1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * IOMMU API for ARM architected SMMUv3 implementations. 4 * 5 * Copyright (C) 2015 ARM Limited 6 * 7 * Author: Will Deacon <will.deacon@arm.com> 8 * 9 * This driver is powered by bad coffee and bombay mix. 10 */ 11 12 #include <linux/acpi.h> 13 #include <linux/acpi_iort.h> 14 #include <linux/bitops.h> 15 #include <linux/crash_dump.h> 16 #include <linux/delay.h> 17 #include <linux/err.h> 18 #include <linux/interrupt.h> 19 #include <linux/io-pgtable.h> 20 #include <linux/iopoll.h> 21 #include <linux/module.h> 22 #include <linux/msi.h> 23 #include <linux/of.h> 24 #include <linux/of_address.h> 25 #include <linux/of_platform.h> 26 #include <linux/pci.h> 27 #include <linux/pci-ats.h> 28 #include <linux/platform_device.h> 29 30 #include "arm-smmu-v3.h" 31 #include "../../dma-iommu.h" 32 #include "../../iommu-sva.h" 33 34 static bool disable_bypass = true; 35 module_param(disable_bypass, bool, 0444); 36 MODULE_PARM_DESC(disable_bypass, 37 "Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU."); 38 39 static bool disable_msipolling; 40 module_param(disable_msipolling, bool, 0444); 41 MODULE_PARM_DESC(disable_msipolling, 42 "Disable MSI-based polling for CMD_SYNC completion."); 43 44 enum arm_smmu_msi_index { 45 EVTQ_MSI_INDEX, 46 GERROR_MSI_INDEX, 47 PRIQ_MSI_INDEX, 48 ARM_SMMU_MAX_MSIS, 49 }; 50 51 static phys_addr_t arm_smmu_msi_cfg[ARM_SMMU_MAX_MSIS][3] = { 52 [EVTQ_MSI_INDEX] = { 53 ARM_SMMU_EVTQ_IRQ_CFG0, 54 ARM_SMMU_EVTQ_IRQ_CFG1, 55 ARM_SMMU_EVTQ_IRQ_CFG2, 56 }, 57 [GERROR_MSI_INDEX] = { 58 ARM_SMMU_GERROR_IRQ_CFG0, 59 ARM_SMMU_GERROR_IRQ_CFG1, 60 ARM_SMMU_GERROR_IRQ_CFG2, 61 }, 62 [PRIQ_MSI_INDEX] = { 63 ARM_SMMU_PRIQ_IRQ_CFG0, 64 ARM_SMMU_PRIQ_IRQ_CFG1, 65 ARM_SMMU_PRIQ_IRQ_CFG2, 66 }, 67 }; 68 69 struct arm_smmu_option_prop { 70 u32 opt; 71 const char *prop; 72 }; 73 74 DEFINE_XARRAY_ALLOC1(arm_smmu_asid_xa); 75 DEFINE_MUTEX(arm_smmu_asid_lock); 76 77 /* 78 * Special value used by SVA when a process dies, to quiesce a CD without 79 * disabling it. 80 */ 81 struct arm_smmu_ctx_desc quiet_cd = { 0 }; 82 83 static struct arm_smmu_option_prop arm_smmu_options[] = { 84 { ARM_SMMU_OPT_SKIP_PREFETCH, "hisilicon,broken-prefetch-cmd" }, 85 { ARM_SMMU_OPT_PAGE0_REGS_ONLY, "cavium,cn9900-broken-page1-regspace"}, 86 { 0, NULL}, 87 }; 88 89 static void parse_driver_options(struct arm_smmu_device *smmu) 90 { 91 int i = 0; 92 93 do { 94 if (of_property_read_bool(smmu->dev->of_node, 95 arm_smmu_options[i].prop)) { 96 smmu->options |= arm_smmu_options[i].opt; 97 dev_notice(smmu->dev, "option %s\n", 98 arm_smmu_options[i].prop); 99 } 100 } while (arm_smmu_options[++i].opt); 101 } 102 103 /* Low-level queue manipulation functions */ 104 static bool queue_has_space(struct arm_smmu_ll_queue *q, u32 n) 105 { 106 u32 space, prod, cons; 107 108 prod = Q_IDX(q, q->prod); 109 cons = Q_IDX(q, q->cons); 110 111 if (Q_WRP(q, q->prod) == Q_WRP(q, q->cons)) 112 space = (1 << q->max_n_shift) - (prod - cons); 113 else 114 space = cons - prod; 115 116 return space >= n; 117 } 118 119 static bool queue_full(struct arm_smmu_ll_queue *q) 120 { 121 return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) && 122 Q_WRP(q, q->prod) != Q_WRP(q, q->cons); 123 } 124 125 static bool queue_empty(struct arm_smmu_ll_queue *q) 126 { 127 return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) && 128 Q_WRP(q, q->prod) == Q_WRP(q, q->cons); 129 } 130 131 static bool queue_consumed(struct arm_smmu_ll_queue *q, u32 prod) 132 { 133 return ((Q_WRP(q, q->cons) == Q_WRP(q, prod)) && 134 (Q_IDX(q, q->cons) > Q_IDX(q, prod))) || 135 ((Q_WRP(q, q->cons) != Q_WRP(q, prod)) && 136 (Q_IDX(q, q->cons) <= Q_IDX(q, prod))); 137 } 138 139 static void queue_sync_cons_out(struct arm_smmu_queue *q) 140 { 141 /* 142 * Ensure that all CPU accesses (reads and writes) to the queue 143 * are complete before we update the cons pointer. 144 */ 145 __iomb(); 146 writel_relaxed(q->llq.cons, q->cons_reg); 147 } 148 149 static void queue_inc_cons(struct arm_smmu_ll_queue *q) 150 { 151 u32 cons = (Q_WRP(q, q->cons) | Q_IDX(q, q->cons)) + 1; 152 q->cons = Q_OVF(q->cons) | Q_WRP(q, cons) | Q_IDX(q, cons); 153 } 154 155 static void queue_sync_cons_ovf(struct arm_smmu_queue *q) 156 { 157 struct arm_smmu_ll_queue *llq = &q->llq; 158 159 if (likely(Q_OVF(llq->prod) == Q_OVF(llq->cons))) 160 return; 161 162 llq->cons = Q_OVF(llq->prod) | Q_WRP(llq, llq->cons) | 163 Q_IDX(llq, llq->cons); 164 queue_sync_cons_out(q); 165 } 166 167 static int queue_sync_prod_in(struct arm_smmu_queue *q) 168 { 169 u32 prod; 170 int ret = 0; 171 172 /* 173 * We can't use the _relaxed() variant here, as we must prevent 174 * speculative reads of the queue before we have determined that 175 * prod has indeed moved. 176 */ 177 prod = readl(q->prod_reg); 178 179 if (Q_OVF(prod) != Q_OVF(q->llq.prod)) 180 ret = -EOVERFLOW; 181 182 q->llq.prod = prod; 183 return ret; 184 } 185 186 static u32 queue_inc_prod_n(struct arm_smmu_ll_queue *q, int n) 187 { 188 u32 prod = (Q_WRP(q, q->prod) | Q_IDX(q, q->prod)) + n; 189 return Q_OVF(q->prod) | Q_WRP(q, prod) | Q_IDX(q, prod); 190 } 191 192 static void queue_poll_init(struct arm_smmu_device *smmu, 193 struct arm_smmu_queue_poll *qp) 194 { 195 qp->delay = 1; 196 qp->spin_cnt = 0; 197 qp->wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV); 198 qp->timeout = ktime_add_us(ktime_get(), ARM_SMMU_POLL_TIMEOUT_US); 199 } 200 201 static int queue_poll(struct arm_smmu_queue_poll *qp) 202 { 203 if (ktime_compare(ktime_get(), qp->timeout) > 0) 204 return -ETIMEDOUT; 205 206 if (qp->wfe) { 207 wfe(); 208 } else if (++qp->spin_cnt < ARM_SMMU_POLL_SPIN_COUNT) { 209 cpu_relax(); 210 } else { 211 udelay(qp->delay); 212 qp->delay *= 2; 213 qp->spin_cnt = 0; 214 } 215 216 return 0; 217 } 218 219 static void queue_write(__le64 *dst, u64 *src, size_t n_dwords) 220 { 221 int i; 222 223 for (i = 0; i < n_dwords; ++i) 224 *dst++ = cpu_to_le64(*src++); 225 } 226 227 static void queue_read(u64 *dst, __le64 *src, size_t n_dwords) 228 { 229 int i; 230 231 for (i = 0; i < n_dwords; ++i) 232 *dst++ = le64_to_cpu(*src++); 233 } 234 235 static int queue_remove_raw(struct arm_smmu_queue *q, u64 *ent) 236 { 237 if (queue_empty(&q->llq)) 238 return -EAGAIN; 239 240 queue_read(ent, Q_ENT(q, q->llq.cons), q->ent_dwords); 241 queue_inc_cons(&q->llq); 242 queue_sync_cons_out(q); 243 return 0; 244 } 245 246 /* High-level queue accessors */ 247 static int arm_smmu_cmdq_build_cmd(u64 *cmd, struct arm_smmu_cmdq_ent *ent) 248 { 249 memset(cmd, 0, 1 << CMDQ_ENT_SZ_SHIFT); 250 cmd[0] |= FIELD_PREP(CMDQ_0_OP, ent->opcode); 251 252 switch (ent->opcode) { 253 case CMDQ_OP_TLBI_EL2_ALL: 254 case CMDQ_OP_TLBI_NSNH_ALL: 255 break; 256 case CMDQ_OP_PREFETCH_CFG: 257 cmd[0] |= FIELD_PREP(CMDQ_PREFETCH_0_SID, ent->prefetch.sid); 258 break; 259 case CMDQ_OP_CFGI_CD: 260 cmd[0] |= FIELD_PREP(CMDQ_CFGI_0_SSID, ent->cfgi.ssid); 261 fallthrough; 262 case CMDQ_OP_CFGI_STE: 263 cmd[0] |= FIELD_PREP(CMDQ_CFGI_0_SID, ent->cfgi.sid); 264 cmd[1] |= FIELD_PREP(CMDQ_CFGI_1_LEAF, ent->cfgi.leaf); 265 break; 266 case CMDQ_OP_CFGI_CD_ALL: 267 cmd[0] |= FIELD_PREP(CMDQ_CFGI_0_SID, ent->cfgi.sid); 268 break; 269 case CMDQ_OP_CFGI_ALL: 270 /* Cover the entire SID range */ 271 cmd[1] |= FIELD_PREP(CMDQ_CFGI_1_RANGE, 31); 272 break; 273 case CMDQ_OP_TLBI_NH_VA: 274 cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_VMID, ent->tlbi.vmid); 275 fallthrough; 276 case CMDQ_OP_TLBI_EL2_VA: 277 cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_NUM, ent->tlbi.num); 278 cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_SCALE, ent->tlbi.scale); 279 cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_ASID, ent->tlbi.asid); 280 cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_LEAF, ent->tlbi.leaf); 281 cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_TTL, ent->tlbi.ttl); 282 cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_TG, ent->tlbi.tg); 283 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_VA_MASK; 284 break; 285 case CMDQ_OP_TLBI_S2_IPA: 286 cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_NUM, ent->tlbi.num); 287 cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_SCALE, ent->tlbi.scale); 288 cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_VMID, ent->tlbi.vmid); 289 cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_LEAF, ent->tlbi.leaf); 290 cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_TTL, ent->tlbi.ttl); 291 cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_TG, ent->tlbi.tg); 292 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_IPA_MASK; 293 break; 294 case CMDQ_OP_TLBI_NH_ASID: 295 cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_ASID, ent->tlbi.asid); 296 fallthrough; 297 case CMDQ_OP_TLBI_S12_VMALL: 298 cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_VMID, ent->tlbi.vmid); 299 break; 300 case CMDQ_OP_TLBI_EL2_ASID: 301 cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_ASID, ent->tlbi.asid); 302 break; 303 case CMDQ_OP_ATC_INV: 304 cmd[0] |= FIELD_PREP(CMDQ_0_SSV, ent->substream_valid); 305 cmd[0] |= FIELD_PREP(CMDQ_ATC_0_GLOBAL, ent->atc.global); 306 cmd[0] |= FIELD_PREP(CMDQ_ATC_0_SSID, ent->atc.ssid); 307 cmd[0] |= FIELD_PREP(CMDQ_ATC_0_SID, ent->atc.sid); 308 cmd[1] |= FIELD_PREP(CMDQ_ATC_1_SIZE, ent->atc.size); 309 cmd[1] |= ent->atc.addr & CMDQ_ATC_1_ADDR_MASK; 310 break; 311 case CMDQ_OP_PRI_RESP: 312 cmd[0] |= FIELD_PREP(CMDQ_0_SSV, ent->substream_valid); 313 cmd[0] |= FIELD_PREP(CMDQ_PRI_0_SSID, ent->pri.ssid); 314 cmd[0] |= FIELD_PREP(CMDQ_PRI_0_SID, ent->pri.sid); 315 cmd[1] |= FIELD_PREP(CMDQ_PRI_1_GRPID, ent->pri.grpid); 316 switch (ent->pri.resp) { 317 case PRI_RESP_DENY: 318 case PRI_RESP_FAIL: 319 case PRI_RESP_SUCC: 320 break; 321 default: 322 return -EINVAL; 323 } 324 cmd[1] |= FIELD_PREP(CMDQ_PRI_1_RESP, ent->pri.resp); 325 break; 326 case CMDQ_OP_RESUME: 327 cmd[0] |= FIELD_PREP(CMDQ_RESUME_0_SID, ent->resume.sid); 328 cmd[0] |= FIELD_PREP(CMDQ_RESUME_0_RESP, ent->resume.resp); 329 cmd[1] |= FIELD_PREP(CMDQ_RESUME_1_STAG, ent->resume.stag); 330 break; 331 case CMDQ_OP_CMD_SYNC: 332 if (ent->sync.msiaddr) { 333 cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_CS, CMDQ_SYNC_0_CS_IRQ); 334 cmd[1] |= ent->sync.msiaddr & CMDQ_SYNC_1_MSIADDR_MASK; 335 } else { 336 cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_CS, CMDQ_SYNC_0_CS_SEV); 337 } 338 cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_MSH, ARM_SMMU_SH_ISH); 339 cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_MSIATTR, ARM_SMMU_MEMATTR_OIWB); 340 break; 341 default: 342 return -ENOENT; 343 } 344 345 return 0; 346 } 347 348 static struct arm_smmu_cmdq *arm_smmu_get_cmdq(struct arm_smmu_device *smmu) 349 { 350 return &smmu->cmdq; 351 } 352 353 static void arm_smmu_cmdq_build_sync_cmd(u64 *cmd, struct arm_smmu_device *smmu, 354 struct arm_smmu_queue *q, u32 prod) 355 { 356 struct arm_smmu_cmdq_ent ent = { 357 .opcode = CMDQ_OP_CMD_SYNC, 358 }; 359 360 /* 361 * Beware that Hi16xx adds an extra 32 bits of goodness to its MSI 362 * payload, so the write will zero the entire command on that platform. 363 */ 364 if (smmu->options & ARM_SMMU_OPT_MSIPOLL) { 365 ent.sync.msiaddr = q->base_dma + Q_IDX(&q->llq, prod) * 366 q->ent_dwords * 8; 367 } 368 369 arm_smmu_cmdq_build_cmd(cmd, &ent); 370 } 371 372 static void __arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu, 373 struct arm_smmu_queue *q) 374 { 375 static const char * const cerror_str[] = { 376 [CMDQ_ERR_CERROR_NONE_IDX] = "No error", 377 [CMDQ_ERR_CERROR_ILL_IDX] = "Illegal command", 378 [CMDQ_ERR_CERROR_ABT_IDX] = "Abort on command fetch", 379 [CMDQ_ERR_CERROR_ATC_INV_IDX] = "ATC invalidate timeout", 380 }; 381 382 int i; 383 u64 cmd[CMDQ_ENT_DWORDS]; 384 u32 cons = readl_relaxed(q->cons_reg); 385 u32 idx = FIELD_GET(CMDQ_CONS_ERR, cons); 386 struct arm_smmu_cmdq_ent cmd_sync = { 387 .opcode = CMDQ_OP_CMD_SYNC, 388 }; 389 390 dev_err(smmu->dev, "CMDQ error (cons 0x%08x): %s\n", cons, 391 idx < ARRAY_SIZE(cerror_str) ? cerror_str[idx] : "Unknown"); 392 393 switch (idx) { 394 case CMDQ_ERR_CERROR_ABT_IDX: 395 dev_err(smmu->dev, "retrying command fetch\n"); 396 return; 397 case CMDQ_ERR_CERROR_NONE_IDX: 398 return; 399 case CMDQ_ERR_CERROR_ATC_INV_IDX: 400 /* 401 * ATC Invalidation Completion timeout. CONS is still pointing 402 * at the CMD_SYNC. Attempt to complete other pending commands 403 * by repeating the CMD_SYNC, though we might well end up back 404 * here since the ATC invalidation may still be pending. 405 */ 406 return; 407 case CMDQ_ERR_CERROR_ILL_IDX: 408 default: 409 break; 410 } 411 412 /* 413 * We may have concurrent producers, so we need to be careful 414 * not to touch any of the shadow cmdq state. 415 */ 416 queue_read(cmd, Q_ENT(q, cons), q->ent_dwords); 417 dev_err(smmu->dev, "skipping command in error state:\n"); 418 for (i = 0; i < ARRAY_SIZE(cmd); ++i) 419 dev_err(smmu->dev, "\t0x%016llx\n", (unsigned long long)cmd[i]); 420 421 /* Convert the erroneous command into a CMD_SYNC */ 422 arm_smmu_cmdq_build_cmd(cmd, &cmd_sync); 423 424 queue_write(Q_ENT(q, cons), cmd, q->ent_dwords); 425 } 426 427 static void arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu) 428 { 429 __arm_smmu_cmdq_skip_err(smmu, &smmu->cmdq.q); 430 } 431 432 /* 433 * Command queue locking. 434 * This is a form of bastardised rwlock with the following major changes: 435 * 436 * - The only LOCK routines are exclusive_trylock() and shared_lock(). 437 * Neither have barrier semantics, and instead provide only a control 438 * dependency. 439 * 440 * - The UNLOCK routines are supplemented with shared_tryunlock(), which 441 * fails if the caller appears to be the last lock holder (yes, this is 442 * racy). All successful UNLOCK routines have RELEASE semantics. 443 */ 444 static void arm_smmu_cmdq_shared_lock(struct arm_smmu_cmdq *cmdq) 445 { 446 int val; 447 448 /* 449 * We can try to avoid the cmpxchg() loop by simply incrementing the 450 * lock counter. When held in exclusive state, the lock counter is set 451 * to INT_MIN so these increments won't hurt as the value will remain 452 * negative. 453 */ 454 if (atomic_fetch_inc_relaxed(&cmdq->lock) >= 0) 455 return; 456 457 do { 458 val = atomic_cond_read_relaxed(&cmdq->lock, VAL >= 0); 459 } while (atomic_cmpxchg_relaxed(&cmdq->lock, val, val + 1) != val); 460 } 461 462 static void arm_smmu_cmdq_shared_unlock(struct arm_smmu_cmdq *cmdq) 463 { 464 (void)atomic_dec_return_release(&cmdq->lock); 465 } 466 467 static bool arm_smmu_cmdq_shared_tryunlock(struct arm_smmu_cmdq *cmdq) 468 { 469 if (atomic_read(&cmdq->lock) == 1) 470 return false; 471 472 arm_smmu_cmdq_shared_unlock(cmdq); 473 return true; 474 } 475 476 #define arm_smmu_cmdq_exclusive_trylock_irqsave(cmdq, flags) \ 477 ({ \ 478 bool __ret; \ 479 local_irq_save(flags); \ 480 __ret = !atomic_cmpxchg_relaxed(&cmdq->lock, 0, INT_MIN); \ 481 if (!__ret) \ 482 local_irq_restore(flags); \ 483 __ret; \ 484 }) 485 486 #define arm_smmu_cmdq_exclusive_unlock_irqrestore(cmdq, flags) \ 487 ({ \ 488 atomic_set_release(&cmdq->lock, 0); \ 489 local_irq_restore(flags); \ 490 }) 491 492 493 /* 494 * Command queue insertion. 495 * This is made fiddly by our attempts to achieve some sort of scalability 496 * since there is one queue shared amongst all of the CPUs in the system. If 497 * you like mixed-size concurrency, dependency ordering and relaxed atomics, 498 * then you'll *love* this monstrosity. 499 * 500 * The basic idea is to split the queue up into ranges of commands that are 501 * owned by a given CPU; the owner may not have written all of the commands 502 * itself, but is responsible for advancing the hardware prod pointer when 503 * the time comes. The algorithm is roughly: 504 * 505 * 1. Allocate some space in the queue. At this point we also discover 506 * whether the head of the queue is currently owned by another CPU, 507 * or whether we are the owner. 508 * 509 * 2. Write our commands into our allocated slots in the queue. 510 * 511 * 3. Mark our slots as valid in arm_smmu_cmdq.valid_map. 512 * 513 * 4. If we are an owner: 514 * a. Wait for the previous owner to finish. 515 * b. Mark the queue head as unowned, which tells us the range 516 * that we are responsible for publishing. 517 * c. Wait for all commands in our owned range to become valid. 518 * d. Advance the hardware prod pointer. 519 * e. Tell the next owner we've finished. 520 * 521 * 5. If we are inserting a CMD_SYNC (we may or may not have been an 522 * owner), then we need to stick around until it has completed: 523 * a. If we have MSIs, the SMMU can write back into the CMD_SYNC 524 * to clear the first 4 bytes. 525 * b. Otherwise, we spin waiting for the hardware cons pointer to 526 * advance past our command. 527 * 528 * The devil is in the details, particularly the use of locking for handling 529 * SYNC completion and freeing up space in the queue before we think that it is 530 * full. 531 */ 532 static void __arm_smmu_cmdq_poll_set_valid_map(struct arm_smmu_cmdq *cmdq, 533 u32 sprod, u32 eprod, bool set) 534 { 535 u32 swidx, sbidx, ewidx, ebidx; 536 struct arm_smmu_ll_queue llq = { 537 .max_n_shift = cmdq->q.llq.max_n_shift, 538 .prod = sprod, 539 }; 540 541 ewidx = BIT_WORD(Q_IDX(&llq, eprod)); 542 ebidx = Q_IDX(&llq, eprod) % BITS_PER_LONG; 543 544 while (llq.prod != eprod) { 545 unsigned long mask; 546 atomic_long_t *ptr; 547 u32 limit = BITS_PER_LONG; 548 549 swidx = BIT_WORD(Q_IDX(&llq, llq.prod)); 550 sbidx = Q_IDX(&llq, llq.prod) % BITS_PER_LONG; 551 552 ptr = &cmdq->valid_map[swidx]; 553 554 if ((swidx == ewidx) && (sbidx < ebidx)) 555 limit = ebidx; 556 557 mask = GENMASK(limit - 1, sbidx); 558 559 /* 560 * The valid bit is the inverse of the wrap bit. This means 561 * that a zero-initialised queue is invalid and, after marking 562 * all entries as valid, they become invalid again when we 563 * wrap. 564 */ 565 if (set) { 566 atomic_long_xor(mask, ptr); 567 } else { /* Poll */ 568 unsigned long valid; 569 570 valid = (ULONG_MAX + !!Q_WRP(&llq, llq.prod)) & mask; 571 atomic_long_cond_read_relaxed(ptr, (VAL & mask) == valid); 572 } 573 574 llq.prod = queue_inc_prod_n(&llq, limit - sbidx); 575 } 576 } 577 578 /* Mark all entries in the range [sprod, eprod) as valid */ 579 static void arm_smmu_cmdq_set_valid_map(struct arm_smmu_cmdq *cmdq, 580 u32 sprod, u32 eprod) 581 { 582 __arm_smmu_cmdq_poll_set_valid_map(cmdq, sprod, eprod, true); 583 } 584 585 /* Wait for all entries in the range [sprod, eprod) to become valid */ 586 static void arm_smmu_cmdq_poll_valid_map(struct arm_smmu_cmdq *cmdq, 587 u32 sprod, u32 eprod) 588 { 589 __arm_smmu_cmdq_poll_set_valid_map(cmdq, sprod, eprod, false); 590 } 591 592 /* Wait for the command queue to become non-full */ 593 static int arm_smmu_cmdq_poll_until_not_full(struct arm_smmu_device *smmu, 594 struct arm_smmu_ll_queue *llq) 595 { 596 unsigned long flags; 597 struct arm_smmu_queue_poll qp; 598 struct arm_smmu_cmdq *cmdq = arm_smmu_get_cmdq(smmu); 599 int ret = 0; 600 601 /* 602 * Try to update our copy of cons by grabbing exclusive cmdq access. If 603 * that fails, spin until somebody else updates it for us. 604 */ 605 if (arm_smmu_cmdq_exclusive_trylock_irqsave(cmdq, flags)) { 606 WRITE_ONCE(cmdq->q.llq.cons, readl_relaxed(cmdq->q.cons_reg)); 607 arm_smmu_cmdq_exclusive_unlock_irqrestore(cmdq, flags); 608 llq->val = READ_ONCE(cmdq->q.llq.val); 609 return 0; 610 } 611 612 queue_poll_init(smmu, &qp); 613 do { 614 llq->val = READ_ONCE(cmdq->q.llq.val); 615 if (!queue_full(llq)) 616 break; 617 618 ret = queue_poll(&qp); 619 } while (!ret); 620 621 return ret; 622 } 623 624 /* 625 * Wait until the SMMU signals a CMD_SYNC completion MSI. 626 * Must be called with the cmdq lock held in some capacity. 627 */ 628 static int __arm_smmu_cmdq_poll_until_msi(struct arm_smmu_device *smmu, 629 struct arm_smmu_ll_queue *llq) 630 { 631 int ret = 0; 632 struct arm_smmu_queue_poll qp; 633 struct arm_smmu_cmdq *cmdq = arm_smmu_get_cmdq(smmu); 634 u32 *cmd = (u32 *)(Q_ENT(&cmdq->q, llq->prod)); 635 636 queue_poll_init(smmu, &qp); 637 638 /* 639 * The MSI won't generate an event, since it's being written back 640 * into the command queue. 641 */ 642 qp.wfe = false; 643 smp_cond_load_relaxed(cmd, !VAL || (ret = queue_poll(&qp))); 644 llq->cons = ret ? llq->prod : queue_inc_prod_n(llq, 1); 645 return ret; 646 } 647 648 /* 649 * Wait until the SMMU cons index passes llq->prod. 650 * Must be called with the cmdq lock held in some capacity. 651 */ 652 static int __arm_smmu_cmdq_poll_until_consumed(struct arm_smmu_device *smmu, 653 struct arm_smmu_ll_queue *llq) 654 { 655 struct arm_smmu_queue_poll qp; 656 struct arm_smmu_cmdq *cmdq = arm_smmu_get_cmdq(smmu); 657 u32 prod = llq->prod; 658 int ret = 0; 659 660 queue_poll_init(smmu, &qp); 661 llq->val = READ_ONCE(cmdq->q.llq.val); 662 do { 663 if (queue_consumed(llq, prod)) 664 break; 665 666 ret = queue_poll(&qp); 667 668 /* 669 * This needs to be a readl() so that our subsequent call 670 * to arm_smmu_cmdq_shared_tryunlock() can fail accurately. 671 * 672 * Specifically, we need to ensure that we observe all 673 * shared_lock()s by other CMD_SYNCs that share our owner, 674 * so that a failing call to tryunlock() means that we're 675 * the last one out and therefore we can safely advance 676 * cmdq->q.llq.cons. Roughly speaking: 677 * 678 * CPU 0 CPU1 CPU2 (us) 679 * 680 * if (sync) 681 * shared_lock(); 682 * 683 * dma_wmb(); 684 * set_valid_map(); 685 * 686 * if (owner) { 687 * poll_valid_map(); 688 * <control dependency> 689 * writel(prod_reg); 690 * 691 * readl(cons_reg); 692 * tryunlock(); 693 * 694 * Requires us to see CPU 0's shared_lock() acquisition. 695 */ 696 llq->cons = readl(cmdq->q.cons_reg); 697 } while (!ret); 698 699 return ret; 700 } 701 702 static int arm_smmu_cmdq_poll_until_sync(struct arm_smmu_device *smmu, 703 struct arm_smmu_ll_queue *llq) 704 { 705 if (smmu->options & ARM_SMMU_OPT_MSIPOLL) 706 return __arm_smmu_cmdq_poll_until_msi(smmu, llq); 707 708 return __arm_smmu_cmdq_poll_until_consumed(smmu, llq); 709 } 710 711 static void arm_smmu_cmdq_write_entries(struct arm_smmu_cmdq *cmdq, u64 *cmds, 712 u32 prod, int n) 713 { 714 int i; 715 struct arm_smmu_ll_queue llq = { 716 .max_n_shift = cmdq->q.llq.max_n_shift, 717 .prod = prod, 718 }; 719 720 for (i = 0; i < n; ++i) { 721 u64 *cmd = &cmds[i * CMDQ_ENT_DWORDS]; 722 723 prod = queue_inc_prod_n(&llq, i); 724 queue_write(Q_ENT(&cmdq->q, prod), cmd, CMDQ_ENT_DWORDS); 725 } 726 } 727 728 /* 729 * This is the actual insertion function, and provides the following 730 * ordering guarantees to callers: 731 * 732 * - There is a dma_wmb() before publishing any commands to the queue. 733 * This can be relied upon to order prior writes to data structures 734 * in memory (such as a CD or an STE) before the command. 735 * 736 * - On completion of a CMD_SYNC, there is a control dependency. 737 * This can be relied upon to order subsequent writes to memory (e.g. 738 * freeing an IOVA) after completion of the CMD_SYNC. 739 * 740 * - Command insertion is totally ordered, so if two CPUs each race to 741 * insert their own list of commands then all of the commands from one 742 * CPU will appear before any of the commands from the other CPU. 743 */ 744 static int arm_smmu_cmdq_issue_cmdlist(struct arm_smmu_device *smmu, 745 u64 *cmds, int n, bool sync) 746 { 747 u64 cmd_sync[CMDQ_ENT_DWORDS]; 748 u32 prod; 749 unsigned long flags; 750 bool owner; 751 struct arm_smmu_cmdq *cmdq = arm_smmu_get_cmdq(smmu); 752 struct arm_smmu_ll_queue llq, head; 753 int ret = 0; 754 755 llq.max_n_shift = cmdq->q.llq.max_n_shift; 756 757 /* 1. Allocate some space in the queue */ 758 local_irq_save(flags); 759 llq.val = READ_ONCE(cmdq->q.llq.val); 760 do { 761 u64 old; 762 763 while (!queue_has_space(&llq, n + sync)) { 764 local_irq_restore(flags); 765 if (arm_smmu_cmdq_poll_until_not_full(smmu, &llq)) 766 dev_err_ratelimited(smmu->dev, "CMDQ timeout\n"); 767 local_irq_save(flags); 768 } 769 770 head.cons = llq.cons; 771 head.prod = queue_inc_prod_n(&llq, n + sync) | 772 CMDQ_PROD_OWNED_FLAG; 773 774 old = cmpxchg_relaxed(&cmdq->q.llq.val, llq.val, head.val); 775 if (old == llq.val) 776 break; 777 778 llq.val = old; 779 } while (1); 780 owner = !(llq.prod & CMDQ_PROD_OWNED_FLAG); 781 head.prod &= ~CMDQ_PROD_OWNED_FLAG; 782 llq.prod &= ~CMDQ_PROD_OWNED_FLAG; 783 784 /* 785 * 2. Write our commands into the queue 786 * Dependency ordering from the cmpxchg() loop above. 787 */ 788 arm_smmu_cmdq_write_entries(cmdq, cmds, llq.prod, n); 789 if (sync) { 790 prod = queue_inc_prod_n(&llq, n); 791 arm_smmu_cmdq_build_sync_cmd(cmd_sync, smmu, &cmdq->q, prod); 792 queue_write(Q_ENT(&cmdq->q, prod), cmd_sync, CMDQ_ENT_DWORDS); 793 794 /* 795 * In order to determine completion of our CMD_SYNC, we must 796 * ensure that the queue can't wrap twice without us noticing. 797 * We achieve that by taking the cmdq lock as shared before 798 * marking our slot as valid. 799 */ 800 arm_smmu_cmdq_shared_lock(cmdq); 801 } 802 803 /* 3. Mark our slots as valid, ensuring commands are visible first */ 804 dma_wmb(); 805 arm_smmu_cmdq_set_valid_map(cmdq, llq.prod, head.prod); 806 807 /* 4. If we are the owner, take control of the SMMU hardware */ 808 if (owner) { 809 /* a. Wait for previous owner to finish */ 810 atomic_cond_read_relaxed(&cmdq->owner_prod, VAL == llq.prod); 811 812 /* b. Stop gathering work by clearing the owned flag */ 813 prod = atomic_fetch_andnot_relaxed(CMDQ_PROD_OWNED_FLAG, 814 &cmdq->q.llq.atomic.prod); 815 prod &= ~CMDQ_PROD_OWNED_FLAG; 816 817 /* 818 * c. Wait for any gathered work to be written to the queue. 819 * Note that we read our own entries so that we have the control 820 * dependency required by (d). 821 */ 822 arm_smmu_cmdq_poll_valid_map(cmdq, llq.prod, prod); 823 824 /* 825 * d. Advance the hardware prod pointer 826 * Control dependency ordering from the entries becoming valid. 827 */ 828 writel_relaxed(prod, cmdq->q.prod_reg); 829 830 /* 831 * e. Tell the next owner we're done 832 * Make sure we've updated the hardware first, so that we don't 833 * race to update prod and potentially move it backwards. 834 */ 835 atomic_set_release(&cmdq->owner_prod, prod); 836 } 837 838 /* 5. If we are inserting a CMD_SYNC, we must wait for it to complete */ 839 if (sync) { 840 llq.prod = queue_inc_prod_n(&llq, n); 841 ret = arm_smmu_cmdq_poll_until_sync(smmu, &llq); 842 if (ret) { 843 dev_err_ratelimited(smmu->dev, 844 "CMD_SYNC timeout at 0x%08x [hwprod 0x%08x, hwcons 0x%08x]\n", 845 llq.prod, 846 readl_relaxed(cmdq->q.prod_reg), 847 readl_relaxed(cmdq->q.cons_reg)); 848 } 849 850 /* 851 * Try to unlock the cmdq lock. This will fail if we're the last 852 * reader, in which case we can safely update cmdq->q.llq.cons 853 */ 854 if (!arm_smmu_cmdq_shared_tryunlock(cmdq)) { 855 WRITE_ONCE(cmdq->q.llq.cons, llq.cons); 856 arm_smmu_cmdq_shared_unlock(cmdq); 857 } 858 } 859 860 local_irq_restore(flags); 861 return ret; 862 } 863 864 static int __arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu, 865 struct arm_smmu_cmdq_ent *ent, 866 bool sync) 867 { 868 u64 cmd[CMDQ_ENT_DWORDS]; 869 870 if (unlikely(arm_smmu_cmdq_build_cmd(cmd, ent))) { 871 dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n", 872 ent->opcode); 873 return -EINVAL; 874 } 875 876 return arm_smmu_cmdq_issue_cmdlist(smmu, cmd, 1, sync); 877 } 878 879 static int arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu, 880 struct arm_smmu_cmdq_ent *ent) 881 { 882 return __arm_smmu_cmdq_issue_cmd(smmu, ent, false); 883 } 884 885 static int arm_smmu_cmdq_issue_cmd_with_sync(struct arm_smmu_device *smmu, 886 struct arm_smmu_cmdq_ent *ent) 887 { 888 return __arm_smmu_cmdq_issue_cmd(smmu, ent, true); 889 } 890 891 static void arm_smmu_cmdq_batch_add(struct arm_smmu_device *smmu, 892 struct arm_smmu_cmdq_batch *cmds, 893 struct arm_smmu_cmdq_ent *cmd) 894 { 895 int index; 896 897 if (cmds->num == CMDQ_BATCH_ENTRIES - 1 && 898 (smmu->options & ARM_SMMU_OPT_CMDQ_FORCE_SYNC)) { 899 arm_smmu_cmdq_issue_cmdlist(smmu, cmds->cmds, cmds->num, true); 900 cmds->num = 0; 901 } 902 903 if (cmds->num == CMDQ_BATCH_ENTRIES) { 904 arm_smmu_cmdq_issue_cmdlist(smmu, cmds->cmds, cmds->num, false); 905 cmds->num = 0; 906 } 907 908 index = cmds->num * CMDQ_ENT_DWORDS; 909 if (unlikely(arm_smmu_cmdq_build_cmd(&cmds->cmds[index], cmd))) { 910 dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n", 911 cmd->opcode); 912 return; 913 } 914 915 cmds->num++; 916 } 917 918 static int arm_smmu_cmdq_batch_submit(struct arm_smmu_device *smmu, 919 struct arm_smmu_cmdq_batch *cmds) 920 { 921 return arm_smmu_cmdq_issue_cmdlist(smmu, cmds->cmds, cmds->num, true); 922 } 923 924 static int arm_smmu_page_response(struct device *dev, 925 struct iommu_fault_event *unused, 926 struct iommu_page_response *resp) 927 { 928 struct arm_smmu_cmdq_ent cmd = {0}; 929 struct arm_smmu_master *master = dev_iommu_priv_get(dev); 930 int sid = master->streams[0].id; 931 932 if (master->stall_enabled) { 933 cmd.opcode = CMDQ_OP_RESUME; 934 cmd.resume.sid = sid; 935 cmd.resume.stag = resp->grpid; 936 switch (resp->code) { 937 case IOMMU_PAGE_RESP_INVALID: 938 case IOMMU_PAGE_RESP_FAILURE: 939 cmd.resume.resp = CMDQ_RESUME_0_RESP_ABORT; 940 break; 941 case IOMMU_PAGE_RESP_SUCCESS: 942 cmd.resume.resp = CMDQ_RESUME_0_RESP_RETRY; 943 break; 944 default: 945 return -EINVAL; 946 } 947 } else { 948 return -ENODEV; 949 } 950 951 arm_smmu_cmdq_issue_cmd(master->smmu, &cmd); 952 /* 953 * Don't send a SYNC, it doesn't do anything for RESUME or PRI_RESP. 954 * RESUME consumption guarantees that the stalled transaction will be 955 * terminated... at some point in the future. PRI_RESP is fire and 956 * forget. 957 */ 958 959 return 0; 960 } 961 962 /* Context descriptor manipulation functions */ 963 void arm_smmu_tlb_inv_asid(struct arm_smmu_device *smmu, u16 asid) 964 { 965 struct arm_smmu_cmdq_ent cmd = { 966 .opcode = smmu->features & ARM_SMMU_FEAT_E2H ? 967 CMDQ_OP_TLBI_EL2_ASID : CMDQ_OP_TLBI_NH_ASID, 968 .tlbi.asid = asid, 969 }; 970 971 arm_smmu_cmdq_issue_cmd_with_sync(smmu, &cmd); 972 } 973 974 static void arm_smmu_sync_cd(struct arm_smmu_domain *smmu_domain, 975 int ssid, bool leaf) 976 { 977 size_t i; 978 unsigned long flags; 979 struct arm_smmu_master *master; 980 struct arm_smmu_cmdq_batch cmds; 981 struct arm_smmu_device *smmu = smmu_domain->smmu; 982 struct arm_smmu_cmdq_ent cmd = { 983 .opcode = CMDQ_OP_CFGI_CD, 984 .cfgi = { 985 .ssid = ssid, 986 .leaf = leaf, 987 }, 988 }; 989 990 cmds.num = 0; 991 992 spin_lock_irqsave(&smmu_domain->devices_lock, flags); 993 list_for_each_entry(master, &smmu_domain->devices, domain_head) { 994 for (i = 0; i < master->num_streams; i++) { 995 cmd.cfgi.sid = master->streams[i].id; 996 arm_smmu_cmdq_batch_add(smmu, &cmds, &cmd); 997 } 998 } 999 spin_unlock_irqrestore(&smmu_domain->devices_lock, flags); 1000 1001 arm_smmu_cmdq_batch_submit(smmu, &cmds); 1002 } 1003 1004 static int arm_smmu_alloc_cd_leaf_table(struct arm_smmu_device *smmu, 1005 struct arm_smmu_l1_ctx_desc *l1_desc) 1006 { 1007 size_t size = CTXDESC_L2_ENTRIES * (CTXDESC_CD_DWORDS << 3); 1008 1009 l1_desc->l2ptr = dmam_alloc_coherent(smmu->dev, size, 1010 &l1_desc->l2ptr_dma, GFP_KERNEL); 1011 if (!l1_desc->l2ptr) { 1012 dev_warn(smmu->dev, 1013 "failed to allocate context descriptor table\n"); 1014 return -ENOMEM; 1015 } 1016 return 0; 1017 } 1018 1019 static void arm_smmu_write_cd_l1_desc(__le64 *dst, 1020 struct arm_smmu_l1_ctx_desc *l1_desc) 1021 { 1022 u64 val = (l1_desc->l2ptr_dma & CTXDESC_L1_DESC_L2PTR_MASK) | 1023 CTXDESC_L1_DESC_V; 1024 1025 /* See comment in arm_smmu_write_ctx_desc() */ 1026 WRITE_ONCE(*dst, cpu_to_le64(val)); 1027 } 1028 1029 static __le64 *arm_smmu_get_cd_ptr(struct arm_smmu_domain *smmu_domain, 1030 u32 ssid) 1031 { 1032 __le64 *l1ptr; 1033 unsigned int idx; 1034 struct arm_smmu_l1_ctx_desc *l1_desc; 1035 struct arm_smmu_device *smmu = smmu_domain->smmu; 1036 struct arm_smmu_ctx_desc_cfg *cdcfg = &smmu_domain->s1_cfg.cdcfg; 1037 1038 if (smmu_domain->s1_cfg.s1fmt == STRTAB_STE_0_S1FMT_LINEAR) 1039 return cdcfg->cdtab + ssid * CTXDESC_CD_DWORDS; 1040 1041 idx = ssid >> CTXDESC_SPLIT; 1042 l1_desc = &cdcfg->l1_desc[idx]; 1043 if (!l1_desc->l2ptr) { 1044 if (arm_smmu_alloc_cd_leaf_table(smmu, l1_desc)) 1045 return NULL; 1046 1047 l1ptr = cdcfg->cdtab + idx * CTXDESC_L1_DESC_DWORDS; 1048 arm_smmu_write_cd_l1_desc(l1ptr, l1_desc); 1049 /* An invalid L1CD can be cached */ 1050 arm_smmu_sync_cd(smmu_domain, ssid, false); 1051 } 1052 idx = ssid & (CTXDESC_L2_ENTRIES - 1); 1053 return l1_desc->l2ptr + idx * CTXDESC_CD_DWORDS; 1054 } 1055 1056 int arm_smmu_write_ctx_desc(struct arm_smmu_domain *smmu_domain, int ssid, 1057 struct arm_smmu_ctx_desc *cd) 1058 { 1059 /* 1060 * This function handles the following cases: 1061 * 1062 * (1) Install primary CD, for normal DMA traffic (SSID = IOMMU_NO_PASID = 0). 1063 * (2) Install a secondary CD, for SID+SSID traffic. 1064 * (3) Update ASID of a CD. Atomically write the first 64 bits of the 1065 * CD, then invalidate the old entry and mappings. 1066 * (4) Quiesce the context without clearing the valid bit. Disable 1067 * translation, and ignore any translation fault. 1068 * (5) Remove a secondary CD. 1069 */ 1070 u64 val; 1071 bool cd_live; 1072 __le64 *cdptr; 1073 1074 if (WARN_ON(ssid >= (1 << smmu_domain->s1_cfg.s1cdmax))) 1075 return -E2BIG; 1076 1077 cdptr = arm_smmu_get_cd_ptr(smmu_domain, ssid); 1078 if (!cdptr) 1079 return -ENOMEM; 1080 1081 val = le64_to_cpu(cdptr[0]); 1082 cd_live = !!(val & CTXDESC_CD_0_V); 1083 1084 if (!cd) { /* (5) */ 1085 val = 0; 1086 } else if (cd == &quiet_cd) { /* (4) */ 1087 val |= CTXDESC_CD_0_TCR_EPD0; 1088 } else if (cd_live) { /* (3) */ 1089 val &= ~CTXDESC_CD_0_ASID; 1090 val |= FIELD_PREP(CTXDESC_CD_0_ASID, cd->asid); 1091 /* 1092 * Until CD+TLB invalidation, both ASIDs may be used for tagging 1093 * this substream's traffic 1094 */ 1095 } else { /* (1) and (2) */ 1096 cdptr[1] = cpu_to_le64(cd->ttbr & CTXDESC_CD_1_TTB0_MASK); 1097 cdptr[2] = 0; 1098 cdptr[3] = cpu_to_le64(cd->mair); 1099 1100 /* 1101 * STE is live, and the SMMU might read dwords of this CD in any 1102 * order. Ensure that it observes valid values before reading 1103 * V=1. 1104 */ 1105 arm_smmu_sync_cd(smmu_domain, ssid, true); 1106 1107 val = cd->tcr | 1108 #ifdef __BIG_ENDIAN 1109 CTXDESC_CD_0_ENDI | 1110 #endif 1111 CTXDESC_CD_0_R | CTXDESC_CD_0_A | 1112 (cd->mm ? 0 : CTXDESC_CD_0_ASET) | 1113 CTXDESC_CD_0_AA64 | 1114 FIELD_PREP(CTXDESC_CD_0_ASID, cd->asid) | 1115 CTXDESC_CD_0_V; 1116 1117 if (smmu_domain->stall_enabled) 1118 val |= CTXDESC_CD_0_S; 1119 } 1120 1121 /* 1122 * The SMMU accesses 64-bit values atomically. See IHI0070Ca 3.21.3 1123 * "Configuration structures and configuration invalidation completion" 1124 * 1125 * The size of single-copy atomic reads made by the SMMU is 1126 * IMPLEMENTATION DEFINED but must be at least 64 bits. Any single 1127 * field within an aligned 64-bit span of a structure can be altered 1128 * without first making the structure invalid. 1129 */ 1130 WRITE_ONCE(cdptr[0], cpu_to_le64(val)); 1131 arm_smmu_sync_cd(smmu_domain, ssid, true); 1132 return 0; 1133 } 1134 1135 static int arm_smmu_alloc_cd_tables(struct arm_smmu_domain *smmu_domain) 1136 { 1137 int ret; 1138 size_t l1size; 1139 size_t max_contexts; 1140 struct arm_smmu_device *smmu = smmu_domain->smmu; 1141 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg; 1142 struct arm_smmu_ctx_desc_cfg *cdcfg = &cfg->cdcfg; 1143 1144 max_contexts = 1 << cfg->s1cdmax; 1145 1146 if (!(smmu->features & ARM_SMMU_FEAT_2_LVL_CDTAB) || 1147 max_contexts <= CTXDESC_L2_ENTRIES) { 1148 cfg->s1fmt = STRTAB_STE_0_S1FMT_LINEAR; 1149 cdcfg->num_l1_ents = max_contexts; 1150 1151 l1size = max_contexts * (CTXDESC_CD_DWORDS << 3); 1152 } else { 1153 cfg->s1fmt = STRTAB_STE_0_S1FMT_64K_L2; 1154 cdcfg->num_l1_ents = DIV_ROUND_UP(max_contexts, 1155 CTXDESC_L2_ENTRIES); 1156 1157 cdcfg->l1_desc = devm_kcalloc(smmu->dev, cdcfg->num_l1_ents, 1158 sizeof(*cdcfg->l1_desc), 1159 GFP_KERNEL); 1160 if (!cdcfg->l1_desc) 1161 return -ENOMEM; 1162 1163 l1size = cdcfg->num_l1_ents * (CTXDESC_L1_DESC_DWORDS << 3); 1164 } 1165 1166 cdcfg->cdtab = dmam_alloc_coherent(smmu->dev, l1size, &cdcfg->cdtab_dma, 1167 GFP_KERNEL); 1168 if (!cdcfg->cdtab) { 1169 dev_warn(smmu->dev, "failed to allocate context descriptor\n"); 1170 ret = -ENOMEM; 1171 goto err_free_l1; 1172 } 1173 1174 return 0; 1175 1176 err_free_l1: 1177 if (cdcfg->l1_desc) { 1178 devm_kfree(smmu->dev, cdcfg->l1_desc); 1179 cdcfg->l1_desc = NULL; 1180 } 1181 return ret; 1182 } 1183 1184 static void arm_smmu_free_cd_tables(struct arm_smmu_domain *smmu_domain) 1185 { 1186 int i; 1187 size_t size, l1size; 1188 struct arm_smmu_device *smmu = smmu_domain->smmu; 1189 struct arm_smmu_ctx_desc_cfg *cdcfg = &smmu_domain->s1_cfg.cdcfg; 1190 1191 if (cdcfg->l1_desc) { 1192 size = CTXDESC_L2_ENTRIES * (CTXDESC_CD_DWORDS << 3); 1193 1194 for (i = 0; i < cdcfg->num_l1_ents; i++) { 1195 if (!cdcfg->l1_desc[i].l2ptr) 1196 continue; 1197 1198 dmam_free_coherent(smmu->dev, size, 1199 cdcfg->l1_desc[i].l2ptr, 1200 cdcfg->l1_desc[i].l2ptr_dma); 1201 } 1202 devm_kfree(smmu->dev, cdcfg->l1_desc); 1203 cdcfg->l1_desc = NULL; 1204 1205 l1size = cdcfg->num_l1_ents * (CTXDESC_L1_DESC_DWORDS << 3); 1206 } else { 1207 l1size = cdcfg->num_l1_ents * (CTXDESC_CD_DWORDS << 3); 1208 } 1209 1210 dmam_free_coherent(smmu->dev, l1size, cdcfg->cdtab, cdcfg->cdtab_dma); 1211 cdcfg->cdtab_dma = 0; 1212 cdcfg->cdtab = NULL; 1213 } 1214 1215 bool arm_smmu_free_asid(struct arm_smmu_ctx_desc *cd) 1216 { 1217 bool free; 1218 struct arm_smmu_ctx_desc *old_cd; 1219 1220 if (!cd->asid) 1221 return false; 1222 1223 free = refcount_dec_and_test(&cd->refs); 1224 if (free) { 1225 old_cd = xa_erase(&arm_smmu_asid_xa, cd->asid); 1226 WARN_ON(old_cd != cd); 1227 } 1228 return free; 1229 } 1230 1231 /* Stream table manipulation functions */ 1232 static void 1233 arm_smmu_write_strtab_l1_desc(__le64 *dst, struct arm_smmu_strtab_l1_desc *desc) 1234 { 1235 u64 val = 0; 1236 1237 val |= FIELD_PREP(STRTAB_L1_DESC_SPAN, desc->span); 1238 val |= desc->l2ptr_dma & STRTAB_L1_DESC_L2PTR_MASK; 1239 1240 /* See comment in arm_smmu_write_ctx_desc() */ 1241 WRITE_ONCE(*dst, cpu_to_le64(val)); 1242 } 1243 1244 static void arm_smmu_sync_ste_for_sid(struct arm_smmu_device *smmu, u32 sid) 1245 { 1246 struct arm_smmu_cmdq_ent cmd = { 1247 .opcode = CMDQ_OP_CFGI_STE, 1248 .cfgi = { 1249 .sid = sid, 1250 .leaf = true, 1251 }, 1252 }; 1253 1254 arm_smmu_cmdq_issue_cmd_with_sync(smmu, &cmd); 1255 } 1256 1257 static void arm_smmu_write_strtab_ent(struct arm_smmu_master *master, u32 sid, 1258 __le64 *dst) 1259 { 1260 /* 1261 * This is hideously complicated, but we only really care about 1262 * three cases at the moment: 1263 * 1264 * 1. Invalid (all zero) -> bypass/fault (init) 1265 * 2. Bypass/fault -> translation/bypass (attach) 1266 * 3. Translation/bypass -> bypass/fault (detach) 1267 * 1268 * Given that we can't update the STE atomically and the SMMU 1269 * doesn't read the thing in a defined order, that leaves us 1270 * with the following maintenance requirements: 1271 * 1272 * 1. Update Config, return (init time STEs aren't live) 1273 * 2. Write everything apart from dword 0, sync, write dword 0, sync 1274 * 3. Update Config, sync 1275 */ 1276 u64 val = le64_to_cpu(dst[0]); 1277 bool ste_live = false; 1278 struct arm_smmu_device *smmu = NULL; 1279 struct arm_smmu_s1_cfg *s1_cfg = NULL; 1280 struct arm_smmu_s2_cfg *s2_cfg = NULL; 1281 struct arm_smmu_domain *smmu_domain = NULL; 1282 struct arm_smmu_cmdq_ent prefetch_cmd = { 1283 .opcode = CMDQ_OP_PREFETCH_CFG, 1284 .prefetch = { 1285 .sid = sid, 1286 }, 1287 }; 1288 1289 if (master) { 1290 smmu_domain = master->domain; 1291 smmu = master->smmu; 1292 } 1293 1294 if (smmu_domain) { 1295 switch (smmu_domain->stage) { 1296 case ARM_SMMU_DOMAIN_S1: 1297 s1_cfg = &smmu_domain->s1_cfg; 1298 break; 1299 case ARM_SMMU_DOMAIN_S2: 1300 case ARM_SMMU_DOMAIN_NESTED: 1301 s2_cfg = &smmu_domain->s2_cfg; 1302 break; 1303 default: 1304 break; 1305 } 1306 } 1307 1308 if (val & STRTAB_STE_0_V) { 1309 switch (FIELD_GET(STRTAB_STE_0_CFG, val)) { 1310 case STRTAB_STE_0_CFG_BYPASS: 1311 break; 1312 case STRTAB_STE_0_CFG_S1_TRANS: 1313 case STRTAB_STE_0_CFG_S2_TRANS: 1314 ste_live = true; 1315 break; 1316 case STRTAB_STE_0_CFG_ABORT: 1317 BUG_ON(!disable_bypass); 1318 break; 1319 default: 1320 BUG(); /* STE corruption */ 1321 } 1322 } 1323 1324 /* Nuke the existing STE_0 value, as we're going to rewrite it */ 1325 val = STRTAB_STE_0_V; 1326 1327 /* Bypass/fault */ 1328 if (!smmu_domain || !(s1_cfg || s2_cfg)) { 1329 if (!smmu_domain && disable_bypass) 1330 val |= FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_ABORT); 1331 else 1332 val |= FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_BYPASS); 1333 1334 dst[0] = cpu_to_le64(val); 1335 dst[1] = cpu_to_le64(FIELD_PREP(STRTAB_STE_1_SHCFG, 1336 STRTAB_STE_1_SHCFG_INCOMING)); 1337 dst[2] = 0; /* Nuke the VMID */ 1338 /* 1339 * The SMMU can perform negative caching, so we must sync 1340 * the STE regardless of whether the old value was live. 1341 */ 1342 if (smmu) 1343 arm_smmu_sync_ste_for_sid(smmu, sid); 1344 return; 1345 } 1346 1347 if (s1_cfg) { 1348 u64 strw = smmu->features & ARM_SMMU_FEAT_E2H ? 1349 STRTAB_STE_1_STRW_EL2 : STRTAB_STE_1_STRW_NSEL1; 1350 1351 BUG_ON(ste_live); 1352 dst[1] = cpu_to_le64( 1353 FIELD_PREP(STRTAB_STE_1_S1DSS, STRTAB_STE_1_S1DSS_SSID0) | 1354 FIELD_PREP(STRTAB_STE_1_S1CIR, STRTAB_STE_1_S1C_CACHE_WBRA) | 1355 FIELD_PREP(STRTAB_STE_1_S1COR, STRTAB_STE_1_S1C_CACHE_WBRA) | 1356 FIELD_PREP(STRTAB_STE_1_S1CSH, ARM_SMMU_SH_ISH) | 1357 FIELD_PREP(STRTAB_STE_1_STRW, strw)); 1358 1359 if (smmu->features & ARM_SMMU_FEAT_STALLS && 1360 !master->stall_enabled) 1361 dst[1] |= cpu_to_le64(STRTAB_STE_1_S1STALLD); 1362 1363 val |= (s1_cfg->cdcfg.cdtab_dma & STRTAB_STE_0_S1CTXPTR_MASK) | 1364 FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_S1_TRANS) | 1365 FIELD_PREP(STRTAB_STE_0_S1CDMAX, s1_cfg->s1cdmax) | 1366 FIELD_PREP(STRTAB_STE_0_S1FMT, s1_cfg->s1fmt); 1367 } 1368 1369 if (s2_cfg) { 1370 BUG_ON(ste_live); 1371 dst[2] = cpu_to_le64( 1372 FIELD_PREP(STRTAB_STE_2_S2VMID, s2_cfg->vmid) | 1373 FIELD_PREP(STRTAB_STE_2_VTCR, s2_cfg->vtcr) | 1374 #ifdef __BIG_ENDIAN 1375 STRTAB_STE_2_S2ENDI | 1376 #endif 1377 STRTAB_STE_2_S2PTW | STRTAB_STE_2_S2AA64 | 1378 STRTAB_STE_2_S2R); 1379 1380 dst[3] = cpu_to_le64(s2_cfg->vttbr & STRTAB_STE_3_S2TTB_MASK); 1381 1382 val |= FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_S2_TRANS); 1383 } 1384 1385 if (master->ats_enabled) 1386 dst[1] |= cpu_to_le64(FIELD_PREP(STRTAB_STE_1_EATS, 1387 STRTAB_STE_1_EATS_TRANS)); 1388 1389 arm_smmu_sync_ste_for_sid(smmu, sid); 1390 /* See comment in arm_smmu_write_ctx_desc() */ 1391 WRITE_ONCE(dst[0], cpu_to_le64(val)); 1392 arm_smmu_sync_ste_for_sid(smmu, sid); 1393 1394 /* It's likely that we'll want to use the new STE soon */ 1395 if (!(smmu->options & ARM_SMMU_OPT_SKIP_PREFETCH)) 1396 arm_smmu_cmdq_issue_cmd(smmu, &prefetch_cmd); 1397 } 1398 1399 static void arm_smmu_init_bypass_stes(__le64 *strtab, unsigned int nent, bool force) 1400 { 1401 unsigned int i; 1402 u64 val = STRTAB_STE_0_V; 1403 1404 if (disable_bypass && !force) 1405 val |= FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_ABORT); 1406 else 1407 val |= FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_BYPASS); 1408 1409 for (i = 0; i < nent; ++i) { 1410 strtab[0] = cpu_to_le64(val); 1411 strtab[1] = cpu_to_le64(FIELD_PREP(STRTAB_STE_1_SHCFG, 1412 STRTAB_STE_1_SHCFG_INCOMING)); 1413 strtab[2] = 0; 1414 strtab += STRTAB_STE_DWORDS; 1415 } 1416 } 1417 1418 static int arm_smmu_init_l2_strtab(struct arm_smmu_device *smmu, u32 sid) 1419 { 1420 size_t size; 1421 void *strtab; 1422 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg; 1423 struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[sid >> STRTAB_SPLIT]; 1424 1425 if (desc->l2ptr) 1426 return 0; 1427 1428 size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3); 1429 strtab = &cfg->strtab[(sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS]; 1430 1431 desc->span = STRTAB_SPLIT + 1; 1432 desc->l2ptr = dmam_alloc_coherent(smmu->dev, size, &desc->l2ptr_dma, 1433 GFP_KERNEL); 1434 if (!desc->l2ptr) { 1435 dev_err(smmu->dev, 1436 "failed to allocate l2 stream table for SID %u\n", 1437 sid); 1438 return -ENOMEM; 1439 } 1440 1441 arm_smmu_init_bypass_stes(desc->l2ptr, 1 << STRTAB_SPLIT, false); 1442 arm_smmu_write_strtab_l1_desc(strtab, desc); 1443 return 0; 1444 } 1445 1446 static struct arm_smmu_master * 1447 arm_smmu_find_master(struct arm_smmu_device *smmu, u32 sid) 1448 { 1449 struct rb_node *node; 1450 struct arm_smmu_stream *stream; 1451 1452 lockdep_assert_held(&smmu->streams_mutex); 1453 1454 node = smmu->streams.rb_node; 1455 while (node) { 1456 stream = rb_entry(node, struct arm_smmu_stream, node); 1457 if (stream->id < sid) 1458 node = node->rb_right; 1459 else if (stream->id > sid) 1460 node = node->rb_left; 1461 else 1462 return stream->master; 1463 } 1464 1465 return NULL; 1466 } 1467 1468 /* IRQ and event handlers */ 1469 static int arm_smmu_handle_evt(struct arm_smmu_device *smmu, u64 *evt) 1470 { 1471 int ret; 1472 u32 reason; 1473 u32 perm = 0; 1474 struct arm_smmu_master *master; 1475 bool ssid_valid = evt[0] & EVTQ_0_SSV; 1476 u32 sid = FIELD_GET(EVTQ_0_SID, evt[0]); 1477 struct iommu_fault_event fault_evt = { }; 1478 struct iommu_fault *flt = &fault_evt.fault; 1479 1480 switch (FIELD_GET(EVTQ_0_ID, evt[0])) { 1481 case EVT_ID_TRANSLATION_FAULT: 1482 reason = IOMMU_FAULT_REASON_PTE_FETCH; 1483 break; 1484 case EVT_ID_ADDR_SIZE_FAULT: 1485 reason = IOMMU_FAULT_REASON_OOR_ADDRESS; 1486 break; 1487 case EVT_ID_ACCESS_FAULT: 1488 reason = IOMMU_FAULT_REASON_ACCESS; 1489 break; 1490 case EVT_ID_PERMISSION_FAULT: 1491 reason = IOMMU_FAULT_REASON_PERMISSION; 1492 break; 1493 default: 1494 return -EOPNOTSUPP; 1495 } 1496 1497 /* Stage-2 is always pinned at the moment */ 1498 if (evt[1] & EVTQ_1_S2) 1499 return -EFAULT; 1500 1501 if (evt[1] & EVTQ_1_RnW) 1502 perm |= IOMMU_FAULT_PERM_READ; 1503 else 1504 perm |= IOMMU_FAULT_PERM_WRITE; 1505 1506 if (evt[1] & EVTQ_1_InD) 1507 perm |= IOMMU_FAULT_PERM_EXEC; 1508 1509 if (evt[1] & EVTQ_1_PnU) 1510 perm |= IOMMU_FAULT_PERM_PRIV; 1511 1512 if (evt[1] & EVTQ_1_STALL) { 1513 flt->type = IOMMU_FAULT_PAGE_REQ; 1514 flt->prm = (struct iommu_fault_page_request) { 1515 .flags = IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE, 1516 .grpid = FIELD_GET(EVTQ_1_STAG, evt[1]), 1517 .perm = perm, 1518 .addr = FIELD_GET(EVTQ_2_ADDR, evt[2]), 1519 }; 1520 1521 if (ssid_valid) { 1522 flt->prm.flags |= IOMMU_FAULT_PAGE_REQUEST_PASID_VALID; 1523 flt->prm.pasid = FIELD_GET(EVTQ_0_SSID, evt[0]); 1524 } 1525 } else { 1526 flt->type = IOMMU_FAULT_DMA_UNRECOV; 1527 flt->event = (struct iommu_fault_unrecoverable) { 1528 .reason = reason, 1529 .flags = IOMMU_FAULT_UNRECOV_ADDR_VALID, 1530 .perm = perm, 1531 .addr = FIELD_GET(EVTQ_2_ADDR, evt[2]), 1532 }; 1533 1534 if (ssid_valid) { 1535 flt->event.flags |= IOMMU_FAULT_UNRECOV_PASID_VALID; 1536 flt->event.pasid = FIELD_GET(EVTQ_0_SSID, evt[0]); 1537 } 1538 } 1539 1540 mutex_lock(&smmu->streams_mutex); 1541 master = arm_smmu_find_master(smmu, sid); 1542 if (!master) { 1543 ret = -EINVAL; 1544 goto out_unlock; 1545 } 1546 1547 ret = iommu_report_device_fault(master->dev, &fault_evt); 1548 if (ret && flt->type == IOMMU_FAULT_PAGE_REQ) { 1549 /* Nobody cared, abort the access */ 1550 struct iommu_page_response resp = { 1551 .pasid = flt->prm.pasid, 1552 .grpid = flt->prm.grpid, 1553 .code = IOMMU_PAGE_RESP_FAILURE, 1554 }; 1555 arm_smmu_page_response(master->dev, &fault_evt, &resp); 1556 } 1557 1558 out_unlock: 1559 mutex_unlock(&smmu->streams_mutex); 1560 return ret; 1561 } 1562 1563 static irqreturn_t arm_smmu_evtq_thread(int irq, void *dev) 1564 { 1565 int i, ret; 1566 struct arm_smmu_device *smmu = dev; 1567 struct arm_smmu_queue *q = &smmu->evtq.q; 1568 struct arm_smmu_ll_queue *llq = &q->llq; 1569 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, 1570 DEFAULT_RATELIMIT_BURST); 1571 u64 evt[EVTQ_ENT_DWORDS]; 1572 1573 do { 1574 while (!queue_remove_raw(q, evt)) { 1575 u8 id = FIELD_GET(EVTQ_0_ID, evt[0]); 1576 1577 ret = arm_smmu_handle_evt(smmu, evt); 1578 if (!ret || !__ratelimit(&rs)) 1579 continue; 1580 1581 dev_info(smmu->dev, "event 0x%02x received:\n", id); 1582 for (i = 0; i < ARRAY_SIZE(evt); ++i) 1583 dev_info(smmu->dev, "\t0x%016llx\n", 1584 (unsigned long long)evt[i]); 1585 1586 cond_resched(); 1587 } 1588 1589 /* 1590 * Not much we can do on overflow, so scream and pretend we're 1591 * trying harder. 1592 */ 1593 if (queue_sync_prod_in(q) == -EOVERFLOW) 1594 dev_err(smmu->dev, "EVTQ overflow detected -- events lost\n"); 1595 } while (!queue_empty(llq)); 1596 1597 /* Sync our overflow flag, as we believe we're up to speed */ 1598 queue_sync_cons_ovf(q); 1599 return IRQ_HANDLED; 1600 } 1601 1602 static void arm_smmu_handle_ppr(struct arm_smmu_device *smmu, u64 *evt) 1603 { 1604 u32 sid, ssid; 1605 u16 grpid; 1606 bool ssv, last; 1607 1608 sid = FIELD_GET(PRIQ_0_SID, evt[0]); 1609 ssv = FIELD_GET(PRIQ_0_SSID_V, evt[0]); 1610 ssid = ssv ? FIELD_GET(PRIQ_0_SSID, evt[0]) : IOMMU_NO_PASID; 1611 last = FIELD_GET(PRIQ_0_PRG_LAST, evt[0]); 1612 grpid = FIELD_GET(PRIQ_1_PRG_IDX, evt[1]); 1613 1614 dev_info(smmu->dev, "unexpected PRI request received:\n"); 1615 dev_info(smmu->dev, 1616 "\tsid 0x%08x.0x%05x: [%u%s] %sprivileged %s%s%s access at iova 0x%016llx\n", 1617 sid, ssid, grpid, last ? "L" : "", 1618 evt[0] & PRIQ_0_PERM_PRIV ? "" : "un", 1619 evt[0] & PRIQ_0_PERM_READ ? "R" : "", 1620 evt[0] & PRIQ_0_PERM_WRITE ? "W" : "", 1621 evt[0] & PRIQ_0_PERM_EXEC ? "X" : "", 1622 evt[1] & PRIQ_1_ADDR_MASK); 1623 1624 if (last) { 1625 struct arm_smmu_cmdq_ent cmd = { 1626 .opcode = CMDQ_OP_PRI_RESP, 1627 .substream_valid = ssv, 1628 .pri = { 1629 .sid = sid, 1630 .ssid = ssid, 1631 .grpid = grpid, 1632 .resp = PRI_RESP_DENY, 1633 }, 1634 }; 1635 1636 arm_smmu_cmdq_issue_cmd(smmu, &cmd); 1637 } 1638 } 1639 1640 static irqreturn_t arm_smmu_priq_thread(int irq, void *dev) 1641 { 1642 struct arm_smmu_device *smmu = dev; 1643 struct arm_smmu_queue *q = &smmu->priq.q; 1644 struct arm_smmu_ll_queue *llq = &q->llq; 1645 u64 evt[PRIQ_ENT_DWORDS]; 1646 1647 do { 1648 while (!queue_remove_raw(q, evt)) 1649 arm_smmu_handle_ppr(smmu, evt); 1650 1651 if (queue_sync_prod_in(q) == -EOVERFLOW) 1652 dev_err(smmu->dev, "PRIQ overflow detected -- requests lost\n"); 1653 } while (!queue_empty(llq)); 1654 1655 /* Sync our overflow flag, as we believe we're up to speed */ 1656 queue_sync_cons_ovf(q); 1657 return IRQ_HANDLED; 1658 } 1659 1660 static int arm_smmu_device_disable(struct arm_smmu_device *smmu); 1661 1662 static irqreturn_t arm_smmu_gerror_handler(int irq, void *dev) 1663 { 1664 u32 gerror, gerrorn, active; 1665 struct arm_smmu_device *smmu = dev; 1666 1667 gerror = readl_relaxed(smmu->base + ARM_SMMU_GERROR); 1668 gerrorn = readl_relaxed(smmu->base + ARM_SMMU_GERRORN); 1669 1670 active = gerror ^ gerrorn; 1671 if (!(active & GERROR_ERR_MASK)) 1672 return IRQ_NONE; /* No errors pending */ 1673 1674 dev_warn(smmu->dev, 1675 "unexpected global error reported (0x%08x), this could be serious\n", 1676 active); 1677 1678 if (active & GERROR_SFM_ERR) { 1679 dev_err(smmu->dev, "device has entered Service Failure Mode!\n"); 1680 arm_smmu_device_disable(smmu); 1681 } 1682 1683 if (active & GERROR_MSI_GERROR_ABT_ERR) 1684 dev_warn(smmu->dev, "GERROR MSI write aborted\n"); 1685 1686 if (active & GERROR_MSI_PRIQ_ABT_ERR) 1687 dev_warn(smmu->dev, "PRIQ MSI write aborted\n"); 1688 1689 if (active & GERROR_MSI_EVTQ_ABT_ERR) 1690 dev_warn(smmu->dev, "EVTQ MSI write aborted\n"); 1691 1692 if (active & GERROR_MSI_CMDQ_ABT_ERR) 1693 dev_warn(smmu->dev, "CMDQ MSI write aborted\n"); 1694 1695 if (active & GERROR_PRIQ_ABT_ERR) 1696 dev_err(smmu->dev, "PRIQ write aborted -- events may have been lost\n"); 1697 1698 if (active & GERROR_EVTQ_ABT_ERR) 1699 dev_err(smmu->dev, "EVTQ write aborted -- events may have been lost\n"); 1700 1701 if (active & GERROR_CMDQ_ERR) 1702 arm_smmu_cmdq_skip_err(smmu); 1703 1704 writel(gerror, smmu->base + ARM_SMMU_GERRORN); 1705 return IRQ_HANDLED; 1706 } 1707 1708 static irqreturn_t arm_smmu_combined_irq_thread(int irq, void *dev) 1709 { 1710 struct arm_smmu_device *smmu = dev; 1711 1712 arm_smmu_evtq_thread(irq, dev); 1713 if (smmu->features & ARM_SMMU_FEAT_PRI) 1714 arm_smmu_priq_thread(irq, dev); 1715 1716 return IRQ_HANDLED; 1717 } 1718 1719 static irqreturn_t arm_smmu_combined_irq_handler(int irq, void *dev) 1720 { 1721 arm_smmu_gerror_handler(irq, dev); 1722 return IRQ_WAKE_THREAD; 1723 } 1724 1725 static void 1726 arm_smmu_atc_inv_to_cmd(int ssid, unsigned long iova, size_t size, 1727 struct arm_smmu_cmdq_ent *cmd) 1728 { 1729 size_t log2_span; 1730 size_t span_mask; 1731 /* ATC invalidates are always on 4096-bytes pages */ 1732 size_t inval_grain_shift = 12; 1733 unsigned long page_start, page_end; 1734 1735 /* 1736 * ATS and PASID: 1737 * 1738 * If substream_valid is clear, the PCIe TLP is sent without a PASID 1739 * prefix. In that case all ATC entries within the address range are 1740 * invalidated, including those that were requested with a PASID! There 1741 * is no way to invalidate only entries without PASID. 1742 * 1743 * When using STRTAB_STE_1_S1DSS_SSID0 (reserving CD 0 for non-PASID 1744 * traffic), translation requests without PASID create ATC entries 1745 * without PASID, which must be invalidated with substream_valid clear. 1746 * This has the unpleasant side-effect of invalidating all PASID-tagged 1747 * ATC entries within the address range. 1748 */ 1749 *cmd = (struct arm_smmu_cmdq_ent) { 1750 .opcode = CMDQ_OP_ATC_INV, 1751 .substream_valid = (ssid != IOMMU_NO_PASID), 1752 .atc.ssid = ssid, 1753 }; 1754 1755 if (!size) { 1756 cmd->atc.size = ATC_INV_SIZE_ALL; 1757 return; 1758 } 1759 1760 page_start = iova >> inval_grain_shift; 1761 page_end = (iova + size - 1) >> inval_grain_shift; 1762 1763 /* 1764 * In an ATS Invalidate Request, the address must be aligned on the 1765 * range size, which must be a power of two number of page sizes. We 1766 * thus have to choose between grossly over-invalidating the region, or 1767 * splitting the invalidation into multiple commands. For simplicity 1768 * we'll go with the first solution, but should refine it in the future 1769 * if multiple commands are shown to be more efficient. 1770 * 1771 * Find the smallest power of two that covers the range. The most 1772 * significant differing bit between the start and end addresses, 1773 * fls(start ^ end), indicates the required span. For example: 1774 * 1775 * We want to invalidate pages [8; 11]. This is already the ideal range: 1776 * x = 0b1000 ^ 0b1011 = 0b11 1777 * span = 1 << fls(x) = 4 1778 * 1779 * To invalidate pages [7; 10], we need to invalidate [0; 15]: 1780 * x = 0b0111 ^ 0b1010 = 0b1101 1781 * span = 1 << fls(x) = 16 1782 */ 1783 log2_span = fls_long(page_start ^ page_end); 1784 span_mask = (1ULL << log2_span) - 1; 1785 1786 page_start &= ~span_mask; 1787 1788 cmd->atc.addr = page_start << inval_grain_shift; 1789 cmd->atc.size = log2_span; 1790 } 1791 1792 static int arm_smmu_atc_inv_master(struct arm_smmu_master *master) 1793 { 1794 int i; 1795 struct arm_smmu_cmdq_ent cmd; 1796 struct arm_smmu_cmdq_batch cmds; 1797 1798 arm_smmu_atc_inv_to_cmd(IOMMU_NO_PASID, 0, 0, &cmd); 1799 1800 cmds.num = 0; 1801 for (i = 0; i < master->num_streams; i++) { 1802 cmd.atc.sid = master->streams[i].id; 1803 arm_smmu_cmdq_batch_add(master->smmu, &cmds, &cmd); 1804 } 1805 1806 return arm_smmu_cmdq_batch_submit(master->smmu, &cmds); 1807 } 1808 1809 int arm_smmu_atc_inv_domain(struct arm_smmu_domain *smmu_domain, int ssid, 1810 unsigned long iova, size_t size) 1811 { 1812 int i; 1813 unsigned long flags; 1814 struct arm_smmu_cmdq_ent cmd; 1815 struct arm_smmu_master *master; 1816 struct arm_smmu_cmdq_batch cmds; 1817 1818 if (!(smmu_domain->smmu->features & ARM_SMMU_FEAT_ATS)) 1819 return 0; 1820 1821 /* 1822 * Ensure that we've completed prior invalidation of the main TLBs 1823 * before we read 'nr_ats_masters' in case of a concurrent call to 1824 * arm_smmu_enable_ats(): 1825 * 1826 * // unmap() // arm_smmu_enable_ats() 1827 * TLBI+SYNC atomic_inc(&nr_ats_masters); 1828 * smp_mb(); [...] 1829 * atomic_read(&nr_ats_masters); pci_enable_ats() // writel() 1830 * 1831 * Ensures that we always see the incremented 'nr_ats_masters' count if 1832 * ATS was enabled at the PCI device before completion of the TLBI. 1833 */ 1834 smp_mb(); 1835 if (!atomic_read(&smmu_domain->nr_ats_masters)) 1836 return 0; 1837 1838 arm_smmu_atc_inv_to_cmd(ssid, iova, size, &cmd); 1839 1840 cmds.num = 0; 1841 1842 spin_lock_irqsave(&smmu_domain->devices_lock, flags); 1843 list_for_each_entry(master, &smmu_domain->devices, domain_head) { 1844 if (!master->ats_enabled) 1845 continue; 1846 1847 for (i = 0; i < master->num_streams; i++) { 1848 cmd.atc.sid = master->streams[i].id; 1849 arm_smmu_cmdq_batch_add(smmu_domain->smmu, &cmds, &cmd); 1850 } 1851 } 1852 spin_unlock_irqrestore(&smmu_domain->devices_lock, flags); 1853 1854 return arm_smmu_cmdq_batch_submit(smmu_domain->smmu, &cmds); 1855 } 1856 1857 /* IO_PGTABLE API */ 1858 static void arm_smmu_tlb_inv_context(void *cookie) 1859 { 1860 struct arm_smmu_domain *smmu_domain = cookie; 1861 struct arm_smmu_device *smmu = smmu_domain->smmu; 1862 struct arm_smmu_cmdq_ent cmd; 1863 1864 /* 1865 * NOTE: when io-pgtable is in non-strict mode, we may get here with 1866 * PTEs previously cleared by unmaps on the current CPU not yet visible 1867 * to the SMMU. We are relying on the dma_wmb() implicit during cmd 1868 * insertion to guarantee those are observed before the TLBI. Do be 1869 * careful, 007. 1870 */ 1871 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) { 1872 arm_smmu_tlb_inv_asid(smmu, smmu_domain->s1_cfg.cd.asid); 1873 } else { 1874 cmd.opcode = CMDQ_OP_TLBI_S12_VMALL; 1875 cmd.tlbi.vmid = smmu_domain->s2_cfg.vmid; 1876 arm_smmu_cmdq_issue_cmd_with_sync(smmu, &cmd); 1877 } 1878 arm_smmu_atc_inv_domain(smmu_domain, IOMMU_NO_PASID, 0, 0); 1879 } 1880 1881 static void __arm_smmu_tlb_inv_range(struct arm_smmu_cmdq_ent *cmd, 1882 unsigned long iova, size_t size, 1883 size_t granule, 1884 struct arm_smmu_domain *smmu_domain) 1885 { 1886 struct arm_smmu_device *smmu = smmu_domain->smmu; 1887 unsigned long end = iova + size, num_pages = 0, tg = 0; 1888 size_t inv_range = granule; 1889 struct arm_smmu_cmdq_batch cmds; 1890 1891 if (!size) 1892 return; 1893 1894 if (smmu->features & ARM_SMMU_FEAT_RANGE_INV) { 1895 /* Get the leaf page size */ 1896 tg = __ffs(smmu_domain->domain.pgsize_bitmap); 1897 1898 num_pages = size >> tg; 1899 1900 /* Convert page size of 12,14,16 (log2) to 1,2,3 */ 1901 cmd->tlbi.tg = (tg - 10) / 2; 1902 1903 /* 1904 * Determine what level the granule is at. For non-leaf, both 1905 * io-pgtable and SVA pass a nominal last-level granule because 1906 * they don't know what level(s) actually apply, so ignore that 1907 * and leave TTL=0. However for various errata reasons we still 1908 * want to use a range command, so avoid the SVA corner case 1909 * where both scale and num could be 0 as well. 1910 */ 1911 if (cmd->tlbi.leaf) 1912 cmd->tlbi.ttl = 4 - ((ilog2(granule) - 3) / (tg - 3)); 1913 else if ((num_pages & CMDQ_TLBI_RANGE_NUM_MAX) == 1) 1914 num_pages++; 1915 } 1916 1917 cmds.num = 0; 1918 1919 while (iova < end) { 1920 if (smmu->features & ARM_SMMU_FEAT_RANGE_INV) { 1921 /* 1922 * On each iteration of the loop, the range is 5 bits 1923 * worth of the aligned size remaining. 1924 * The range in pages is: 1925 * 1926 * range = (num_pages & (0x1f << __ffs(num_pages))) 1927 */ 1928 unsigned long scale, num; 1929 1930 /* Determine the power of 2 multiple number of pages */ 1931 scale = __ffs(num_pages); 1932 cmd->tlbi.scale = scale; 1933 1934 /* Determine how many chunks of 2^scale size we have */ 1935 num = (num_pages >> scale) & CMDQ_TLBI_RANGE_NUM_MAX; 1936 cmd->tlbi.num = num - 1; 1937 1938 /* range is num * 2^scale * pgsize */ 1939 inv_range = num << (scale + tg); 1940 1941 /* Clear out the lower order bits for the next iteration */ 1942 num_pages -= num << scale; 1943 } 1944 1945 cmd->tlbi.addr = iova; 1946 arm_smmu_cmdq_batch_add(smmu, &cmds, cmd); 1947 iova += inv_range; 1948 } 1949 arm_smmu_cmdq_batch_submit(smmu, &cmds); 1950 } 1951 1952 static void arm_smmu_tlb_inv_range_domain(unsigned long iova, size_t size, 1953 size_t granule, bool leaf, 1954 struct arm_smmu_domain *smmu_domain) 1955 { 1956 struct arm_smmu_cmdq_ent cmd = { 1957 .tlbi = { 1958 .leaf = leaf, 1959 }, 1960 }; 1961 1962 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) { 1963 cmd.opcode = smmu_domain->smmu->features & ARM_SMMU_FEAT_E2H ? 1964 CMDQ_OP_TLBI_EL2_VA : CMDQ_OP_TLBI_NH_VA; 1965 cmd.tlbi.asid = smmu_domain->s1_cfg.cd.asid; 1966 } else { 1967 cmd.opcode = CMDQ_OP_TLBI_S2_IPA; 1968 cmd.tlbi.vmid = smmu_domain->s2_cfg.vmid; 1969 } 1970 __arm_smmu_tlb_inv_range(&cmd, iova, size, granule, smmu_domain); 1971 1972 /* 1973 * Unfortunately, this can't be leaf-only since we may have 1974 * zapped an entire table. 1975 */ 1976 arm_smmu_atc_inv_domain(smmu_domain, IOMMU_NO_PASID, iova, size); 1977 } 1978 1979 void arm_smmu_tlb_inv_range_asid(unsigned long iova, size_t size, int asid, 1980 size_t granule, bool leaf, 1981 struct arm_smmu_domain *smmu_domain) 1982 { 1983 struct arm_smmu_cmdq_ent cmd = { 1984 .opcode = smmu_domain->smmu->features & ARM_SMMU_FEAT_E2H ? 1985 CMDQ_OP_TLBI_EL2_VA : CMDQ_OP_TLBI_NH_VA, 1986 .tlbi = { 1987 .asid = asid, 1988 .leaf = leaf, 1989 }, 1990 }; 1991 1992 __arm_smmu_tlb_inv_range(&cmd, iova, size, granule, smmu_domain); 1993 } 1994 1995 static void arm_smmu_tlb_inv_page_nosync(struct iommu_iotlb_gather *gather, 1996 unsigned long iova, size_t granule, 1997 void *cookie) 1998 { 1999 struct arm_smmu_domain *smmu_domain = cookie; 2000 struct iommu_domain *domain = &smmu_domain->domain; 2001 2002 iommu_iotlb_gather_add_page(domain, gather, iova, granule); 2003 } 2004 2005 static void arm_smmu_tlb_inv_walk(unsigned long iova, size_t size, 2006 size_t granule, void *cookie) 2007 { 2008 arm_smmu_tlb_inv_range_domain(iova, size, granule, false, cookie); 2009 } 2010 2011 static const struct iommu_flush_ops arm_smmu_flush_ops = { 2012 .tlb_flush_all = arm_smmu_tlb_inv_context, 2013 .tlb_flush_walk = arm_smmu_tlb_inv_walk, 2014 .tlb_add_page = arm_smmu_tlb_inv_page_nosync, 2015 }; 2016 2017 /* IOMMU API */ 2018 static bool arm_smmu_capable(struct device *dev, enum iommu_cap cap) 2019 { 2020 struct arm_smmu_master *master = dev_iommu_priv_get(dev); 2021 2022 switch (cap) { 2023 case IOMMU_CAP_CACHE_COHERENCY: 2024 /* Assume that a coherent TCU implies coherent TBUs */ 2025 return master->smmu->features & ARM_SMMU_FEAT_COHERENCY; 2026 case IOMMU_CAP_NOEXEC: 2027 case IOMMU_CAP_DEFERRED_FLUSH: 2028 return true; 2029 default: 2030 return false; 2031 } 2032 } 2033 2034 static struct iommu_domain *arm_smmu_domain_alloc(unsigned type) 2035 { 2036 struct arm_smmu_domain *smmu_domain; 2037 2038 if (type == IOMMU_DOMAIN_SVA) 2039 return arm_smmu_sva_domain_alloc(); 2040 2041 if (type != IOMMU_DOMAIN_UNMANAGED && 2042 type != IOMMU_DOMAIN_DMA && 2043 type != IOMMU_DOMAIN_IDENTITY) 2044 return NULL; 2045 2046 /* 2047 * Allocate the domain and initialise some of its data structures. 2048 * We can't really do anything meaningful until we've added a 2049 * master. 2050 */ 2051 smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL); 2052 if (!smmu_domain) 2053 return NULL; 2054 2055 mutex_init(&smmu_domain->init_mutex); 2056 INIT_LIST_HEAD(&smmu_domain->devices); 2057 spin_lock_init(&smmu_domain->devices_lock); 2058 INIT_LIST_HEAD(&smmu_domain->mmu_notifiers); 2059 2060 return &smmu_domain->domain; 2061 } 2062 2063 static void arm_smmu_domain_free(struct iommu_domain *domain) 2064 { 2065 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain); 2066 struct arm_smmu_device *smmu = smmu_domain->smmu; 2067 2068 free_io_pgtable_ops(smmu_domain->pgtbl_ops); 2069 2070 /* Free the CD and ASID, if we allocated them */ 2071 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) { 2072 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg; 2073 2074 /* Prevent SVA from touching the CD while we're freeing it */ 2075 mutex_lock(&arm_smmu_asid_lock); 2076 if (cfg->cdcfg.cdtab) 2077 arm_smmu_free_cd_tables(smmu_domain); 2078 arm_smmu_free_asid(&cfg->cd); 2079 mutex_unlock(&arm_smmu_asid_lock); 2080 } else { 2081 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg; 2082 if (cfg->vmid) 2083 ida_free(&smmu->vmid_map, cfg->vmid); 2084 } 2085 2086 kfree(smmu_domain); 2087 } 2088 2089 static int arm_smmu_domain_finalise_s1(struct arm_smmu_domain *smmu_domain, 2090 struct arm_smmu_master *master, 2091 struct io_pgtable_cfg *pgtbl_cfg) 2092 { 2093 int ret; 2094 u32 asid; 2095 struct arm_smmu_device *smmu = smmu_domain->smmu; 2096 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg; 2097 typeof(&pgtbl_cfg->arm_lpae_s1_cfg.tcr) tcr = &pgtbl_cfg->arm_lpae_s1_cfg.tcr; 2098 2099 refcount_set(&cfg->cd.refs, 1); 2100 2101 /* Prevent SVA from modifying the ASID until it is written to the CD */ 2102 mutex_lock(&arm_smmu_asid_lock); 2103 ret = xa_alloc(&arm_smmu_asid_xa, &asid, &cfg->cd, 2104 XA_LIMIT(1, (1 << smmu->asid_bits) - 1), GFP_KERNEL); 2105 if (ret) 2106 goto out_unlock; 2107 2108 cfg->s1cdmax = master->ssid_bits; 2109 2110 smmu_domain->stall_enabled = master->stall_enabled; 2111 2112 ret = arm_smmu_alloc_cd_tables(smmu_domain); 2113 if (ret) 2114 goto out_free_asid; 2115 2116 cfg->cd.asid = (u16)asid; 2117 cfg->cd.ttbr = pgtbl_cfg->arm_lpae_s1_cfg.ttbr; 2118 cfg->cd.tcr = FIELD_PREP(CTXDESC_CD_0_TCR_T0SZ, tcr->tsz) | 2119 FIELD_PREP(CTXDESC_CD_0_TCR_TG0, tcr->tg) | 2120 FIELD_PREP(CTXDESC_CD_0_TCR_IRGN0, tcr->irgn) | 2121 FIELD_PREP(CTXDESC_CD_0_TCR_ORGN0, tcr->orgn) | 2122 FIELD_PREP(CTXDESC_CD_0_TCR_SH0, tcr->sh) | 2123 FIELD_PREP(CTXDESC_CD_0_TCR_IPS, tcr->ips) | 2124 CTXDESC_CD_0_TCR_EPD1 | CTXDESC_CD_0_AA64; 2125 cfg->cd.mair = pgtbl_cfg->arm_lpae_s1_cfg.mair; 2126 2127 /* 2128 * Note that this will end up calling arm_smmu_sync_cd() before 2129 * the master has been added to the devices list for this domain. 2130 * This isn't an issue because the STE hasn't been installed yet. 2131 */ 2132 ret = arm_smmu_write_ctx_desc(smmu_domain, IOMMU_NO_PASID, &cfg->cd); 2133 if (ret) 2134 goto out_free_cd_tables; 2135 2136 mutex_unlock(&arm_smmu_asid_lock); 2137 return 0; 2138 2139 out_free_cd_tables: 2140 arm_smmu_free_cd_tables(smmu_domain); 2141 out_free_asid: 2142 arm_smmu_free_asid(&cfg->cd); 2143 out_unlock: 2144 mutex_unlock(&arm_smmu_asid_lock); 2145 return ret; 2146 } 2147 2148 static int arm_smmu_domain_finalise_s2(struct arm_smmu_domain *smmu_domain, 2149 struct arm_smmu_master *master, 2150 struct io_pgtable_cfg *pgtbl_cfg) 2151 { 2152 int vmid; 2153 struct arm_smmu_device *smmu = smmu_domain->smmu; 2154 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg; 2155 typeof(&pgtbl_cfg->arm_lpae_s2_cfg.vtcr) vtcr; 2156 2157 /* Reserve VMID 0 for stage-2 bypass STEs */ 2158 vmid = ida_alloc_range(&smmu->vmid_map, 1, (1 << smmu->vmid_bits) - 1, 2159 GFP_KERNEL); 2160 if (vmid < 0) 2161 return vmid; 2162 2163 vtcr = &pgtbl_cfg->arm_lpae_s2_cfg.vtcr; 2164 cfg->vmid = (u16)vmid; 2165 cfg->vttbr = pgtbl_cfg->arm_lpae_s2_cfg.vttbr; 2166 cfg->vtcr = FIELD_PREP(STRTAB_STE_2_VTCR_S2T0SZ, vtcr->tsz) | 2167 FIELD_PREP(STRTAB_STE_2_VTCR_S2SL0, vtcr->sl) | 2168 FIELD_PREP(STRTAB_STE_2_VTCR_S2IR0, vtcr->irgn) | 2169 FIELD_PREP(STRTAB_STE_2_VTCR_S2OR0, vtcr->orgn) | 2170 FIELD_PREP(STRTAB_STE_2_VTCR_S2SH0, vtcr->sh) | 2171 FIELD_PREP(STRTAB_STE_2_VTCR_S2TG, vtcr->tg) | 2172 FIELD_PREP(STRTAB_STE_2_VTCR_S2PS, vtcr->ps); 2173 return 0; 2174 } 2175 2176 static int arm_smmu_domain_finalise(struct iommu_domain *domain, 2177 struct arm_smmu_master *master) 2178 { 2179 int ret; 2180 unsigned long ias, oas; 2181 enum io_pgtable_fmt fmt; 2182 struct io_pgtable_cfg pgtbl_cfg; 2183 struct io_pgtable_ops *pgtbl_ops; 2184 int (*finalise_stage_fn)(struct arm_smmu_domain *, 2185 struct arm_smmu_master *, 2186 struct io_pgtable_cfg *); 2187 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain); 2188 struct arm_smmu_device *smmu = smmu_domain->smmu; 2189 2190 if (domain->type == IOMMU_DOMAIN_IDENTITY) { 2191 smmu_domain->stage = ARM_SMMU_DOMAIN_BYPASS; 2192 return 0; 2193 } 2194 2195 /* Restrict the stage to what we can actually support */ 2196 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1)) 2197 smmu_domain->stage = ARM_SMMU_DOMAIN_S2; 2198 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2)) 2199 smmu_domain->stage = ARM_SMMU_DOMAIN_S1; 2200 2201 switch (smmu_domain->stage) { 2202 case ARM_SMMU_DOMAIN_S1: 2203 ias = (smmu->features & ARM_SMMU_FEAT_VAX) ? 52 : 48; 2204 ias = min_t(unsigned long, ias, VA_BITS); 2205 oas = smmu->ias; 2206 fmt = ARM_64_LPAE_S1; 2207 finalise_stage_fn = arm_smmu_domain_finalise_s1; 2208 break; 2209 case ARM_SMMU_DOMAIN_NESTED: 2210 case ARM_SMMU_DOMAIN_S2: 2211 ias = smmu->ias; 2212 oas = smmu->oas; 2213 fmt = ARM_64_LPAE_S2; 2214 finalise_stage_fn = arm_smmu_domain_finalise_s2; 2215 break; 2216 default: 2217 return -EINVAL; 2218 } 2219 2220 pgtbl_cfg = (struct io_pgtable_cfg) { 2221 .pgsize_bitmap = smmu->pgsize_bitmap, 2222 .ias = ias, 2223 .oas = oas, 2224 .coherent_walk = smmu->features & ARM_SMMU_FEAT_COHERENCY, 2225 .tlb = &arm_smmu_flush_ops, 2226 .iommu_dev = smmu->dev, 2227 }; 2228 2229 pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain); 2230 if (!pgtbl_ops) 2231 return -ENOMEM; 2232 2233 domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap; 2234 domain->geometry.aperture_end = (1UL << pgtbl_cfg.ias) - 1; 2235 domain->geometry.force_aperture = true; 2236 2237 ret = finalise_stage_fn(smmu_domain, master, &pgtbl_cfg); 2238 if (ret < 0) { 2239 free_io_pgtable_ops(pgtbl_ops); 2240 return ret; 2241 } 2242 2243 smmu_domain->pgtbl_ops = pgtbl_ops; 2244 return 0; 2245 } 2246 2247 static __le64 *arm_smmu_get_step_for_sid(struct arm_smmu_device *smmu, u32 sid) 2248 { 2249 __le64 *step; 2250 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg; 2251 2252 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) { 2253 struct arm_smmu_strtab_l1_desc *l1_desc; 2254 int idx; 2255 2256 /* Two-level walk */ 2257 idx = (sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS; 2258 l1_desc = &cfg->l1_desc[idx]; 2259 idx = (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS; 2260 step = &l1_desc->l2ptr[idx]; 2261 } else { 2262 /* Simple linear lookup */ 2263 step = &cfg->strtab[sid * STRTAB_STE_DWORDS]; 2264 } 2265 2266 return step; 2267 } 2268 2269 static void arm_smmu_install_ste_for_dev(struct arm_smmu_master *master) 2270 { 2271 int i, j; 2272 struct arm_smmu_device *smmu = master->smmu; 2273 2274 for (i = 0; i < master->num_streams; ++i) { 2275 u32 sid = master->streams[i].id; 2276 __le64 *step = arm_smmu_get_step_for_sid(smmu, sid); 2277 2278 /* Bridged PCI devices may end up with duplicated IDs */ 2279 for (j = 0; j < i; j++) 2280 if (master->streams[j].id == sid) 2281 break; 2282 if (j < i) 2283 continue; 2284 2285 arm_smmu_write_strtab_ent(master, sid, step); 2286 } 2287 } 2288 2289 static bool arm_smmu_ats_supported(struct arm_smmu_master *master) 2290 { 2291 struct device *dev = master->dev; 2292 struct arm_smmu_device *smmu = master->smmu; 2293 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 2294 2295 if (!(smmu->features & ARM_SMMU_FEAT_ATS)) 2296 return false; 2297 2298 if (!(fwspec->flags & IOMMU_FWSPEC_PCI_RC_ATS)) 2299 return false; 2300 2301 return dev_is_pci(dev) && pci_ats_supported(to_pci_dev(dev)); 2302 } 2303 2304 static void arm_smmu_enable_ats(struct arm_smmu_master *master) 2305 { 2306 size_t stu; 2307 struct pci_dev *pdev; 2308 struct arm_smmu_device *smmu = master->smmu; 2309 struct arm_smmu_domain *smmu_domain = master->domain; 2310 2311 /* Don't enable ATS at the endpoint if it's not enabled in the STE */ 2312 if (!master->ats_enabled) 2313 return; 2314 2315 /* Smallest Translation Unit: log2 of the smallest supported granule */ 2316 stu = __ffs(smmu->pgsize_bitmap); 2317 pdev = to_pci_dev(master->dev); 2318 2319 atomic_inc(&smmu_domain->nr_ats_masters); 2320 arm_smmu_atc_inv_domain(smmu_domain, IOMMU_NO_PASID, 0, 0); 2321 if (pci_enable_ats(pdev, stu)) 2322 dev_err(master->dev, "Failed to enable ATS (STU %zu)\n", stu); 2323 } 2324 2325 static void arm_smmu_disable_ats(struct arm_smmu_master *master) 2326 { 2327 struct arm_smmu_domain *smmu_domain = master->domain; 2328 2329 if (!master->ats_enabled) 2330 return; 2331 2332 pci_disable_ats(to_pci_dev(master->dev)); 2333 /* 2334 * Ensure ATS is disabled at the endpoint before we issue the 2335 * ATC invalidation via the SMMU. 2336 */ 2337 wmb(); 2338 arm_smmu_atc_inv_master(master); 2339 atomic_dec(&smmu_domain->nr_ats_masters); 2340 } 2341 2342 static int arm_smmu_enable_pasid(struct arm_smmu_master *master) 2343 { 2344 int ret; 2345 int features; 2346 int num_pasids; 2347 struct pci_dev *pdev; 2348 2349 if (!dev_is_pci(master->dev)) 2350 return -ENODEV; 2351 2352 pdev = to_pci_dev(master->dev); 2353 2354 features = pci_pasid_features(pdev); 2355 if (features < 0) 2356 return features; 2357 2358 num_pasids = pci_max_pasids(pdev); 2359 if (num_pasids <= 0) 2360 return num_pasids; 2361 2362 ret = pci_enable_pasid(pdev, features); 2363 if (ret) { 2364 dev_err(&pdev->dev, "Failed to enable PASID\n"); 2365 return ret; 2366 } 2367 2368 master->ssid_bits = min_t(u8, ilog2(num_pasids), 2369 master->smmu->ssid_bits); 2370 return 0; 2371 } 2372 2373 static void arm_smmu_disable_pasid(struct arm_smmu_master *master) 2374 { 2375 struct pci_dev *pdev; 2376 2377 if (!dev_is_pci(master->dev)) 2378 return; 2379 2380 pdev = to_pci_dev(master->dev); 2381 2382 if (!pdev->pasid_enabled) 2383 return; 2384 2385 master->ssid_bits = 0; 2386 pci_disable_pasid(pdev); 2387 } 2388 2389 static void arm_smmu_detach_dev(struct arm_smmu_master *master) 2390 { 2391 unsigned long flags; 2392 struct arm_smmu_domain *smmu_domain = master->domain; 2393 2394 if (!smmu_domain) 2395 return; 2396 2397 arm_smmu_disable_ats(master); 2398 2399 spin_lock_irqsave(&smmu_domain->devices_lock, flags); 2400 list_del(&master->domain_head); 2401 spin_unlock_irqrestore(&smmu_domain->devices_lock, flags); 2402 2403 master->domain = NULL; 2404 master->ats_enabled = false; 2405 arm_smmu_install_ste_for_dev(master); 2406 } 2407 2408 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev) 2409 { 2410 int ret = 0; 2411 unsigned long flags; 2412 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 2413 struct arm_smmu_device *smmu; 2414 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain); 2415 struct arm_smmu_master *master; 2416 2417 if (!fwspec) 2418 return -ENOENT; 2419 2420 master = dev_iommu_priv_get(dev); 2421 smmu = master->smmu; 2422 2423 /* 2424 * Checking that SVA is disabled ensures that this device isn't bound to 2425 * any mm, and can be safely detached from its old domain. Bonds cannot 2426 * be removed concurrently since we're holding the group mutex. 2427 */ 2428 if (arm_smmu_master_sva_enabled(master)) { 2429 dev_err(dev, "cannot attach - SVA enabled\n"); 2430 return -EBUSY; 2431 } 2432 2433 arm_smmu_detach_dev(master); 2434 2435 mutex_lock(&smmu_domain->init_mutex); 2436 2437 if (!smmu_domain->smmu) { 2438 smmu_domain->smmu = smmu; 2439 ret = arm_smmu_domain_finalise(domain, master); 2440 if (ret) { 2441 smmu_domain->smmu = NULL; 2442 goto out_unlock; 2443 } 2444 } else if (smmu_domain->smmu != smmu) { 2445 ret = -EINVAL; 2446 goto out_unlock; 2447 } else if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1 && 2448 master->ssid_bits != smmu_domain->s1_cfg.s1cdmax) { 2449 ret = -EINVAL; 2450 goto out_unlock; 2451 } else if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1 && 2452 smmu_domain->stall_enabled != master->stall_enabled) { 2453 ret = -EINVAL; 2454 goto out_unlock; 2455 } 2456 2457 master->domain = smmu_domain; 2458 2459 /* 2460 * The SMMU does not support enabling ATS with bypass. When the STE is 2461 * in bypass (STE.Config[2:0] == 0b100), ATS Translation Requests and 2462 * Translated transactions are denied as though ATS is disabled for the 2463 * stream (STE.EATS == 0b00), causing F_BAD_ATS_TREQ and 2464 * F_TRANSL_FORBIDDEN events (IHI0070Ea 5.2 Stream Table Entry). 2465 */ 2466 if (smmu_domain->stage != ARM_SMMU_DOMAIN_BYPASS) 2467 master->ats_enabled = arm_smmu_ats_supported(master); 2468 2469 arm_smmu_install_ste_for_dev(master); 2470 2471 spin_lock_irqsave(&smmu_domain->devices_lock, flags); 2472 list_add(&master->domain_head, &smmu_domain->devices); 2473 spin_unlock_irqrestore(&smmu_domain->devices_lock, flags); 2474 2475 arm_smmu_enable_ats(master); 2476 2477 out_unlock: 2478 mutex_unlock(&smmu_domain->init_mutex); 2479 return ret; 2480 } 2481 2482 static int arm_smmu_map_pages(struct iommu_domain *domain, unsigned long iova, 2483 phys_addr_t paddr, size_t pgsize, size_t pgcount, 2484 int prot, gfp_t gfp, size_t *mapped) 2485 { 2486 struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops; 2487 2488 if (!ops) 2489 return -ENODEV; 2490 2491 return ops->map_pages(ops, iova, paddr, pgsize, pgcount, prot, gfp, mapped); 2492 } 2493 2494 static size_t arm_smmu_unmap_pages(struct iommu_domain *domain, unsigned long iova, 2495 size_t pgsize, size_t pgcount, 2496 struct iommu_iotlb_gather *gather) 2497 { 2498 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain); 2499 struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops; 2500 2501 if (!ops) 2502 return 0; 2503 2504 return ops->unmap_pages(ops, iova, pgsize, pgcount, gather); 2505 } 2506 2507 static void arm_smmu_flush_iotlb_all(struct iommu_domain *domain) 2508 { 2509 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain); 2510 2511 if (smmu_domain->smmu) 2512 arm_smmu_tlb_inv_context(smmu_domain); 2513 } 2514 2515 static void arm_smmu_iotlb_sync(struct iommu_domain *domain, 2516 struct iommu_iotlb_gather *gather) 2517 { 2518 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain); 2519 2520 if (!gather->pgsize) 2521 return; 2522 2523 arm_smmu_tlb_inv_range_domain(gather->start, 2524 gather->end - gather->start + 1, 2525 gather->pgsize, true, smmu_domain); 2526 } 2527 2528 static phys_addr_t 2529 arm_smmu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova) 2530 { 2531 struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops; 2532 2533 if (!ops) 2534 return 0; 2535 2536 return ops->iova_to_phys(ops, iova); 2537 } 2538 2539 static struct platform_driver arm_smmu_driver; 2540 2541 static 2542 struct arm_smmu_device *arm_smmu_get_by_fwnode(struct fwnode_handle *fwnode) 2543 { 2544 struct device *dev = driver_find_device_by_fwnode(&arm_smmu_driver.driver, 2545 fwnode); 2546 put_device(dev); 2547 return dev ? dev_get_drvdata(dev) : NULL; 2548 } 2549 2550 static bool arm_smmu_sid_in_range(struct arm_smmu_device *smmu, u32 sid) 2551 { 2552 unsigned long limit = smmu->strtab_cfg.num_l1_ents; 2553 2554 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) 2555 limit *= 1UL << STRTAB_SPLIT; 2556 2557 return sid < limit; 2558 } 2559 2560 static int arm_smmu_init_sid_strtab(struct arm_smmu_device *smmu, u32 sid) 2561 { 2562 /* Check the SIDs are in range of the SMMU and our stream table */ 2563 if (!arm_smmu_sid_in_range(smmu, sid)) 2564 return -ERANGE; 2565 2566 /* Ensure l2 strtab is initialised */ 2567 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) 2568 return arm_smmu_init_l2_strtab(smmu, sid); 2569 2570 return 0; 2571 } 2572 2573 static int arm_smmu_insert_master(struct arm_smmu_device *smmu, 2574 struct arm_smmu_master *master) 2575 { 2576 int i; 2577 int ret = 0; 2578 struct arm_smmu_stream *new_stream, *cur_stream; 2579 struct rb_node **new_node, *parent_node = NULL; 2580 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(master->dev); 2581 2582 master->streams = kcalloc(fwspec->num_ids, sizeof(*master->streams), 2583 GFP_KERNEL); 2584 if (!master->streams) 2585 return -ENOMEM; 2586 master->num_streams = fwspec->num_ids; 2587 2588 mutex_lock(&smmu->streams_mutex); 2589 for (i = 0; i < fwspec->num_ids; i++) { 2590 u32 sid = fwspec->ids[i]; 2591 2592 new_stream = &master->streams[i]; 2593 new_stream->id = sid; 2594 new_stream->master = master; 2595 2596 ret = arm_smmu_init_sid_strtab(smmu, sid); 2597 if (ret) 2598 break; 2599 2600 /* Insert into SID tree */ 2601 new_node = &(smmu->streams.rb_node); 2602 while (*new_node) { 2603 cur_stream = rb_entry(*new_node, struct arm_smmu_stream, 2604 node); 2605 parent_node = *new_node; 2606 if (cur_stream->id > new_stream->id) { 2607 new_node = &((*new_node)->rb_left); 2608 } else if (cur_stream->id < new_stream->id) { 2609 new_node = &((*new_node)->rb_right); 2610 } else { 2611 dev_warn(master->dev, 2612 "stream %u already in tree\n", 2613 cur_stream->id); 2614 ret = -EINVAL; 2615 break; 2616 } 2617 } 2618 if (ret) 2619 break; 2620 2621 rb_link_node(&new_stream->node, parent_node, new_node); 2622 rb_insert_color(&new_stream->node, &smmu->streams); 2623 } 2624 2625 if (ret) { 2626 for (i--; i >= 0; i--) 2627 rb_erase(&master->streams[i].node, &smmu->streams); 2628 kfree(master->streams); 2629 } 2630 mutex_unlock(&smmu->streams_mutex); 2631 2632 return ret; 2633 } 2634 2635 static void arm_smmu_remove_master(struct arm_smmu_master *master) 2636 { 2637 int i; 2638 struct arm_smmu_device *smmu = master->smmu; 2639 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(master->dev); 2640 2641 if (!smmu || !master->streams) 2642 return; 2643 2644 mutex_lock(&smmu->streams_mutex); 2645 for (i = 0; i < fwspec->num_ids; i++) 2646 rb_erase(&master->streams[i].node, &smmu->streams); 2647 mutex_unlock(&smmu->streams_mutex); 2648 2649 kfree(master->streams); 2650 } 2651 2652 static struct iommu_ops arm_smmu_ops; 2653 2654 static struct iommu_device *arm_smmu_probe_device(struct device *dev) 2655 { 2656 int ret; 2657 struct arm_smmu_device *smmu; 2658 struct arm_smmu_master *master; 2659 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 2660 2661 if (!fwspec || fwspec->ops != &arm_smmu_ops) 2662 return ERR_PTR(-ENODEV); 2663 2664 if (WARN_ON_ONCE(dev_iommu_priv_get(dev))) 2665 return ERR_PTR(-EBUSY); 2666 2667 smmu = arm_smmu_get_by_fwnode(fwspec->iommu_fwnode); 2668 if (!smmu) 2669 return ERR_PTR(-ENODEV); 2670 2671 master = kzalloc(sizeof(*master), GFP_KERNEL); 2672 if (!master) 2673 return ERR_PTR(-ENOMEM); 2674 2675 master->dev = dev; 2676 master->smmu = smmu; 2677 INIT_LIST_HEAD(&master->bonds); 2678 dev_iommu_priv_set(dev, master); 2679 2680 ret = arm_smmu_insert_master(smmu, master); 2681 if (ret) 2682 goto err_free_master; 2683 2684 device_property_read_u32(dev, "pasid-num-bits", &master->ssid_bits); 2685 master->ssid_bits = min(smmu->ssid_bits, master->ssid_bits); 2686 2687 /* 2688 * Note that PASID must be enabled before, and disabled after ATS: 2689 * PCI Express Base 4.0r1.0 - 10.5.1.3 ATS Control Register 2690 * 2691 * Behavior is undefined if this bit is Set and the value of the PASID 2692 * Enable, Execute Requested Enable, or Privileged Mode Requested bits 2693 * are changed. 2694 */ 2695 arm_smmu_enable_pasid(master); 2696 2697 if (!(smmu->features & ARM_SMMU_FEAT_2_LVL_CDTAB)) 2698 master->ssid_bits = min_t(u8, master->ssid_bits, 2699 CTXDESC_LINEAR_CDMAX); 2700 2701 if ((smmu->features & ARM_SMMU_FEAT_STALLS && 2702 device_property_read_bool(dev, "dma-can-stall")) || 2703 smmu->features & ARM_SMMU_FEAT_STALL_FORCE) 2704 master->stall_enabled = true; 2705 2706 return &smmu->iommu; 2707 2708 err_free_master: 2709 kfree(master); 2710 dev_iommu_priv_set(dev, NULL); 2711 return ERR_PTR(ret); 2712 } 2713 2714 static void arm_smmu_release_device(struct device *dev) 2715 { 2716 struct arm_smmu_master *master = dev_iommu_priv_get(dev); 2717 2718 if (WARN_ON(arm_smmu_master_sva_enabled(master))) 2719 iopf_queue_remove_device(master->smmu->evtq.iopf, dev); 2720 arm_smmu_detach_dev(master); 2721 arm_smmu_disable_pasid(master); 2722 arm_smmu_remove_master(master); 2723 kfree(master); 2724 } 2725 2726 static struct iommu_group *arm_smmu_device_group(struct device *dev) 2727 { 2728 struct iommu_group *group; 2729 2730 /* 2731 * We don't support devices sharing stream IDs other than PCI RID 2732 * aliases, since the necessary ID-to-device lookup becomes rather 2733 * impractical given a potential sparse 32-bit stream ID space. 2734 */ 2735 if (dev_is_pci(dev)) 2736 group = pci_device_group(dev); 2737 else 2738 group = generic_device_group(dev); 2739 2740 return group; 2741 } 2742 2743 static int arm_smmu_enable_nesting(struct iommu_domain *domain) 2744 { 2745 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain); 2746 int ret = 0; 2747 2748 mutex_lock(&smmu_domain->init_mutex); 2749 if (smmu_domain->smmu) 2750 ret = -EPERM; 2751 else 2752 smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED; 2753 mutex_unlock(&smmu_domain->init_mutex); 2754 2755 return ret; 2756 } 2757 2758 static int arm_smmu_of_xlate(struct device *dev, struct of_phandle_args *args) 2759 { 2760 return iommu_fwspec_add_ids(dev, args->args, 1); 2761 } 2762 2763 static void arm_smmu_get_resv_regions(struct device *dev, 2764 struct list_head *head) 2765 { 2766 struct iommu_resv_region *region; 2767 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO; 2768 2769 region = iommu_alloc_resv_region(MSI_IOVA_BASE, MSI_IOVA_LENGTH, 2770 prot, IOMMU_RESV_SW_MSI, GFP_KERNEL); 2771 if (!region) 2772 return; 2773 2774 list_add_tail(®ion->list, head); 2775 2776 iommu_dma_get_resv_regions(dev, head); 2777 } 2778 2779 static int arm_smmu_dev_enable_feature(struct device *dev, 2780 enum iommu_dev_features feat) 2781 { 2782 struct arm_smmu_master *master = dev_iommu_priv_get(dev); 2783 2784 if (!master) 2785 return -ENODEV; 2786 2787 switch (feat) { 2788 case IOMMU_DEV_FEAT_IOPF: 2789 if (!arm_smmu_master_iopf_supported(master)) 2790 return -EINVAL; 2791 if (master->iopf_enabled) 2792 return -EBUSY; 2793 master->iopf_enabled = true; 2794 return 0; 2795 case IOMMU_DEV_FEAT_SVA: 2796 if (!arm_smmu_master_sva_supported(master)) 2797 return -EINVAL; 2798 if (arm_smmu_master_sva_enabled(master)) 2799 return -EBUSY; 2800 return arm_smmu_master_enable_sva(master); 2801 default: 2802 return -EINVAL; 2803 } 2804 } 2805 2806 static int arm_smmu_dev_disable_feature(struct device *dev, 2807 enum iommu_dev_features feat) 2808 { 2809 struct arm_smmu_master *master = dev_iommu_priv_get(dev); 2810 2811 if (!master) 2812 return -EINVAL; 2813 2814 switch (feat) { 2815 case IOMMU_DEV_FEAT_IOPF: 2816 if (!master->iopf_enabled) 2817 return -EINVAL; 2818 if (master->sva_enabled) 2819 return -EBUSY; 2820 master->iopf_enabled = false; 2821 return 0; 2822 case IOMMU_DEV_FEAT_SVA: 2823 if (!arm_smmu_master_sva_enabled(master)) 2824 return -EINVAL; 2825 return arm_smmu_master_disable_sva(master); 2826 default: 2827 return -EINVAL; 2828 } 2829 } 2830 2831 /* 2832 * HiSilicon PCIe tune and trace device can be used to trace TLP headers on the 2833 * PCIe link and save the data to memory by DMA. The hardware is restricted to 2834 * use identity mapping only. 2835 */ 2836 #define IS_HISI_PTT_DEVICE(pdev) ((pdev)->vendor == PCI_VENDOR_ID_HUAWEI && \ 2837 (pdev)->device == 0xa12e) 2838 2839 static int arm_smmu_def_domain_type(struct device *dev) 2840 { 2841 if (dev_is_pci(dev)) { 2842 struct pci_dev *pdev = to_pci_dev(dev); 2843 2844 if (IS_HISI_PTT_DEVICE(pdev)) 2845 return IOMMU_DOMAIN_IDENTITY; 2846 } 2847 2848 return 0; 2849 } 2850 2851 static void arm_smmu_remove_dev_pasid(struct device *dev, ioasid_t pasid) 2852 { 2853 struct iommu_domain *domain; 2854 2855 domain = iommu_get_domain_for_dev_pasid(dev, pasid, IOMMU_DOMAIN_SVA); 2856 if (WARN_ON(IS_ERR(domain)) || !domain) 2857 return; 2858 2859 arm_smmu_sva_remove_dev_pasid(domain, dev, pasid); 2860 } 2861 2862 static struct iommu_ops arm_smmu_ops = { 2863 .capable = arm_smmu_capable, 2864 .domain_alloc = arm_smmu_domain_alloc, 2865 .probe_device = arm_smmu_probe_device, 2866 .release_device = arm_smmu_release_device, 2867 .device_group = arm_smmu_device_group, 2868 .of_xlate = arm_smmu_of_xlate, 2869 .get_resv_regions = arm_smmu_get_resv_regions, 2870 .remove_dev_pasid = arm_smmu_remove_dev_pasid, 2871 .dev_enable_feat = arm_smmu_dev_enable_feature, 2872 .dev_disable_feat = arm_smmu_dev_disable_feature, 2873 .page_response = arm_smmu_page_response, 2874 .def_domain_type = arm_smmu_def_domain_type, 2875 .pgsize_bitmap = -1UL, /* Restricted during device attach */ 2876 .owner = THIS_MODULE, 2877 .default_domain_ops = &(const struct iommu_domain_ops) { 2878 .attach_dev = arm_smmu_attach_dev, 2879 .map_pages = arm_smmu_map_pages, 2880 .unmap_pages = arm_smmu_unmap_pages, 2881 .flush_iotlb_all = arm_smmu_flush_iotlb_all, 2882 .iotlb_sync = arm_smmu_iotlb_sync, 2883 .iova_to_phys = arm_smmu_iova_to_phys, 2884 .enable_nesting = arm_smmu_enable_nesting, 2885 .free = arm_smmu_domain_free, 2886 } 2887 }; 2888 2889 /* Probing and initialisation functions */ 2890 static int arm_smmu_init_one_queue(struct arm_smmu_device *smmu, 2891 struct arm_smmu_queue *q, 2892 void __iomem *page, 2893 unsigned long prod_off, 2894 unsigned long cons_off, 2895 size_t dwords, const char *name) 2896 { 2897 size_t qsz; 2898 2899 do { 2900 qsz = ((1 << q->llq.max_n_shift) * dwords) << 3; 2901 q->base = dmam_alloc_coherent(smmu->dev, qsz, &q->base_dma, 2902 GFP_KERNEL); 2903 if (q->base || qsz < PAGE_SIZE) 2904 break; 2905 2906 q->llq.max_n_shift--; 2907 } while (1); 2908 2909 if (!q->base) { 2910 dev_err(smmu->dev, 2911 "failed to allocate queue (0x%zx bytes) for %s\n", 2912 qsz, name); 2913 return -ENOMEM; 2914 } 2915 2916 if (!WARN_ON(q->base_dma & (qsz - 1))) { 2917 dev_info(smmu->dev, "allocated %u entries for %s\n", 2918 1 << q->llq.max_n_shift, name); 2919 } 2920 2921 q->prod_reg = page + prod_off; 2922 q->cons_reg = page + cons_off; 2923 q->ent_dwords = dwords; 2924 2925 q->q_base = Q_BASE_RWA; 2926 q->q_base |= q->base_dma & Q_BASE_ADDR_MASK; 2927 q->q_base |= FIELD_PREP(Q_BASE_LOG2SIZE, q->llq.max_n_shift); 2928 2929 q->llq.prod = q->llq.cons = 0; 2930 return 0; 2931 } 2932 2933 static int arm_smmu_cmdq_init(struct arm_smmu_device *smmu) 2934 { 2935 struct arm_smmu_cmdq *cmdq = &smmu->cmdq; 2936 unsigned int nents = 1 << cmdq->q.llq.max_n_shift; 2937 2938 atomic_set(&cmdq->owner_prod, 0); 2939 atomic_set(&cmdq->lock, 0); 2940 2941 cmdq->valid_map = (atomic_long_t *)devm_bitmap_zalloc(smmu->dev, nents, 2942 GFP_KERNEL); 2943 if (!cmdq->valid_map) 2944 return -ENOMEM; 2945 2946 return 0; 2947 } 2948 2949 static int arm_smmu_init_queues(struct arm_smmu_device *smmu) 2950 { 2951 int ret; 2952 2953 /* cmdq */ 2954 ret = arm_smmu_init_one_queue(smmu, &smmu->cmdq.q, smmu->base, 2955 ARM_SMMU_CMDQ_PROD, ARM_SMMU_CMDQ_CONS, 2956 CMDQ_ENT_DWORDS, "cmdq"); 2957 if (ret) 2958 return ret; 2959 2960 ret = arm_smmu_cmdq_init(smmu); 2961 if (ret) 2962 return ret; 2963 2964 /* evtq */ 2965 ret = arm_smmu_init_one_queue(smmu, &smmu->evtq.q, smmu->page1, 2966 ARM_SMMU_EVTQ_PROD, ARM_SMMU_EVTQ_CONS, 2967 EVTQ_ENT_DWORDS, "evtq"); 2968 if (ret) 2969 return ret; 2970 2971 if ((smmu->features & ARM_SMMU_FEAT_SVA) && 2972 (smmu->features & ARM_SMMU_FEAT_STALLS)) { 2973 smmu->evtq.iopf = iopf_queue_alloc(dev_name(smmu->dev)); 2974 if (!smmu->evtq.iopf) 2975 return -ENOMEM; 2976 } 2977 2978 /* priq */ 2979 if (!(smmu->features & ARM_SMMU_FEAT_PRI)) 2980 return 0; 2981 2982 return arm_smmu_init_one_queue(smmu, &smmu->priq.q, smmu->page1, 2983 ARM_SMMU_PRIQ_PROD, ARM_SMMU_PRIQ_CONS, 2984 PRIQ_ENT_DWORDS, "priq"); 2985 } 2986 2987 static int arm_smmu_init_l1_strtab(struct arm_smmu_device *smmu) 2988 { 2989 unsigned int i; 2990 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg; 2991 void *strtab = smmu->strtab_cfg.strtab; 2992 2993 cfg->l1_desc = devm_kcalloc(smmu->dev, cfg->num_l1_ents, 2994 sizeof(*cfg->l1_desc), GFP_KERNEL); 2995 if (!cfg->l1_desc) 2996 return -ENOMEM; 2997 2998 for (i = 0; i < cfg->num_l1_ents; ++i) { 2999 arm_smmu_write_strtab_l1_desc(strtab, &cfg->l1_desc[i]); 3000 strtab += STRTAB_L1_DESC_DWORDS << 3; 3001 } 3002 3003 return 0; 3004 } 3005 3006 static int arm_smmu_init_strtab_2lvl(struct arm_smmu_device *smmu) 3007 { 3008 void *strtab; 3009 u64 reg; 3010 u32 size, l1size; 3011 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg; 3012 3013 /* Calculate the L1 size, capped to the SIDSIZE. */ 3014 size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3); 3015 size = min(size, smmu->sid_bits - STRTAB_SPLIT); 3016 cfg->num_l1_ents = 1 << size; 3017 3018 size += STRTAB_SPLIT; 3019 if (size < smmu->sid_bits) 3020 dev_warn(smmu->dev, 3021 "2-level strtab only covers %u/%u bits of SID\n", 3022 size, smmu->sid_bits); 3023 3024 l1size = cfg->num_l1_ents * (STRTAB_L1_DESC_DWORDS << 3); 3025 strtab = dmam_alloc_coherent(smmu->dev, l1size, &cfg->strtab_dma, 3026 GFP_KERNEL); 3027 if (!strtab) { 3028 dev_err(smmu->dev, 3029 "failed to allocate l1 stream table (%u bytes)\n", 3030 l1size); 3031 return -ENOMEM; 3032 } 3033 cfg->strtab = strtab; 3034 3035 /* Configure strtab_base_cfg for 2 levels */ 3036 reg = FIELD_PREP(STRTAB_BASE_CFG_FMT, STRTAB_BASE_CFG_FMT_2LVL); 3037 reg |= FIELD_PREP(STRTAB_BASE_CFG_LOG2SIZE, size); 3038 reg |= FIELD_PREP(STRTAB_BASE_CFG_SPLIT, STRTAB_SPLIT); 3039 cfg->strtab_base_cfg = reg; 3040 3041 return arm_smmu_init_l1_strtab(smmu); 3042 } 3043 3044 static int arm_smmu_init_strtab_linear(struct arm_smmu_device *smmu) 3045 { 3046 void *strtab; 3047 u64 reg; 3048 u32 size; 3049 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg; 3050 3051 size = (1 << smmu->sid_bits) * (STRTAB_STE_DWORDS << 3); 3052 strtab = dmam_alloc_coherent(smmu->dev, size, &cfg->strtab_dma, 3053 GFP_KERNEL); 3054 if (!strtab) { 3055 dev_err(smmu->dev, 3056 "failed to allocate linear stream table (%u bytes)\n", 3057 size); 3058 return -ENOMEM; 3059 } 3060 cfg->strtab = strtab; 3061 cfg->num_l1_ents = 1 << smmu->sid_bits; 3062 3063 /* Configure strtab_base_cfg for a linear table covering all SIDs */ 3064 reg = FIELD_PREP(STRTAB_BASE_CFG_FMT, STRTAB_BASE_CFG_FMT_LINEAR); 3065 reg |= FIELD_PREP(STRTAB_BASE_CFG_LOG2SIZE, smmu->sid_bits); 3066 cfg->strtab_base_cfg = reg; 3067 3068 arm_smmu_init_bypass_stes(strtab, cfg->num_l1_ents, false); 3069 return 0; 3070 } 3071 3072 static int arm_smmu_init_strtab(struct arm_smmu_device *smmu) 3073 { 3074 u64 reg; 3075 int ret; 3076 3077 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) 3078 ret = arm_smmu_init_strtab_2lvl(smmu); 3079 else 3080 ret = arm_smmu_init_strtab_linear(smmu); 3081 3082 if (ret) 3083 return ret; 3084 3085 /* Set the strtab base address */ 3086 reg = smmu->strtab_cfg.strtab_dma & STRTAB_BASE_ADDR_MASK; 3087 reg |= STRTAB_BASE_RA; 3088 smmu->strtab_cfg.strtab_base = reg; 3089 3090 ida_init(&smmu->vmid_map); 3091 3092 return 0; 3093 } 3094 3095 static int arm_smmu_init_structures(struct arm_smmu_device *smmu) 3096 { 3097 int ret; 3098 3099 mutex_init(&smmu->streams_mutex); 3100 smmu->streams = RB_ROOT; 3101 3102 ret = arm_smmu_init_queues(smmu); 3103 if (ret) 3104 return ret; 3105 3106 return arm_smmu_init_strtab(smmu); 3107 } 3108 3109 static int arm_smmu_write_reg_sync(struct arm_smmu_device *smmu, u32 val, 3110 unsigned int reg_off, unsigned int ack_off) 3111 { 3112 u32 reg; 3113 3114 writel_relaxed(val, smmu->base + reg_off); 3115 return readl_relaxed_poll_timeout(smmu->base + ack_off, reg, reg == val, 3116 1, ARM_SMMU_POLL_TIMEOUT_US); 3117 } 3118 3119 /* GBPA is "special" */ 3120 static int arm_smmu_update_gbpa(struct arm_smmu_device *smmu, u32 set, u32 clr) 3121 { 3122 int ret; 3123 u32 reg, __iomem *gbpa = smmu->base + ARM_SMMU_GBPA; 3124 3125 ret = readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE), 3126 1, ARM_SMMU_POLL_TIMEOUT_US); 3127 if (ret) 3128 return ret; 3129 3130 reg &= ~clr; 3131 reg |= set; 3132 writel_relaxed(reg | GBPA_UPDATE, gbpa); 3133 ret = readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE), 3134 1, ARM_SMMU_POLL_TIMEOUT_US); 3135 3136 if (ret) 3137 dev_err(smmu->dev, "GBPA not responding to update\n"); 3138 return ret; 3139 } 3140 3141 static void arm_smmu_free_msis(void *data) 3142 { 3143 struct device *dev = data; 3144 platform_msi_domain_free_irqs(dev); 3145 } 3146 3147 static void arm_smmu_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg) 3148 { 3149 phys_addr_t doorbell; 3150 struct device *dev = msi_desc_to_dev(desc); 3151 struct arm_smmu_device *smmu = dev_get_drvdata(dev); 3152 phys_addr_t *cfg = arm_smmu_msi_cfg[desc->msi_index]; 3153 3154 doorbell = (((u64)msg->address_hi) << 32) | msg->address_lo; 3155 doorbell &= MSI_CFG0_ADDR_MASK; 3156 3157 writeq_relaxed(doorbell, smmu->base + cfg[0]); 3158 writel_relaxed(msg->data, smmu->base + cfg[1]); 3159 writel_relaxed(ARM_SMMU_MEMATTR_DEVICE_nGnRE, smmu->base + cfg[2]); 3160 } 3161 3162 static void arm_smmu_setup_msis(struct arm_smmu_device *smmu) 3163 { 3164 int ret, nvec = ARM_SMMU_MAX_MSIS; 3165 struct device *dev = smmu->dev; 3166 3167 /* Clear the MSI address regs */ 3168 writeq_relaxed(0, smmu->base + ARM_SMMU_GERROR_IRQ_CFG0); 3169 writeq_relaxed(0, smmu->base + ARM_SMMU_EVTQ_IRQ_CFG0); 3170 3171 if (smmu->features & ARM_SMMU_FEAT_PRI) 3172 writeq_relaxed(0, smmu->base + ARM_SMMU_PRIQ_IRQ_CFG0); 3173 else 3174 nvec--; 3175 3176 if (!(smmu->features & ARM_SMMU_FEAT_MSI)) 3177 return; 3178 3179 if (!dev->msi.domain) { 3180 dev_info(smmu->dev, "msi_domain absent - falling back to wired irqs\n"); 3181 return; 3182 } 3183 3184 /* Allocate MSIs for evtq, gerror and priq. Ignore cmdq */ 3185 ret = platform_msi_domain_alloc_irqs(dev, nvec, arm_smmu_write_msi_msg); 3186 if (ret) { 3187 dev_warn(dev, "failed to allocate MSIs - falling back to wired irqs\n"); 3188 return; 3189 } 3190 3191 smmu->evtq.q.irq = msi_get_virq(dev, EVTQ_MSI_INDEX); 3192 smmu->gerr_irq = msi_get_virq(dev, GERROR_MSI_INDEX); 3193 smmu->priq.q.irq = msi_get_virq(dev, PRIQ_MSI_INDEX); 3194 3195 /* Add callback to free MSIs on teardown */ 3196 devm_add_action(dev, arm_smmu_free_msis, dev); 3197 } 3198 3199 static void arm_smmu_setup_unique_irqs(struct arm_smmu_device *smmu) 3200 { 3201 int irq, ret; 3202 3203 arm_smmu_setup_msis(smmu); 3204 3205 /* Request interrupt lines */ 3206 irq = smmu->evtq.q.irq; 3207 if (irq) { 3208 ret = devm_request_threaded_irq(smmu->dev, irq, NULL, 3209 arm_smmu_evtq_thread, 3210 IRQF_ONESHOT, 3211 "arm-smmu-v3-evtq", smmu); 3212 if (ret < 0) 3213 dev_warn(smmu->dev, "failed to enable evtq irq\n"); 3214 } else { 3215 dev_warn(smmu->dev, "no evtq irq - events will not be reported!\n"); 3216 } 3217 3218 irq = smmu->gerr_irq; 3219 if (irq) { 3220 ret = devm_request_irq(smmu->dev, irq, arm_smmu_gerror_handler, 3221 0, "arm-smmu-v3-gerror", smmu); 3222 if (ret < 0) 3223 dev_warn(smmu->dev, "failed to enable gerror irq\n"); 3224 } else { 3225 dev_warn(smmu->dev, "no gerr irq - errors will not be reported!\n"); 3226 } 3227 3228 if (smmu->features & ARM_SMMU_FEAT_PRI) { 3229 irq = smmu->priq.q.irq; 3230 if (irq) { 3231 ret = devm_request_threaded_irq(smmu->dev, irq, NULL, 3232 arm_smmu_priq_thread, 3233 IRQF_ONESHOT, 3234 "arm-smmu-v3-priq", 3235 smmu); 3236 if (ret < 0) 3237 dev_warn(smmu->dev, 3238 "failed to enable priq irq\n"); 3239 } else { 3240 dev_warn(smmu->dev, "no priq irq - PRI will be broken\n"); 3241 } 3242 } 3243 } 3244 3245 static int arm_smmu_setup_irqs(struct arm_smmu_device *smmu) 3246 { 3247 int ret, irq; 3248 u32 irqen_flags = IRQ_CTRL_EVTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN; 3249 3250 /* Disable IRQs first */ 3251 ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_IRQ_CTRL, 3252 ARM_SMMU_IRQ_CTRLACK); 3253 if (ret) { 3254 dev_err(smmu->dev, "failed to disable irqs\n"); 3255 return ret; 3256 } 3257 3258 irq = smmu->combined_irq; 3259 if (irq) { 3260 /* 3261 * Cavium ThunderX2 implementation doesn't support unique irq 3262 * lines. Use a single irq line for all the SMMUv3 interrupts. 3263 */ 3264 ret = devm_request_threaded_irq(smmu->dev, irq, 3265 arm_smmu_combined_irq_handler, 3266 arm_smmu_combined_irq_thread, 3267 IRQF_ONESHOT, 3268 "arm-smmu-v3-combined-irq", smmu); 3269 if (ret < 0) 3270 dev_warn(smmu->dev, "failed to enable combined irq\n"); 3271 } else 3272 arm_smmu_setup_unique_irqs(smmu); 3273 3274 if (smmu->features & ARM_SMMU_FEAT_PRI) 3275 irqen_flags |= IRQ_CTRL_PRIQ_IRQEN; 3276 3277 /* Enable interrupt generation on the SMMU */ 3278 ret = arm_smmu_write_reg_sync(smmu, irqen_flags, 3279 ARM_SMMU_IRQ_CTRL, ARM_SMMU_IRQ_CTRLACK); 3280 if (ret) 3281 dev_warn(smmu->dev, "failed to enable irqs\n"); 3282 3283 return 0; 3284 } 3285 3286 static int arm_smmu_device_disable(struct arm_smmu_device *smmu) 3287 { 3288 int ret; 3289 3290 ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_CR0, ARM_SMMU_CR0ACK); 3291 if (ret) 3292 dev_err(smmu->dev, "failed to clear cr0\n"); 3293 3294 return ret; 3295 } 3296 3297 static int arm_smmu_device_reset(struct arm_smmu_device *smmu, bool bypass) 3298 { 3299 int ret; 3300 u32 reg, enables; 3301 struct arm_smmu_cmdq_ent cmd; 3302 3303 /* Clear CR0 and sync (disables SMMU and queue processing) */ 3304 reg = readl_relaxed(smmu->base + ARM_SMMU_CR0); 3305 if (reg & CR0_SMMUEN) { 3306 dev_warn(smmu->dev, "SMMU currently enabled! Resetting...\n"); 3307 WARN_ON(is_kdump_kernel() && !disable_bypass); 3308 arm_smmu_update_gbpa(smmu, GBPA_ABORT, 0); 3309 } 3310 3311 ret = arm_smmu_device_disable(smmu); 3312 if (ret) 3313 return ret; 3314 3315 /* CR1 (table and queue memory attributes) */ 3316 reg = FIELD_PREP(CR1_TABLE_SH, ARM_SMMU_SH_ISH) | 3317 FIELD_PREP(CR1_TABLE_OC, CR1_CACHE_WB) | 3318 FIELD_PREP(CR1_TABLE_IC, CR1_CACHE_WB) | 3319 FIELD_PREP(CR1_QUEUE_SH, ARM_SMMU_SH_ISH) | 3320 FIELD_PREP(CR1_QUEUE_OC, CR1_CACHE_WB) | 3321 FIELD_PREP(CR1_QUEUE_IC, CR1_CACHE_WB); 3322 writel_relaxed(reg, smmu->base + ARM_SMMU_CR1); 3323 3324 /* CR2 (random crap) */ 3325 reg = CR2_PTM | CR2_RECINVSID; 3326 3327 if (smmu->features & ARM_SMMU_FEAT_E2H) 3328 reg |= CR2_E2H; 3329 3330 writel_relaxed(reg, smmu->base + ARM_SMMU_CR2); 3331 3332 /* Stream table */ 3333 writeq_relaxed(smmu->strtab_cfg.strtab_base, 3334 smmu->base + ARM_SMMU_STRTAB_BASE); 3335 writel_relaxed(smmu->strtab_cfg.strtab_base_cfg, 3336 smmu->base + ARM_SMMU_STRTAB_BASE_CFG); 3337 3338 /* Command queue */ 3339 writeq_relaxed(smmu->cmdq.q.q_base, smmu->base + ARM_SMMU_CMDQ_BASE); 3340 writel_relaxed(smmu->cmdq.q.llq.prod, smmu->base + ARM_SMMU_CMDQ_PROD); 3341 writel_relaxed(smmu->cmdq.q.llq.cons, smmu->base + ARM_SMMU_CMDQ_CONS); 3342 3343 enables = CR0_CMDQEN; 3344 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0, 3345 ARM_SMMU_CR0ACK); 3346 if (ret) { 3347 dev_err(smmu->dev, "failed to enable command queue\n"); 3348 return ret; 3349 } 3350 3351 /* Invalidate any cached configuration */ 3352 cmd.opcode = CMDQ_OP_CFGI_ALL; 3353 arm_smmu_cmdq_issue_cmd_with_sync(smmu, &cmd); 3354 3355 /* Invalidate any stale TLB entries */ 3356 if (smmu->features & ARM_SMMU_FEAT_HYP) { 3357 cmd.opcode = CMDQ_OP_TLBI_EL2_ALL; 3358 arm_smmu_cmdq_issue_cmd_with_sync(smmu, &cmd); 3359 } 3360 3361 cmd.opcode = CMDQ_OP_TLBI_NSNH_ALL; 3362 arm_smmu_cmdq_issue_cmd_with_sync(smmu, &cmd); 3363 3364 /* Event queue */ 3365 writeq_relaxed(smmu->evtq.q.q_base, smmu->base + ARM_SMMU_EVTQ_BASE); 3366 writel_relaxed(smmu->evtq.q.llq.prod, smmu->page1 + ARM_SMMU_EVTQ_PROD); 3367 writel_relaxed(smmu->evtq.q.llq.cons, smmu->page1 + ARM_SMMU_EVTQ_CONS); 3368 3369 enables |= CR0_EVTQEN; 3370 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0, 3371 ARM_SMMU_CR0ACK); 3372 if (ret) { 3373 dev_err(smmu->dev, "failed to enable event queue\n"); 3374 return ret; 3375 } 3376 3377 /* PRI queue */ 3378 if (smmu->features & ARM_SMMU_FEAT_PRI) { 3379 writeq_relaxed(smmu->priq.q.q_base, 3380 smmu->base + ARM_SMMU_PRIQ_BASE); 3381 writel_relaxed(smmu->priq.q.llq.prod, 3382 smmu->page1 + ARM_SMMU_PRIQ_PROD); 3383 writel_relaxed(smmu->priq.q.llq.cons, 3384 smmu->page1 + ARM_SMMU_PRIQ_CONS); 3385 3386 enables |= CR0_PRIQEN; 3387 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0, 3388 ARM_SMMU_CR0ACK); 3389 if (ret) { 3390 dev_err(smmu->dev, "failed to enable PRI queue\n"); 3391 return ret; 3392 } 3393 } 3394 3395 if (smmu->features & ARM_SMMU_FEAT_ATS) { 3396 enables |= CR0_ATSCHK; 3397 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0, 3398 ARM_SMMU_CR0ACK); 3399 if (ret) { 3400 dev_err(smmu->dev, "failed to enable ATS check\n"); 3401 return ret; 3402 } 3403 } 3404 3405 ret = arm_smmu_setup_irqs(smmu); 3406 if (ret) { 3407 dev_err(smmu->dev, "failed to setup irqs\n"); 3408 return ret; 3409 } 3410 3411 if (is_kdump_kernel()) 3412 enables &= ~(CR0_EVTQEN | CR0_PRIQEN); 3413 3414 /* Enable the SMMU interface, or ensure bypass */ 3415 if (!bypass || disable_bypass) { 3416 enables |= CR0_SMMUEN; 3417 } else { 3418 ret = arm_smmu_update_gbpa(smmu, 0, GBPA_ABORT); 3419 if (ret) 3420 return ret; 3421 } 3422 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0, 3423 ARM_SMMU_CR0ACK); 3424 if (ret) { 3425 dev_err(smmu->dev, "failed to enable SMMU interface\n"); 3426 return ret; 3427 } 3428 3429 return 0; 3430 } 3431 3432 #define IIDR_IMPLEMENTER_ARM 0x43b 3433 #define IIDR_PRODUCTID_ARM_MMU_600 0x483 3434 #define IIDR_PRODUCTID_ARM_MMU_700 0x487 3435 3436 static void arm_smmu_device_iidr_probe(struct arm_smmu_device *smmu) 3437 { 3438 u32 reg; 3439 unsigned int implementer, productid, variant, revision; 3440 3441 reg = readl_relaxed(smmu->base + ARM_SMMU_IIDR); 3442 implementer = FIELD_GET(IIDR_IMPLEMENTER, reg); 3443 productid = FIELD_GET(IIDR_PRODUCTID, reg); 3444 variant = FIELD_GET(IIDR_VARIANT, reg); 3445 revision = FIELD_GET(IIDR_REVISION, reg); 3446 3447 switch (implementer) { 3448 case IIDR_IMPLEMENTER_ARM: 3449 switch (productid) { 3450 case IIDR_PRODUCTID_ARM_MMU_600: 3451 /* Arm erratum 1076982 */ 3452 if (variant == 0 && revision <= 2) 3453 smmu->features &= ~ARM_SMMU_FEAT_SEV; 3454 /* Arm erratum 1209401 */ 3455 if (variant < 2) 3456 smmu->features &= ~ARM_SMMU_FEAT_NESTING; 3457 break; 3458 case IIDR_PRODUCTID_ARM_MMU_700: 3459 /* Arm erratum 2812531 */ 3460 smmu->features &= ~ARM_SMMU_FEAT_BTM; 3461 smmu->options |= ARM_SMMU_OPT_CMDQ_FORCE_SYNC; 3462 /* Arm errata 2268618, 2812531 */ 3463 smmu->features &= ~ARM_SMMU_FEAT_NESTING; 3464 break; 3465 } 3466 break; 3467 } 3468 } 3469 3470 static int arm_smmu_device_hw_probe(struct arm_smmu_device *smmu) 3471 { 3472 u32 reg; 3473 bool coherent = smmu->features & ARM_SMMU_FEAT_COHERENCY; 3474 3475 /* IDR0 */ 3476 reg = readl_relaxed(smmu->base + ARM_SMMU_IDR0); 3477 3478 /* 2-level structures */ 3479 if (FIELD_GET(IDR0_ST_LVL, reg) == IDR0_ST_LVL_2LVL) 3480 smmu->features |= ARM_SMMU_FEAT_2_LVL_STRTAB; 3481 3482 if (reg & IDR0_CD2L) 3483 smmu->features |= ARM_SMMU_FEAT_2_LVL_CDTAB; 3484 3485 /* 3486 * Translation table endianness. 3487 * We currently require the same endianness as the CPU, but this 3488 * could be changed later by adding a new IO_PGTABLE_QUIRK. 3489 */ 3490 switch (FIELD_GET(IDR0_TTENDIAN, reg)) { 3491 case IDR0_TTENDIAN_MIXED: 3492 smmu->features |= ARM_SMMU_FEAT_TT_LE | ARM_SMMU_FEAT_TT_BE; 3493 break; 3494 #ifdef __BIG_ENDIAN 3495 case IDR0_TTENDIAN_BE: 3496 smmu->features |= ARM_SMMU_FEAT_TT_BE; 3497 break; 3498 #else 3499 case IDR0_TTENDIAN_LE: 3500 smmu->features |= ARM_SMMU_FEAT_TT_LE; 3501 break; 3502 #endif 3503 default: 3504 dev_err(smmu->dev, "unknown/unsupported TT endianness!\n"); 3505 return -ENXIO; 3506 } 3507 3508 /* Boolean feature flags */ 3509 if (IS_ENABLED(CONFIG_PCI_PRI) && reg & IDR0_PRI) 3510 smmu->features |= ARM_SMMU_FEAT_PRI; 3511 3512 if (IS_ENABLED(CONFIG_PCI_ATS) && reg & IDR0_ATS) 3513 smmu->features |= ARM_SMMU_FEAT_ATS; 3514 3515 if (reg & IDR0_SEV) 3516 smmu->features |= ARM_SMMU_FEAT_SEV; 3517 3518 if (reg & IDR0_MSI) { 3519 smmu->features |= ARM_SMMU_FEAT_MSI; 3520 if (coherent && !disable_msipolling) 3521 smmu->options |= ARM_SMMU_OPT_MSIPOLL; 3522 } 3523 3524 if (reg & IDR0_HYP) { 3525 smmu->features |= ARM_SMMU_FEAT_HYP; 3526 if (cpus_have_cap(ARM64_HAS_VIRT_HOST_EXTN)) 3527 smmu->features |= ARM_SMMU_FEAT_E2H; 3528 } 3529 3530 /* 3531 * The coherency feature as set by FW is used in preference to the ID 3532 * register, but warn on mismatch. 3533 */ 3534 if (!!(reg & IDR0_COHACC) != coherent) 3535 dev_warn(smmu->dev, "IDR0.COHACC overridden by FW configuration (%s)\n", 3536 coherent ? "true" : "false"); 3537 3538 switch (FIELD_GET(IDR0_STALL_MODEL, reg)) { 3539 case IDR0_STALL_MODEL_FORCE: 3540 smmu->features |= ARM_SMMU_FEAT_STALL_FORCE; 3541 fallthrough; 3542 case IDR0_STALL_MODEL_STALL: 3543 smmu->features |= ARM_SMMU_FEAT_STALLS; 3544 } 3545 3546 if (reg & IDR0_S1P) 3547 smmu->features |= ARM_SMMU_FEAT_TRANS_S1; 3548 3549 if (reg & IDR0_S2P) 3550 smmu->features |= ARM_SMMU_FEAT_TRANS_S2; 3551 3552 if (!(reg & (IDR0_S1P | IDR0_S2P))) { 3553 dev_err(smmu->dev, "no translation support!\n"); 3554 return -ENXIO; 3555 } 3556 3557 /* We only support the AArch64 table format at present */ 3558 switch (FIELD_GET(IDR0_TTF, reg)) { 3559 case IDR0_TTF_AARCH32_64: 3560 smmu->ias = 40; 3561 fallthrough; 3562 case IDR0_TTF_AARCH64: 3563 break; 3564 default: 3565 dev_err(smmu->dev, "AArch64 table format not supported!\n"); 3566 return -ENXIO; 3567 } 3568 3569 /* ASID/VMID sizes */ 3570 smmu->asid_bits = reg & IDR0_ASID16 ? 16 : 8; 3571 smmu->vmid_bits = reg & IDR0_VMID16 ? 16 : 8; 3572 3573 /* IDR1 */ 3574 reg = readl_relaxed(smmu->base + ARM_SMMU_IDR1); 3575 if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) { 3576 dev_err(smmu->dev, "embedded implementation not supported\n"); 3577 return -ENXIO; 3578 } 3579 3580 /* Queue sizes, capped to ensure natural alignment */ 3581 smmu->cmdq.q.llq.max_n_shift = min_t(u32, CMDQ_MAX_SZ_SHIFT, 3582 FIELD_GET(IDR1_CMDQS, reg)); 3583 if (smmu->cmdq.q.llq.max_n_shift <= ilog2(CMDQ_BATCH_ENTRIES)) { 3584 /* 3585 * We don't support splitting up batches, so one batch of 3586 * commands plus an extra sync needs to fit inside the command 3587 * queue. There's also no way we can handle the weird alignment 3588 * restrictions on the base pointer for a unit-length queue. 3589 */ 3590 dev_err(smmu->dev, "command queue size <= %d entries not supported\n", 3591 CMDQ_BATCH_ENTRIES); 3592 return -ENXIO; 3593 } 3594 3595 smmu->evtq.q.llq.max_n_shift = min_t(u32, EVTQ_MAX_SZ_SHIFT, 3596 FIELD_GET(IDR1_EVTQS, reg)); 3597 smmu->priq.q.llq.max_n_shift = min_t(u32, PRIQ_MAX_SZ_SHIFT, 3598 FIELD_GET(IDR1_PRIQS, reg)); 3599 3600 /* SID/SSID sizes */ 3601 smmu->ssid_bits = FIELD_GET(IDR1_SSIDSIZE, reg); 3602 smmu->sid_bits = FIELD_GET(IDR1_SIDSIZE, reg); 3603 smmu->iommu.max_pasids = 1UL << smmu->ssid_bits; 3604 3605 /* 3606 * If the SMMU supports fewer bits than would fill a single L2 stream 3607 * table, use a linear table instead. 3608 */ 3609 if (smmu->sid_bits <= STRTAB_SPLIT) 3610 smmu->features &= ~ARM_SMMU_FEAT_2_LVL_STRTAB; 3611 3612 /* IDR3 */ 3613 reg = readl_relaxed(smmu->base + ARM_SMMU_IDR3); 3614 if (FIELD_GET(IDR3_RIL, reg)) 3615 smmu->features |= ARM_SMMU_FEAT_RANGE_INV; 3616 3617 /* IDR5 */ 3618 reg = readl_relaxed(smmu->base + ARM_SMMU_IDR5); 3619 3620 /* Maximum number of outstanding stalls */ 3621 smmu->evtq.max_stalls = FIELD_GET(IDR5_STALL_MAX, reg); 3622 3623 /* Page sizes */ 3624 if (reg & IDR5_GRAN64K) 3625 smmu->pgsize_bitmap |= SZ_64K | SZ_512M; 3626 if (reg & IDR5_GRAN16K) 3627 smmu->pgsize_bitmap |= SZ_16K | SZ_32M; 3628 if (reg & IDR5_GRAN4K) 3629 smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G; 3630 3631 /* Input address size */ 3632 if (FIELD_GET(IDR5_VAX, reg) == IDR5_VAX_52_BIT) 3633 smmu->features |= ARM_SMMU_FEAT_VAX; 3634 3635 /* Output address size */ 3636 switch (FIELD_GET(IDR5_OAS, reg)) { 3637 case IDR5_OAS_32_BIT: 3638 smmu->oas = 32; 3639 break; 3640 case IDR5_OAS_36_BIT: 3641 smmu->oas = 36; 3642 break; 3643 case IDR5_OAS_40_BIT: 3644 smmu->oas = 40; 3645 break; 3646 case IDR5_OAS_42_BIT: 3647 smmu->oas = 42; 3648 break; 3649 case IDR5_OAS_44_BIT: 3650 smmu->oas = 44; 3651 break; 3652 case IDR5_OAS_52_BIT: 3653 smmu->oas = 52; 3654 smmu->pgsize_bitmap |= 1ULL << 42; /* 4TB */ 3655 break; 3656 default: 3657 dev_info(smmu->dev, 3658 "unknown output address size. Truncating to 48-bit\n"); 3659 fallthrough; 3660 case IDR5_OAS_48_BIT: 3661 smmu->oas = 48; 3662 } 3663 3664 if (arm_smmu_ops.pgsize_bitmap == -1UL) 3665 arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap; 3666 else 3667 arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap; 3668 3669 /* Set the DMA mask for our table walker */ 3670 if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(smmu->oas))) 3671 dev_warn(smmu->dev, 3672 "failed to set DMA mask for table walker\n"); 3673 3674 smmu->ias = max(smmu->ias, smmu->oas); 3675 3676 if ((smmu->features & ARM_SMMU_FEAT_TRANS_S1) && 3677 (smmu->features & ARM_SMMU_FEAT_TRANS_S2)) 3678 smmu->features |= ARM_SMMU_FEAT_NESTING; 3679 3680 arm_smmu_device_iidr_probe(smmu); 3681 3682 if (arm_smmu_sva_supported(smmu)) 3683 smmu->features |= ARM_SMMU_FEAT_SVA; 3684 3685 dev_info(smmu->dev, "ias %lu-bit, oas %lu-bit (features 0x%08x)\n", 3686 smmu->ias, smmu->oas, smmu->features); 3687 return 0; 3688 } 3689 3690 #ifdef CONFIG_ACPI 3691 static void acpi_smmu_get_options(u32 model, struct arm_smmu_device *smmu) 3692 { 3693 switch (model) { 3694 case ACPI_IORT_SMMU_V3_CAVIUM_CN99XX: 3695 smmu->options |= ARM_SMMU_OPT_PAGE0_REGS_ONLY; 3696 break; 3697 case ACPI_IORT_SMMU_V3_HISILICON_HI161X: 3698 smmu->options |= ARM_SMMU_OPT_SKIP_PREFETCH; 3699 break; 3700 } 3701 3702 dev_notice(smmu->dev, "option mask 0x%x\n", smmu->options); 3703 } 3704 3705 static int arm_smmu_device_acpi_probe(struct platform_device *pdev, 3706 struct arm_smmu_device *smmu) 3707 { 3708 struct acpi_iort_smmu_v3 *iort_smmu; 3709 struct device *dev = smmu->dev; 3710 struct acpi_iort_node *node; 3711 3712 node = *(struct acpi_iort_node **)dev_get_platdata(dev); 3713 3714 /* Retrieve SMMUv3 specific data */ 3715 iort_smmu = (struct acpi_iort_smmu_v3 *)node->node_data; 3716 3717 acpi_smmu_get_options(iort_smmu->model, smmu); 3718 3719 if (iort_smmu->flags & ACPI_IORT_SMMU_V3_COHACC_OVERRIDE) 3720 smmu->features |= ARM_SMMU_FEAT_COHERENCY; 3721 3722 return 0; 3723 } 3724 #else 3725 static inline int arm_smmu_device_acpi_probe(struct platform_device *pdev, 3726 struct arm_smmu_device *smmu) 3727 { 3728 return -ENODEV; 3729 } 3730 #endif 3731 3732 static int arm_smmu_device_dt_probe(struct platform_device *pdev, 3733 struct arm_smmu_device *smmu) 3734 { 3735 struct device *dev = &pdev->dev; 3736 u32 cells; 3737 int ret = -EINVAL; 3738 3739 if (of_property_read_u32(dev->of_node, "#iommu-cells", &cells)) 3740 dev_err(dev, "missing #iommu-cells property\n"); 3741 else if (cells != 1) 3742 dev_err(dev, "invalid #iommu-cells value (%d)\n", cells); 3743 else 3744 ret = 0; 3745 3746 parse_driver_options(smmu); 3747 3748 if (of_dma_is_coherent(dev->of_node)) 3749 smmu->features |= ARM_SMMU_FEAT_COHERENCY; 3750 3751 return ret; 3752 } 3753 3754 static unsigned long arm_smmu_resource_size(struct arm_smmu_device *smmu) 3755 { 3756 if (smmu->options & ARM_SMMU_OPT_PAGE0_REGS_ONLY) 3757 return SZ_64K; 3758 else 3759 return SZ_128K; 3760 } 3761 3762 static void __iomem *arm_smmu_ioremap(struct device *dev, resource_size_t start, 3763 resource_size_t size) 3764 { 3765 struct resource res = DEFINE_RES_MEM(start, size); 3766 3767 return devm_ioremap_resource(dev, &res); 3768 } 3769 3770 static void arm_smmu_rmr_install_bypass_ste(struct arm_smmu_device *smmu) 3771 { 3772 struct list_head rmr_list; 3773 struct iommu_resv_region *e; 3774 3775 INIT_LIST_HEAD(&rmr_list); 3776 iort_get_rmr_sids(dev_fwnode(smmu->dev), &rmr_list); 3777 3778 list_for_each_entry(e, &rmr_list, list) { 3779 __le64 *step; 3780 struct iommu_iort_rmr_data *rmr; 3781 int ret, i; 3782 3783 rmr = container_of(e, struct iommu_iort_rmr_data, rr); 3784 for (i = 0; i < rmr->num_sids; i++) { 3785 ret = arm_smmu_init_sid_strtab(smmu, rmr->sids[i]); 3786 if (ret) { 3787 dev_err(smmu->dev, "RMR SID(0x%x) bypass failed\n", 3788 rmr->sids[i]); 3789 continue; 3790 } 3791 3792 step = arm_smmu_get_step_for_sid(smmu, rmr->sids[i]); 3793 arm_smmu_init_bypass_stes(step, 1, true); 3794 } 3795 } 3796 3797 iort_put_rmr_sids(dev_fwnode(smmu->dev), &rmr_list); 3798 } 3799 3800 static int arm_smmu_device_probe(struct platform_device *pdev) 3801 { 3802 int irq, ret; 3803 struct resource *res; 3804 resource_size_t ioaddr; 3805 struct arm_smmu_device *smmu; 3806 struct device *dev = &pdev->dev; 3807 bool bypass; 3808 3809 smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL); 3810 if (!smmu) 3811 return -ENOMEM; 3812 smmu->dev = dev; 3813 3814 if (dev->of_node) { 3815 ret = arm_smmu_device_dt_probe(pdev, smmu); 3816 } else { 3817 ret = arm_smmu_device_acpi_probe(pdev, smmu); 3818 if (ret == -ENODEV) 3819 return ret; 3820 } 3821 3822 /* Set bypass mode according to firmware probing result */ 3823 bypass = !!ret; 3824 3825 /* Base address */ 3826 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 3827 if (!res) 3828 return -EINVAL; 3829 if (resource_size(res) < arm_smmu_resource_size(smmu)) { 3830 dev_err(dev, "MMIO region too small (%pr)\n", res); 3831 return -EINVAL; 3832 } 3833 ioaddr = res->start; 3834 3835 /* 3836 * Don't map the IMPLEMENTATION DEFINED regions, since they may contain 3837 * the PMCG registers which are reserved by the PMU driver. 3838 */ 3839 smmu->base = arm_smmu_ioremap(dev, ioaddr, ARM_SMMU_REG_SZ); 3840 if (IS_ERR(smmu->base)) 3841 return PTR_ERR(smmu->base); 3842 3843 if (arm_smmu_resource_size(smmu) > SZ_64K) { 3844 smmu->page1 = arm_smmu_ioremap(dev, ioaddr + SZ_64K, 3845 ARM_SMMU_REG_SZ); 3846 if (IS_ERR(smmu->page1)) 3847 return PTR_ERR(smmu->page1); 3848 } else { 3849 smmu->page1 = smmu->base; 3850 } 3851 3852 /* Interrupt lines */ 3853 3854 irq = platform_get_irq_byname_optional(pdev, "combined"); 3855 if (irq > 0) 3856 smmu->combined_irq = irq; 3857 else { 3858 irq = platform_get_irq_byname_optional(pdev, "eventq"); 3859 if (irq > 0) 3860 smmu->evtq.q.irq = irq; 3861 3862 irq = platform_get_irq_byname_optional(pdev, "priq"); 3863 if (irq > 0) 3864 smmu->priq.q.irq = irq; 3865 3866 irq = platform_get_irq_byname_optional(pdev, "gerror"); 3867 if (irq > 0) 3868 smmu->gerr_irq = irq; 3869 } 3870 /* Probe the h/w */ 3871 ret = arm_smmu_device_hw_probe(smmu); 3872 if (ret) 3873 return ret; 3874 3875 /* Initialise in-memory data structures */ 3876 ret = arm_smmu_init_structures(smmu); 3877 if (ret) 3878 return ret; 3879 3880 /* Record our private device structure */ 3881 platform_set_drvdata(pdev, smmu); 3882 3883 /* Check for RMRs and install bypass STEs if any */ 3884 arm_smmu_rmr_install_bypass_ste(smmu); 3885 3886 /* Reset the device */ 3887 ret = arm_smmu_device_reset(smmu, bypass); 3888 if (ret) 3889 return ret; 3890 3891 /* And we're up. Go go go! */ 3892 ret = iommu_device_sysfs_add(&smmu->iommu, dev, NULL, 3893 "smmu3.%pa", &ioaddr); 3894 if (ret) 3895 return ret; 3896 3897 ret = iommu_device_register(&smmu->iommu, &arm_smmu_ops, dev); 3898 if (ret) { 3899 dev_err(dev, "Failed to register iommu\n"); 3900 iommu_device_sysfs_remove(&smmu->iommu); 3901 return ret; 3902 } 3903 3904 return 0; 3905 } 3906 3907 static void arm_smmu_device_remove(struct platform_device *pdev) 3908 { 3909 struct arm_smmu_device *smmu = platform_get_drvdata(pdev); 3910 3911 iommu_device_unregister(&smmu->iommu); 3912 iommu_device_sysfs_remove(&smmu->iommu); 3913 arm_smmu_device_disable(smmu); 3914 iopf_queue_free(smmu->evtq.iopf); 3915 ida_destroy(&smmu->vmid_map); 3916 } 3917 3918 static void arm_smmu_device_shutdown(struct platform_device *pdev) 3919 { 3920 struct arm_smmu_device *smmu = platform_get_drvdata(pdev); 3921 3922 arm_smmu_device_disable(smmu); 3923 } 3924 3925 static const struct of_device_id arm_smmu_of_match[] = { 3926 { .compatible = "arm,smmu-v3", }, 3927 { }, 3928 }; 3929 MODULE_DEVICE_TABLE(of, arm_smmu_of_match); 3930 3931 static void arm_smmu_driver_unregister(struct platform_driver *drv) 3932 { 3933 arm_smmu_sva_notifier_synchronize(); 3934 platform_driver_unregister(drv); 3935 } 3936 3937 static struct platform_driver arm_smmu_driver = { 3938 .driver = { 3939 .name = "arm-smmu-v3", 3940 .of_match_table = arm_smmu_of_match, 3941 .suppress_bind_attrs = true, 3942 }, 3943 .probe = arm_smmu_device_probe, 3944 .remove_new = arm_smmu_device_remove, 3945 .shutdown = arm_smmu_device_shutdown, 3946 }; 3947 module_driver(arm_smmu_driver, platform_driver_register, 3948 arm_smmu_driver_unregister); 3949 3950 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMUv3 implementations"); 3951 MODULE_AUTHOR("Will Deacon <will@kernel.org>"); 3952 MODULE_ALIAS("platform:arm-smmu-v3"); 3953 MODULE_LICENSE("GPL v2"); 3954