span; 1777 } 1778 1779 static int arm_smmu_atc_inv_master(struct arm_smmu_master *master) 1780 { 1781 int i; 1782 struct arm_smmu_cmdq_ent cmd; 1783 struct arm_smmu_cmdq_batch cmds; 1784 1785 arm_smmu_atc_inv_to_cmd(0, 0, 0, &cmd); 1786 1787 cmds.num = 0; 1788 for (i = 0; i < master->num_streams; i++) { 1789 cmd.atc.sid = master->streams[i].id; 1790 arm_smmu_cmdq_batch_add(master->smmu, &cmds, &cmd); 1791 } 1792 1793 return arm_smmu_cmdq_batch_submit(master->smmu, &cmds); 1794 } 1795 1796 int arm_smmu_atc_inv_domain(struct arm_smmu_domain *smmu_domain, int ssid, 1797 unsigned long iova, size_t size) 1798 { 1799 int i; 1800 unsigned long flags; 1801 struct arm_smmu_cmdq_ent cmd; 1802 struct arm_smmu_master *master; 1803 struct arm_smmu_cmdq_batch cmds; 1804 1805 if (!(smmu_domain->smmu->features & ARM_SMMU_FEAT_ATS)) 1806 return 0; 1807 1808 /* 1809 * Ensure that we've completed prior invalidation of the main TLBs 1810 * before we read 'nr_ats_masters' in case of a concurrent call to 1811 * arm_smmu_enable_ats(): 1812 * 1813 * // unmap() // arm_smmu_enable_ats() 1814 * TLBI+SYNC atomic_inc(&nr_ats_masters); 1815 * smp_mb(); [...] 1816 * atomic_read(&nr_ats_masters); pci_enable_ats() // writel() 1817 * 1818 * Ensures that we always see the incremented 'nr_ats_masters' count if 1819 * ATS was enabled at the PCI device before completion of the TLBI. 1820 */ 1821 smp_mb(); 1822 if (!atomic_read(&smmu_domain->nr_ats_masters)) 1823 return 0; 1824 1825 arm_smmu_atc_inv_to_cmd(ssid, iova, size, &cmd); 1826 1827 cmds.num = 0; 1828 1829 spin_lock_irqsave(&smmu_domain->devices_lock, flags); 1830 list_for_each_entry(master, &smmu_domain->devices, domain_head) { 1831 if (!master->ats_enabled) 1832 continue; 1833 1834 for (i = 0; i < master->num_streams; i++) { 1835 cmd.atc.sid = master->streams[i].id; 1836 arm_smmu_cmdq_batch_add(smmu_domain->smmu, &cmds, &cmd); 1837 } 1838 } 1839 spin_unlock_irqrestore(&smmu_domain->devices_lock, flags); 1840 1841 return arm_smmu_cmdq_batch_submit(smmu_domain->smmu, &cmds); 1842 } 1843 1844 /* IO_PGTABLE API */ 1845 static void arm_smmu_tlb_inv_context(void *cookie) 1846 { 1847 struct arm_smmu_domain *smmu_domain = cookie; 1848 struct arm_smmu_device *smmu = smmu_domain->smmu; 1849 struct arm_smmu_cmdq_ent cmd; 1850 1851 /* 1852 * NOTE: when io-pgtable is in non-strict mode, we may get here with 1853 * PTEs previously cleared by unmaps on the current CPU not yet visible 1854 * to the SMMU. We are relying on the dma_wmb() implicit during cmd 1855 * insertion to guarantee those are observed before the TLBI. Do be 1856 * careful, 007. 1857 */ 1858 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) { 1859 arm_smmu_tlb_inv_asid(smmu, smmu_domain->s1_cfg.cd.asid); 1860 } else { 1861 cmd.opcode = CMDQ_OP_TLBI_S12_VMALL; 1862 cmd.tlbi.vmid = smmu_domain->s2_cfg.vmid; 1863 arm_smmu_cmdq_issue_cmd_with_sync(smmu, &cmd); 1864 } 1865 arm_smmu_atc_inv_domain(smmu_domain, 0, 0, 0); 1866 } 1867 1868 static void __arm_smmu_tlb_inv_range(struct arm_smmu_cmdq_ent *cmd, 1869 unsigned long iova, size_t size, 1870 size_t granule, 1871 struct arm_smmu_domain *smmu_domain) 1872 { 1873 struct arm_smmu_device *smmu = smmu_domain->smmu; 1874 unsigned long end = iova + size, num_pages = 0, tg = 0; 1875 size_t inv_range = granule; 1876 struct arm_smmu_cmdq_batch cmds; 1877 1878 if (!size) 1879 return; 1880 1881 if (smmu->features & ARM_SMMU_FEAT_RANGE_INV) { 1882 /* Get the leaf page size */ 1883 tg = __ffs(smmu_domain->domain.pgsize_bitmap); 1884 1885 /* Convert page size of 12,14,16 (log2) to 1,2,3 */ 1886 cmd->tlbi.tg = (tg - 10) / 2; 1887 1888 /* Determine what level the granule is at */ 1889 cmd->tlbi.ttl = 4 - ((ilog2(granule) - 3) / (tg - 3)); 1890 1891 num_pages = size >> tg; 1892 } 1893 1894 cmds.num = 0; 1895 1896 while (iova < end) { 1897 if (smmu->features & ARM_SMMU_FEAT_RANGE_INV) { 1898 /* 1899 * On each iteration of the loop, the range is 5 bits 1900 * worth of the aligned size remaining. 1901 * The range in pages is: 1902 * 1903 * range = (num_pages & (0x1f << __ffs(num_pages))) 1904 */ 1905 unsigned long scale, num; 1906 1907 /* Determine the power of 2 multiple number of pages */ 1908 scale = __ffs(num_pages); 1909 cmd->tlbi.scale = scale; 1910 1911 /* Determine how many chunks of 2^scale size we have */ 1912 num = (num_pages >> scale) & CMDQ_TLBI_RANGE_NUM_MAX; 1913 cmd->tlbi.num = num - 1; 1914 1915 /* range is num * 2^scale * pgsize */ 1916 inv_range = num << (scale + tg); 1917 1918 /* Clear out the lower order bits for the next iteration */ 1919 num_pages -= num << scale; 1920 } 1921 1922 cmd->tlbi.addr = iova; 1923 arm_smmu_cmdq_batch_add(smmu, &cmds, cmd); 1924 iova += inv_range; 1925 } 1926 arm_smmu_cmdq_batch_submit(smmu, &cmds); 1927 } 1928 1929 static void arm_smmu_tlb_inv_range_domain(unsigned long iova, size_t size, 1930 size_t granule, bool leaf, 1931 struct arm_smmu_domain *smmu_domain) 1932 { 1933 struct arm_smmu_cmdq_ent cmd = { 1934 .tlbi = { 1935 .leaf = leaf, 1936 }, 1937 }; 1938 1939 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) { 1940 cmd.opcode = smmu_domain->smmu->features & ARM_SMMU_FEAT_E2H ? 1941 CMDQ_OP_TLBI_EL2_VA : CMDQ_OP_TLBI_NH_VA; 1942 cmd.tlbi.asid = smmu_domain->s1_cfg.cd.asid; 1943 } else { 1944 cmd.opcode = CMDQ_OP_TLBI_S2_IPA; 1945 cmd.tlbi.vmid = smmu_domain->s2_cfg.vmid; 1946 } 1947 __arm_smmu_tlb_inv_range(&cmd, iova, size, granule, smmu_domain); 1948 1949 /* 1950 * Unfortunately, this can't be leaf-only since we may have 1951 * zapped an entire table. 1952 */ 1953 arm_smmu_atc_inv_domain(smmu_domain, 0, iova, size); 1954 } 1955 1956 void arm_smmu_tlb_inv_range_asid(unsigned long iova, size_t size, int asid, 1957 size_t granule, bool leaf, 1958 struct arm_smmu_domain *smmu_domain) 1959 { 1960 struct arm_smmu_cmdq_ent cmd = { 1961 .opcode = smmu_domain->smmu->features & ARM_SMMU_FEAT_E2H ? 1962 CMDQ_OP_TLBI_EL2_VA : CMDQ_OP_TLBI_NH_VA, 1963 .tlbi = { 1964 .asid = asid, 1965 .leaf = leaf, 1966 }, 1967 }; 1968 1969 __arm_smmu_tlb_inv_range(&cmd, iova, size, granule, smmu_domain); 1970 } 1971 1972 static void arm_smmu_tlb_inv_page_nosync(struct iommu_iotlb_gather *gather, 1973 unsigned long iova, size_t granule, 1974 void *cookie) 1975 { 1976 struct arm_smmu_domain *smmu_domain = cookie; 1977 struct iommu_domain *domain = &smmu_domain->domain; 1978 1979 iommu_iotlb_gather_add_page(domain, gather, iova, granule); 1980 } 1981 1982 static void arm_smmu_tlb_inv_walk(unsigned long iova, size_t size, 1983 size_t granule, void *cookie) 1984 { 1985 arm_smmu_tlb_inv_range_domain(iova, size, granule, false, cookie); 1986 } 1987 1988 static const struct iommu_flush_ops arm_smmu_flush_ops = { 1989 .tlb_flush_all = arm_smmu_tlb_inv_context, 1990 .tlb_flush_walk = arm_smmu_tlb_inv_walk, 1991 .tlb_add_page = arm_smmu_tlb_inv_page_nosync, 1992 }; 1993 1994 /* IOMMU API */ 1995 static bool arm_smmu_capable(enum iommu_cap cap) 1996 { 1997 switch (cap) { 1998 case IOMMU_CAP_CACHE_COHERENCY: 1999 return true; 2000 case IOMMU_CAP_NOEXEC: 2001 return true; 2002 default: 2003 return false; 2004 } 2005 } 2006 2007 static struct iommu_domain *arm_smmu_domain_alloc(unsigned type) 2008 { 2009 struct arm_smmu_domain *smmu_domain; 2010 2011 if (type != IOMMU_DOMAIN_UNMANAGED && 2012 type != IOMMU_DOMAIN_DMA && 2013 type != IOMMU_DOMAIN_DMA_FQ && 2014 type != IOMMU_DOMAIN_IDENTITY) 2015 return NULL; 2016 2017 /* 2018 * Allocate the domain and initialise some of its data structures. 2019 * We can't really do anything meaningful until we've added a 2020 * master. 2021 */ 2022 smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL); 2023 if (!smmu_domain) 2024 return NULL; 2025 2026 mutex_init(&smmu_domain->init_mutex); 2027 INIT_LIST_HEAD(&smmu_domain->devices); 2028 spin_lock_init(&smmu_domain->devices_lock); 2029 INIT_LIST_HEAD(&smmu_domain->mmu_notifiers); 2030 2031 return &smmu_domain->domain; 2032 } 2033 2034 static int arm_smmu_bitmap_alloc(unsigned long *map, int span) 2035 { 2036 int idx, size = 1 << span; 2037 2038 do { 2039 idx = find_first_zero_bit(map, size); 2040 if (idx == size) 2041 return -ENOSPC; 2042 } while (test_and_set_bit(idx, map)); 2043 2044 return idx; 2045 } 2046 2047 static void arm_smmu_bitmap_free(unsigned long *map, int idx) 2048 { 2049 clear_bit(idx, map); 2050 } 2051 2052 static void arm_smmu_domain_free(struct iommu_domain *domain) 2053 { 2054 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain); 2055 struct arm_smmu_device *smmu = smmu_domain->smmu; 2056 2057 free_io_pgtable_ops(smmu_domain->pgtbl_ops); 2058 2059 /* Free the CD and ASID, if we allocated them */ 2060 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) { 2061 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg; 2062 2063 /* Prevent SVA from touching the CD while we're freeing it */ 2064 mutex_lock(&arm_smmu_asid_lock); 2065 if (cfg->cdcfg.cdtab) 2066 arm_smmu_free_cd_tables(smmu_domain); 2067 arm_smmu_free_asid(&cfg->cd); 2068 mutex_unlock(&arm_smmu_asid_lock); 2069 } else { 2070 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg; 2071 if (cfg->vmid) 2072 arm_smmu_bitmap_free(smmu->vmid_map, cfg->vmid); 2073 } 2074 2075 kfree(smmu_domain); 2076 } 2077 2078 static int arm_smmu_domain_finalise_s1(struct arm_smmu_domain *smmu_domain, 2079 struct arm_smmu_master *master, 2080 struct io_pgtable_cfg *pgtbl_cfg) 2081 { 2082 int ret; 2083 u32 asid; 2084 struct arm_smmu_device *smmu = smmu_domain->smmu; 2085 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg; 2086 typeof(&pgtbl_cfg->arm_lpae_s1_cfg.tcr) tcr = &pgtbl_cfg->arm_lpae_s1_cfg.tcr; 2087 2088 refcount_set(&cfg->cd.refs, 1); 2089 2090 /* Prevent SVA from modifying the ASID until it is written to the CD */ 2091 mutex_lock(&arm_smmu_asid_lock); 2092 ret = xa_alloc(&arm_smmu_asid_xa, &asid, &cfg->cd, 2093 XA_LIMIT(1, (1 << smmu->asid_bits) - 1), GFP_KERNEL); 2094 if (ret) 2095 goto out_unlock; 2096 2097 cfg->s1cdmax = master->ssid_bits; 2098 2099 smmu_domain->stall_enabled = master->stall_enabled; 2100 2101 ret = arm_smmu_alloc_cd_tables(smmu_domain); 2102 if (ret) 2103 goto out_free_asid; 2104 2105 cfg->cd.asid = (u16)asid; 2106 cfg->cd.ttbr = pgtbl_cfg->arm_lpae_s1_cfg.ttbr; 2107 cfg->cd.tcr = FIELD_PREP(CTXDESC_CD_0_TCR_T0SZ, tcr->tsz) | 2108 FIELD_PREP(CTXDESC_CD_0_TCR_TG0, tcr->tg) | 2109 FIELD_PREP(CTXDESC_CD_0_TCR_IRGN0, tcr->irgn) | 2110 FIELD_PREP(CTXDESC_CD_0_TCR_ORGN0, tcr->orgn) | 2111 FIELD_PREP(CTXDESC_CD_0_TCR_SH0, tcr->sh) | 2112 FIELD_PREP(CTXDESC_CD_0_TCR_IPS, tcr->ips) | 2113 CTXDESC_CD_0_TCR_EPD1 | CTXDESC_CD_0_AA64; 2114 cfg->cd.mair = pgtbl_cfg->arm_lpae_s1_cfg.mair; 2115 2116 /* 2117 * Note that this will end up calling arm_smmu_sync_cd() before 2118 * the master has been added to the devices list for this domain. 2119 * This isn't an issue because the STE hasn't been installed yet. 2120 */ 2121 ret = arm_smmu_write_ctx_desc(smmu_domain, 0, &cfg->cd); 2122 if (ret) 2123 goto out_free_cd_tables; 2124 2125 mutex_unlock(&arm_smmu_asid_lock); 2126 return 0; 2127 2128 out_free_cd_tables: 2129 arm_smmu_free_cd_tables(smmu_domain); 2130 out_free_asid: 2131 arm_smmu_free_asid(&cfg->cd); 2132 out_unlock: 2133 mutex_unlock(&arm_smmu_asid_lock); 2134 return ret; 2135 } 2136 2137 static int arm_smmu_domain_finalise_s2(struct arm_smmu_domain *smmu_domain, 2138 struct arm_smmu_master *master, 2139 struct io_pgtable_cfg *pgtbl_cfg) 2140 { 2141 int vmid; 2142 struct arm_smmu_device *smmu = smmu_domain->smmu; 2143 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg; 2144 typeof(&pgtbl_cfg->arm_lpae_s2_cfg.vtcr) vtcr; 2145 2146 vmid = arm_smmu_bitmap_alloc(smmu->vmid_map, smmu->vmid_bits); 2147 if (vmid < 0) 2148 return vmid; 2149 2150 vtcr = &pgtbl_cfg->arm_lpae_s2_cfg.vtcr; 2151 cfg->vmid = (u16)vmid; 2152 cfg->vttbr = pgtbl_cfg->arm_lpae_s2_cfg.vttbr; 2153 cfg->vtcr = FIELD_PREP(STRTAB_STE_2_VTCR_S2T0SZ, vtcr->tsz) | 2154 FIELD_PREP(STRTAB_STE_2_VTCR_S2SL0, vtcr->sl) | 2155 FIELD_PREP(STRTAB_STE_2_VTCR_S2IR0, vtcr->irgn) | 2156 FIELD_PREP(STRTAB_STE_2_VTCR_S2OR0, vtcr->orgn) | 2157 FIELD_PREP(STRTAB_STE_2_VTCR_S2SH0, vtcr->sh) | 2158 FIELD_PREP(STRTAB_STE_2_VTCR_S2TG, vtcr->tg) | 2159 FIELD_PREP(STRTAB_STE_2_VTCR_S2PS, vtcr->ps); 2160 return 0; 2161 } 2162 2163 static int arm_smmu_domain_finalise(struct iommu_domain *domain, 2164 struct arm_smmu_master *master) 2165 { 2166 int ret; 2167 unsigned long ias, oas; 2168 enum io_pgtable_fmt fmt; 2169 struct io_pgtable_cfg pgtbl_cfg; 2170 struct io_pgtable_ops *pgtbl_ops; 2171 int (*finalise_stage_fn)(struct arm_smmu_domain *, 2172 struct arm_smmu_master *, 2173 struct io_pgtable_cfg *); 2174 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain); 2175 struct arm_smmu_device *smmu = smmu_domain->smmu; 2176 2177 if (domain->type == IOMMU_DOMAIN_IDENTITY) { 2178 smmu_domain->stage = ARM_SMMU_DOMAIN_BYPASS; 2179 return 0; 2180 } 2181 2182 /* Restrict the stage to what we can actually support */ 2183 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1)) 2184 smmu_domain->stage = ARM_SMMU_DOMAIN_S2; 2185 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2)) 2186 smmu_domain->stage = ARM_SMMU_DOMAIN_S1; 2187 2188 switch (smmu_domain->stage) { 2189 case ARM_SMMU_DOMAIN_S1: 2190 ias = (smmu->features & ARM_SMMU_FEAT_VAX) ? 52 : 48; 2191 ias = min_t(unsigned long, ias, VA_BITS); 2192 oas = smmu->ias; 2193 fmt = ARM_64_LPAE_S1; 2194 finalise_stage_fn = arm_smmu_domain_finalise_s1; 2195 break; 2196 case ARM_SMMU_DOMAIN_NESTED: 2197 case ARM_SMMU_DOMAIN_S2: 2198 ias = smmu->ias; 2199 oas = smmu->oas; 2200 fmt = ARM_64_LPAE_S2; 2201 finalise_stage_fn = arm_smmu_domain_finalise_s2; 2202 break; 2203 default: 2204 return -EINVAL; 2205 } 2206 2207 pgtbl_cfg = (struct io_pgtable_cfg) { 2208 .pgsize_bitmap = smmu->pgsize_bitmap, 2209 .ias = ias, 2210 .oas = oas, 2211 .coherent_walk = smmu->features & ARM_SMMU_FEAT_COHERENCY, 2212 .tlb = &arm_smmu_flush_ops, 2213 .iommu_dev = smmu->dev, 2214 }; 2215 2216 pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain); 2217 if (!pgtbl_ops) 2218 return -ENOMEM; 2219 2220 domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap; 2221 domain->geometry.aperture_end = (1UL << pgtbl_cfg.ias) - 1; 2222 domain->geometry.force_aperture = true; 2223 2224 ret = finalise_stage_fn(smmu_domain, master, &pgtbl_cfg); 2225 if (ret < 0) { 2226 free_io_pgtable_ops(pgtbl_ops); 2227 return ret; 2228 } 2229 2230 smmu_domain->pgtbl_ops = pgtbl_ops; 2231 return 0; 2232 } 2233 2234 static __le64 *arm_smmu_get_step_for_sid(struct arm_smmu_device *smmu, u32 sid) 2235 { 2236 __le64 *step; 2237 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg; 2238 2239 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) { 2240 struct arm_smmu_strtab_l1_desc *l1_desc; 2241 int idx; 2242 2243 /* Two-level walk */ 2244 idx = (sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS; 2245 l1_desc = &cfg->l1_desc[idx]; 2246 idx = (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS; 2247 step = &l1_desc->l2ptr[idx]; 2248 } else { 2249 /* Simple linear lookup */ 2250 step = &cfg->strtab[sid * STRTAB_STE_DWORDS]; 2251 } 2252 2253 return step; 2254 } 2255 2256 static void arm_smmu_install_ste_for_dev(struct arm_smmu_master *master) 2257 { 2258 int i, j; 2259 struct arm_smmu_device *smmu = master->smmu; 2260 2261 for (i = 0; i < master->num_streams; ++i) { 2262 u32 sid = master->streams[i].id; 2263 __le64 *step = arm_smmu_get_step_for_sid(smmu, sid); 2264 2265 /* Bridged PCI devices may end up with duplicated IDs */ 2266 for (j = 0; j < i; j++) 2267 if (master->streams[j].id == sid) 2268 break; 2269 if (j < i) 2270 continue; 2271 2272 arm_smmu_write_strtab_ent(master, sid, step); 2273 } 2274 } 2275 2276 static bool arm_smmu_ats_supported(struct arm_smmu_master *master) 2277 { 2278 struct device *dev = master->dev; 2279 struct arm_smmu_device *smmu = master->smmu; 2280 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 2281 2282 if (!(smmu->features & ARM_SMMU_FEAT_ATS)) 2283 return false; 2284 2285 if (!(fwspec->flags & IOMMU_FWSPEC_PCI_RC_ATS)) 2286 return false; 2287 2288 return dev_is_pci(dev) && pci_ats_supported(to_pci_dev(dev)); 2289 } 2290 2291 static void arm_smmu_enable_ats(struct arm_smmu_master *master) 2292 { 2293 size_t stu; 2294 struct pci_dev *pdev; 2295 struct arm_smmu_device *smmu = master->smmu; 2296 struct arm_smmu_domain *smmu_domain = master->domain; 2297 2298 /* Don't enable ATS at the endpoint if it's not enabled in the STE */ 2299 if (!master->ats_enabled) 2300 return; 2301 2302 /* Smallest Translation Unit: log2 of the smallest supported granule */ 2303 stu = __ffs(smmu->pgsize_bitmap); 2304 pdev = to_pci_dev(master->dev); 2305 2306 atomic_inc(&smmu_domain->nr_ats_masters); 2307 arm_smmu_atc_inv_domain(smmu_domain, 0, 0, 0); 2308 if (pci_enable_ats(pdev, stu)) 2309 dev_err(master->dev, "Failed to enable ATS (STU %zu)\n", stu); 2310 } 2311 2312 static void arm_smmu_disable_ats(struct arm_smmu_master *master) 2313 { 2314 struct arm_smmu_domain *smmu_domain = master->domain; 2315 2316 if (!master->ats_enabled) 2317 return; 2318 2319 pci_disable_ats(to_pci_dev(master->dev)); 2320 /* 2321 * Ensure ATS is disabled at the endpoint before we issue the 2322 * ATC invalidation via the SMMU. 2323 */ 2324 wmb(); 2325 arm_smmu_atc_inv_master(master); 2326 atomic_dec(&smmu_domain->nr_ats_masters); 2327 } 2328 2329 static int arm_smmu_enable_pasid(struct arm_smmu_master *master) 2330 { 2331 int ret; 2332 int features; 2333 int num_pasids; 2334 struct pci_dev *pdev; 2335 2336 if (!dev_is_pci(master->dev)) 2337 return -ENODEV; 2338 2339 pdev = to_pci_dev(master->dev); 2340 2341 features = pci_pasid_features(pdev); 2342 if (features < 0) 2343 return features; 2344 2345 num_pasids = pci_max_pasids(pdev); 2346 if (num_pasids <= 0) 2347 return num_pasids; 2348 2349 ret = pci_enable_pasid(pdev, features); 2350 if (ret) { 2351 dev_err(&pdev->dev, "Failed to enable PASID\n"); 2352 return ret; 2353 } 2354 2355 master->ssid_bits = min_t(u8, ilog2(num_pasids), 2356 master->smmu->ssid_bits); 2357 return 0; 2358 } 2359 2360 static void arm_smmu_disable_pasid(struct arm_smmu_master *master) 2361 { 2362 struct pci_dev *pdev; 2363 2364 if (!dev_is_pci(master->dev)) 2365 return; 2366 2367 pdev = to_pci_dev(master->dev); 2368 2369 if (!pdev->pasid_enabled) 2370 return; 2371 2372 master->ssid_bits = 0; 2373 pci_disable_pasid(pdev); 2374 } 2375 2376 static void arm_smmu_detach_dev(struct arm_smmu_master *master) 2377 { 2378 unsigned long flags; 2379 struct arm_smmu_domain *smmu_domain = master->domain; 2380 2381 if (!smmu_domain) 2382 return; 2383 2384 arm_smmu_disable_ats(master); 2385 2386 spin_lock_irqsave(&smmu_domain->devices_lock, flags); 2387 list_del(&master->domain_head); 2388 spin_unlock_irqrestore(&smmu_domain->devices_lock, flags); 2389 2390 master->domain = NULL; 2391 master->ats_enabled = false; 2392 arm_smmu_install_ste_for_dev(master); 2393 } 2394 2395 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev) 2396 { 2397 int ret = 0; 2398 unsigned long flags; 2399 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 2400 struct arm_smmu_device *smmu; 2401 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain); 2402 struct arm_smmu_master *master; 2403 2404 if (!fwspec) 2405 return -ENOENT; 2406 2407 master = dev_iommu_priv_get(dev); 2408 smmu = master->smmu; 2409 2410 /* 2411 * Checking that SVA is disabled ensures that this device isn't bound to 2412 * any mm, and can be safely detached from its old domain. Bonds cannot 2413 * be removed concurrently since we're holding the group mutex. 2414 */ 2415 if (arm_smmu_master_sva_enabled(master)) { 2416 dev_err(dev, "cannot attach - SVA enabled\n"); 2417 return -EBUSY; 2418 } 2419 2420 arm_smmu_detach_dev(master); 2421 2422 mutex_lock(&smmu_domain->init_mutex); 2423 2424 if (!smmu_domain->smmu) { 2425 smmu_domain->smmu = smmu; 2426 ret = arm_smmu_domain_finalise(domain, master); 2427 if (ret) { 2428 smmu_domain->smmu = NULL; 2429 goto out_unlock; 2430 } 2431 } else if (smmu_domain->smmu != smmu) { 2432 dev_err(dev, 2433 "cannot attach to SMMU %s (upstream of %s)\n", 2434 dev_name(smmu_domain->smmu->dev), 2435 dev_name(smmu->dev)); 2436 ret = -ENXIO; 2437 goto out_unlock; 2438 } else if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1 && 2439 master->ssid_bits != smmu_domain->s1_cfg.s1cdmax) { 2440 dev_err(dev, 2441 "cannot attach to incompatible domain (%u SSID bits != %u)\n", 2442 smmu_domain->s1_cfg.s1cdmax, master->ssid_bits); 2443 ret = -EINVAL; 2444 goto out_unlock; 2445 } else if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1 && 2446 smmu_domain->stall_enabled != master->stall_enabled) { 2447 dev_err(dev, "cannot attach to stall-%s domain\n", 2448 smmu_domain->stall_enabled ? "enabled" : "disabled"); 2449 ret = -EINVAL; 2450 goto out_unlock; 2451 } 2452 2453 master->domain = smmu_domain; 2454 2455 if (smmu_domain->stage != ARM_SMMU_DOMAIN_BYPASS) 2456 master->ats_enabled = arm_smmu_ats_supported(master); 2457 2458 arm_smmu_install_ste_for_dev(master); 2459 2460 spin_lock_irqsave(&smmu_domain->devices_lock, flags); 2461 list_add(&master->domain_head, &smmu_domain->devices); 2462 spin_unlock_irqrestore(&smmu_domain->devices_lock, flags); 2463 2464 arm_smmu_enable_ats(master); 2465 2466 out_unlock: 2467 mutex_unlock(&smmu_domain->init_mutex); 2468 return ret; 2469 } 2470 2471 static int arm_smmu_map_pages(struct iommu_domain *domain, unsigned long iova, 2472 phys_addr_t paddr, size_t pgsize, size_t pgcount, 2473 int prot, gfp_t gfp, size_t *mapped) 2474 { 2475 struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops; 2476 2477 if (!ops) 2478 return -ENODEV; 2479 2480 return ops->map_pages(ops, iova, paddr, pgsize, pgcount, prot, gfp, mapped); 2481 } 2482 2483 static size_t arm_smmu_unmap_pages(struct iommu_domain *domain, unsigned long iova, 2484 size_t pgsize, size_t pgcount, 2485 struct iommu_iotlb_gather *gather) 2486 { 2487 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain); 2488 struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops; 2489 2490 if (!ops) 2491 return 0; 2492 2493 return ops->unmap_pages(ops, iova, pgsize, pgcount, gather); 2494 } 2495 2496 static void arm_smmu_flush_iotlb_all(struct iommu_domain *domain) 2497 { 2498 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain); 2499 2500 if (smmu_domain->smmu) 2501 arm_smmu_tlb_inv_context(smmu_domain); 2502 } 2503 2504 static void arm_smmu_iotlb_sync(struct iommu_domain *domain, 2505 struct iommu_iotlb_gather *gather) 2506 { 2507 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain); 2508 2509 if (!gather->pgsize) 2510 return; 2511 2512 arm_smmu_tlb_inv_range_domain(gather->start, 2513 gather->end - gather->start + 1, 2514 gather->pgsize, true, smmu_domain); 2515 } 2516 2517 static phys_addr_t 2518 arm_smmu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova) 2519 { 2520 struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops; 2521 2522 if (!ops) 2523 return 0; 2524 2525 return ops->iova_to_phys(ops, iova); 2526 } 2527 2528 static struct platform_driver arm_smmu_driver; 2529 2530 static 2531 struct arm_smmu_device *arm_smmu_get_by_fwnode(struct fwnode_handle *fwnode) 2532 { 2533 struct device *dev = driver_find_device_by_fwnode(&arm_smmu_driver.driver, 2534 fwnode); 2535 put_device(dev); 2536 return dev ? dev_get_drvdata(dev) : NULL; 2537 } 2538 2539 static bool arm_smmu_sid_in_range(struct arm_smmu_device *smmu, u32 sid) 2540 { 2541 unsigned long limit = smmu->strtab_cfg.num_l1_ents; 2542 2543 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) 2544 limit *= 1UL << STRTAB_SPLIT; 2545 2546 return sid < limit; 2547 } 2548 2549 static int arm_smmu_init_sid_strtab(struct arm_smmu_device *smmu, u32 sid) 2550 { 2551 /* Check the SIDs are in range of the SMMU and our stream table */ 2552 if (!arm_smmu_sid_in_range(smmu, sid)) 2553 return -ERANGE; 2554 2555 /* Ensure l2 strtab is initialised */ 2556 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) 2557 return arm_smmu_init_l2_strtab(smmu, sid); 2558 2559 return 0; 2560 } 2561 2562 static int arm_smmu_insert_master(struct arm_smmu_device *smmu, 2563 struct arm_smmu_master *master) 2564 { 2565 int i; 2566 int ret = 0; 2567 struct arm_smmu_stream *new_stream, *cur_stream; 2568 struct rb_node **new_node, *parent_node = NULL; 2569 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(master->dev); 2570 2571 master->streams = kcalloc(fwspec->num_ids, sizeof(*master->streams), 2572 GFP_KERNEL); 2573 if (!master->streams) 2574 return -ENOMEM; 2575 master->num_streams = fwspec->num_ids; 2576 2577 mutex_lock(&smmu->streams_mutex); 2578 for (i = 0; i < fwspec->num_ids; i++) { 2579 u32 sid = fwspec->ids[i]; 2580 2581 new_stream = &master->streams[i]; 2582 new_stream->id = sid; 2583 new_stream->master = master; 2584 2585 ret = arm_smmu_init_sid_strtab(smmu, sid); 2586 if (ret) 2587 break; 2588 2589 /* Insert into SID tree */ 2590 new_node = &(smmu->streams.rb_node); 2591 while (*new_node) { 2592 cur_stream = rb_entry(*new_node, struct arm_smmu_stream, 2593 node); 2594 parent_node = *new_node; 2595 if (cur_stream->id > new_stream->id) { 2596 new_node = &((*new_node)->rb_left); 2597 } else if (cur_stream->id < new_stream->id) { 2598 new_node = &((*new_node)->rb_right); 2599 } else { 2600 dev_warn(master->dev, 2601 "stream %u already in tree\n", 2602 cur_stream->id); 2603 ret = -EINVAL; 2604 break; 2605 } 2606 } 2607 if (ret) 2608 break; 2609 2610 rb_link_node(&new_stream->node, parent_node, new_node); 2611 rb_insert_color(&new_stream->node, &smmu->streams); 2612 } 2613 2614 if (ret) { 2615 for (i--; i >= 0; i--) 2616 rb_erase(&master->streams[i].node, &smmu->streams); 2617 kfree(master->streams); 2618 } 2619 mutex_unlock(&smmu->streams_mutex); 2620 2621 return ret; 2622 } 2623 2624 static void arm_smmu_remove_master(struct arm_smmu_master *master) 2625 { 2626 int i; 2627 struct arm_smmu_device *smmu = master->smmu; 2628 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(master->dev); 2629 2630 if (!smmu || !master->streams) 2631 return; 2632 2633 mutex_lock(&smmu->streams_mutex); 2634 for (i = 0; i < fwspec->num_ids; i++) 2635 rb_erase(&master->streams[i].node, &smmu->streams); 2636 mutex_unlock(&smmu->streams_mutex); 2637 2638 kfree(master->streams); 2639 } 2640 2641 static struct iommu_ops arm_smmu_ops; 2642 2643 static struct iommu_device *arm_smmu_probe_device(struct device *dev) 2644 { 2645 int ret; 2646 struct arm_smmu_device *smmu; 2647 struct arm_smmu_master *master; 2648 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 2649 2650 if (!fwspec || fwspec->ops != &arm_smmu_ops) 2651 return ERR_PTR(-ENODEV); 2652 2653 if (WARN_ON_ONCE(dev_iommu_priv_get(dev))) 2654 return ERR_PTR(-EBUSY); 2655 2656 smmu = arm_smmu_get_by_fwnode(fwspec->iommu_fwnode); 2657 if (!smmu) 2658 return ERR_PTR(-ENODEV); 2659 2660 master = kzalloc(sizeof(*master), GFP_KERNEL); 2661 if (!master) 2662 return ERR_PTR(-ENOMEM); 2663 2664 master->dev = dev; 2665 master->smmu = smmu; 2666 INIT_LIST_HEAD(&master->bonds); 2667 dev_iommu_priv_set(dev, master); 2668 2669 ret = arm_smmu_insert_master(smmu, master); 2670 if (ret) 2671 goto err_free_master; 2672 2673 device_property_read_u32(dev, "pasid-num-bits", &master->ssid_bits); 2674 master->ssid_bits = min(smmu->ssid_bits, master->ssid_bits); 2675 2676 /* 2677 * Note that PASID must be enabled before, and disabled after ATS: 2678 * PCI Express Base 4.0r1.0 - 10.5.1.3 ATS Control Register 2679 * 2680 * Behavior is undefined if this bit is Set and the value of the PASID 2681 * Enable, Execute Requested Enable, or Privileged Mode Requested bits 2682 * are changed. 2683 */ 2684 arm_smmu_enable_pasid(master); 2685 2686 if (!(smmu->features & ARM_SMMU_FEAT_2_LVL_CDTAB)) 2687 master->ssid_bits = min_t(u8, master->ssid_bits, 2688 CTXDESC_LINEAR_CDMAX); 2689 2690 if ((smmu->features & ARM_SMMU_FEAT_STALLS && 2691 device_property_read_bool(dev, "dma-can-stall")) || 2692 smmu->features & ARM_SMMU_FEAT_STALL_FORCE) 2693 master->stall_enabled = true; 2694 2695 return &smmu->iommu; 2696 2697 err_free_master: 2698 kfree(master); 2699 dev_iommu_priv_set(dev, NULL); 2700 return ERR_PTR(ret); 2701 } 2702 2703 static void arm_smmu_release_device(struct device *dev) 2704 { 2705 struct arm_smmu_master *master = dev_iommu_priv_get(dev); 2706 2707 if (WARN_ON(arm_smmu_master_sva_enabled(master))) 2708 iopf_queue_remove_device(master->smmu->evtq.iopf, dev); 2709 arm_smmu_detach_dev(master); 2710 arm_smmu_disable_pasid(master); 2711 arm_smmu_remove_master(master); 2712 kfree(master); 2713 } 2714 2715 static struct iommu_group *arm_smmu_device_group(struct device *dev) 2716 { 2717 struct iommu_group *group; 2718 2719 /* 2720 * We don't support devices sharing stream IDs other than PCI RID 2721 * aliases, since the necessary ID-to-device lookup becomes rather 2722 * impractical given a potential sparse 32-bit stream ID space. 2723 */ 2724 if (dev_is_pci(dev)) 2725 group = pci_device_group(dev); 2726 else 2727 group = generic_device_group(dev); 2728 2729 return group; 2730 } 2731 2732 static int arm_smmu_enable_nesting(struct iommu_domain *domain) 2733 { 2734 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain); 2735 int ret = 0; 2736 2737 mutex_lock(&smmu_domain->init_mutex); 2738 if (smmu_domain->smmu) 2739 ret = -EPERM; 2740 else 2741 smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED; 2742 mutex_unlock(&smmu_domain->init_mutex); 2743 2744 return ret; 2745 } 2746 2747 static int arm_smmu_of_xlate(struct device *dev, struct of_phandle_args *args) 2748 { 2749 return iommu_fwspec_add_ids(dev, args->args, 1); 2750 } 2751 2752 static void arm_smmu_get_resv_regions(struct device *dev, 2753 struct list_head *head) 2754 { 2755 struct iommu_resv_region *region; 2756 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO; 2757 2758 region = iommu_alloc_resv_region(MSI_IOVA_BASE, MSI_IOVA_LENGTH, 2759 prot, IOMMU_RESV_SW_MSI); 2760 if (!region) 2761 return; 2762 2763 list_add_tail(®ion->list, head); 2764 2765 iommu_dma_get_resv_regions(dev, head); 2766 } 2767 2768 static int arm_smmu_dev_enable_feature(struct device *dev, 2769 enum iommu_dev_features feat) 2770 { 2771 struct arm_smmu_master *master = dev_iommu_priv_get(dev); 2772 2773 if (!master) 2774 return -ENODEV; 2775 2776 switch (feat) { 2777 case IOMMU_DEV_FEAT_IOPF: 2778 if (!arm_smmu_master_iopf_supported(master)) 2779 return -EINVAL; 2780 if (master->iopf_enabled) 2781 return -EBUSY; 2782 master->iopf_enabled = true; 2783 return 0; 2784 case IOMMU_DEV_FEAT_SVA: 2785 if (!arm_smmu_master_sva_supported(master)) 2786 return -EINVAL; 2787 if (arm_smmu_master_sva_enabled(master)) 2788 return -EBUSY; 2789 return arm_smmu_master_enable_sva(master); 2790 default: 2791 return -EINVAL; 2792 } 2793 } 2794 2795 static int arm_smmu_dev_disable_feature(struct device *dev, 2796 enum iommu_dev_features feat) 2797 { 2798 struct arm_smmu_master *master = dev_iommu_priv_get(dev); 2799 2800 if (!master) 2801 return -EINVAL; 2802 2803 switch (feat) { 2804 case IOMMU_DEV_FEAT_IOPF: 2805 if (!master->iopf_enabled) 2806 return -EINVAL; 2807 if (master->sva_enabled) 2808 return -EBUSY; 2809 master->iopf_enabled = false; 2810 return 0; 2811 case IOMMU_DEV_FEAT_SVA: 2812 if (!arm_smmu_master_sva_enabled(master)) 2813 return -EINVAL; 2814 return arm_smmu_master_disable_sva(master); 2815 default: 2816 return -EINVAL; 2817 } 2818 } 2819 2820 static struct iommu_ops arm_smmu_ops = { 2821 .capable = arm_smmu_capable, 2822 .domain_alloc = arm_smmu_domain_alloc, 2823 .probe_device = arm_smmu_probe_device, 2824 .release_device = arm_smmu_release_device, 2825 .device_group = arm_smmu_device_group, 2826 .of_xlate = arm_smmu_of_xlate, 2827 .get_resv_regions = arm_smmu_get_resv_regions, 2828 .dev_enable_feat = arm_smmu_dev_enable_feature, 2829 .dev_disable_feat = arm_smmu_dev_disable_feature, 2830 .sva_bind = arm_smmu_sva_bind, 2831 .sva_unbind = arm_smmu_sva_unbind, 2832 .sva_get_pasid = arm_smmu_sva_get_pasid, 2833 .page_response = arm_smmu_page_response, 2834 .pgsize_bitmap = -1UL, /* Restricted during device attach */ 2835 .owner = THIS_MODULE, 2836 .default_domain_ops = &(const struct iommu_domain_ops) { 2837 .attach_dev = arm_smmu_attach_dev, 2838 .map_pages = arm_smmu_map_pages, 2839 .unmap_pages = arm_smmu_unmap_pages, 2840 .flush_iotlb_all = arm_smmu_flush_iotlb_all, 2841 .iotlb_sync = arm_smmu_iotlb_sync, 2842 .iova_to_phys = arm_smmu_iova_to_phys, 2843 .enable_nesting = arm_smmu_enable_nesting, 2844 .free = arm_smmu_domain_free, 2845 } 2846 }; 2847 2848 /* Probing and initialisation functions */ 2849 static int arm_smmu_init_one_queue(struct arm_smmu_device *smmu, 2850 struct arm_smmu_queue *q, 2851 void __iomem *page, 2852 unsigned long prod_off, 2853 unsigned long cons_off, 2854 size_t dwords, const char *name) 2855 { 2856 size_t qsz; 2857 2858 do { 2859 qsz = ((1 << q->llq.max_n_shift) * dwords) << 3; 2860 q->base = dmam_alloc_coherent(smmu->dev, qsz, &q->base_dma, 2861 GFP_KERNEL); 2862 if (q->base || qsz < PAGE_SIZE) 2863 break; 2864 2865 q->llq.max_n_shift--; 2866 } while (1); 2867 2868 if (!q->base) { 2869 dev_err(smmu->dev, 2870 "failed to allocate queue (0x%zx bytes) for %s\n", 2871 qsz, name); 2872 return -ENOMEM; 2873 } 2874 2875 if (!WARN_ON(q->base_dma & (qsz - 1))) { 2876 dev_info(smmu->dev, "allocated %u entries for %s\n", 2877 1 << q->llq.max_n_shift, name); 2878 } 2879 2880 q->prod_reg = page + prod_off; 2881 q->cons_reg = page + cons_off; 2882 q->ent_dwords = dwords; 2883 2884 q->q_base = Q_BASE_RWA; 2885 q->q_base |= q->base_dma & Q_BASE_ADDR_MASK; 2886 q->q_base |= FIELD_PREP(Q_BASE_LOG2SIZE, q->llq.max_n_shift); 2887 2888 q->llq.prod = q->llq.cons = 0; 2889 return 0; 2890 } 2891 2892 static int arm_smmu_cmdq_init(struct arm_smmu_device *smmu) 2893 { 2894 struct arm_smmu_cmdq *cmdq = &smmu->cmdq; 2895 unsigned int nents = 1 << cmdq->q.llq.max_n_shift; 2896 2897 atomic_set(&cmdq->owner_prod, 0); 2898 atomic_set(&cmdq->lock, 0); 2899 2900 cmdq->valid_map = (atomic_long_t *)devm_bitmap_zalloc(smmu->dev, nents, 2901 GFP_KERNEL); 2902 if (!cmdq->valid_map) 2903 return -ENOMEM; 2904 2905 return 0; 2906 } 2907 2908 static int arm_smmu_init_queues(struct arm_smmu_device *smmu) 2909 { 2910 int ret; 2911 2912 /* cmdq */ 2913 ret = arm_smmu_init_one_queue(smmu, &smmu->cmdq.q, smmu->base, 2914 ARM_SMMU_CMDQ_PROD, ARM_SMMU_CMDQ_CONS, 2915 CMDQ_ENT_DWORDS, "cmdq"); 2916 if (ret) 2917 return ret; 2918 2919 ret = arm_smmu_cmdq_init(smmu); 2920 if (ret) 2921 return ret; 2922 2923 /* evtq */ 2924 ret = arm_smmu_init_one_queue(smmu, &smmu->evtq.q, smmu->page1, 2925 ARM_SMMU_EVTQ_PROD, ARM_SMMU_EVTQ_CONS, 2926 EVTQ_ENT_DWORDS, "evtq"); 2927 if (ret) 2928 return ret; 2929 2930 if ((smmu->features & ARM_SMMU_FEAT_SVA) && 2931 (smmu->features & ARM_SMMU_FEAT_STALLS)) { 2932 smmu->evtq.iopf = iopf_queue_alloc(dev_name(smmu->dev)); 2933 if (!smmu->evtq.iopf) 2934 return -ENOMEM; 2935 } 2936 2937 /* priq */ 2938 if (!(smmu->features & ARM_SMMU_FEAT_PRI)) 2939 return 0; 2940 2941 return arm_smmu_init_one_queue(smmu, &smmu->priq.q, smmu->page1, 2942 ARM_SMMU_PRIQ_PROD, ARM_SMMU_PRIQ_CONS, 2943 PRIQ_ENT_DWORDS, "priq"); 2944 } 2945 2946 static int arm_smmu_init_l1_strtab(struct arm_smmu_device *smmu) 2947 { 2948 unsigned int i; 2949 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg; 2950 void *strtab = smmu->strtab_cfg.strtab; 2951 2952 cfg->l1_desc = devm_kcalloc(smmu->dev, cfg->num_l1_ents, 2953 sizeof(*cfg->l1_desc), GFP_KERNEL); 2954 if (!cfg->l1_desc) 2955 return -ENOMEM; 2956 2957 for (i = 0; i < cfg->num_l1_ents; ++i) { 2958 arm_smmu_write_strtab_l1_desc(strtab, &cfg->l1_desc[i]); 2959 strtab += STRTAB_L1_DESC_DWORDS << 3; 2960 } 2961 2962 return 0; 2963 } 2964 2965 static int arm_smmu_init_strtab_2lvl(struct arm_smmu_device *smmu) 2966 { 2967 void *strtab; 2968 u64 reg; 2969 u32 size, l1size; 2970 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg; 2971 2972 /* Calculate the L1 size, capped to the SIDSIZE. */ 2973 size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3); 2974 size = min(size, smmu->sid_bits - STRTAB_SPLIT); 2975 cfg->num_l1_ents = 1 << size; 2976 2977 size += STRTAB_SPLIT; 2978 if (size < smmu->sid_bits) 2979 dev_warn(smmu->dev, 2980 "2-level strtab only covers %u/%u bits of SID\n", 2981 size, smmu->sid_bits); 2982 2983 l1size = cfg->num_l1_ents * (STRTAB_L1_DESC_DWORDS << 3); 2984 strtab = dmam_alloc_coherent(smmu->dev, l1size, &cfg->strtab_dma, 2985 GFP_KERNEL); 2986 if (!strtab) { 2987 dev_err(smmu->dev, 2988 "failed to allocate l1 stream table (%u bytes)\n", 2989 l1size); 2990 return -ENOMEM; 2991 } 2992 cfg->strtab = strtab; 2993 2994 /* Configure strtab_base_cfg for 2 levels */ 2995 reg = FIELD_PREP(STRTAB_BASE_CFG_FMT, STRTAB_BASE_CFG_FMT_2LVL); 2996 reg |= FIELD_PREP(STRTAB_BASE_CFG_LOG2SIZE, size); 2997 reg |= FIELD_PREP(STRTAB_BASE_CFG_SPLIT, STRTAB_SPLIT); 2998 cfg->strtab_base_cfg = reg; 2999 3000 return arm_smmu_init_l1_strtab(smmu); 3001 } 3002 3003 static int arm_smmu_init_strtab_linear(struct arm_smmu_device *smmu) 3004 { 3005 void *strtab; 3006 u64 reg; 3007 u32 size; 3008 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg; 3009 3010 size = (1 << smmu->sid_bits) * (STRTAB_STE_DWORDS << 3); 3011 strtab = dmam_alloc_coherent(smmu->dev, size, &cfg->strtab_dma, 3012 GFP_KERNEL); 3013 if (!strtab) { 3014 dev_err(smmu->dev, 3015 "failed to allocate linear stream table (%u bytes)\n", 3016 size); 3017 return -ENOMEM; 3018 } 3019 cfg->strtab = strtab; 3020 cfg->num_l1_ents = 1 << smmu->sid_bits; 3021 3022 /* Configure strtab_base_cfg for a linear table covering all SIDs */ 3023 reg = FIELD_PREP(STRTAB_BASE_CFG_FMT, STRTAB_BASE_CFG_FMT_LINEAR); 3024 reg |= FIELD_PREP(STRTAB_BASE_CFG_LOG2SIZE, smmu->sid_bits); 3025 cfg->strtab_base_cfg = reg; 3026 3027 arm_smmu_init_bypass_stes(strtab, cfg->num_l1_ents, false); 3028 return 0; 3029 } 3030 3031 static int arm_smmu_init_strtab(struct arm_smmu_device *smmu) 3032 { 3033 u64 reg; 3034 int ret; 3035 3036 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) 3037 ret = arm_smmu_init_strtab_2lvl(smmu); 3038 else 3039 ret = arm_smmu_init_strtab_linear(smmu); 3040 3041 if (ret) 3042 return ret; 3043 3044 /* Set the strtab base address */ 3045 reg = smmu->strtab_cfg.strtab_dma & STRTAB_BASE_ADDR_MASK; 3046 reg |= STRTAB_BASE_RA; 3047 smmu->strtab_cfg.strtab_base = reg; 3048 3049 /* Allocate the first VMID for stage-2 bypass STEs */ 3050 set_bit(0, smmu->vmid_map); 3051 return 0; 3052 } 3053 3054 static int arm_smmu_init_structures(struct arm_smmu_device *smmu) 3055 { 3056 int ret; 3057 3058 mutex_init(&smmu->streams_mutex); 3059 smmu->streams = RB_ROOT; 3060 3061 ret = arm_smmu_init_queues(smmu); 3062 if (ret) 3063 return ret; 3064 3065 return arm_smmu_init_strtab(smmu); 3066 } 3067 3068 static int arm_smmu_write_reg_sync(struct arm_smmu_device *smmu, u32 val, 3069 unsigned int reg_off, unsigned int ack_off) 3070 { 3071 u32 reg; 3072 3073 writel_relaxed(val, smmu->base + reg_off); 3074 return readl_relaxed_poll_timeout(smmu->base + ack_off, reg, reg == val, 3075 1, ARM_SMMU_POLL_TIMEOUT_US); 3076 } 3077 3078 /* GBPA is "special" */ 3079 static int arm_smmu_update_gbpa(struct arm_smmu_device *smmu, u32 set, u32 clr) 3080 { 3081 int ret; 3082 u32 reg, __iomem *gbpa = smmu->base + ARM_SMMU_GBPA; 3083 3084 ret = readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE), 3085 1, ARM_SMMU_POLL_TIMEOUT_US); 3086 if (ret) 3087 return ret; 3088 3089 reg &= ~clr; 3090 reg |= set; 3091 writel_relaxed(reg | GBPA_UPDATE, gbpa); 3092 ret = readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE), 3093 1, ARM_SMMU_POLL_TIMEOUT_US); 3094 3095 if (ret) 3096 dev_err(smmu->dev, "GBPA not responding to update\n"); 3097 return ret; 3098 } 3099 3100 static void arm_smmu_free_msis(void *data) 3101 { 3102 struct device *dev = data; 3103 platform_msi_domain_free_irqs(dev); 3104 } 3105 3106 static void arm_smmu_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg) 3107 { 3108 phys_addr_t doorbell; 3109 struct device *dev = msi_desc_to_dev(desc); 3110 struct arm_smmu_device *smmu = dev_get_drvdata(dev); 3111 phys_addr_t *cfg = arm_smmu_msi_cfg[desc->msi_index]; 3112 3113 doorbell = (((u64)msg->address_hi) << 32) | msg->address_lo; 3114 doorbell &= MSI_CFG0_ADDR_MASK; 3115 3116 writeq_relaxed(doorbell, smmu->base + cfg[0]); 3117 writel_relaxed(msg->data, smmu->base + cfg[1]); 3118 writel_relaxed(ARM_SMMU_MEMATTR_DEVICE_nGnRE, smmu->base + cfg[2]); 3119 } 3120 3121 static void arm_smmu_setup_msis(struct arm_smmu_device *smmu) 3122 { 3123 int ret, nvec = ARM_SMMU_MAX_MSIS; 3124 struct device *dev = smmu->dev; 3125 3126 /* Clear the MSI address regs */ 3127 writeq_relaxed(0, smmu->base + ARM_SMMU_GERROR_IRQ_CFG0); 3128 writeq_relaxed(0, smmu->base + ARM_SMMU_EVTQ_IRQ_CFG0); 3129 3130 if (smmu->features & ARM_SMMU_FEAT_PRI) 3131 writeq_relaxed(0, smmu->base + ARM_SMMU_PRIQ_IRQ_CFG0); 3132 else 3133 nvec--; 3134 3135 if (!(smmu->features & ARM_SMMU_FEAT_MSI)) 3136 return; 3137 3138 if (!dev->msi.domain) { 3139 dev_info(smmu->dev, "msi_domain absent - falling back to wired irqs\n"); 3140 return; 3141 } 3142 3143 /* Allocate MSIs for evtq, gerror and priq. Ignore cmdq */ 3144 ret = platform_msi_domain_alloc_irqs(dev, nvec, arm_smmu_write_msi_msg); 3145 if (ret) { 3146 dev_warn(dev, "failed to allocate MSIs - falling back to wired irqs\n"); 3147 return; 3148 } 3149 3150 smmu->evtq.q.irq = msi_get_virq(dev, EVTQ_MSI_INDEX); 3151 smmu->gerr_irq = msi_get_virq(dev, GERROR_MSI_INDEX); 3152 smmu->priq.q.irq = msi_get_virq(dev, PRIQ_MSI_INDEX); 3153 3154 /* Add callback to free MSIs on teardown */ 3155 devm_add_action(dev, arm_smmu_free_msis, dev); 3156 } 3157 3158 static void arm_smmu_setup_unique_irqs(struct arm_smmu_device *smmu) 3159 { 3160 int irq, ret; 3161 3162 arm_smmu_setup_msis(smmu); 3163 3164 /* Request interrupt lines */ 3165 irq = smmu->evtq.q.irq; 3166 if (irq) { 3167 ret = devm_request_threaded_irq(smmu->dev, irq, NULL, 3168 arm_smmu_evtq_thread, 3169 IRQF_ONESHOT, 3170 "arm-smmu-v3-evtq", smmu); 3171 if (ret < 0) 3172 dev_warn(smmu->dev, "failed to enable evtq irq\n"); 3173 } else { 3174 dev_warn(smmu->dev, "no evtq irq - events will not be reported!\n"); 3175 } 3176 3177 irq = smmu->gerr_irq; 3178 if (irq) { 3179 ret = devm_request_irq(smmu->dev, irq, arm_smmu_gerror_handler, 3180 0, "arm-smmu-v3-gerror", smmu); 3181 if (ret < 0) 3182 dev_warn(smmu->dev, "failed to enable gerror irq\n"); 3183 } else { 3184 dev_warn(smmu->dev, "no gerr irq - errors will not be reported!\n"); 3185 } 3186 3187 if (smmu->features & ARM_SMMU_FEAT_PRI) { 3188 irq = smmu->priq.q.irq; 3189 if (irq) { 3190 ret = devm_request_threaded_irq(smmu->dev, irq, NULL, 3191 arm_smmu_priq_thread, 3192 IRQF_ONESHOT, 3193 "arm-smmu-v3-priq", 3194 smmu); 3195 if (ret < 0) 3196 dev_warn(smmu->dev, 3197 "failed to enable priq irq\n"); 3198 } else { 3199 dev_warn(smmu->dev, "no priq irq - PRI will be broken\n"); 3200 } 3201 } 3202 } 3203 3204 static int arm_smmu_setup_irqs(struct arm_smmu_device *smmu) 3205 { 3206 int ret, irq; 3207 u32 irqen_flags = IRQ_CTRL_EVTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN; 3208 3209 /* Disable IRQs first */ 3210 ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_IRQ_CTRL, 3211 ARM_SMMU_IRQ_CTRLACK); 3212 if (ret) { 3213 dev_err(smmu->dev, "failed to disable irqs\n"); 3214 return ret; 3215 } 3216 3217 irq = smmu->combined_irq; 3218 if (irq) { 3219 /* 3220 * Cavium ThunderX2 implementation doesn't support unique irq 3221 * lines. Use a single irq line for all the SMMUv3 interrupts. 3222 */ 3223 ret = devm_request_threaded_irq(smmu->dev, irq, 3224 arm_smmu_combined_irq_handler, 3225 arm_smmu_combined_irq_thread, 3226 IRQF_ONESHOT, 3227 "arm-smmu-v3-combined-irq", smmu); 3228 if (ret < 0) 3229 dev_warn(smmu->dev, "failed to enable combined irq\n"); 3230 } else 3231 arm_smmu_setup_unique_irqs(smmu); 3232 3233 if (smmu->features & ARM_SMMU_FEAT_PRI) 3234 irqen_flags |= IRQ_CTRL_PRIQ_IRQEN; 3235 3236 /* Enable interrupt generation on the SMMU */ 3237 ret = arm_smmu_write_reg_sync(smmu, irqen_flags, 3238 ARM_SMMU_IRQ_CTRL, ARM_SMMU_IRQ_CTRLACK); 3239 if (ret) 3240 dev_warn(smmu->dev, "failed to enable irqs\n"); 3241 3242 return 0; 3243 } 3244 3245 static int arm_smmu_device_disable(struct arm_smmu_device *smmu) 3246 { 3247 int ret; 3248 3249 ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_CR0, ARM_SMMU_CR0ACK); 3250 if (ret) 3251 dev_err(smmu->dev, "failed to clear cr0\n"); 3252 3253 return ret; 3254 } 3255 3256 static int arm_smmu_device_reset(struct arm_smmu_device *smmu, bool bypass) 3257 { 3258 int ret; 3259 u32 reg, enables; 3260 struct arm_smmu_cmdq_ent cmd; 3261 3262 /* Clear CR0 and sync (disables SMMU and queue processing) */ 3263 reg = readl_relaxed(smmu->base + ARM_SMMU_CR0); 3264 if (reg & CR0_SMMUEN) { 3265 dev_warn(smmu->dev, "SMMU currently enabled! Resetting...\n"); 3266 WARN_ON(is_kdump_kernel() && !disable_bypass); 3267 arm_smmu_update_gbpa(smmu, GBPA_ABORT, 0); 3268 } 3269 3270 ret = arm_smmu_device_disable(smmu); 3271 if (ret) 3272 return ret; 3273 3274 /* CR1 (table and queue memory attributes) */ 3275 reg = FIELD_PREP(CR1_TABLE_SH, ARM_SMMU_SH_ISH) | 3276 FIELD_PREP(CR1_TABLE_OC, CR1_CACHE_WB) | 3277 FIELD_PREP(CR1_TABLE_IC, CR1_CACHE_WB) | 3278 FIELD_PREP(CR1_QUEUE_SH, ARM_SMMU_SH_ISH) | 3279 FIELD_PREP(CR1_QUEUE_OC, CR1_CACHE_WB) | 3280 FIELD_PREP(CR1_QUEUE_IC, CR1_CACHE_WB); 3281 writel_relaxed(reg, smmu->base + ARM_SMMU_CR1); 3282 3283 /* CR2 (random crap) */ 3284 reg = CR2_PTM | CR2_RECINVSID; 3285 3286 if (smmu->features & ARM_SMMU_FEAT_E2H) 3287 reg |= CR2_E2H; 3288 3289 writel_relaxed(reg, smmu->base + ARM_SMMU_CR2); 3290 3291 /* Stream table */ 3292 writeq_relaxed(smmu->strtab_cfg.strtab_base, 3293 smmu->base + ARM_SMMU_STRTAB_BASE); 3294 writel_relaxed(smmu->strtab_cfg.strtab_base_cfg, 3295 smmu->base + ARM_SMMU_STRTAB_BASE_CFG); 3296 3297 /* Command queue */ 3298 writeq_relaxed(smmu->cmdq.q.q_base, smmu->base + ARM_SMMU_CMDQ_BASE); 3299 writel_relaxed(smmu->cmdq.q.llq.prod, smmu->base + ARM_SMMU_CMDQ_PROD); 3300 writel_relaxed(smmu->cmdq.q.llq.cons, smmu->base + ARM_SMMU_CMDQ_CONS); 3301 3302 enables = CR0_CMDQEN; 3303 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0, 3304 ARM_SMMU_CR0ACK); 3305 if (ret) { 3306 dev_err(smmu->dev, "failed to enable command queue\n"); 3307 return ret; 3308 } 3309 3310 /* Invalidate any cached configuration */ 3311 cmd.opcode = CMDQ_OP_CFGI_ALL; 3312 arm_smmu_cmdq_issue_cmd_with_sync(smmu, &cmd); 3313 3314 /* Invalidate any stale TLB entries */ 3315 if (smmu->features & ARM_SMMU_FEAT_HYP) { 3316 cmd.opcode = CMDQ_OP_TLBI_EL2_ALL; 3317 arm_smmu_cmdq_issue_cmd_with_sync(smmu, &cmd); 3318 } 3319 3320 cmd.opcode = CMDQ_OP_TLBI_NSNH_ALL; 3321 arm_smmu_cmdq_issue_cmd_with_sync(smmu, &cmd); 3322 3323 /* Event queue */ 3324 writeq_relaxed(smmu->evtq.q.q_base, smmu->base + ARM_SMMU_EVTQ_BASE); 3325 writel_relaxed(smmu->evtq.q.llq.prod, smmu->page1 + ARM_SMMU_EVTQ_PROD); 3326 writel_relaxed(smmu->evtq.q.llq.cons, smmu->page1 + ARM_SMMU_EVTQ_CONS); 3327 3328 enables |= CR0_EVTQEN; 3329 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0, 3330 ARM_SMMU_CR0ACK); 3331 if (ret) { 3332 dev_err(smmu->dev, "failed to enable event queue\n"); 3333 return ret; 3334 } 3335 3336 /* PRI queue */ 3337 if (smmu->features & ARM_SMMU_FEAT_PRI) { 3338 writeq_relaxed(smmu->priq.q.q_base, 3339 smmu->base + ARM_SMMU_PRIQ_BASE); 3340 writel_relaxed(smmu->priq.q.llq.prod, 3341 smmu->page1 + ARM_SMMU_PRIQ_PROD); 3342 writel_relaxed(smmu->priq.q.llq.cons, 3343 smmu->page1 + ARM_SMMU_PRIQ_CONS); 3344 3345 enables |= CR0_PRIQEN; 3346 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0, 3347 ARM_SMMU_CR0ACK); 3348 if (ret) { 3349 dev_err(smmu->dev, "failed to enable PRI queue\n"); 3350 return ret; 3351 } 3352 } 3353 3354 if (smmu->features & ARM_SMMU_FEAT_ATS) { 3355 enables |= CR0_ATSCHK; 3356 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0, 3357 ARM_SMMU_CR0ACK); 3358 if (ret) { 3359 dev_err(smmu->dev, "failed to enable ATS check\n"); 3360 return ret; 3361 } 3362 } 3363 3364 ret = arm_smmu_setup_irqs(smmu); 3365 if (ret) { 3366 dev_err(smmu->dev, "failed to setup irqs\n"); 3367 return ret; 3368 } 3369 3370 if (is_kdump_kernel()) 3371 enables &= ~(CR0_EVTQEN | CR0_PRIQEN); 3372 3373 /* Enable the SMMU interface, or ensure bypass */ 3374 if (!bypass || disable_bypass) { 3375 enables |= CR0_SMMUEN; 3376 } else { 3377 ret = arm_smmu_update_gbpa(smmu, 0, GBPA_ABORT); 3378 if (ret) 3379 return ret; 3380 } 3381 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0, 3382 ARM_SMMU_CR0ACK); 3383 if (ret) { 3384 dev_err(smmu->dev, "failed to enable SMMU interface\n"); 3385 return ret; 3386 } 3387 3388 return 0; 3389 } 3390 3391 static int arm_smmu_device_hw_probe(struct arm_smmu_device *smmu) 3392 { 3393 u32 reg; 3394 bool coherent = smmu->features & ARM_SMMU_FEAT_COHERENCY; 3395 3396 /* IDR0 */ 3397 reg = readl_relaxed(smmu->base + ARM_SMMU_IDR0); 3398 3399 /* 2-level structures */ 3400 if (FIELD_GET(IDR0_ST_LVL, reg) == IDR0_ST_LVL_2LVL) 3401 smmu->features |= ARM_SMMU_FEAT_2_LVL_STRTAB; 3402 3403 if (reg & IDR0_CD2L) 3404 smmu->features |= ARM_SMMU_FEAT_2_LVL_CDTAB; 3405 3406 /* 3407 * Translation table endianness. 3408 * We currently require the same endianness as the CPU, but this 3409 * could be changed later by adding a new IO_PGTABLE_QUIRK. 3410 */ 3411 switch (FIELD_GET(IDR0_TTENDIAN, reg)) { 3412 case IDR0_TTENDIAN_MIXED: 3413 smmu->features |= ARM_SMMU_FEAT_TT_LE | ARM_SMMU_FEAT_TT_BE; 3414 break; 3415 #ifdef __BIG_ENDIAN 3416 case IDR0_TTENDIAN_BE: 3417 smmu->features |= ARM_SMMU_FEAT_TT_BE; 3418 break; 3419 #else 3420 case IDR0_TTENDIAN_LE: 3421 smmu->features |= ARM_SMMU_FEAT_TT_LE; 3422 break; 3423 #endif 3424 default: 3425 dev_err(smmu->dev, "unknown/unsupported TT endianness!\n"); 3426 return -ENXIO; 3427 } 3428 3429 /* Boolean feature flags */ 3430 if (IS_ENABLED(CONFIG_PCI_PRI) && reg & IDR0_PRI) 3431 smmu->features |= ARM_SMMU_FEAT_PRI; 3432 3433 if (IS_ENABLED(CONFIG_PCI_ATS) && reg & IDR0_ATS) 3434 smmu->features |= ARM_SMMU_FEAT_ATS; 3435 3436 if (reg & IDR0_SEV) 3437 smmu->features |= ARM_SMMU_FEAT_SEV; 3438 3439 if (reg & IDR0_MSI) { 3440 smmu->features |= ARM_SMMU_FEAT_MSI; 3441 if (coherent && !disable_msipolling) 3442 smmu->options |= ARM_SMMU_OPT_MSIPOLL; 3443 } 3444 3445 if (reg & IDR0_HYP) { 3446 smmu->features |= ARM_SMMU_FEAT_HYP; 3447 if (cpus_have_cap(ARM64_HAS_VIRT_HOST_EXTN)) 3448 smmu->features |= ARM_SMMU_FEAT_E2H; 3449 } 3450 3451 /* 3452 * The coherency feature as set by FW is used in preference to the ID 3453 * register, but warn on mismatch. 3454 */ 3455 if (!!(reg & IDR0_COHACC) != coherent) 3456 dev_warn(smmu->dev, "IDR0.COHACC overridden by FW configuration (%s)\n", 3457 coherent ? "true" : "false"); 3458 3459 switch (FIELD_GET(IDR0_STALL_MODEL, reg)) { 3460 case IDR0_STALL_MODEL_FORCE: 3461 smmu->features |= ARM_SMMU_FEAT_STALL_FORCE; 3462 fallthrough; 3463 case IDR0_STALL_MODEL_STALL: 3464 smmu->features |= ARM_SMMU_FEAT_STALLS; 3465 } 3466 3467 if (reg & IDR0_S1P) 3468 smmu->features |= ARM_SMMU_FEAT_TRANS_S1; 3469 3470 if (reg & IDR0_S2P) 3471 smmu->features |= ARM_SMMU_FEAT_TRANS_S2; 3472 3473 if (!(reg & (IDR0_S1P | IDR0_S2P))) { 3474 dev_err(smmu->dev, "no translation support!\n"); 3475 return -ENXIO; 3476 } 3477 3478 /* We only support the AArch64 table format at present */ 3479 switch (FIELD_GET(IDR0_TTF, reg)) { 3480 case IDR0_TTF_AARCH32_64: 3481 smmu->ias = 40; 3482 fallthrough; 3483 case IDR0_TTF_AARCH64: 3484 break; 3485 default: 3486 dev_err(smmu->dev, "AArch64 table format not supported!\n"); 3487 return -ENXIO; 3488 } 3489 3490 /* ASID/VMID sizes */ 3491 smmu->asid_bits = reg & IDR0_ASID16 ? 16 : 8; 3492 smmu->vmid_bits = reg & IDR0_VMID16 ? 16 : 8; 3493 3494 /* IDR1 */ 3495 reg = readl_relaxed(smmu->base + ARM_SMMU_IDR1); 3496 if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) { 3497 dev_err(smmu->dev, "embedded implementation not supported\n"); 3498 return -ENXIO; 3499 } 3500 3501 /* Queue sizes, capped to ensure natural alignment */ 3502 smmu->cmdq.q.llq.max_n_shift = min_t(u32, CMDQ_MAX_SZ_SHIFT, 3503 FIELD_GET(IDR1_CMDQS, reg)); 3504 if (smmu->cmdq.q.llq.max_n_shift <= ilog2(CMDQ_BATCH_ENTRIES)) { 3505 /* 3506 * We don't support splitting up batches, so one batch of 3507 * commands plus an extra sync needs to fit inside the command 3508 * queue. There's also no way we can handle the weird alignment 3509 * restrictions on the base pointer for a unit-length queue. 3510 */ 3511 dev_err(smmu->dev, "command queue size <= %d entries not supported\n", 3512 CMDQ_BATCH_ENTRIES); 3513 return -ENXIO; 3514 } 3515 3516 smmu->evtq.q.llq.max_n_shift = min_t(u32, EVTQ_MAX_SZ_SHIFT, 3517 FIELD_GET(IDR1_EVTQS, reg)); 3518 smmu->priq.q.llq.max_n_shift = min_t(u32, PRIQ_MAX_SZ_SHIFT, 3519 FIELD_GET(IDR1_PRIQS, reg)); 3520 3521 /* SID/SSID sizes */ 3522 smmu->ssid_bits = FIELD_GET(IDR1_SSIDSIZE, reg); 3523 smmu->sid_bits = FIELD_GET(IDR1_SIDSIZE, reg); 3524 3525 /* 3526 * If the SMMU supports fewer bits than would fill a single L2 stream 3527 * table, use a linear table instead. 3528 */ 3529 if (smmu->sid_bits <= STRTAB_SPLIT) 3530 smmu->features &= ~ARM_SMMU_FEAT_2_LVL_STRTAB; 3531 3532 /* IDR3 */ 3533 reg = readl_relaxed(smmu->base + ARM_SMMU_IDR3); 3534 if (FIELD_GET(IDR3_RIL, reg)) 3535 smmu->features |= ARM_SMMU_FEAT_RANGE_INV; 3536 3537 /* IDR5 */ 3538 reg = readl_relaxed(smmu->base + ARM_SMMU_IDR5); 3539 3540 /* Maximum number of outstanding stalls */ 3541 smmu->evtq.max_stalls = FIELD_GET(IDR5_STALL_MAX, reg); 3542 3543 /* Page sizes */ 3544 if (reg & IDR5_GRAN64K) 3545 smmu->pgsize_bitmap |= SZ_64K | SZ_512M; 3546 if (reg & IDR5_GRAN16K) 3547 smmu->pgsize_bitmap |= SZ_16K | SZ_32M; 3548 if (reg & IDR5_GRAN4K) 3549 smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G; 3550 3551 /* Input address size */ 3552 if (FIELD_GET(IDR5_VAX, reg) == IDR5_VAX_52_BIT) 3553 smmu->features |= ARM_SMMU_FEAT_VAX; 3554 3555 /* Output address size */ 3556 switch (FIELD_GET(IDR5_OAS, reg)) { 3557 case IDR5_OAS_32_BIT: 3558 smmu->oas = 32; 3559 break; 3560 case IDR5_OAS_36_BIT: 3561 smmu->oas = 36; 3562 break; 3563 case IDR5_OAS_40_BIT: 3564 smmu->oas = 40; 3565 break; 3566 case IDR5_OAS_42_BIT: 3567 smmu->oas = 42; 3568 break; 3569 case IDR5_OAS_44_BIT: 3570 smmu->oas = 44; 3571 break; 3572 case IDR5_OAS_52_BIT: 3573 smmu->oas = 52; 3574 smmu->pgsize_bitmap |= 1ULL << 42; /* 4TB */ 3575 break; 3576 default: 3577 dev_info(smmu->dev, 3578 "unknown output address size. Truncating to 48-bit\n"); 3579 fallthrough; 3580 case IDR5_OAS_48_BIT: 3581 smmu->oas = 48; 3582 } 3583 3584 if (arm_smmu_ops.pgsize_bitmap == -1UL) 3585 arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap; 3586 else 3587 arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap; 3588 3589 /* Set the DMA mask for our table walker */ 3590 if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(smmu->oas))) 3591 dev_warn(smmu->dev, 3592 "failed to set DMA mask for table walker\n"); 3593 3594 smmu->ias = max(smmu->ias, smmu->oas); 3595 3596 if (arm_smmu_sva_supported(smmu)) 3597 smmu->features |= ARM_SMMU_FEAT_SVA; 3598 3599 dev_info(smmu->dev, "ias %lu-bit, oas %lu-bit (features 0x%08x)\n", 3600 smmu->ias, smmu->oas, smmu->features); 3601 return 0; 3602 } 3603 3604 #ifdef CONFIG_ACPI 3605 static void acpi_smmu_get_options(u32 model, struct arm_smmu_device *smmu) 3606 { 3607 switch (model) { 3608 case ACPI_IORT_SMMU_V3_CAVIUM_CN99XX: 3609 smmu->options |= ARM_SMMU_OPT_PAGE0_REGS_ONLY; 3610 break; 3611 case ACPI_IORT_SMMU_V3_HISILICON_HI161X: 3612 smmu->options |= ARM_SMMU_OPT_SKIP_PREFETCH; 3613 break; 3614 } 3615 3616 dev_notice(smmu->dev, "option mask 0x%x\n", smmu->options); 3617 } 3618 3619 static int arm_smmu_device_acpi_probe(struct platform_device *pdev, 3620 struct arm_smmu_device *smmu) 3621 { 3622 struct acpi_iort_smmu_v3 *iort_smmu; 3623 struct device *dev = smmu->dev; 3624 struct acpi_iort_node *node; 3625 3626 node = *(struct acpi_iort_node **)dev_get_platdata(dev); 3627 3628 /* Retrieve SMMUv3 specific data */ 3629 iort_smmu = (struct acpi_iort_smmu_v3 *)node->node_data; 3630 3631 acpi_smmu_get_options(iort_smmu->model, smmu); 3632 3633 if (iort_smmu->flags & ACPI_IORT_SMMU_V3_COHACC_OVERRIDE) 3634 smmu->features |= ARM_SMMU_FEAT_COHERENCY; 3635 3636 return 0; 3637 } 3638 #else 3639 static inline int arm_smmu_device_acpi_probe(struct platform_device *pdev, 3640 struct arm_smmu_device *smmu) 3641 { 3642 return -ENODEV; 3643 } 3644 #endif 3645 3646 static int arm_smmu_device_dt_probe(struct platform_device *pdev, 3647 struct arm_smmu_device *smmu) 3648 { 3649 struct device *dev = &pdev->dev; 3650 u32 cells; 3651 int ret = -EINVAL; 3652 3653 if (of_property_read_u32(dev->of_node, "#iommu-cells", &cells)) 3654 dev_err(dev, "missing #iommu-cells property\n"); 3655 else if (cells != 1) 3656 dev_err(dev, "invalid #iommu-cells value (%d)\n", cells); 3657 else 3658 ret = 0; 3659 3660 parse_driver_options(smmu); 3661 3662 if (of_dma_is_coherent(dev->of_node)) 3663 smmu->features |= ARM_SMMU_FEAT_COHERENCY; 3664 3665 return ret; 3666 } 3667 3668 static unsigned long arm_smmu_resource_size(struct arm_smmu_device *smmu) 3669 { 3670 if (smmu->options & ARM_SMMU_OPT_PAGE0_REGS_ONLY) 3671 return SZ_64K; 3672 else 3673 return SZ_128K; 3674 } 3675 3676 static int arm_smmu_set_bus_ops(struct iommu_ops *ops) 3677 { 3678 int err; 3679 3680 #ifdef CONFIG_PCI 3681 if (pci_bus_type.iommu_ops != ops) { 3682 err = bus_set_iommu(&pci_bus_type, ops); 3683 if (err) 3684 return err; 3685 } 3686 #endif 3687 #ifdef CONFIG_ARM_AMBA 3688 if (amba_bustype.iommu_ops != ops) { 3689 err = bus_set_iommu(&amba_bustype, ops); 3690 if (err) 3691 goto err_reset_pci_ops; 3692 } 3693 #endif 3694 if (platform_bus_type.iommu_ops != ops) { 3695 err = bus_set_iommu(&platform_bus_type, ops); 3696 if (err) 3697 goto err_reset_amba_ops; 3698 } 3699 3700 return 0; 3701 3702 err_reset_amba_ops: 3703 #ifdef CONFIG_ARM_AMBA 3704 bus_set_iommu(&amba_bustype, NULL); 3705 #endif 3706 err_reset_pci_ops: __maybe_unused; 3707 #ifdef CONFIG_PCI 3708 bus_set_iommu(&pci_bus_type, NULL); 3709 #endif 3710 return err; 3711 } 3712 3713 static void __iomem *arm_smmu_ioremap(struct device *dev, resource_size_t start, 3714 resource_size_t size) 3715 { 3716 struct resource res = DEFINE_RES_MEM(start, size); 3717 3718 return devm_ioremap_resource(dev, &res); 3719 } 3720 3721 static void arm_smmu_rmr_install_bypass_ste(struct arm_smmu_device *smmu) 3722 { 3723 struct list_head rmr_list; 3724 struct iommu_resv_region *e; 3725 3726 INIT_LIST_HEAD(&rmr_list); 3727 iort_get_rmr_sids(dev_fwnode(smmu->dev), &rmr_list); 3728 3729 list_for_each_entry(e, &rmr_list, list) { 3730 __le64 *step; 3731 struct iommu_iort_rmr_data *rmr; 3732 int ret, i; 3733 3734 rmr = container_of(e, struct iommu_iort_rmr_data, rr); 3735 for (i = 0; i < rmr->num_sids; i++) { 3736 ret = arm_smmu_init_sid_strtab(smmu, rmr->sids[i]); 3737 if (ret) { 3738 dev_err(smmu->dev, "RMR SID(0x%x) bypass failed\n", 3739 rmr->sids[i]); 3740 continue; 3741 } 3742 3743 step = arm_smmu_get_step_for_sid(smmu, rmr->sids[i]); 3744 arm_smmu_init_bypass_stes(step, 1, true); 3745 } 3746 } 3747 3748 iort_put_rmr_sids(dev_fwnode(smmu->dev), &rmr_list); 3749 } 3750 3751 static int arm_smmu_device_probe(struct platform_device *pdev) 3752 { 3753 int irq, ret; 3754 struct resource *res; 3755 resource_size_t ioaddr; 3756 struct arm_smmu_device *smmu; 3757 struct device *dev = &pdev->dev; 3758 bool bypass; 3759 3760 smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL); 3761 if (!smmu) 3762 return -ENOMEM; 3763 smmu->dev = dev; 3764 3765 if (dev->of_node) { 3766 ret = arm_smmu_device_dt_probe(pdev, smmu); 3767 } else { 3768 ret = arm_smmu_device_acpi_probe(pdev, smmu); 3769 if (ret == -ENODEV) 3770 return ret; 3771 } 3772 3773 /* Set bypass mode according to firmware probing result */ 3774 bypass = !!ret; 3775 3776 /* Base address */ 3777 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 3778 if (!res) 3779 return -EINVAL; 3780 if (resource_size(res) < arm_smmu_resource_size(smmu)) { 3781 dev_err(dev, "MMIO region too small (%pr)\n", res); 3782 return -EINVAL; 3783 } 3784 ioaddr = res->start; 3785 3786 /* 3787 * Don't map the IMPLEMENTATION DEFINED regions, since they may contain 3788 * the PMCG registers which are reserved by the PMU driver. 3789 */ 3790 smmu->base = arm_smmu_ioremap(dev, ioaddr, ARM_SMMU_REG_SZ); 3791 if (IS_ERR(smmu->base)) 3792 return PTR_ERR(smmu->base); 3793 3794 if (arm_smmu_resource_size(smmu) > SZ_64K) { 3795 smmu->page1 = arm_smmu_ioremap(dev, ioaddr + SZ_64K, 3796 ARM_SMMU_REG_SZ); 3797 if (IS_ERR(smmu->page1)) 3798 return PTR_ERR(smmu->page1); 3799 } else { 3800 smmu->page1 = smmu->base; 3801 } 3802 3803 /* Interrupt lines */ 3804 3805 irq = platform_get_irq_byname_optional(pdev, "combined"); 3806 if (irq > 0) 3807 smmu->combined_irq = irq; 3808 else { 3809 irq = platform_get_irq_byname_optional(pdev, "eventq"); 3810 if (irq > 0) 3811 smmu->evtq.q.irq = irq; 3812 3813 irq = platform_get_irq_byname_optional(pdev, "priq"); 3814 if (irq > 0) 3815 smmu->priq.q.irq = irq; 3816 3817 irq = platform_get_irq_byname_optional(pdev, "gerror"); 3818 if (irq > 0) 3819 smmu->gerr_irq = irq; 3820 } 3821 /* Probe the h/w */ 3822 ret = arm_smmu_device_hw_probe(smmu); 3823 if (ret) 3824 return ret; 3825 3826 /* Initialise in-memory data structures */ 3827 ret = arm_smmu_init_structures(smmu); 3828 if (ret) 3829 return ret; 3830 3831 /* Record our private device structure */ 3832 platform_set_drvdata(pdev, smmu); 3833 3834 /* Check for RMRs and install bypass STEs if any */ 3835 arm_smmu_rmr_install_bypass_ste(smmu); 3836 3837 /* Reset the device */ 3838 ret = arm_smmu_device_reset(smmu, bypass); 3839 if (ret) 3840 return ret; 3841 3842 /* And we're up. Go go go! */ 3843 ret = iommu_device_sysfs_add(&smmu->iommu, dev, NULL, 3844 "smmu3.%pa", &ioaddr); 3845 if (ret) 3846 return ret; 3847 3848 ret = iommu_device_register(&smmu->iommu, &arm_smmu_ops, dev); 3849 if (ret) { 3850 dev_err(dev, "Failed to register iommu\n"); 3851 goto err_sysfs_remove; 3852 } 3853 3854 ret = arm_smmu_set_bus_ops(&arm_smmu_ops); 3855 if (ret) 3856 goto err_unregister_device; 3857 3858 return 0; 3859 3860 err_unregister_device: 3861 iommu_device_unregister(&smmu->iommu); 3862 err_sysfs_remove: 3863 iommu_device_sysfs_remove(&smmu->iommu); 3864 return ret; 3865 } 3866 3867 static int arm_smmu_device_remove(struct platform_device *pdev) 3868 { 3869 struct arm_smmu_device *smmu = platform_get_drvdata(pdev); 3870 3871 arm_smmu_set_bus_ops(NULL); 3872 iommu_device_unregister(&smmu->iommu); 3873 iommu_device_sysfs_remove(&smmu->iommu); 3874 arm_smmu_device_disable(smmu); 3875 iopf_queue_free(smmu->evtq.iopf); 3876 3877 return 0; 3878 } 3879 3880 static void arm_smmu_device_shutdown(struct platform_device *pdev) 3881 { 3882 arm_smmu_device_remove(pdev); 3883 } 3884 3885 static const struct of_device_id arm_smmu_of_match[] = { 3886 { .compatible = "arm,smmu-v3", }, 3887 { }, 3888 }; 3889 MODULE_DEVICE_TABLE(of, arm_smmu_of_match); 3890 3891 static void arm_smmu_driver_unregister(struct platform_driver *drv) 3892 { 3893 arm_smmu_sva_notifier_synchronize(); 3894 platform_driver_unregister(drv); 3895 } 3896 3897 static struct platform_driver arm_smmu_driver = { 3898 .driver = { 3899 .name = "arm-smmu-v3", 3900 .of_match_table = arm_smmu_of_match, 3901 .suppress_bind_attrs = true, 3902 }, 3903 .probe = arm_smmu_device_probe, 3904 .remove = arm_smmu_device_remove, 3905 .shutdown = arm_smmu_device_shutdown, 3906 }; 3907 module_driver(arm_smmu_driver, platform_driver_register, 3908 arm_smmu_driver_unregister); 3909 3910 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMUv3 implementations"); 3911 MODULE_AUTHOR("Will Deacon <will@kernel.org>"); 3912 MODULE_ALIAS("platform:arm-smmu-v3"); 3913 MODULE_LICENSE("GPL v2"); 3914