xref: /openbmc/linux/drivers/iommu/amd/iommu.c (revision f59a3ee6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
4  * Author: Joerg Roedel <jroedel@suse.de>
5  *         Leo Duran <leo.duran@amd.com>
6  */
7 
8 #define pr_fmt(fmt)     "AMD-Vi: " fmt
9 #define dev_fmt(fmt)    pr_fmt(fmt)
10 
11 #include <linux/ratelimit.h>
12 #include <linux/pci.h>
13 #include <linux/acpi.h>
14 #include <linux/pci-ats.h>
15 #include <linux/bitmap.h>
16 #include <linux/slab.h>
17 #include <linux/debugfs.h>
18 #include <linux/scatterlist.h>
19 #include <linux/dma-map-ops.h>
20 #include <linux/dma-direct.h>
21 #include <linux/iommu-helper.h>
22 #include <linux/delay.h>
23 #include <linux/amd-iommu.h>
24 #include <linux/notifier.h>
25 #include <linux/export.h>
26 #include <linux/irq.h>
27 #include <linux/msi.h>
28 #include <linux/irqdomain.h>
29 #include <linux/percpu.h>
30 #include <linux/io-pgtable.h>
31 #include <linux/cc_platform.h>
32 #include <asm/irq_remapping.h>
33 #include <asm/io_apic.h>
34 #include <asm/apic.h>
35 #include <asm/hw_irq.h>
36 #include <asm/proto.h>
37 #include <asm/iommu.h>
38 #include <asm/gart.h>
39 #include <asm/dma.h>
40 
41 #include "amd_iommu.h"
42 #include "../dma-iommu.h"
43 #include "../irq_remapping.h"
44 
45 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
46 
47 #define LOOP_TIMEOUT	100000
48 
49 /* IO virtual address start page frame number */
50 #define IOVA_START_PFN		(1)
51 #define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)
52 
53 /* Reserved IOVA ranges */
54 #define MSI_RANGE_START		(0xfee00000)
55 #define MSI_RANGE_END		(0xfeefffff)
56 #define HT_RANGE_START		(0xfd00000000ULL)
57 #define HT_RANGE_END		(0xffffffffffULL)
58 
59 #define DEFAULT_PGTABLE_LEVEL	PAGE_MODE_3_LEVEL
60 
61 static DEFINE_SPINLOCK(pd_bitmap_lock);
62 
63 LIST_HEAD(ioapic_map);
64 LIST_HEAD(hpet_map);
65 LIST_HEAD(acpihid_map);
66 
67 const struct iommu_ops amd_iommu_ops;
68 
69 static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
70 int amd_iommu_max_glx_val = -1;
71 
72 /*
73  * general struct to manage commands send to an IOMMU
74  */
75 struct iommu_cmd {
76 	u32 data[4];
77 };
78 
79 struct kmem_cache *amd_iommu_irq_cache;
80 
81 static void detach_device(struct device *dev);
82 static int domain_enable_v2(struct protection_domain *domain, int pasids);
83 
84 /****************************************************************************
85  *
86  * Helper functions
87  *
88  ****************************************************************************/
89 
90 static inline int get_acpihid_device_id(struct device *dev,
91 					struct acpihid_map_entry **entry)
92 {
93 	struct acpi_device *adev = ACPI_COMPANION(dev);
94 	struct acpihid_map_entry *p;
95 
96 	if (!adev)
97 		return -ENODEV;
98 
99 	list_for_each_entry(p, &acpihid_map, list) {
100 		if (acpi_dev_hid_uid_match(adev, p->hid,
101 					   p->uid[0] ? p->uid : NULL)) {
102 			if (entry)
103 				*entry = p;
104 			return p->devid;
105 		}
106 	}
107 	return -EINVAL;
108 }
109 
110 static inline int get_device_sbdf_id(struct device *dev)
111 {
112 	int sbdf;
113 
114 	if (dev_is_pci(dev))
115 		sbdf = get_pci_sbdf_id(to_pci_dev(dev));
116 	else
117 		sbdf = get_acpihid_device_id(dev, NULL);
118 
119 	return sbdf;
120 }
121 
122 struct dev_table_entry *get_dev_table(struct amd_iommu *iommu)
123 {
124 	struct dev_table_entry *dev_table;
125 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
126 
127 	BUG_ON(pci_seg == NULL);
128 	dev_table = pci_seg->dev_table;
129 	BUG_ON(dev_table == NULL);
130 
131 	return dev_table;
132 }
133 
134 static inline u16 get_device_segment(struct device *dev)
135 {
136 	u16 seg;
137 
138 	if (dev_is_pci(dev)) {
139 		struct pci_dev *pdev = to_pci_dev(dev);
140 
141 		seg = pci_domain_nr(pdev->bus);
142 	} else {
143 		u32 devid = get_acpihid_device_id(dev, NULL);
144 
145 		seg = PCI_SBDF_TO_SEGID(devid);
146 	}
147 
148 	return seg;
149 }
150 
151 /* Writes the specific IOMMU for a device into the PCI segment rlookup table */
152 void amd_iommu_set_rlookup_table(struct amd_iommu *iommu, u16 devid)
153 {
154 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
155 
156 	pci_seg->rlookup_table[devid] = iommu;
157 }
158 
159 static struct amd_iommu *__rlookup_amd_iommu(u16 seg, u16 devid)
160 {
161 	struct amd_iommu_pci_seg *pci_seg;
162 
163 	for_each_pci_segment(pci_seg) {
164 		if (pci_seg->id == seg)
165 			return pci_seg->rlookup_table[devid];
166 	}
167 	return NULL;
168 }
169 
170 static struct amd_iommu *rlookup_amd_iommu(struct device *dev)
171 {
172 	u16 seg = get_device_segment(dev);
173 	int devid = get_device_sbdf_id(dev);
174 
175 	if (devid < 0)
176 		return NULL;
177 	return __rlookup_amd_iommu(seg, PCI_SBDF_TO_DEVID(devid));
178 }
179 
180 static struct protection_domain *to_pdomain(struct iommu_domain *dom)
181 {
182 	return container_of(dom, struct protection_domain, domain);
183 }
184 
185 static struct iommu_dev_data *alloc_dev_data(struct amd_iommu *iommu, u16 devid)
186 {
187 	struct iommu_dev_data *dev_data;
188 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
189 
190 	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
191 	if (!dev_data)
192 		return NULL;
193 
194 	spin_lock_init(&dev_data->lock);
195 	dev_data->devid = devid;
196 	ratelimit_default_init(&dev_data->rs);
197 
198 	llist_add(&dev_data->dev_data_list, &pci_seg->dev_data_list);
199 	return dev_data;
200 }
201 
202 static struct iommu_dev_data *search_dev_data(struct amd_iommu *iommu, u16 devid)
203 {
204 	struct iommu_dev_data *dev_data;
205 	struct llist_node *node;
206 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
207 
208 	if (llist_empty(&pci_seg->dev_data_list))
209 		return NULL;
210 
211 	node = pci_seg->dev_data_list.first;
212 	llist_for_each_entry(dev_data, node, dev_data_list) {
213 		if (dev_data->devid == devid)
214 			return dev_data;
215 	}
216 
217 	return NULL;
218 }
219 
220 static int clone_alias(struct pci_dev *pdev, u16 alias, void *data)
221 {
222 	struct amd_iommu *iommu;
223 	struct dev_table_entry *dev_table;
224 	u16 devid = pci_dev_id(pdev);
225 
226 	if (devid == alias)
227 		return 0;
228 
229 	iommu = rlookup_amd_iommu(&pdev->dev);
230 	if (!iommu)
231 		return 0;
232 
233 	amd_iommu_set_rlookup_table(iommu, alias);
234 	dev_table = get_dev_table(iommu);
235 	memcpy(dev_table[alias].data,
236 	       dev_table[devid].data,
237 	       sizeof(dev_table[alias].data));
238 
239 	return 0;
240 }
241 
242 static void clone_aliases(struct amd_iommu *iommu, struct device *dev)
243 {
244 	struct pci_dev *pdev;
245 
246 	if (!dev_is_pci(dev))
247 		return;
248 	pdev = to_pci_dev(dev);
249 
250 	/*
251 	 * The IVRS alias stored in the alias table may not be
252 	 * part of the PCI DMA aliases if it's bus differs
253 	 * from the original device.
254 	 */
255 	clone_alias(pdev, iommu->pci_seg->alias_table[pci_dev_id(pdev)], NULL);
256 
257 	pci_for_each_dma_alias(pdev, clone_alias, NULL);
258 }
259 
260 static void setup_aliases(struct amd_iommu *iommu, struct device *dev)
261 {
262 	struct pci_dev *pdev = to_pci_dev(dev);
263 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
264 	u16 ivrs_alias;
265 
266 	/* For ACPI HID devices, there are no aliases */
267 	if (!dev_is_pci(dev))
268 		return;
269 
270 	/*
271 	 * Add the IVRS alias to the pci aliases if it is on the same
272 	 * bus. The IVRS table may know about a quirk that we don't.
273 	 */
274 	ivrs_alias = pci_seg->alias_table[pci_dev_id(pdev)];
275 	if (ivrs_alias != pci_dev_id(pdev) &&
276 	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number)
277 		pci_add_dma_alias(pdev, ivrs_alias & 0xff, 1);
278 
279 	clone_aliases(iommu, dev);
280 }
281 
282 static struct iommu_dev_data *find_dev_data(struct amd_iommu *iommu, u16 devid)
283 {
284 	struct iommu_dev_data *dev_data;
285 
286 	dev_data = search_dev_data(iommu, devid);
287 
288 	if (dev_data == NULL) {
289 		dev_data = alloc_dev_data(iommu, devid);
290 		if (!dev_data)
291 			return NULL;
292 
293 		if (translation_pre_enabled(iommu))
294 			dev_data->defer_attach = true;
295 	}
296 
297 	return dev_data;
298 }
299 
300 /*
301 * Find or create an IOMMU group for a acpihid device.
302 */
303 static struct iommu_group *acpihid_device_group(struct device *dev)
304 {
305 	struct acpihid_map_entry *p, *entry = NULL;
306 	int devid;
307 
308 	devid = get_acpihid_device_id(dev, &entry);
309 	if (devid < 0)
310 		return ERR_PTR(devid);
311 
312 	list_for_each_entry(p, &acpihid_map, list) {
313 		if ((devid == p->devid) && p->group)
314 			entry->group = p->group;
315 	}
316 
317 	if (!entry->group)
318 		entry->group = generic_device_group(dev);
319 	else
320 		iommu_group_ref_get(entry->group);
321 
322 	return entry->group;
323 }
324 
325 static bool pci_iommuv2_capable(struct pci_dev *pdev)
326 {
327 	static const int caps[] = {
328 		PCI_EXT_CAP_ID_PRI,
329 		PCI_EXT_CAP_ID_PASID,
330 	};
331 	int i, pos;
332 
333 	if (!pci_ats_supported(pdev))
334 		return false;
335 
336 	for (i = 0; i < 2; ++i) {
337 		pos = pci_find_ext_capability(pdev, caps[i]);
338 		if (pos == 0)
339 			return false;
340 	}
341 
342 	return true;
343 }
344 
345 /*
346  * This function checks if the driver got a valid device from the caller to
347  * avoid dereferencing invalid pointers.
348  */
349 static bool check_device(struct device *dev)
350 {
351 	struct amd_iommu_pci_seg *pci_seg;
352 	struct amd_iommu *iommu;
353 	int devid, sbdf;
354 
355 	if (!dev)
356 		return false;
357 
358 	sbdf = get_device_sbdf_id(dev);
359 	if (sbdf < 0)
360 		return false;
361 	devid = PCI_SBDF_TO_DEVID(sbdf);
362 
363 	iommu = rlookup_amd_iommu(dev);
364 	if (!iommu)
365 		return false;
366 
367 	/* Out of our scope? */
368 	pci_seg = iommu->pci_seg;
369 	if (devid > pci_seg->last_bdf)
370 		return false;
371 
372 	return true;
373 }
374 
375 static int iommu_init_device(struct amd_iommu *iommu, struct device *dev)
376 {
377 	struct iommu_dev_data *dev_data;
378 	int devid, sbdf;
379 
380 	if (dev_iommu_priv_get(dev))
381 		return 0;
382 
383 	sbdf = get_device_sbdf_id(dev);
384 	if (sbdf < 0)
385 		return sbdf;
386 
387 	devid = PCI_SBDF_TO_DEVID(sbdf);
388 	dev_data = find_dev_data(iommu, devid);
389 	if (!dev_data)
390 		return -ENOMEM;
391 
392 	dev_data->dev = dev;
393 	setup_aliases(iommu, dev);
394 
395 	/*
396 	 * By default we use passthrough mode for IOMMUv2 capable device.
397 	 * But if amd_iommu=force_isolation is set (e.g. to debug DMA to
398 	 * invalid address), we ignore the capability for the device so
399 	 * it'll be forced to go into translation mode.
400 	 */
401 	if ((iommu_default_passthrough() || !amd_iommu_force_isolation) &&
402 	    dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
403 		dev_data->iommu_v2 = iommu->is_iommu_v2;
404 	}
405 
406 	dev_iommu_priv_set(dev, dev_data);
407 
408 	return 0;
409 }
410 
411 static void iommu_ignore_device(struct amd_iommu *iommu, struct device *dev)
412 {
413 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
414 	struct dev_table_entry *dev_table = get_dev_table(iommu);
415 	int devid, sbdf;
416 
417 	sbdf = get_device_sbdf_id(dev);
418 	if (sbdf < 0)
419 		return;
420 
421 	devid = PCI_SBDF_TO_DEVID(sbdf);
422 	pci_seg->rlookup_table[devid] = NULL;
423 	memset(&dev_table[devid], 0, sizeof(struct dev_table_entry));
424 
425 	setup_aliases(iommu, dev);
426 }
427 
428 static void amd_iommu_uninit_device(struct device *dev)
429 {
430 	struct iommu_dev_data *dev_data;
431 
432 	dev_data = dev_iommu_priv_get(dev);
433 	if (!dev_data)
434 		return;
435 
436 	if (dev_data->domain)
437 		detach_device(dev);
438 
439 	dev_iommu_priv_set(dev, NULL);
440 
441 	/*
442 	 * We keep dev_data around for unplugged devices and reuse it when the
443 	 * device is re-plugged - not doing so would introduce a ton of races.
444 	 */
445 }
446 
447 /****************************************************************************
448  *
449  * Interrupt handling functions
450  *
451  ****************************************************************************/
452 
453 static void dump_dte_entry(struct amd_iommu *iommu, u16 devid)
454 {
455 	int i;
456 	struct dev_table_entry *dev_table = get_dev_table(iommu);
457 
458 	for (i = 0; i < 4; ++i)
459 		pr_err("DTE[%d]: %016llx\n", i, dev_table[devid].data[i]);
460 }
461 
462 static void dump_command(unsigned long phys_addr)
463 {
464 	struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
465 	int i;
466 
467 	for (i = 0; i < 4; ++i)
468 		pr_err("CMD[%d]: %08x\n", i, cmd->data[i]);
469 }
470 
471 static void amd_iommu_report_rmp_hw_error(struct amd_iommu *iommu, volatile u32 *event)
472 {
473 	struct iommu_dev_data *dev_data = NULL;
474 	int devid, vmg_tag, flags;
475 	struct pci_dev *pdev;
476 	u64 spa;
477 
478 	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
479 	vmg_tag = (event[1]) & 0xFFFF;
480 	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
481 	spa     = ((u64)event[3] << 32) | (event[2] & 0xFFFFFFF8);
482 
483 	pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
484 					   devid & 0xff);
485 	if (pdev)
486 		dev_data = dev_iommu_priv_get(&pdev->dev);
487 
488 	if (dev_data) {
489 		if (__ratelimit(&dev_data->rs)) {
490 			pci_err(pdev, "Event logged [RMP_HW_ERROR vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n",
491 				vmg_tag, spa, flags);
492 		}
493 	} else {
494 		pr_err_ratelimited("Event logged [RMP_HW_ERROR device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n",
495 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
496 			vmg_tag, spa, flags);
497 	}
498 
499 	if (pdev)
500 		pci_dev_put(pdev);
501 }
502 
503 static void amd_iommu_report_rmp_fault(struct amd_iommu *iommu, volatile u32 *event)
504 {
505 	struct iommu_dev_data *dev_data = NULL;
506 	int devid, flags_rmp, vmg_tag, flags;
507 	struct pci_dev *pdev;
508 	u64 gpa;
509 
510 	devid     = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
511 	flags_rmp = (event[0] >> EVENT_FLAGS_SHIFT) & 0xFF;
512 	vmg_tag   = (event[1]) & 0xFFFF;
513 	flags     = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
514 	gpa       = ((u64)event[3] << 32) | event[2];
515 
516 	pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
517 					   devid & 0xff);
518 	if (pdev)
519 		dev_data = dev_iommu_priv_get(&pdev->dev);
520 
521 	if (dev_data) {
522 		if (__ratelimit(&dev_data->rs)) {
523 			pci_err(pdev, "Event logged [RMP_PAGE_FAULT vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n",
524 				vmg_tag, gpa, flags_rmp, flags);
525 		}
526 	} else {
527 		pr_err_ratelimited("Event logged [RMP_PAGE_FAULT device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n",
528 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
529 			vmg_tag, gpa, flags_rmp, flags);
530 	}
531 
532 	if (pdev)
533 		pci_dev_put(pdev);
534 }
535 
536 #define IS_IOMMU_MEM_TRANSACTION(flags)		\
537 	(((flags) & EVENT_FLAG_I) == 0)
538 
539 #define IS_WRITE_REQUEST(flags)			\
540 	((flags) & EVENT_FLAG_RW)
541 
542 static void amd_iommu_report_page_fault(struct amd_iommu *iommu,
543 					u16 devid, u16 domain_id,
544 					u64 address, int flags)
545 {
546 	struct iommu_dev_data *dev_data = NULL;
547 	struct pci_dev *pdev;
548 
549 	pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
550 					   devid & 0xff);
551 	if (pdev)
552 		dev_data = dev_iommu_priv_get(&pdev->dev);
553 
554 	if (dev_data) {
555 		/*
556 		 * If this is a DMA fault (for which the I(nterrupt)
557 		 * bit will be unset), allow report_iommu_fault() to
558 		 * prevent logging it.
559 		 */
560 		if (IS_IOMMU_MEM_TRANSACTION(flags)) {
561 			if (!report_iommu_fault(&dev_data->domain->domain,
562 						&pdev->dev, address,
563 						IS_WRITE_REQUEST(flags) ?
564 							IOMMU_FAULT_WRITE :
565 							IOMMU_FAULT_READ))
566 				goto out;
567 		}
568 
569 		if (__ratelimit(&dev_data->rs)) {
570 			pci_err(pdev, "Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%llx flags=0x%04x]\n",
571 				domain_id, address, flags);
572 		}
573 	} else {
574 		pr_err_ratelimited("Event logged [IO_PAGE_FAULT device=%04x:%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n",
575 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
576 			domain_id, address, flags);
577 	}
578 
579 out:
580 	if (pdev)
581 		pci_dev_put(pdev);
582 }
583 
584 static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
585 {
586 	struct device *dev = iommu->iommu.dev;
587 	int type, devid, flags, tag;
588 	volatile u32 *event = __evt;
589 	int count = 0;
590 	u64 address;
591 	u32 pasid;
592 
593 retry:
594 	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
595 	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
596 	pasid   = (event[0] & EVENT_DOMID_MASK_HI) |
597 		  (event[1] & EVENT_DOMID_MASK_LO);
598 	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
599 	address = (u64)(((u64)event[3]) << 32) | event[2];
600 
601 	if (type == 0) {
602 		/* Did we hit the erratum? */
603 		if (++count == LOOP_TIMEOUT) {
604 			pr_err("No event written to event log\n");
605 			return;
606 		}
607 		udelay(1);
608 		goto retry;
609 	}
610 
611 	if (type == EVENT_TYPE_IO_FAULT) {
612 		amd_iommu_report_page_fault(iommu, devid, pasid, address, flags);
613 		return;
614 	}
615 
616 	switch (type) {
617 	case EVENT_TYPE_ILL_DEV:
618 		dev_err(dev, "Event logged [ILLEGAL_DEV_TABLE_ENTRY device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
619 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
620 			pasid, address, flags);
621 		dump_dte_entry(iommu, devid);
622 		break;
623 	case EVENT_TYPE_DEV_TAB_ERR:
624 		dev_err(dev, "Event logged [DEV_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x "
625 			"address=0x%llx flags=0x%04x]\n",
626 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
627 			address, flags);
628 		break;
629 	case EVENT_TYPE_PAGE_TAB_ERR:
630 		dev_err(dev, "Event logged [PAGE_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x pasid=0x%04x address=0x%llx flags=0x%04x]\n",
631 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
632 			pasid, address, flags);
633 		break;
634 	case EVENT_TYPE_ILL_CMD:
635 		dev_err(dev, "Event logged [ILLEGAL_COMMAND_ERROR address=0x%llx]\n", address);
636 		dump_command(address);
637 		break;
638 	case EVENT_TYPE_CMD_HARD_ERR:
639 		dev_err(dev, "Event logged [COMMAND_HARDWARE_ERROR address=0x%llx flags=0x%04x]\n",
640 			address, flags);
641 		break;
642 	case EVENT_TYPE_IOTLB_INV_TO:
643 		dev_err(dev, "Event logged [IOTLB_INV_TIMEOUT device=%04x:%02x:%02x.%x address=0x%llx]\n",
644 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
645 			address);
646 		break;
647 	case EVENT_TYPE_INV_DEV_REQ:
648 		dev_err(dev, "Event logged [INVALID_DEVICE_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
649 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
650 			pasid, address, flags);
651 		break;
652 	case EVENT_TYPE_RMP_FAULT:
653 		amd_iommu_report_rmp_fault(iommu, event);
654 		break;
655 	case EVENT_TYPE_RMP_HW_ERR:
656 		amd_iommu_report_rmp_hw_error(iommu, event);
657 		break;
658 	case EVENT_TYPE_INV_PPR_REQ:
659 		pasid = PPR_PASID(*((u64 *)__evt));
660 		tag = event[1] & 0x03FF;
661 		dev_err(dev, "Event logged [INVALID_PPR_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x tag=0x%03x]\n",
662 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
663 			pasid, address, flags, tag);
664 		break;
665 	default:
666 		dev_err(dev, "Event logged [UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
667 			event[0], event[1], event[2], event[3]);
668 	}
669 
670 	memset(__evt, 0, 4 * sizeof(u32));
671 }
672 
673 static void iommu_poll_events(struct amd_iommu *iommu)
674 {
675 	u32 head, tail;
676 
677 	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
678 	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
679 
680 	while (head != tail) {
681 		iommu_print_event(iommu, iommu->evt_buf + head);
682 		head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
683 	}
684 
685 	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
686 }
687 
688 static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
689 {
690 	struct amd_iommu_fault fault;
691 
692 	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
693 		pr_err_ratelimited("Unknown PPR request received\n");
694 		return;
695 	}
696 
697 	fault.address   = raw[1];
698 	fault.pasid     = PPR_PASID(raw[0]);
699 	fault.sbdf      = PCI_SEG_DEVID_TO_SBDF(iommu->pci_seg->id, PPR_DEVID(raw[0]));
700 	fault.tag       = PPR_TAG(raw[0]);
701 	fault.flags     = PPR_FLAGS(raw[0]);
702 
703 	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
704 }
705 
706 static void iommu_poll_ppr_log(struct amd_iommu *iommu)
707 {
708 	u32 head, tail;
709 
710 	if (iommu->ppr_log == NULL)
711 		return;
712 
713 	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
714 	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
715 
716 	while (head != tail) {
717 		volatile u64 *raw;
718 		u64 entry[2];
719 		int i;
720 
721 		raw = (u64 *)(iommu->ppr_log + head);
722 
723 		/*
724 		 * Hardware bug: Interrupt may arrive before the entry is
725 		 * written to memory. If this happens we need to wait for the
726 		 * entry to arrive.
727 		 */
728 		for (i = 0; i < LOOP_TIMEOUT; ++i) {
729 			if (PPR_REQ_TYPE(raw[0]) != 0)
730 				break;
731 			udelay(1);
732 		}
733 
734 		/* Avoid memcpy function-call overhead */
735 		entry[0] = raw[0];
736 		entry[1] = raw[1];
737 
738 		/*
739 		 * To detect the hardware bug we need to clear the entry
740 		 * back to zero.
741 		 */
742 		raw[0] = raw[1] = 0UL;
743 
744 		/* Update head pointer of hardware ring-buffer */
745 		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
746 		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
747 
748 		/* Handle PPR entry */
749 		iommu_handle_ppr_entry(iommu, entry);
750 
751 		/* Refresh ring-buffer information */
752 		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
753 		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
754 	}
755 }
756 
757 #ifdef CONFIG_IRQ_REMAP
758 static int (*iommu_ga_log_notifier)(u32);
759 
760 int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
761 {
762 	iommu_ga_log_notifier = notifier;
763 
764 	return 0;
765 }
766 EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);
767 
768 static void iommu_poll_ga_log(struct amd_iommu *iommu)
769 {
770 	u32 head, tail, cnt = 0;
771 
772 	if (iommu->ga_log == NULL)
773 		return;
774 
775 	head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
776 	tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);
777 
778 	while (head != tail) {
779 		volatile u64 *raw;
780 		u64 log_entry;
781 
782 		raw = (u64 *)(iommu->ga_log + head);
783 		cnt++;
784 
785 		/* Avoid memcpy function-call overhead */
786 		log_entry = *raw;
787 
788 		/* Update head pointer of hardware ring-buffer */
789 		head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
790 		writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
791 
792 		/* Handle GA entry */
793 		switch (GA_REQ_TYPE(log_entry)) {
794 		case GA_GUEST_NR:
795 			if (!iommu_ga_log_notifier)
796 				break;
797 
798 			pr_debug("%s: devid=%#x, ga_tag=%#x\n",
799 				 __func__, GA_DEVID(log_entry),
800 				 GA_TAG(log_entry));
801 
802 			if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
803 				pr_err("GA log notifier failed.\n");
804 			break;
805 		default:
806 			break;
807 		}
808 	}
809 }
810 
811 static void
812 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu)
813 {
814 	if (!irq_remapping_enabled || !dev_is_pci(dev) ||
815 	    pci_dev_has_special_msi_domain(to_pci_dev(dev)))
816 		return;
817 
818 	dev_set_msi_domain(dev, iommu->msi_domain);
819 }
820 
821 #else /* CONFIG_IRQ_REMAP */
822 static inline void
823 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu) { }
824 #endif /* !CONFIG_IRQ_REMAP */
825 
826 #define AMD_IOMMU_INT_MASK	\
827 	(MMIO_STATUS_EVT_OVERFLOW_INT_MASK | \
828 	 MMIO_STATUS_EVT_INT_MASK | \
829 	 MMIO_STATUS_PPR_INT_MASK | \
830 	 MMIO_STATUS_GALOG_INT_MASK)
831 
832 irqreturn_t amd_iommu_int_thread(int irq, void *data)
833 {
834 	struct amd_iommu *iommu = (struct amd_iommu *) data;
835 	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
836 
837 	while (status & AMD_IOMMU_INT_MASK) {
838 		/* Enable interrupt sources again */
839 		writel(AMD_IOMMU_INT_MASK,
840 			iommu->mmio_base + MMIO_STATUS_OFFSET);
841 
842 		if (status & MMIO_STATUS_EVT_INT_MASK) {
843 			pr_devel("Processing IOMMU Event Log\n");
844 			iommu_poll_events(iommu);
845 		}
846 
847 		if (status & MMIO_STATUS_PPR_INT_MASK) {
848 			pr_devel("Processing IOMMU PPR Log\n");
849 			iommu_poll_ppr_log(iommu);
850 		}
851 
852 #ifdef CONFIG_IRQ_REMAP
853 		if (status & MMIO_STATUS_GALOG_INT_MASK) {
854 			pr_devel("Processing IOMMU GA Log\n");
855 			iommu_poll_ga_log(iommu);
856 		}
857 #endif
858 
859 		if (status & MMIO_STATUS_EVT_OVERFLOW_INT_MASK) {
860 			pr_info_ratelimited("IOMMU event log overflow\n");
861 			amd_iommu_restart_event_logging(iommu);
862 		}
863 
864 		/*
865 		 * Hardware bug: ERBT1312
866 		 * When re-enabling interrupt (by writing 1
867 		 * to clear the bit), the hardware might also try to set
868 		 * the interrupt bit in the event status register.
869 		 * In this scenario, the bit will be set, and disable
870 		 * subsequent interrupts.
871 		 *
872 		 * Workaround: The IOMMU driver should read back the
873 		 * status register and check if the interrupt bits are cleared.
874 		 * If not, driver will need to go through the interrupt handler
875 		 * again and re-clear the bits
876 		 */
877 		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
878 	}
879 	return IRQ_HANDLED;
880 }
881 
882 irqreturn_t amd_iommu_int_handler(int irq, void *data)
883 {
884 	return IRQ_WAKE_THREAD;
885 }
886 
887 /****************************************************************************
888  *
889  * IOMMU command queuing functions
890  *
891  ****************************************************************************/
892 
893 static int wait_on_sem(struct amd_iommu *iommu, u64 data)
894 {
895 	int i = 0;
896 
897 	while (*iommu->cmd_sem != data && i < LOOP_TIMEOUT) {
898 		udelay(1);
899 		i += 1;
900 	}
901 
902 	if (i == LOOP_TIMEOUT) {
903 		pr_alert("Completion-Wait loop timed out\n");
904 		return -EIO;
905 	}
906 
907 	return 0;
908 }
909 
910 static void copy_cmd_to_buffer(struct amd_iommu *iommu,
911 			       struct iommu_cmd *cmd)
912 {
913 	u8 *target;
914 	u32 tail;
915 
916 	/* Copy command to buffer */
917 	tail = iommu->cmd_buf_tail;
918 	target = iommu->cmd_buf + tail;
919 	memcpy(target, cmd, sizeof(*cmd));
920 
921 	tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
922 	iommu->cmd_buf_tail = tail;
923 
924 	/* Tell the IOMMU about it */
925 	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
926 }
927 
928 static void build_completion_wait(struct iommu_cmd *cmd,
929 				  struct amd_iommu *iommu,
930 				  u64 data)
931 {
932 	u64 paddr = iommu_virt_to_phys((void *)iommu->cmd_sem);
933 
934 	memset(cmd, 0, sizeof(*cmd));
935 	cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
936 	cmd->data[1] = upper_32_bits(paddr);
937 	cmd->data[2] = lower_32_bits(data);
938 	cmd->data[3] = upper_32_bits(data);
939 	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
940 }
941 
942 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
943 {
944 	memset(cmd, 0, sizeof(*cmd));
945 	cmd->data[0] = devid;
946 	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
947 }
948 
949 /*
950  * Builds an invalidation address which is suitable for one page or multiple
951  * pages. Sets the size bit (S) as needed is more than one page is flushed.
952  */
953 static inline u64 build_inv_address(u64 address, size_t size)
954 {
955 	u64 pages, end, msb_diff;
956 
957 	pages = iommu_num_pages(address, size, PAGE_SIZE);
958 
959 	if (pages == 1)
960 		return address & PAGE_MASK;
961 
962 	end = address + size - 1;
963 
964 	/*
965 	 * msb_diff would hold the index of the most significant bit that
966 	 * flipped between the start and end.
967 	 */
968 	msb_diff = fls64(end ^ address) - 1;
969 
970 	/*
971 	 * Bits 63:52 are sign extended. If for some reason bit 51 is different
972 	 * between the start and the end, invalidate everything.
973 	 */
974 	if (unlikely(msb_diff > 51)) {
975 		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
976 	} else {
977 		/*
978 		 * The msb-bit must be clear on the address. Just set all the
979 		 * lower bits.
980 		 */
981 		address |= (1ull << msb_diff) - 1;
982 	}
983 
984 	/* Clear bits 11:0 */
985 	address &= PAGE_MASK;
986 
987 	/* Set the size bit - we flush more than one 4kb page */
988 	return address | CMD_INV_IOMMU_PAGES_SIZE_MASK;
989 }
990 
991 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
992 				  size_t size, u16 domid, int pde)
993 {
994 	u64 inv_address = build_inv_address(address, size);
995 
996 	memset(cmd, 0, sizeof(*cmd));
997 	cmd->data[1] |= domid;
998 	cmd->data[2]  = lower_32_bits(inv_address);
999 	cmd->data[3]  = upper_32_bits(inv_address);
1000 	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
1001 	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
1002 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
1003 }
1004 
1005 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
1006 				  u64 address, size_t size)
1007 {
1008 	u64 inv_address = build_inv_address(address, size);
1009 
1010 	memset(cmd, 0, sizeof(*cmd));
1011 	cmd->data[0]  = devid;
1012 	cmd->data[0] |= (qdep & 0xff) << 24;
1013 	cmd->data[1]  = devid;
1014 	cmd->data[2]  = lower_32_bits(inv_address);
1015 	cmd->data[3]  = upper_32_bits(inv_address);
1016 	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
1017 }
1018 
1019 static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, u32 pasid,
1020 				  u64 address, bool size)
1021 {
1022 	memset(cmd, 0, sizeof(*cmd));
1023 
1024 	address &= ~(0xfffULL);
1025 
1026 	cmd->data[0]  = pasid;
1027 	cmd->data[1]  = domid;
1028 	cmd->data[2]  = lower_32_bits(address);
1029 	cmd->data[3]  = upper_32_bits(address);
1030 	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
1031 	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
1032 	if (size)
1033 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
1034 	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
1035 }
1036 
1037 static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, u32 pasid,
1038 				  int qdep, u64 address, bool size)
1039 {
1040 	memset(cmd, 0, sizeof(*cmd));
1041 
1042 	address &= ~(0xfffULL);
1043 
1044 	cmd->data[0]  = devid;
1045 	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
1046 	cmd->data[0] |= (qdep  & 0xff) << 24;
1047 	cmd->data[1]  = devid;
1048 	cmd->data[1] |= (pasid & 0xff) << 16;
1049 	cmd->data[2]  = lower_32_bits(address);
1050 	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
1051 	cmd->data[3]  = upper_32_bits(address);
1052 	if (size)
1053 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
1054 	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
1055 }
1056 
1057 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, u32 pasid,
1058 			       int status, int tag, bool gn)
1059 {
1060 	memset(cmd, 0, sizeof(*cmd));
1061 
1062 	cmd->data[0]  = devid;
1063 	if (gn) {
1064 		cmd->data[1]  = pasid;
1065 		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
1066 	}
1067 	cmd->data[3]  = tag & 0x1ff;
1068 	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
1069 
1070 	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
1071 }
1072 
1073 static void build_inv_all(struct iommu_cmd *cmd)
1074 {
1075 	memset(cmd, 0, sizeof(*cmd));
1076 	CMD_SET_TYPE(cmd, CMD_INV_ALL);
1077 }
1078 
1079 static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
1080 {
1081 	memset(cmd, 0, sizeof(*cmd));
1082 	cmd->data[0] = devid;
1083 	CMD_SET_TYPE(cmd, CMD_INV_IRT);
1084 }
1085 
1086 /*
1087  * Writes the command to the IOMMUs command buffer and informs the
1088  * hardware about the new command.
1089  */
1090 static int __iommu_queue_command_sync(struct amd_iommu *iommu,
1091 				      struct iommu_cmd *cmd,
1092 				      bool sync)
1093 {
1094 	unsigned int count = 0;
1095 	u32 left, next_tail;
1096 
1097 	next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1098 again:
1099 	left      = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1100 
1101 	if (left <= 0x20) {
1102 		/* Skip udelay() the first time around */
1103 		if (count++) {
1104 			if (count == LOOP_TIMEOUT) {
1105 				pr_err("Command buffer timeout\n");
1106 				return -EIO;
1107 			}
1108 
1109 			udelay(1);
1110 		}
1111 
1112 		/* Update head and recheck remaining space */
1113 		iommu->cmd_buf_head = readl(iommu->mmio_base +
1114 					    MMIO_CMD_HEAD_OFFSET);
1115 
1116 		goto again;
1117 	}
1118 
1119 	copy_cmd_to_buffer(iommu, cmd);
1120 
1121 	/* Do we need to make sure all commands are processed? */
1122 	iommu->need_sync = sync;
1123 
1124 	return 0;
1125 }
1126 
1127 static int iommu_queue_command_sync(struct amd_iommu *iommu,
1128 				    struct iommu_cmd *cmd,
1129 				    bool sync)
1130 {
1131 	unsigned long flags;
1132 	int ret;
1133 
1134 	raw_spin_lock_irqsave(&iommu->lock, flags);
1135 	ret = __iommu_queue_command_sync(iommu, cmd, sync);
1136 	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1137 
1138 	return ret;
1139 }
1140 
1141 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1142 {
1143 	return iommu_queue_command_sync(iommu, cmd, true);
1144 }
1145 
1146 /*
1147  * This function queues a completion wait command into the command
1148  * buffer of an IOMMU
1149  */
1150 static int iommu_completion_wait(struct amd_iommu *iommu)
1151 {
1152 	struct iommu_cmd cmd;
1153 	unsigned long flags;
1154 	int ret;
1155 	u64 data;
1156 
1157 	if (!iommu->need_sync)
1158 		return 0;
1159 
1160 	raw_spin_lock_irqsave(&iommu->lock, flags);
1161 
1162 	data = ++iommu->cmd_sem_val;
1163 	build_completion_wait(&cmd, iommu, data);
1164 
1165 	ret = __iommu_queue_command_sync(iommu, &cmd, false);
1166 	if (ret)
1167 		goto out_unlock;
1168 
1169 	ret = wait_on_sem(iommu, data);
1170 
1171 out_unlock:
1172 	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1173 
1174 	return ret;
1175 }
1176 
1177 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1178 {
1179 	struct iommu_cmd cmd;
1180 
1181 	build_inv_dte(&cmd, devid);
1182 
1183 	return iommu_queue_command(iommu, &cmd);
1184 }
1185 
1186 static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
1187 {
1188 	u32 devid;
1189 	u16 last_bdf = iommu->pci_seg->last_bdf;
1190 
1191 	for (devid = 0; devid <= last_bdf; ++devid)
1192 		iommu_flush_dte(iommu, devid);
1193 
1194 	iommu_completion_wait(iommu);
1195 }
1196 
1197 /*
1198  * This function uses heavy locking and may disable irqs for some time. But
1199  * this is no issue because it is only called during resume.
1200  */
1201 static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
1202 {
1203 	u32 dom_id;
1204 	u16 last_bdf = iommu->pci_seg->last_bdf;
1205 
1206 	for (dom_id = 0; dom_id <= last_bdf; ++dom_id) {
1207 		struct iommu_cmd cmd;
1208 		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1209 				      dom_id, 1);
1210 		iommu_queue_command(iommu, &cmd);
1211 	}
1212 
1213 	iommu_completion_wait(iommu);
1214 }
1215 
1216 static void amd_iommu_flush_tlb_domid(struct amd_iommu *iommu, u32 dom_id)
1217 {
1218 	struct iommu_cmd cmd;
1219 
1220 	build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1221 			      dom_id, 1);
1222 	iommu_queue_command(iommu, &cmd);
1223 
1224 	iommu_completion_wait(iommu);
1225 }
1226 
1227 static void amd_iommu_flush_all(struct amd_iommu *iommu)
1228 {
1229 	struct iommu_cmd cmd;
1230 
1231 	build_inv_all(&cmd);
1232 
1233 	iommu_queue_command(iommu, &cmd);
1234 	iommu_completion_wait(iommu);
1235 }
1236 
1237 static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1238 {
1239 	struct iommu_cmd cmd;
1240 
1241 	build_inv_irt(&cmd, devid);
1242 
1243 	iommu_queue_command(iommu, &cmd);
1244 }
1245 
1246 static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
1247 {
1248 	u32 devid;
1249 	u16 last_bdf = iommu->pci_seg->last_bdf;
1250 
1251 	for (devid = 0; devid <= last_bdf; devid++)
1252 		iommu_flush_irt(iommu, devid);
1253 
1254 	iommu_completion_wait(iommu);
1255 }
1256 
1257 void iommu_flush_all_caches(struct amd_iommu *iommu)
1258 {
1259 	if (iommu_feature(iommu, FEATURE_IA)) {
1260 		amd_iommu_flush_all(iommu);
1261 	} else {
1262 		amd_iommu_flush_dte_all(iommu);
1263 		amd_iommu_flush_irt_all(iommu);
1264 		amd_iommu_flush_tlb_all(iommu);
1265 	}
1266 }
1267 
1268 /*
1269  * Command send function for flushing on-device TLB
1270  */
1271 static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1272 			      u64 address, size_t size)
1273 {
1274 	struct amd_iommu *iommu;
1275 	struct iommu_cmd cmd;
1276 	int qdep;
1277 
1278 	qdep     = dev_data->ats.qdep;
1279 	iommu    = rlookup_amd_iommu(dev_data->dev);
1280 	if (!iommu)
1281 		return -EINVAL;
1282 
1283 	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1284 
1285 	return iommu_queue_command(iommu, &cmd);
1286 }
1287 
1288 static int device_flush_dte_alias(struct pci_dev *pdev, u16 alias, void *data)
1289 {
1290 	struct amd_iommu *iommu = data;
1291 
1292 	return iommu_flush_dte(iommu, alias);
1293 }
1294 
1295 /*
1296  * Command send function for invalidating a device table entry
1297  */
1298 static int device_flush_dte(struct iommu_dev_data *dev_data)
1299 {
1300 	struct amd_iommu *iommu;
1301 	struct pci_dev *pdev = NULL;
1302 	struct amd_iommu_pci_seg *pci_seg;
1303 	u16 alias;
1304 	int ret;
1305 
1306 	iommu = rlookup_amd_iommu(dev_data->dev);
1307 	if (!iommu)
1308 		return -EINVAL;
1309 
1310 	if (dev_is_pci(dev_data->dev))
1311 		pdev = to_pci_dev(dev_data->dev);
1312 
1313 	if (pdev)
1314 		ret = pci_for_each_dma_alias(pdev,
1315 					     device_flush_dte_alias, iommu);
1316 	else
1317 		ret = iommu_flush_dte(iommu, dev_data->devid);
1318 	if (ret)
1319 		return ret;
1320 
1321 	pci_seg = iommu->pci_seg;
1322 	alias = pci_seg->alias_table[dev_data->devid];
1323 	if (alias != dev_data->devid) {
1324 		ret = iommu_flush_dte(iommu, alias);
1325 		if (ret)
1326 			return ret;
1327 	}
1328 
1329 	if (dev_data->ats.enabled)
1330 		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1331 
1332 	return ret;
1333 }
1334 
1335 /*
1336  * TLB invalidation function which is called from the mapping functions.
1337  * It invalidates a single PTE if the range to flush is within a single
1338  * page. Otherwise it flushes the whole TLB of the IOMMU.
1339  */
1340 static void __domain_flush_pages(struct protection_domain *domain,
1341 				 u64 address, size_t size, int pde)
1342 {
1343 	struct iommu_dev_data *dev_data;
1344 	struct iommu_cmd cmd;
1345 	int ret = 0, i;
1346 
1347 	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1348 
1349 	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1350 		if (!domain->dev_iommu[i])
1351 			continue;
1352 
1353 		/*
1354 		 * Devices of this domain are behind this IOMMU
1355 		 * We need a TLB flush
1356 		 */
1357 		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1358 	}
1359 
1360 	list_for_each_entry(dev_data, &domain->dev_list, list) {
1361 
1362 		if (!dev_data->ats.enabled)
1363 			continue;
1364 
1365 		ret |= device_flush_iotlb(dev_data, address, size);
1366 	}
1367 
1368 	WARN_ON(ret);
1369 }
1370 
1371 static void domain_flush_pages(struct protection_domain *domain,
1372 			       u64 address, size_t size, int pde)
1373 {
1374 	if (likely(!amd_iommu_np_cache)) {
1375 		__domain_flush_pages(domain, address, size, pde);
1376 		return;
1377 	}
1378 
1379 	/*
1380 	 * When NpCache is on, we infer that we run in a VM and use a vIOMMU.
1381 	 * In such setups it is best to avoid flushes of ranges which are not
1382 	 * naturally aligned, since it would lead to flushes of unmodified
1383 	 * PTEs. Such flushes would require the hypervisor to do more work than
1384 	 * necessary. Therefore, perform repeated flushes of aligned ranges
1385 	 * until you cover the range. Each iteration flushes the smaller
1386 	 * between the natural alignment of the address that we flush and the
1387 	 * greatest naturally aligned region that fits in the range.
1388 	 */
1389 	while (size != 0) {
1390 		int addr_alignment = __ffs(address);
1391 		int size_alignment = __fls(size);
1392 		int min_alignment;
1393 		size_t flush_size;
1394 
1395 		/*
1396 		 * size is always non-zero, but address might be zero, causing
1397 		 * addr_alignment to be negative. As the casting of the
1398 		 * argument in __ffs(address) to long might trim the high bits
1399 		 * of the address on x86-32, cast to long when doing the check.
1400 		 */
1401 		if (likely((unsigned long)address != 0))
1402 			min_alignment = min(addr_alignment, size_alignment);
1403 		else
1404 			min_alignment = size_alignment;
1405 
1406 		flush_size = 1ul << min_alignment;
1407 
1408 		__domain_flush_pages(domain, address, flush_size, pde);
1409 		address += flush_size;
1410 		size -= flush_size;
1411 	}
1412 }
1413 
1414 /* Flush the whole IO/TLB for a given protection domain - including PDE */
1415 void amd_iommu_domain_flush_tlb_pde(struct protection_domain *domain)
1416 {
1417 	domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1418 }
1419 
1420 void amd_iommu_domain_flush_complete(struct protection_domain *domain)
1421 {
1422 	int i;
1423 
1424 	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1425 		if (domain && !domain->dev_iommu[i])
1426 			continue;
1427 
1428 		/*
1429 		 * Devices of this domain are behind this IOMMU
1430 		 * We need to wait for completion of all commands.
1431 		 */
1432 		iommu_completion_wait(amd_iommus[i]);
1433 	}
1434 }
1435 
1436 /* Flush the not present cache if it exists */
1437 static void domain_flush_np_cache(struct protection_domain *domain,
1438 		dma_addr_t iova, size_t size)
1439 {
1440 	if (unlikely(amd_iommu_np_cache)) {
1441 		unsigned long flags;
1442 
1443 		spin_lock_irqsave(&domain->lock, flags);
1444 		domain_flush_pages(domain, iova, size, 1);
1445 		amd_iommu_domain_flush_complete(domain);
1446 		spin_unlock_irqrestore(&domain->lock, flags);
1447 	}
1448 }
1449 
1450 
1451 /*
1452  * This function flushes the DTEs for all devices in domain
1453  */
1454 static void domain_flush_devices(struct protection_domain *domain)
1455 {
1456 	struct iommu_dev_data *dev_data;
1457 
1458 	list_for_each_entry(dev_data, &domain->dev_list, list)
1459 		device_flush_dte(dev_data);
1460 }
1461 
1462 /****************************************************************************
1463  *
1464  * The next functions belong to the domain allocation. A domain is
1465  * allocated for every IOMMU as the default domain. If device isolation
1466  * is enabled, every device get its own domain. The most important thing
1467  * about domains is the page table mapping the DMA address space they
1468  * contain.
1469  *
1470  ****************************************************************************/
1471 
1472 static u16 domain_id_alloc(void)
1473 {
1474 	int id;
1475 
1476 	spin_lock(&pd_bitmap_lock);
1477 	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1478 	BUG_ON(id == 0);
1479 	if (id > 0 && id < MAX_DOMAIN_ID)
1480 		__set_bit(id, amd_iommu_pd_alloc_bitmap);
1481 	else
1482 		id = 0;
1483 	spin_unlock(&pd_bitmap_lock);
1484 
1485 	return id;
1486 }
1487 
1488 static void domain_id_free(int id)
1489 {
1490 	spin_lock(&pd_bitmap_lock);
1491 	if (id > 0 && id < MAX_DOMAIN_ID)
1492 		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
1493 	spin_unlock(&pd_bitmap_lock);
1494 }
1495 
1496 static void free_gcr3_tbl_level1(u64 *tbl)
1497 {
1498 	u64 *ptr;
1499 	int i;
1500 
1501 	for (i = 0; i < 512; ++i) {
1502 		if (!(tbl[i] & GCR3_VALID))
1503 			continue;
1504 
1505 		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1506 
1507 		free_page((unsigned long)ptr);
1508 	}
1509 }
1510 
1511 static void free_gcr3_tbl_level2(u64 *tbl)
1512 {
1513 	u64 *ptr;
1514 	int i;
1515 
1516 	for (i = 0; i < 512; ++i) {
1517 		if (!(tbl[i] & GCR3_VALID))
1518 			continue;
1519 
1520 		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1521 
1522 		free_gcr3_tbl_level1(ptr);
1523 	}
1524 }
1525 
1526 static void free_gcr3_table(struct protection_domain *domain)
1527 {
1528 	if (domain->glx == 2)
1529 		free_gcr3_tbl_level2(domain->gcr3_tbl);
1530 	else if (domain->glx == 1)
1531 		free_gcr3_tbl_level1(domain->gcr3_tbl);
1532 	else
1533 		BUG_ON(domain->glx != 0);
1534 
1535 	free_page((unsigned long)domain->gcr3_tbl);
1536 }
1537 
1538 static void set_dte_entry(struct amd_iommu *iommu, u16 devid,
1539 			  struct protection_domain *domain, bool ats, bool ppr)
1540 {
1541 	u64 pte_root = 0;
1542 	u64 flags = 0;
1543 	u32 old_domid;
1544 	struct dev_table_entry *dev_table = get_dev_table(iommu);
1545 
1546 	if (domain->iop.mode != PAGE_MODE_NONE)
1547 		pte_root = iommu_virt_to_phys(domain->iop.root);
1548 
1549 	pte_root |= (domain->iop.mode & DEV_ENTRY_MODE_MASK)
1550 		    << DEV_ENTRY_MODE_SHIFT;
1551 
1552 	pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V;
1553 
1554 	/*
1555 	 * When SNP is enabled, Only set TV bit when IOMMU
1556 	 * page translation is in use.
1557 	 */
1558 	if (!amd_iommu_snp_en || (domain->id != 0))
1559 		pte_root |= DTE_FLAG_TV;
1560 
1561 	flags = dev_table[devid].data[1];
1562 
1563 	if (ats)
1564 		flags |= DTE_FLAG_IOTLB;
1565 
1566 	if (ppr) {
1567 		if (iommu_feature(iommu, FEATURE_EPHSUP))
1568 			pte_root |= 1ULL << DEV_ENTRY_PPR;
1569 	}
1570 
1571 	if (domain->flags & PD_IOMMUV2_MASK) {
1572 		u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl);
1573 		u64 glx  = domain->glx;
1574 		u64 tmp;
1575 
1576 		pte_root |= DTE_FLAG_GV;
1577 		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
1578 
1579 		/* First mask out possible old values for GCR3 table */
1580 		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
1581 		flags    &= ~tmp;
1582 
1583 		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
1584 		flags    &= ~tmp;
1585 
1586 		/* Encode GCR3 table into DTE */
1587 		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
1588 		pte_root |= tmp;
1589 
1590 		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
1591 		flags    |= tmp;
1592 
1593 		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
1594 		flags    |= tmp;
1595 
1596 		if (domain->flags & PD_GIOV_MASK)
1597 			pte_root |= DTE_FLAG_GIOV;
1598 	}
1599 
1600 	flags &= ~DEV_DOMID_MASK;
1601 	flags |= domain->id;
1602 
1603 	old_domid = dev_table[devid].data[1] & DEV_DOMID_MASK;
1604 	dev_table[devid].data[1]  = flags;
1605 	dev_table[devid].data[0]  = pte_root;
1606 
1607 	/*
1608 	 * A kdump kernel might be replacing a domain ID that was copied from
1609 	 * the previous kernel--if so, it needs to flush the translation cache
1610 	 * entries for the old domain ID that is being overwritten
1611 	 */
1612 	if (old_domid) {
1613 		amd_iommu_flush_tlb_domid(iommu, old_domid);
1614 	}
1615 }
1616 
1617 static void clear_dte_entry(struct amd_iommu *iommu, u16 devid)
1618 {
1619 	struct dev_table_entry *dev_table = get_dev_table(iommu);
1620 
1621 	/* remove entry from the device table seen by the hardware */
1622 	dev_table[devid].data[0]  = DTE_FLAG_V;
1623 
1624 	if (!amd_iommu_snp_en)
1625 		dev_table[devid].data[0] |= DTE_FLAG_TV;
1626 
1627 	dev_table[devid].data[1] &= DTE_FLAG_MASK;
1628 
1629 	amd_iommu_apply_erratum_63(iommu, devid);
1630 }
1631 
1632 static void do_attach(struct iommu_dev_data *dev_data,
1633 		      struct protection_domain *domain)
1634 {
1635 	struct amd_iommu *iommu;
1636 	bool ats;
1637 
1638 	iommu = rlookup_amd_iommu(dev_data->dev);
1639 	if (!iommu)
1640 		return;
1641 	ats   = dev_data->ats.enabled;
1642 
1643 	/* Update data structures */
1644 	dev_data->domain = domain;
1645 	list_add(&dev_data->list, &domain->dev_list);
1646 
1647 	/* Do reference counting */
1648 	domain->dev_iommu[iommu->index] += 1;
1649 	domain->dev_cnt                 += 1;
1650 
1651 	/* Override supported page sizes */
1652 	if (domain->flags & PD_GIOV_MASK)
1653 		domain->domain.pgsize_bitmap = AMD_IOMMU_PGSIZES_V2;
1654 
1655 	/* Update device table */
1656 	set_dte_entry(iommu, dev_data->devid, domain,
1657 		      ats, dev_data->iommu_v2);
1658 	clone_aliases(iommu, dev_data->dev);
1659 
1660 	device_flush_dte(dev_data);
1661 }
1662 
1663 static void do_detach(struct iommu_dev_data *dev_data)
1664 {
1665 	struct protection_domain *domain = dev_data->domain;
1666 	struct amd_iommu *iommu;
1667 
1668 	iommu = rlookup_amd_iommu(dev_data->dev);
1669 	if (!iommu)
1670 		return;
1671 
1672 	/* Update data structures */
1673 	dev_data->domain = NULL;
1674 	list_del(&dev_data->list);
1675 	clear_dte_entry(iommu, dev_data->devid);
1676 	clone_aliases(iommu, dev_data->dev);
1677 
1678 	/* Flush the DTE entry */
1679 	device_flush_dte(dev_data);
1680 
1681 	/* Flush IOTLB */
1682 	amd_iommu_domain_flush_tlb_pde(domain);
1683 
1684 	/* Wait for the flushes to finish */
1685 	amd_iommu_domain_flush_complete(domain);
1686 
1687 	/* decrease reference counters - needs to happen after the flushes */
1688 	domain->dev_iommu[iommu->index] -= 1;
1689 	domain->dev_cnt                 -= 1;
1690 }
1691 
1692 static void pdev_iommuv2_disable(struct pci_dev *pdev)
1693 {
1694 	pci_disable_ats(pdev);
1695 	pci_disable_pri(pdev);
1696 	pci_disable_pasid(pdev);
1697 }
1698 
1699 static int pdev_pri_ats_enable(struct pci_dev *pdev)
1700 {
1701 	int ret;
1702 
1703 	/* Only allow access to user-accessible pages */
1704 	ret = pci_enable_pasid(pdev, 0);
1705 	if (ret)
1706 		goto out_err;
1707 
1708 	/* First reset the PRI state of the device */
1709 	ret = pci_reset_pri(pdev);
1710 	if (ret)
1711 		goto out_err;
1712 
1713 	/* Enable PRI */
1714 	/* FIXME: Hardcode number of outstanding requests for now */
1715 	ret = pci_enable_pri(pdev, 32);
1716 	if (ret)
1717 		goto out_err;
1718 
1719 	ret = pci_enable_ats(pdev, PAGE_SHIFT);
1720 	if (ret)
1721 		goto out_err;
1722 
1723 	return 0;
1724 
1725 out_err:
1726 	pci_disable_pri(pdev);
1727 	pci_disable_pasid(pdev);
1728 
1729 	return ret;
1730 }
1731 
1732 /*
1733  * If a device is not yet associated with a domain, this function makes the
1734  * device visible in the domain
1735  */
1736 static int attach_device(struct device *dev,
1737 			 struct protection_domain *domain)
1738 {
1739 	struct iommu_dev_data *dev_data;
1740 	struct pci_dev *pdev;
1741 	unsigned long flags;
1742 	int ret;
1743 
1744 	spin_lock_irqsave(&domain->lock, flags);
1745 
1746 	dev_data = dev_iommu_priv_get(dev);
1747 
1748 	spin_lock(&dev_data->lock);
1749 
1750 	ret = -EBUSY;
1751 	if (dev_data->domain != NULL)
1752 		goto out;
1753 
1754 	if (!dev_is_pci(dev))
1755 		goto skip_ats_check;
1756 
1757 	pdev = to_pci_dev(dev);
1758 	if (domain->flags & PD_IOMMUV2_MASK) {
1759 		struct iommu_domain *def_domain = iommu_get_dma_domain(dev);
1760 
1761 		ret = -EINVAL;
1762 
1763 		/*
1764 		 * In case of using AMD_IOMMU_V1 page table mode and the device
1765 		 * is enabling for PPR/ATS support (using v2 table),
1766 		 * we need to make sure that the domain type is identity map.
1767 		 */
1768 		if ((amd_iommu_pgtable == AMD_IOMMU_V1) &&
1769 		    def_domain->type != IOMMU_DOMAIN_IDENTITY) {
1770 			goto out;
1771 		}
1772 
1773 		if (dev_data->iommu_v2) {
1774 			if (pdev_pri_ats_enable(pdev) != 0)
1775 				goto out;
1776 
1777 			dev_data->ats.enabled = true;
1778 			dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
1779 			dev_data->pri_tlp     = pci_prg_resp_pasid_required(pdev);
1780 		}
1781 	} else if (amd_iommu_iotlb_sup &&
1782 		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
1783 		dev_data->ats.enabled = true;
1784 		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
1785 	}
1786 
1787 skip_ats_check:
1788 	ret = 0;
1789 
1790 	do_attach(dev_data, domain);
1791 
1792 	/*
1793 	 * We might boot into a crash-kernel here. The crashed kernel
1794 	 * left the caches in the IOMMU dirty. So we have to flush
1795 	 * here to evict all dirty stuff.
1796 	 */
1797 	amd_iommu_domain_flush_tlb_pde(domain);
1798 
1799 	amd_iommu_domain_flush_complete(domain);
1800 
1801 out:
1802 	spin_unlock(&dev_data->lock);
1803 
1804 	spin_unlock_irqrestore(&domain->lock, flags);
1805 
1806 	return ret;
1807 }
1808 
1809 /*
1810  * Removes a device from a protection domain (with devtable_lock held)
1811  */
1812 static void detach_device(struct device *dev)
1813 {
1814 	struct protection_domain *domain;
1815 	struct iommu_dev_data *dev_data;
1816 	unsigned long flags;
1817 
1818 	dev_data = dev_iommu_priv_get(dev);
1819 	domain   = dev_data->domain;
1820 
1821 	spin_lock_irqsave(&domain->lock, flags);
1822 
1823 	spin_lock(&dev_data->lock);
1824 
1825 	/*
1826 	 * First check if the device is still attached. It might already
1827 	 * be detached from its domain because the generic
1828 	 * iommu_detach_group code detached it and we try again here in
1829 	 * our alias handling.
1830 	 */
1831 	if (WARN_ON(!dev_data->domain))
1832 		goto out;
1833 
1834 	do_detach(dev_data);
1835 
1836 	if (!dev_is_pci(dev))
1837 		goto out;
1838 
1839 	if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
1840 		pdev_iommuv2_disable(to_pci_dev(dev));
1841 	else if (dev_data->ats.enabled)
1842 		pci_disable_ats(to_pci_dev(dev));
1843 
1844 	dev_data->ats.enabled = false;
1845 
1846 out:
1847 	spin_unlock(&dev_data->lock);
1848 
1849 	spin_unlock_irqrestore(&domain->lock, flags);
1850 }
1851 
1852 static struct iommu_device *amd_iommu_probe_device(struct device *dev)
1853 {
1854 	struct iommu_device *iommu_dev;
1855 	struct amd_iommu *iommu;
1856 	int ret;
1857 
1858 	if (!check_device(dev))
1859 		return ERR_PTR(-ENODEV);
1860 
1861 	iommu = rlookup_amd_iommu(dev);
1862 	if (!iommu)
1863 		return ERR_PTR(-ENODEV);
1864 
1865 	/* Not registered yet? */
1866 	if (!iommu->iommu.ops)
1867 		return ERR_PTR(-ENODEV);
1868 
1869 	if (dev_iommu_priv_get(dev))
1870 		return &iommu->iommu;
1871 
1872 	ret = iommu_init_device(iommu, dev);
1873 	if (ret) {
1874 		if (ret != -ENOTSUPP)
1875 			dev_err(dev, "Failed to initialize - trying to proceed anyway\n");
1876 		iommu_dev = ERR_PTR(ret);
1877 		iommu_ignore_device(iommu, dev);
1878 	} else {
1879 		amd_iommu_set_pci_msi_domain(dev, iommu);
1880 		iommu_dev = &iommu->iommu;
1881 	}
1882 
1883 	iommu_completion_wait(iommu);
1884 
1885 	return iommu_dev;
1886 }
1887 
1888 static void amd_iommu_probe_finalize(struct device *dev)
1889 {
1890 	/* Domains are initialized for this device - have a look what we ended up with */
1891 	set_dma_ops(dev, NULL);
1892 	iommu_setup_dma_ops(dev, 0, U64_MAX);
1893 }
1894 
1895 static void amd_iommu_release_device(struct device *dev)
1896 {
1897 	struct amd_iommu *iommu;
1898 
1899 	if (!check_device(dev))
1900 		return;
1901 
1902 	iommu = rlookup_amd_iommu(dev);
1903 	if (!iommu)
1904 		return;
1905 
1906 	amd_iommu_uninit_device(dev);
1907 	iommu_completion_wait(iommu);
1908 }
1909 
1910 static struct iommu_group *amd_iommu_device_group(struct device *dev)
1911 {
1912 	if (dev_is_pci(dev))
1913 		return pci_device_group(dev);
1914 
1915 	return acpihid_device_group(dev);
1916 }
1917 
1918 /*****************************************************************************
1919  *
1920  * The next functions belong to the dma_ops mapping/unmapping code.
1921  *
1922  *****************************************************************************/
1923 
1924 static void update_device_table(struct protection_domain *domain)
1925 {
1926 	struct iommu_dev_data *dev_data;
1927 
1928 	list_for_each_entry(dev_data, &domain->dev_list, list) {
1929 		struct amd_iommu *iommu = rlookup_amd_iommu(dev_data->dev);
1930 
1931 		if (!iommu)
1932 			continue;
1933 		set_dte_entry(iommu, dev_data->devid, domain,
1934 			      dev_data->ats.enabled, dev_data->iommu_v2);
1935 		clone_aliases(iommu, dev_data->dev);
1936 	}
1937 }
1938 
1939 void amd_iommu_update_and_flush_device_table(struct protection_domain *domain)
1940 {
1941 	update_device_table(domain);
1942 	domain_flush_devices(domain);
1943 }
1944 
1945 void amd_iommu_domain_update(struct protection_domain *domain)
1946 {
1947 	/* Update device table */
1948 	amd_iommu_update_and_flush_device_table(domain);
1949 
1950 	/* Flush domain TLB(s) and wait for completion */
1951 	amd_iommu_domain_flush_tlb_pde(domain);
1952 	amd_iommu_domain_flush_complete(domain);
1953 }
1954 
1955 /*****************************************************************************
1956  *
1957  * The following functions belong to the exported interface of AMD IOMMU
1958  *
1959  * This interface allows access to lower level functions of the IOMMU
1960  * like protection domain handling and assignement of devices to domains
1961  * which is not possible with the dma_ops interface.
1962  *
1963  *****************************************************************************/
1964 
1965 static void cleanup_domain(struct protection_domain *domain)
1966 {
1967 	struct iommu_dev_data *entry;
1968 	unsigned long flags;
1969 
1970 	spin_lock_irqsave(&domain->lock, flags);
1971 
1972 	while (!list_empty(&domain->dev_list)) {
1973 		entry = list_first_entry(&domain->dev_list,
1974 					 struct iommu_dev_data, list);
1975 		BUG_ON(!entry->domain);
1976 		do_detach(entry);
1977 	}
1978 
1979 	spin_unlock_irqrestore(&domain->lock, flags);
1980 }
1981 
1982 static void protection_domain_free(struct protection_domain *domain)
1983 {
1984 	if (!domain)
1985 		return;
1986 
1987 	if (domain->iop.pgtbl_cfg.tlb)
1988 		free_io_pgtable_ops(&domain->iop.iop.ops);
1989 
1990 	if (domain->id)
1991 		domain_id_free(domain->id);
1992 
1993 	kfree(domain);
1994 }
1995 
1996 static int protection_domain_init_v1(struct protection_domain *domain, int mode)
1997 {
1998 	u64 *pt_root = NULL;
1999 
2000 	BUG_ON(mode < PAGE_MODE_NONE || mode > PAGE_MODE_6_LEVEL);
2001 
2002 	spin_lock_init(&domain->lock);
2003 	domain->id = domain_id_alloc();
2004 	if (!domain->id)
2005 		return -ENOMEM;
2006 	INIT_LIST_HEAD(&domain->dev_list);
2007 
2008 	if (mode != PAGE_MODE_NONE) {
2009 		pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2010 		if (!pt_root) {
2011 			domain_id_free(domain->id);
2012 			return -ENOMEM;
2013 		}
2014 	}
2015 
2016 	amd_iommu_domain_set_pgtable(domain, pt_root, mode);
2017 
2018 	return 0;
2019 }
2020 
2021 static int protection_domain_init_v2(struct protection_domain *domain)
2022 {
2023 	spin_lock_init(&domain->lock);
2024 	domain->id = domain_id_alloc();
2025 	if (!domain->id)
2026 		return -ENOMEM;
2027 	INIT_LIST_HEAD(&domain->dev_list);
2028 
2029 	domain->flags |= PD_GIOV_MASK;
2030 
2031 	if (domain_enable_v2(domain, 1)) {
2032 		domain_id_free(domain->id);
2033 		return -ENOMEM;
2034 	}
2035 
2036 	return 0;
2037 }
2038 
2039 static struct protection_domain *protection_domain_alloc(unsigned int type)
2040 {
2041 	struct io_pgtable_ops *pgtbl_ops;
2042 	struct protection_domain *domain;
2043 	int pgtable = amd_iommu_pgtable;
2044 	int mode = DEFAULT_PGTABLE_LEVEL;
2045 	int ret;
2046 
2047 	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2048 	if (!domain)
2049 		return NULL;
2050 
2051 	/*
2052 	 * Force IOMMU v1 page table when iommu=pt and
2053 	 * when allocating domain for pass-through devices.
2054 	 */
2055 	if (type == IOMMU_DOMAIN_IDENTITY) {
2056 		pgtable = AMD_IOMMU_V1;
2057 		mode = PAGE_MODE_NONE;
2058 	} else if (type == IOMMU_DOMAIN_UNMANAGED) {
2059 		pgtable = AMD_IOMMU_V1;
2060 	}
2061 
2062 	switch (pgtable) {
2063 	case AMD_IOMMU_V1:
2064 		ret = protection_domain_init_v1(domain, mode);
2065 		break;
2066 	case AMD_IOMMU_V2:
2067 		ret = protection_domain_init_v2(domain);
2068 		break;
2069 	default:
2070 		ret = -EINVAL;
2071 	}
2072 
2073 	if (ret)
2074 		goto out_err;
2075 
2076 	pgtbl_ops = alloc_io_pgtable_ops(pgtable, &domain->iop.pgtbl_cfg, domain);
2077 	if (!pgtbl_ops) {
2078 		domain_id_free(domain->id);
2079 		goto out_err;
2080 	}
2081 
2082 	return domain;
2083 out_err:
2084 	kfree(domain);
2085 	return NULL;
2086 }
2087 
2088 static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2089 {
2090 	struct protection_domain *domain;
2091 
2092 	/*
2093 	 * Since DTE[Mode]=0 is prohibited on SNP-enabled system,
2094 	 * default to use IOMMU_DOMAIN_DMA[_FQ].
2095 	 */
2096 	if (amd_iommu_snp_en && (type == IOMMU_DOMAIN_IDENTITY))
2097 		return NULL;
2098 
2099 	domain = protection_domain_alloc(type);
2100 	if (!domain)
2101 		return NULL;
2102 
2103 	domain->domain.geometry.aperture_start = 0;
2104 	domain->domain.geometry.aperture_end   = ~0ULL;
2105 	domain->domain.geometry.force_aperture = true;
2106 
2107 	return &domain->domain;
2108 }
2109 
2110 static void amd_iommu_domain_free(struct iommu_domain *dom)
2111 {
2112 	struct protection_domain *domain;
2113 
2114 	domain = to_pdomain(dom);
2115 
2116 	if (domain->dev_cnt > 0)
2117 		cleanup_domain(domain);
2118 
2119 	BUG_ON(domain->dev_cnt != 0);
2120 
2121 	if (!dom)
2122 		return;
2123 
2124 	if (domain->flags & PD_IOMMUV2_MASK)
2125 		free_gcr3_table(domain);
2126 
2127 	protection_domain_free(domain);
2128 }
2129 
2130 static void amd_iommu_detach_device(struct iommu_domain *dom,
2131 				    struct device *dev)
2132 {
2133 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2134 	struct amd_iommu *iommu;
2135 
2136 	if (!check_device(dev))
2137 		return;
2138 
2139 	if (dev_data->domain != NULL)
2140 		detach_device(dev);
2141 
2142 	iommu = rlookup_amd_iommu(dev);
2143 	if (!iommu)
2144 		return;
2145 
2146 #ifdef CONFIG_IRQ_REMAP
2147 	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
2148 	    (dom->type == IOMMU_DOMAIN_UNMANAGED))
2149 		dev_data->use_vapic = 0;
2150 #endif
2151 
2152 	iommu_completion_wait(iommu);
2153 }
2154 
2155 static int amd_iommu_attach_device(struct iommu_domain *dom,
2156 				   struct device *dev)
2157 {
2158 	struct protection_domain *domain = to_pdomain(dom);
2159 	struct iommu_dev_data *dev_data;
2160 	struct amd_iommu *iommu;
2161 	int ret;
2162 
2163 	if (!check_device(dev))
2164 		return -EINVAL;
2165 
2166 	dev_data = dev_iommu_priv_get(dev);
2167 	dev_data->defer_attach = false;
2168 
2169 	iommu = rlookup_amd_iommu(dev);
2170 	if (!iommu)
2171 		return -EINVAL;
2172 
2173 	if (dev_data->domain)
2174 		detach_device(dev);
2175 
2176 	ret = attach_device(dev, domain);
2177 
2178 #ifdef CONFIG_IRQ_REMAP
2179 	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
2180 		if (dom->type == IOMMU_DOMAIN_UNMANAGED)
2181 			dev_data->use_vapic = 1;
2182 		else
2183 			dev_data->use_vapic = 0;
2184 	}
2185 #endif
2186 
2187 	iommu_completion_wait(iommu);
2188 
2189 	return ret;
2190 }
2191 
2192 static void amd_iommu_iotlb_sync_map(struct iommu_domain *dom,
2193 				     unsigned long iova, size_t size)
2194 {
2195 	struct protection_domain *domain = to_pdomain(dom);
2196 	struct io_pgtable_ops *ops = &domain->iop.iop.ops;
2197 
2198 	if (ops->map_pages)
2199 		domain_flush_np_cache(domain, iova, size);
2200 }
2201 
2202 static int amd_iommu_map_pages(struct iommu_domain *dom, unsigned long iova,
2203 			       phys_addr_t paddr, size_t pgsize, size_t pgcount,
2204 			       int iommu_prot, gfp_t gfp, size_t *mapped)
2205 {
2206 	struct protection_domain *domain = to_pdomain(dom);
2207 	struct io_pgtable_ops *ops = &domain->iop.iop.ops;
2208 	int prot = 0;
2209 	int ret = -EINVAL;
2210 
2211 	if ((amd_iommu_pgtable == AMD_IOMMU_V1) &&
2212 	    (domain->iop.mode == PAGE_MODE_NONE))
2213 		return -EINVAL;
2214 
2215 	if (iommu_prot & IOMMU_READ)
2216 		prot |= IOMMU_PROT_IR;
2217 	if (iommu_prot & IOMMU_WRITE)
2218 		prot |= IOMMU_PROT_IW;
2219 
2220 	if (ops->map_pages) {
2221 		ret = ops->map_pages(ops, iova, paddr, pgsize,
2222 				     pgcount, prot, gfp, mapped);
2223 	}
2224 
2225 	return ret;
2226 }
2227 
2228 static void amd_iommu_iotlb_gather_add_page(struct iommu_domain *domain,
2229 					    struct iommu_iotlb_gather *gather,
2230 					    unsigned long iova, size_t size)
2231 {
2232 	/*
2233 	 * AMD's IOMMU can flush as many pages as necessary in a single flush.
2234 	 * Unless we run in a virtual machine, which can be inferred according
2235 	 * to whether "non-present cache" is on, it is probably best to prefer
2236 	 * (potentially) too extensive TLB flushing (i.e., more misses) over
2237 	 * mutliple TLB flushes (i.e., more flushes). For virtual machines the
2238 	 * hypervisor needs to synchronize the host IOMMU PTEs with those of
2239 	 * the guest, and the trade-off is different: unnecessary TLB flushes
2240 	 * should be avoided.
2241 	 */
2242 	if (amd_iommu_np_cache &&
2243 	    iommu_iotlb_gather_is_disjoint(gather, iova, size))
2244 		iommu_iotlb_sync(domain, gather);
2245 
2246 	iommu_iotlb_gather_add_range(gather, iova, size);
2247 }
2248 
2249 static size_t amd_iommu_unmap_pages(struct iommu_domain *dom, unsigned long iova,
2250 				    size_t pgsize, size_t pgcount,
2251 				    struct iommu_iotlb_gather *gather)
2252 {
2253 	struct protection_domain *domain = to_pdomain(dom);
2254 	struct io_pgtable_ops *ops = &domain->iop.iop.ops;
2255 	size_t r;
2256 
2257 	if ((amd_iommu_pgtable == AMD_IOMMU_V1) &&
2258 	    (domain->iop.mode == PAGE_MODE_NONE))
2259 		return 0;
2260 
2261 	r = (ops->unmap_pages) ? ops->unmap_pages(ops, iova, pgsize, pgcount, NULL) : 0;
2262 
2263 	if (r)
2264 		amd_iommu_iotlb_gather_add_page(dom, gather, iova, r);
2265 
2266 	return r;
2267 }
2268 
2269 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2270 					  dma_addr_t iova)
2271 {
2272 	struct protection_domain *domain = to_pdomain(dom);
2273 	struct io_pgtable_ops *ops = &domain->iop.iop.ops;
2274 
2275 	return ops->iova_to_phys(ops, iova);
2276 }
2277 
2278 static bool amd_iommu_capable(struct device *dev, enum iommu_cap cap)
2279 {
2280 	switch (cap) {
2281 	case IOMMU_CAP_CACHE_COHERENCY:
2282 		return true;
2283 	case IOMMU_CAP_INTR_REMAP:
2284 		return (irq_remapping_enabled == 1);
2285 	case IOMMU_CAP_NOEXEC:
2286 		return false;
2287 	case IOMMU_CAP_PRE_BOOT_PROTECTION:
2288 		return amdr_ivrs_remap_support;
2289 	default:
2290 		break;
2291 	}
2292 
2293 	return false;
2294 }
2295 
2296 static void amd_iommu_get_resv_regions(struct device *dev,
2297 				       struct list_head *head)
2298 {
2299 	struct iommu_resv_region *region;
2300 	struct unity_map_entry *entry;
2301 	struct amd_iommu *iommu;
2302 	struct amd_iommu_pci_seg *pci_seg;
2303 	int devid, sbdf;
2304 
2305 	sbdf = get_device_sbdf_id(dev);
2306 	if (sbdf < 0)
2307 		return;
2308 
2309 	devid = PCI_SBDF_TO_DEVID(sbdf);
2310 	iommu = rlookup_amd_iommu(dev);
2311 	if (!iommu)
2312 		return;
2313 	pci_seg = iommu->pci_seg;
2314 
2315 	list_for_each_entry(entry, &pci_seg->unity_map, list) {
2316 		int type, prot = 0;
2317 		size_t length;
2318 
2319 		if (devid < entry->devid_start || devid > entry->devid_end)
2320 			continue;
2321 
2322 		type   = IOMMU_RESV_DIRECT;
2323 		length = entry->address_end - entry->address_start;
2324 		if (entry->prot & IOMMU_PROT_IR)
2325 			prot |= IOMMU_READ;
2326 		if (entry->prot & IOMMU_PROT_IW)
2327 			prot |= IOMMU_WRITE;
2328 		if (entry->prot & IOMMU_UNITY_MAP_FLAG_EXCL_RANGE)
2329 			/* Exclusion range */
2330 			type = IOMMU_RESV_RESERVED;
2331 
2332 		region = iommu_alloc_resv_region(entry->address_start,
2333 						 length, prot, type);
2334 		if (!region) {
2335 			dev_err(dev, "Out of memory allocating dm-regions\n");
2336 			return;
2337 		}
2338 		list_add_tail(&region->list, head);
2339 	}
2340 
2341 	region = iommu_alloc_resv_region(MSI_RANGE_START,
2342 					 MSI_RANGE_END - MSI_RANGE_START + 1,
2343 					 0, IOMMU_RESV_MSI);
2344 	if (!region)
2345 		return;
2346 	list_add_tail(&region->list, head);
2347 
2348 	region = iommu_alloc_resv_region(HT_RANGE_START,
2349 					 HT_RANGE_END - HT_RANGE_START + 1,
2350 					 0, IOMMU_RESV_RESERVED);
2351 	if (!region)
2352 		return;
2353 	list_add_tail(&region->list, head);
2354 }
2355 
2356 bool amd_iommu_is_attach_deferred(struct device *dev)
2357 {
2358 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2359 
2360 	return dev_data->defer_attach;
2361 }
2362 EXPORT_SYMBOL_GPL(amd_iommu_is_attach_deferred);
2363 
2364 static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain)
2365 {
2366 	struct protection_domain *dom = to_pdomain(domain);
2367 	unsigned long flags;
2368 
2369 	spin_lock_irqsave(&dom->lock, flags);
2370 	amd_iommu_domain_flush_tlb_pde(dom);
2371 	amd_iommu_domain_flush_complete(dom);
2372 	spin_unlock_irqrestore(&dom->lock, flags);
2373 }
2374 
2375 static void amd_iommu_iotlb_sync(struct iommu_domain *domain,
2376 				 struct iommu_iotlb_gather *gather)
2377 {
2378 	struct protection_domain *dom = to_pdomain(domain);
2379 	unsigned long flags;
2380 
2381 	spin_lock_irqsave(&dom->lock, flags);
2382 	domain_flush_pages(dom, gather->start, gather->end - gather->start, 1);
2383 	amd_iommu_domain_flush_complete(dom);
2384 	spin_unlock_irqrestore(&dom->lock, flags);
2385 }
2386 
2387 static int amd_iommu_def_domain_type(struct device *dev)
2388 {
2389 	struct iommu_dev_data *dev_data;
2390 
2391 	dev_data = dev_iommu_priv_get(dev);
2392 	if (!dev_data)
2393 		return 0;
2394 
2395 	/*
2396 	 * Do not identity map IOMMUv2 capable devices when memory encryption is
2397 	 * active, because some of those devices (AMD GPUs) don't have the
2398 	 * encryption bit in their DMA-mask and require remapping.
2399 	 */
2400 	if (!cc_platform_has(CC_ATTR_MEM_ENCRYPT) && dev_data->iommu_v2)
2401 		return IOMMU_DOMAIN_IDENTITY;
2402 
2403 	return 0;
2404 }
2405 
2406 static bool amd_iommu_enforce_cache_coherency(struct iommu_domain *domain)
2407 {
2408 	/* IOMMU_PTE_FC is always set */
2409 	return true;
2410 }
2411 
2412 const struct iommu_ops amd_iommu_ops = {
2413 	.capable = amd_iommu_capable,
2414 	.domain_alloc = amd_iommu_domain_alloc,
2415 	.probe_device = amd_iommu_probe_device,
2416 	.release_device = amd_iommu_release_device,
2417 	.probe_finalize = amd_iommu_probe_finalize,
2418 	.device_group = amd_iommu_device_group,
2419 	.get_resv_regions = amd_iommu_get_resv_regions,
2420 	.is_attach_deferred = amd_iommu_is_attach_deferred,
2421 	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
2422 	.def_domain_type = amd_iommu_def_domain_type,
2423 	.default_domain_ops = &(const struct iommu_domain_ops) {
2424 		.attach_dev	= amd_iommu_attach_device,
2425 		.detach_dev	= amd_iommu_detach_device,
2426 		.map_pages	= amd_iommu_map_pages,
2427 		.unmap_pages	= amd_iommu_unmap_pages,
2428 		.iotlb_sync_map	= amd_iommu_iotlb_sync_map,
2429 		.iova_to_phys	= amd_iommu_iova_to_phys,
2430 		.flush_iotlb_all = amd_iommu_flush_iotlb_all,
2431 		.iotlb_sync	= amd_iommu_iotlb_sync,
2432 		.free		= amd_iommu_domain_free,
2433 		.enforce_cache_coherency = amd_iommu_enforce_cache_coherency,
2434 	}
2435 };
2436 
2437 /*****************************************************************************
2438  *
2439  * The next functions do a basic initialization of IOMMU for pass through
2440  * mode
2441  *
2442  * In passthrough mode the IOMMU is initialized and enabled but not used for
2443  * DMA-API translation.
2444  *
2445  *****************************************************************************/
2446 
2447 /* IOMMUv2 specific functions */
2448 int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
2449 {
2450 	return atomic_notifier_chain_register(&ppr_notifier, nb);
2451 }
2452 EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
2453 
2454 int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
2455 {
2456 	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
2457 }
2458 EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
2459 
2460 void amd_iommu_domain_direct_map(struct iommu_domain *dom)
2461 {
2462 	struct protection_domain *domain = to_pdomain(dom);
2463 	unsigned long flags;
2464 
2465 	spin_lock_irqsave(&domain->lock, flags);
2466 
2467 	if (domain->iop.pgtbl_cfg.tlb)
2468 		free_io_pgtable_ops(&domain->iop.iop.ops);
2469 
2470 	spin_unlock_irqrestore(&domain->lock, flags);
2471 }
2472 EXPORT_SYMBOL(amd_iommu_domain_direct_map);
2473 
2474 /* Note: This function expects iommu_domain->lock to be held prior calling the function. */
2475 static int domain_enable_v2(struct protection_domain *domain, int pasids)
2476 {
2477 	int levels;
2478 
2479 	/* Number of GCR3 table levels required */
2480 	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
2481 		levels += 1;
2482 
2483 	if (levels > amd_iommu_max_glx_val)
2484 		return -EINVAL;
2485 
2486 	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
2487 	if (domain->gcr3_tbl == NULL)
2488 		return -ENOMEM;
2489 
2490 	domain->glx      = levels;
2491 	domain->flags   |= PD_IOMMUV2_MASK;
2492 
2493 	amd_iommu_domain_update(domain);
2494 
2495 	return 0;
2496 }
2497 
2498 int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
2499 {
2500 	struct protection_domain *pdom = to_pdomain(dom);
2501 	unsigned long flags;
2502 	int ret;
2503 
2504 	spin_lock_irqsave(&pdom->lock, flags);
2505 
2506 	/*
2507 	 * Save us all sanity checks whether devices already in the
2508 	 * domain support IOMMUv2. Just force that the domain has no
2509 	 * devices attached when it is switched into IOMMUv2 mode.
2510 	 */
2511 	ret = -EBUSY;
2512 	if (pdom->dev_cnt > 0 || pdom->flags & PD_IOMMUV2_MASK)
2513 		goto out;
2514 
2515 	if (!pdom->gcr3_tbl)
2516 		ret = domain_enable_v2(pdom, pasids);
2517 
2518 out:
2519 	spin_unlock_irqrestore(&pdom->lock, flags);
2520 	return ret;
2521 }
2522 EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
2523 
2524 static int __flush_pasid(struct protection_domain *domain, u32 pasid,
2525 			 u64 address, bool size)
2526 {
2527 	struct iommu_dev_data *dev_data;
2528 	struct iommu_cmd cmd;
2529 	int i, ret;
2530 
2531 	if (!(domain->flags & PD_IOMMUV2_MASK))
2532 		return -EINVAL;
2533 
2534 	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
2535 
2536 	/*
2537 	 * IOMMU TLB needs to be flushed before Device TLB to
2538 	 * prevent device TLB refill from IOMMU TLB
2539 	 */
2540 	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
2541 		if (domain->dev_iommu[i] == 0)
2542 			continue;
2543 
2544 		ret = iommu_queue_command(amd_iommus[i], &cmd);
2545 		if (ret != 0)
2546 			goto out;
2547 	}
2548 
2549 	/* Wait until IOMMU TLB flushes are complete */
2550 	amd_iommu_domain_flush_complete(domain);
2551 
2552 	/* Now flush device TLBs */
2553 	list_for_each_entry(dev_data, &domain->dev_list, list) {
2554 		struct amd_iommu *iommu;
2555 		int qdep;
2556 
2557 		/*
2558 		   There might be non-IOMMUv2 capable devices in an IOMMUv2
2559 		 * domain.
2560 		 */
2561 		if (!dev_data->ats.enabled)
2562 			continue;
2563 
2564 		qdep  = dev_data->ats.qdep;
2565 		iommu = rlookup_amd_iommu(dev_data->dev);
2566 		if (!iommu)
2567 			continue;
2568 		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
2569 				      qdep, address, size);
2570 
2571 		ret = iommu_queue_command(iommu, &cmd);
2572 		if (ret != 0)
2573 			goto out;
2574 	}
2575 
2576 	/* Wait until all device TLBs are flushed */
2577 	amd_iommu_domain_flush_complete(domain);
2578 
2579 	ret = 0;
2580 
2581 out:
2582 
2583 	return ret;
2584 }
2585 
2586 static int __amd_iommu_flush_page(struct protection_domain *domain, u32 pasid,
2587 				  u64 address)
2588 {
2589 	return __flush_pasid(domain, pasid, address, false);
2590 }
2591 
2592 int amd_iommu_flush_page(struct iommu_domain *dom, u32 pasid,
2593 			 u64 address)
2594 {
2595 	struct protection_domain *domain = to_pdomain(dom);
2596 	unsigned long flags;
2597 	int ret;
2598 
2599 	spin_lock_irqsave(&domain->lock, flags);
2600 	ret = __amd_iommu_flush_page(domain, pasid, address);
2601 	spin_unlock_irqrestore(&domain->lock, flags);
2602 
2603 	return ret;
2604 }
2605 EXPORT_SYMBOL(amd_iommu_flush_page);
2606 
2607 static int __amd_iommu_flush_tlb(struct protection_domain *domain, u32 pasid)
2608 {
2609 	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
2610 			     true);
2611 }
2612 
2613 int amd_iommu_flush_tlb(struct iommu_domain *dom, u32 pasid)
2614 {
2615 	struct protection_domain *domain = to_pdomain(dom);
2616 	unsigned long flags;
2617 	int ret;
2618 
2619 	spin_lock_irqsave(&domain->lock, flags);
2620 	ret = __amd_iommu_flush_tlb(domain, pasid);
2621 	spin_unlock_irqrestore(&domain->lock, flags);
2622 
2623 	return ret;
2624 }
2625 EXPORT_SYMBOL(amd_iommu_flush_tlb);
2626 
2627 static u64 *__get_gcr3_pte(u64 *root, int level, u32 pasid, bool alloc)
2628 {
2629 	int index;
2630 	u64 *pte;
2631 
2632 	while (true) {
2633 
2634 		index = (pasid >> (9 * level)) & 0x1ff;
2635 		pte   = &root[index];
2636 
2637 		if (level == 0)
2638 			break;
2639 
2640 		if (!(*pte & GCR3_VALID)) {
2641 			if (!alloc)
2642 				return NULL;
2643 
2644 			root = (void *)get_zeroed_page(GFP_ATOMIC);
2645 			if (root == NULL)
2646 				return NULL;
2647 
2648 			*pte = iommu_virt_to_phys(root) | GCR3_VALID;
2649 		}
2650 
2651 		root = iommu_phys_to_virt(*pte & PAGE_MASK);
2652 
2653 		level -= 1;
2654 	}
2655 
2656 	return pte;
2657 }
2658 
2659 static int __set_gcr3(struct protection_domain *domain, u32 pasid,
2660 		      unsigned long cr3)
2661 {
2662 	u64 *pte;
2663 
2664 	if (domain->iop.mode != PAGE_MODE_NONE)
2665 		return -EINVAL;
2666 
2667 	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
2668 	if (pte == NULL)
2669 		return -ENOMEM;
2670 
2671 	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;
2672 
2673 	return __amd_iommu_flush_tlb(domain, pasid);
2674 }
2675 
2676 static int __clear_gcr3(struct protection_domain *domain, u32 pasid)
2677 {
2678 	u64 *pte;
2679 
2680 	if (domain->iop.mode != PAGE_MODE_NONE)
2681 		return -EINVAL;
2682 
2683 	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
2684 	if (pte == NULL)
2685 		return 0;
2686 
2687 	*pte = 0;
2688 
2689 	return __amd_iommu_flush_tlb(domain, pasid);
2690 }
2691 
2692 int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, u32 pasid,
2693 			      unsigned long cr3)
2694 {
2695 	struct protection_domain *domain = to_pdomain(dom);
2696 	unsigned long flags;
2697 	int ret;
2698 
2699 	spin_lock_irqsave(&domain->lock, flags);
2700 	ret = __set_gcr3(domain, pasid, cr3);
2701 	spin_unlock_irqrestore(&domain->lock, flags);
2702 
2703 	return ret;
2704 }
2705 EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
2706 
2707 int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, u32 pasid)
2708 {
2709 	struct protection_domain *domain = to_pdomain(dom);
2710 	unsigned long flags;
2711 	int ret;
2712 
2713 	spin_lock_irqsave(&domain->lock, flags);
2714 	ret = __clear_gcr3(domain, pasid);
2715 	spin_unlock_irqrestore(&domain->lock, flags);
2716 
2717 	return ret;
2718 }
2719 EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
2720 
2721 int amd_iommu_complete_ppr(struct pci_dev *pdev, u32 pasid,
2722 			   int status, int tag)
2723 {
2724 	struct iommu_dev_data *dev_data;
2725 	struct amd_iommu *iommu;
2726 	struct iommu_cmd cmd;
2727 
2728 	dev_data = dev_iommu_priv_get(&pdev->dev);
2729 	iommu    = rlookup_amd_iommu(&pdev->dev);
2730 	if (!iommu)
2731 		return -ENODEV;
2732 
2733 	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
2734 			   tag, dev_data->pri_tlp);
2735 
2736 	return iommu_queue_command(iommu, &cmd);
2737 }
2738 EXPORT_SYMBOL(amd_iommu_complete_ppr);
2739 
2740 int amd_iommu_device_info(struct pci_dev *pdev,
2741                           struct amd_iommu_device_info *info)
2742 {
2743 	int max_pasids;
2744 	int pos;
2745 
2746 	if (pdev == NULL || info == NULL)
2747 		return -EINVAL;
2748 
2749 	if (!amd_iommu_v2_supported())
2750 		return -EINVAL;
2751 
2752 	memset(info, 0, sizeof(*info));
2753 
2754 	if (pci_ats_supported(pdev))
2755 		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
2756 
2757 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2758 	if (pos)
2759 		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
2760 
2761 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
2762 	if (pos) {
2763 		int features;
2764 
2765 		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
2766 		max_pasids = min(max_pasids, (1 << 20));
2767 
2768 		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
2769 		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
2770 
2771 		features = pci_pasid_features(pdev);
2772 		if (features & PCI_PASID_CAP_EXEC)
2773 			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
2774 		if (features & PCI_PASID_CAP_PRIV)
2775 			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
2776 	}
2777 
2778 	return 0;
2779 }
2780 EXPORT_SYMBOL(amd_iommu_device_info);
2781 
2782 #ifdef CONFIG_IRQ_REMAP
2783 
2784 /*****************************************************************************
2785  *
2786  * Interrupt Remapping Implementation
2787  *
2788  *****************************************************************************/
2789 
2790 static struct irq_chip amd_ir_chip;
2791 static DEFINE_SPINLOCK(iommu_table_lock);
2792 
2793 static void set_dte_irq_entry(struct amd_iommu *iommu, u16 devid,
2794 			      struct irq_remap_table *table)
2795 {
2796 	u64 dte;
2797 	struct dev_table_entry *dev_table = get_dev_table(iommu);
2798 
2799 	dte	= dev_table[devid].data[2];
2800 	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
2801 	dte	|= iommu_virt_to_phys(table->table);
2802 	dte	|= DTE_IRQ_REMAP_INTCTL;
2803 	dte	|= DTE_INTTABLEN;
2804 	dte	|= DTE_IRQ_REMAP_ENABLE;
2805 
2806 	dev_table[devid].data[2] = dte;
2807 }
2808 
2809 static struct irq_remap_table *get_irq_table(struct amd_iommu *iommu, u16 devid)
2810 {
2811 	struct irq_remap_table *table;
2812 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
2813 
2814 	if (WARN_ONCE(!pci_seg->rlookup_table[devid],
2815 		      "%s: no iommu for devid %x:%x\n",
2816 		      __func__, pci_seg->id, devid))
2817 		return NULL;
2818 
2819 	table = pci_seg->irq_lookup_table[devid];
2820 	if (WARN_ONCE(!table, "%s: no table for devid %x:%x\n",
2821 		      __func__, pci_seg->id, devid))
2822 		return NULL;
2823 
2824 	return table;
2825 }
2826 
2827 static struct irq_remap_table *__alloc_irq_table(void)
2828 {
2829 	struct irq_remap_table *table;
2830 
2831 	table = kzalloc(sizeof(*table), GFP_KERNEL);
2832 	if (!table)
2833 		return NULL;
2834 
2835 	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL);
2836 	if (!table->table) {
2837 		kfree(table);
2838 		return NULL;
2839 	}
2840 	raw_spin_lock_init(&table->lock);
2841 
2842 	if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
2843 		memset(table->table, 0,
2844 		       MAX_IRQS_PER_TABLE * sizeof(u32));
2845 	else
2846 		memset(table->table, 0,
2847 		       (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
2848 	return table;
2849 }
2850 
2851 static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid,
2852 				  struct irq_remap_table *table)
2853 {
2854 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
2855 
2856 	pci_seg->irq_lookup_table[devid] = table;
2857 	set_dte_irq_entry(iommu, devid, table);
2858 	iommu_flush_dte(iommu, devid);
2859 }
2860 
2861 static int set_remap_table_entry_alias(struct pci_dev *pdev, u16 alias,
2862 				       void *data)
2863 {
2864 	struct irq_remap_table *table = data;
2865 	struct amd_iommu_pci_seg *pci_seg;
2866 	struct amd_iommu *iommu = rlookup_amd_iommu(&pdev->dev);
2867 
2868 	if (!iommu)
2869 		return -EINVAL;
2870 
2871 	pci_seg = iommu->pci_seg;
2872 	pci_seg->irq_lookup_table[alias] = table;
2873 	set_dte_irq_entry(iommu, alias, table);
2874 	iommu_flush_dte(pci_seg->rlookup_table[alias], alias);
2875 
2876 	return 0;
2877 }
2878 
2879 static struct irq_remap_table *alloc_irq_table(struct amd_iommu *iommu,
2880 					       u16 devid, struct pci_dev *pdev)
2881 {
2882 	struct irq_remap_table *table = NULL;
2883 	struct irq_remap_table *new_table = NULL;
2884 	struct amd_iommu_pci_seg *pci_seg;
2885 	unsigned long flags;
2886 	u16 alias;
2887 
2888 	spin_lock_irqsave(&iommu_table_lock, flags);
2889 
2890 	pci_seg = iommu->pci_seg;
2891 	table = pci_seg->irq_lookup_table[devid];
2892 	if (table)
2893 		goto out_unlock;
2894 
2895 	alias = pci_seg->alias_table[devid];
2896 	table = pci_seg->irq_lookup_table[alias];
2897 	if (table) {
2898 		set_remap_table_entry(iommu, devid, table);
2899 		goto out_wait;
2900 	}
2901 	spin_unlock_irqrestore(&iommu_table_lock, flags);
2902 
2903 	/* Nothing there yet, allocate new irq remapping table */
2904 	new_table = __alloc_irq_table();
2905 	if (!new_table)
2906 		return NULL;
2907 
2908 	spin_lock_irqsave(&iommu_table_lock, flags);
2909 
2910 	table = pci_seg->irq_lookup_table[devid];
2911 	if (table)
2912 		goto out_unlock;
2913 
2914 	table = pci_seg->irq_lookup_table[alias];
2915 	if (table) {
2916 		set_remap_table_entry(iommu, devid, table);
2917 		goto out_wait;
2918 	}
2919 
2920 	table = new_table;
2921 	new_table = NULL;
2922 
2923 	if (pdev)
2924 		pci_for_each_dma_alias(pdev, set_remap_table_entry_alias,
2925 				       table);
2926 	else
2927 		set_remap_table_entry(iommu, devid, table);
2928 
2929 	if (devid != alias)
2930 		set_remap_table_entry(iommu, alias, table);
2931 
2932 out_wait:
2933 	iommu_completion_wait(iommu);
2934 
2935 out_unlock:
2936 	spin_unlock_irqrestore(&iommu_table_lock, flags);
2937 
2938 	if (new_table) {
2939 		kmem_cache_free(amd_iommu_irq_cache, new_table->table);
2940 		kfree(new_table);
2941 	}
2942 	return table;
2943 }
2944 
2945 static int alloc_irq_index(struct amd_iommu *iommu, u16 devid, int count,
2946 			   bool align, struct pci_dev *pdev)
2947 {
2948 	struct irq_remap_table *table;
2949 	int index, c, alignment = 1;
2950 	unsigned long flags;
2951 
2952 	table = alloc_irq_table(iommu, devid, pdev);
2953 	if (!table)
2954 		return -ENODEV;
2955 
2956 	if (align)
2957 		alignment = roundup_pow_of_two(count);
2958 
2959 	raw_spin_lock_irqsave(&table->lock, flags);
2960 
2961 	/* Scan table for free entries */
2962 	for (index = ALIGN(table->min_index, alignment), c = 0;
2963 	     index < MAX_IRQS_PER_TABLE;) {
2964 		if (!iommu->irte_ops->is_allocated(table, index)) {
2965 			c += 1;
2966 		} else {
2967 			c     = 0;
2968 			index = ALIGN(index + 1, alignment);
2969 			continue;
2970 		}
2971 
2972 		if (c == count)	{
2973 			for (; c != 0; --c)
2974 				iommu->irte_ops->set_allocated(table, index - c + 1);
2975 
2976 			index -= count - 1;
2977 			goto out;
2978 		}
2979 
2980 		index++;
2981 	}
2982 
2983 	index = -ENOSPC;
2984 
2985 out:
2986 	raw_spin_unlock_irqrestore(&table->lock, flags);
2987 
2988 	return index;
2989 }
2990 
2991 static int modify_irte_ga(struct amd_iommu *iommu, u16 devid, int index,
2992 			  struct irte_ga *irte, struct amd_ir_data *data)
2993 {
2994 	bool ret;
2995 	struct irq_remap_table *table;
2996 	unsigned long flags;
2997 	struct irte_ga *entry;
2998 
2999 	table = get_irq_table(iommu, devid);
3000 	if (!table)
3001 		return -ENOMEM;
3002 
3003 	raw_spin_lock_irqsave(&table->lock, flags);
3004 
3005 	entry = (struct irte_ga *)table->table;
3006 	entry = &entry[index];
3007 
3008 	ret = cmpxchg_double(&entry->lo.val, &entry->hi.val,
3009 			     entry->lo.val, entry->hi.val,
3010 			     irte->lo.val, irte->hi.val);
3011 	/*
3012 	 * We use cmpxchg16 to atomically update the 128-bit IRTE,
3013 	 * and it cannot be updated by the hardware or other processors
3014 	 * behind us, so the return value of cmpxchg16 should be the
3015 	 * same as the old value.
3016 	 */
3017 	WARN_ON(!ret);
3018 
3019 	if (data)
3020 		data->ref = entry;
3021 
3022 	raw_spin_unlock_irqrestore(&table->lock, flags);
3023 
3024 	iommu_flush_irt(iommu, devid);
3025 	iommu_completion_wait(iommu);
3026 
3027 	return 0;
3028 }
3029 
3030 static int modify_irte(struct amd_iommu *iommu,
3031 		       u16 devid, int index, union irte *irte)
3032 {
3033 	struct irq_remap_table *table;
3034 	unsigned long flags;
3035 
3036 	table = get_irq_table(iommu, devid);
3037 	if (!table)
3038 		return -ENOMEM;
3039 
3040 	raw_spin_lock_irqsave(&table->lock, flags);
3041 	table->table[index] = irte->val;
3042 	raw_spin_unlock_irqrestore(&table->lock, flags);
3043 
3044 	iommu_flush_irt(iommu, devid);
3045 	iommu_completion_wait(iommu);
3046 
3047 	return 0;
3048 }
3049 
3050 static void free_irte(struct amd_iommu *iommu, u16 devid, int index)
3051 {
3052 	struct irq_remap_table *table;
3053 	unsigned long flags;
3054 
3055 	table = get_irq_table(iommu, devid);
3056 	if (!table)
3057 		return;
3058 
3059 	raw_spin_lock_irqsave(&table->lock, flags);
3060 	iommu->irte_ops->clear_allocated(table, index);
3061 	raw_spin_unlock_irqrestore(&table->lock, flags);
3062 
3063 	iommu_flush_irt(iommu, devid);
3064 	iommu_completion_wait(iommu);
3065 }
3066 
3067 static void irte_prepare(void *entry,
3068 			 u32 delivery_mode, bool dest_mode,
3069 			 u8 vector, u32 dest_apicid, int devid)
3070 {
3071 	union irte *irte = (union irte *) entry;
3072 
3073 	irte->val                = 0;
3074 	irte->fields.vector      = vector;
3075 	irte->fields.int_type    = delivery_mode;
3076 	irte->fields.destination = dest_apicid;
3077 	irte->fields.dm          = dest_mode;
3078 	irte->fields.valid       = 1;
3079 }
3080 
3081 static void irte_ga_prepare(void *entry,
3082 			    u32 delivery_mode, bool dest_mode,
3083 			    u8 vector, u32 dest_apicid, int devid)
3084 {
3085 	struct irte_ga *irte = (struct irte_ga *) entry;
3086 
3087 	irte->lo.val                      = 0;
3088 	irte->hi.val                      = 0;
3089 	irte->lo.fields_remap.int_type    = delivery_mode;
3090 	irte->lo.fields_remap.dm          = dest_mode;
3091 	irte->hi.fields.vector            = vector;
3092 	irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid);
3093 	irte->hi.fields.destination       = APICID_TO_IRTE_DEST_HI(dest_apicid);
3094 	irte->lo.fields_remap.valid       = 1;
3095 }
3096 
3097 static void irte_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3098 {
3099 	union irte *irte = (union irte *) entry;
3100 
3101 	irte->fields.valid = 1;
3102 	modify_irte(iommu, devid, index, irte);
3103 }
3104 
3105 static void irte_ga_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3106 {
3107 	struct irte_ga *irte = (struct irte_ga *) entry;
3108 
3109 	irte->lo.fields_remap.valid = 1;
3110 	modify_irte_ga(iommu, devid, index, irte, NULL);
3111 }
3112 
3113 static void irte_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3114 {
3115 	union irte *irte = (union irte *) entry;
3116 
3117 	irte->fields.valid = 0;
3118 	modify_irte(iommu, devid, index, irte);
3119 }
3120 
3121 static void irte_ga_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3122 {
3123 	struct irte_ga *irte = (struct irte_ga *) entry;
3124 
3125 	irte->lo.fields_remap.valid = 0;
3126 	modify_irte_ga(iommu, devid, index, irte, NULL);
3127 }
3128 
3129 static void irte_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index,
3130 			      u8 vector, u32 dest_apicid)
3131 {
3132 	union irte *irte = (union irte *) entry;
3133 
3134 	irte->fields.vector = vector;
3135 	irte->fields.destination = dest_apicid;
3136 	modify_irte(iommu, devid, index, irte);
3137 }
3138 
3139 static void irte_ga_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index,
3140 				 u8 vector, u32 dest_apicid)
3141 {
3142 	struct irte_ga *irte = (struct irte_ga *) entry;
3143 
3144 	if (!irte->lo.fields_remap.guest_mode) {
3145 		irte->hi.fields.vector = vector;
3146 		irte->lo.fields_remap.destination =
3147 					APICID_TO_IRTE_DEST_LO(dest_apicid);
3148 		irte->hi.fields.destination =
3149 					APICID_TO_IRTE_DEST_HI(dest_apicid);
3150 		modify_irte_ga(iommu, devid, index, irte, NULL);
3151 	}
3152 }
3153 
3154 #define IRTE_ALLOCATED (~1U)
3155 static void irte_set_allocated(struct irq_remap_table *table, int index)
3156 {
3157 	table->table[index] = IRTE_ALLOCATED;
3158 }
3159 
3160 static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
3161 {
3162 	struct irte_ga *ptr = (struct irte_ga *)table->table;
3163 	struct irte_ga *irte = &ptr[index];
3164 
3165 	memset(&irte->lo.val, 0, sizeof(u64));
3166 	memset(&irte->hi.val, 0, sizeof(u64));
3167 	irte->hi.fields.vector = 0xff;
3168 }
3169 
3170 static bool irte_is_allocated(struct irq_remap_table *table, int index)
3171 {
3172 	union irte *ptr = (union irte *)table->table;
3173 	union irte *irte = &ptr[index];
3174 
3175 	return irte->val != 0;
3176 }
3177 
3178 static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
3179 {
3180 	struct irte_ga *ptr = (struct irte_ga *)table->table;
3181 	struct irte_ga *irte = &ptr[index];
3182 
3183 	return irte->hi.fields.vector != 0;
3184 }
3185 
3186 static void irte_clear_allocated(struct irq_remap_table *table, int index)
3187 {
3188 	table->table[index] = 0;
3189 }
3190 
3191 static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
3192 {
3193 	struct irte_ga *ptr = (struct irte_ga *)table->table;
3194 	struct irte_ga *irte = &ptr[index];
3195 
3196 	memset(&irte->lo.val, 0, sizeof(u64));
3197 	memset(&irte->hi.val, 0, sizeof(u64));
3198 }
3199 
3200 static int get_devid(struct irq_alloc_info *info)
3201 {
3202 	switch (info->type) {
3203 	case X86_IRQ_ALLOC_TYPE_IOAPIC:
3204 		return get_ioapic_devid(info->devid);
3205 	case X86_IRQ_ALLOC_TYPE_HPET:
3206 		return get_hpet_devid(info->devid);
3207 	case X86_IRQ_ALLOC_TYPE_PCI_MSI:
3208 	case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
3209 		return get_device_sbdf_id(msi_desc_to_dev(info->desc));
3210 	default:
3211 		WARN_ON_ONCE(1);
3212 		return -1;
3213 	}
3214 }
3215 
3216 struct irq_remap_ops amd_iommu_irq_ops = {
3217 	.prepare		= amd_iommu_prepare,
3218 	.enable			= amd_iommu_enable,
3219 	.disable		= amd_iommu_disable,
3220 	.reenable		= amd_iommu_reenable,
3221 	.enable_faulting	= amd_iommu_enable_faulting,
3222 };
3223 
3224 static void fill_msi_msg(struct msi_msg *msg, u32 index)
3225 {
3226 	msg->data = index;
3227 	msg->address_lo = 0;
3228 	msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
3229 	msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
3230 }
3231 
3232 static void irq_remapping_prepare_irte(struct amd_ir_data *data,
3233 				       struct irq_cfg *irq_cfg,
3234 				       struct irq_alloc_info *info,
3235 				       int devid, int index, int sub_handle)
3236 {
3237 	struct irq_2_irte *irte_info = &data->irq_2_irte;
3238 	struct amd_iommu *iommu = data->iommu;
3239 
3240 	if (!iommu)
3241 		return;
3242 
3243 	data->irq_2_irte.devid = devid;
3244 	data->irq_2_irte.index = index + sub_handle;
3245 	iommu->irte_ops->prepare(data->entry, apic->delivery_mode,
3246 				 apic->dest_mode_logical, irq_cfg->vector,
3247 				 irq_cfg->dest_apicid, devid);
3248 
3249 	switch (info->type) {
3250 	case X86_IRQ_ALLOC_TYPE_IOAPIC:
3251 	case X86_IRQ_ALLOC_TYPE_HPET:
3252 	case X86_IRQ_ALLOC_TYPE_PCI_MSI:
3253 	case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
3254 		fill_msi_msg(&data->msi_entry, irte_info->index);
3255 		break;
3256 
3257 	default:
3258 		BUG_ON(1);
3259 		break;
3260 	}
3261 }
3262 
3263 struct amd_irte_ops irte_32_ops = {
3264 	.prepare = irte_prepare,
3265 	.activate = irte_activate,
3266 	.deactivate = irte_deactivate,
3267 	.set_affinity = irte_set_affinity,
3268 	.set_allocated = irte_set_allocated,
3269 	.is_allocated = irte_is_allocated,
3270 	.clear_allocated = irte_clear_allocated,
3271 };
3272 
3273 struct amd_irte_ops irte_128_ops = {
3274 	.prepare = irte_ga_prepare,
3275 	.activate = irte_ga_activate,
3276 	.deactivate = irte_ga_deactivate,
3277 	.set_affinity = irte_ga_set_affinity,
3278 	.set_allocated = irte_ga_set_allocated,
3279 	.is_allocated = irte_ga_is_allocated,
3280 	.clear_allocated = irte_ga_clear_allocated,
3281 };
3282 
3283 static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
3284 			       unsigned int nr_irqs, void *arg)
3285 {
3286 	struct irq_alloc_info *info = arg;
3287 	struct irq_data *irq_data;
3288 	struct amd_ir_data *data = NULL;
3289 	struct amd_iommu *iommu;
3290 	struct irq_cfg *cfg;
3291 	int i, ret, devid, seg, sbdf;
3292 	int index;
3293 
3294 	if (!info)
3295 		return -EINVAL;
3296 	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI &&
3297 	    info->type != X86_IRQ_ALLOC_TYPE_PCI_MSIX)
3298 		return -EINVAL;
3299 
3300 	/*
3301 	 * With IRQ remapping enabled, don't need contiguous CPU vectors
3302 	 * to support multiple MSI interrupts.
3303 	 */
3304 	if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI)
3305 		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
3306 
3307 	sbdf = get_devid(info);
3308 	if (sbdf < 0)
3309 		return -EINVAL;
3310 
3311 	seg = PCI_SBDF_TO_SEGID(sbdf);
3312 	devid = PCI_SBDF_TO_DEVID(sbdf);
3313 	iommu = __rlookup_amd_iommu(seg, devid);
3314 	if (!iommu)
3315 		return -EINVAL;
3316 
3317 	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
3318 	if (ret < 0)
3319 		return ret;
3320 
3321 	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
3322 		struct irq_remap_table *table;
3323 
3324 		table = alloc_irq_table(iommu, devid, NULL);
3325 		if (table) {
3326 			if (!table->min_index) {
3327 				/*
3328 				 * Keep the first 32 indexes free for IOAPIC
3329 				 * interrupts.
3330 				 */
3331 				table->min_index = 32;
3332 				for (i = 0; i < 32; ++i)
3333 					iommu->irte_ops->set_allocated(table, i);
3334 			}
3335 			WARN_ON(table->min_index != 32);
3336 			index = info->ioapic.pin;
3337 		} else {
3338 			index = -ENOMEM;
3339 		}
3340 	} else if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI ||
3341 		   info->type == X86_IRQ_ALLOC_TYPE_PCI_MSIX) {
3342 		bool align = (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI);
3343 
3344 		index = alloc_irq_index(iommu, devid, nr_irqs, align,
3345 					msi_desc_to_pci_dev(info->desc));
3346 	} else {
3347 		index = alloc_irq_index(iommu, devid, nr_irqs, false, NULL);
3348 	}
3349 
3350 	if (index < 0) {
3351 		pr_warn("Failed to allocate IRTE\n");
3352 		ret = index;
3353 		goto out_free_parent;
3354 	}
3355 
3356 	for (i = 0; i < nr_irqs; i++) {
3357 		irq_data = irq_domain_get_irq_data(domain, virq + i);
3358 		cfg = irq_data ? irqd_cfg(irq_data) : NULL;
3359 		if (!cfg) {
3360 			ret = -EINVAL;
3361 			goto out_free_data;
3362 		}
3363 
3364 		ret = -ENOMEM;
3365 		data = kzalloc(sizeof(*data), GFP_KERNEL);
3366 		if (!data)
3367 			goto out_free_data;
3368 
3369 		if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
3370 			data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
3371 		else
3372 			data->entry = kzalloc(sizeof(struct irte_ga),
3373 						     GFP_KERNEL);
3374 		if (!data->entry) {
3375 			kfree(data);
3376 			goto out_free_data;
3377 		}
3378 
3379 		data->iommu = iommu;
3380 		irq_data->hwirq = (devid << 16) + i;
3381 		irq_data->chip_data = data;
3382 		irq_data->chip = &amd_ir_chip;
3383 		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
3384 		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
3385 	}
3386 
3387 	return 0;
3388 
3389 out_free_data:
3390 	for (i--; i >= 0; i--) {
3391 		irq_data = irq_domain_get_irq_data(domain, virq + i);
3392 		if (irq_data)
3393 			kfree(irq_data->chip_data);
3394 	}
3395 	for (i = 0; i < nr_irqs; i++)
3396 		free_irte(iommu, devid, index + i);
3397 out_free_parent:
3398 	irq_domain_free_irqs_common(domain, virq, nr_irqs);
3399 	return ret;
3400 }
3401 
3402 static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
3403 			       unsigned int nr_irqs)
3404 {
3405 	struct irq_2_irte *irte_info;
3406 	struct irq_data *irq_data;
3407 	struct amd_ir_data *data;
3408 	int i;
3409 
3410 	for (i = 0; i < nr_irqs; i++) {
3411 		irq_data = irq_domain_get_irq_data(domain, virq  + i);
3412 		if (irq_data && irq_data->chip_data) {
3413 			data = irq_data->chip_data;
3414 			irte_info = &data->irq_2_irte;
3415 			free_irte(data->iommu, irte_info->devid, irte_info->index);
3416 			kfree(data->entry);
3417 			kfree(data);
3418 		}
3419 	}
3420 	irq_domain_free_irqs_common(domain, virq, nr_irqs);
3421 }
3422 
3423 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
3424 			       struct amd_ir_data *ir_data,
3425 			       struct irq_2_irte *irte_info,
3426 			       struct irq_cfg *cfg);
3427 
3428 static int irq_remapping_activate(struct irq_domain *domain,
3429 				  struct irq_data *irq_data, bool reserve)
3430 {
3431 	struct amd_ir_data *data = irq_data->chip_data;
3432 	struct irq_2_irte *irte_info = &data->irq_2_irte;
3433 	struct amd_iommu *iommu = data->iommu;
3434 	struct irq_cfg *cfg = irqd_cfg(irq_data);
3435 
3436 	if (!iommu)
3437 		return 0;
3438 
3439 	iommu->irte_ops->activate(iommu, data->entry, irte_info->devid,
3440 				  irte_info->index);
3441 	amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
3442 	return 0;
3443 }
3444 
3445 static void irq_remapping_deactivate(struct irq_domain *domain,
3446 				     struct irq_data *irq_data)
3447 {
3448 	struct amd_ir_data *data = irq_data->chip_data;
3449 	struct irq_2_irte *irte_info = &data->irq_2_irte;
3450 	struct amd_iommu *iommu = data->iommu;
3451 
3452 	if (iommu)
3453 		iommu->irte_ops->deactivate(iommu, data->entry, irte_info->devid,
3454 					    irte_info->index);
3455 }
3456 
3457 static int irq_remapping_select(struct irq_domain *d, struct irq_fwspec *fwspec,
3458 				enum irq_domain_bus_token bus_token)
3459 {
3460 	struct amd_iommu *iommu;
3461 	int devid = -1;
3462 
3463 	if (!amd_iommu_irq_remap)
3464 		return 0;
3465 
3466 	if (x86_fwspec_is_ioapic(fwspec))
3467 		devid = get_ioapic_devid(fwspec->param[0]);
3468 	else if (x86_fwspec_is_hpet(fwspec))
3469 		devid = get_hpet_devid(fwspec->param[0]);
3470 
3471 	if (devid < 0)
3472 		return 0;
3473 	iommu = __rlookup_amd_iommu((devid >> 16), (devid & 0xffff));
3474 
3475 	return iommu && iommu->ir_domain == d;
3476 }
3477 
3478 static const struct irq_domain_ops amd_ir_domain_ops = {
3479 	.select = irq_remapping_select,
3480 	.alloc = irq_remapping_alloc,
3481 	.free = irq_remapping_free,
3482 	.activate = irq_remapping_activate,
3483 	.deactivate = irq_remapping_deactivate,
3484 };
3485 
3486 int amd_iommu_activate_guest_mode(void *data)
3487 {
3488 	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3489 	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3490 	u64 valid;
3491 
3492 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
3493 	    !entry || entry->lo.fields_vapic.guest_mode)
3494 		return 0;
3495 
3496 	valid = entry->lo.fields_vapic.valid;
3497 
3498 	entry->lo.val = 0;
3499 	entry->hi.val = 0;
3500 
3501 	entry->lo.fields_vapic.valid       = valid;
3502 	entry->lo.fields_vapic.guest_mode  = 1;
3503 	entry->lo.fields_vapic.ga_log_intr = 1;
3504 	entry->hi.fields.ga_root_ptr       = ir_data->ga_root_ptr;
3505 	entry->hi.fields.vector            = ir_data->ga_vector;
3506 	entry->lo.fields_vapic.ga_tag      = ir_data->ga_tag;
3507 
3508 	return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
3509 			      ir_data->irq_2_irte.index, entry, ir_data);
3510 }
3511 EXPORT_SYMBOL(amd_iommu_activate_guest_mode);
3512 
3513 int amd_iommu_deactivate_guest_mode(void *data)
3514 {
3515 	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3516 	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3517 	struct irq_cfg *cfg = ir_data->cfg;
3518 	u64 valid;
3519 
3520 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
3521 	    !entry || !entry->lo.fields_vapic.guest_mode)
3522 		return 0;
3523 
3524 	valid = entry->lo.fields_remap.valid;
3525 
3526 	entry->lo.val = 0;
3527 	entry->hi.val = 0;
3528 
3529 	entry->lo.fields_remap.valid       = valid;
3530 	entry->lo.fields_remap.dm          = apic->dest_mode_logical;
3531 	entry->lo.fields_remap.int_type    = apic->delivery_mode;
3532 	entry->hi.fields.vector            = cfg->vector;
3533 	entry->lo.fields_remap.destination =
3534 				APICID_TO_IRTE_DEST_LO(cfg->dest_apicid);
3535 	entry->hi.fields.destination =
3536 				APICID_TO_IRTE_DEST_HI(cfg->dest_apicid);
3537 
3538 	return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
3539 			      ir_data->irq_2_irte.index, entry, ir_data);
3540 }
3541 EXPORT_SYMBOL(amd_iommu_deactivate_guest_mode);
3542 
3543 static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
3544 {
3545 	int ret;
3546 	struct amd_iommu_pi_data *pi_data = vcpu_info;
3547 	struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
3548 	struct amd_ir_data *ir_data = data->chip_data;
3549 	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
3550 	struct iommu_dev_data *dev_data;
3551 
3552 	if (ir_data->iommu == NULL)
3553 		return -EINVAL;
3554 
3555 	dev_data = search_dev_data(ir_data->iommu, irte_info->devid);
3556 
3557 	/* Note:
3558 	 * This device has never been set up for guest mode.
3559 	 * we should not modify the IRTE
3560 	 */
3561 	if (!dev_data || !dev_data->use_vapic)
3562 		return 0;
3563 
3564 	ir_data->cfg = irqd_cfg(data);
3565 	pi_data->ir_data = ir_data;
3566 
3567 	/* Note:
3568 	 * SVM tries to set up for VAPIC mode, but we are in
3569 	 * legacy mode. So, we force legacy mode instead.
3570 	 */
3571 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
3572 		pr_debug("%s: Fall back to using intr legacy remap\n",
3573 			 __func__);
3574 		pi_data->is_guest_mode = false;
3575 	}
3576 
3577 	pi_data->prev_ga_tag = ir_data->cached_ga_tag;
3578 	if (pi_data->is_guest_mode) {
3579 		ir_data->ga_root_ptr = (pi_data->base >> 12);
3580 		ir_data->ga_vector = vcpu_pi_info->vector;
3581 		ir_data->ga_tag = pi_data->ga_tag;
3582 		ret = amd_iommu_activate_guest_mode(ir_data);
3583 		if (!ret)
3584 			ir_data->cached_ga_tag = pi_data->ga_tag;
3585 	} else {
3586 		ret = amd_iommu_deactivate_guest_mode(ir_data);
3587 
3588 		/*
3589 		 * This communicates the ga_tag back to the caller
3590 		 * so that it can do all the necessary clean up.
3591 		 */
3592 		if (!ret)
3593 			ir_data->cached_ga_tag = 0;
3594 	}
3595 
3596 	return ret;
3597 }
3598 
3599 
3600 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
3601 			       struct amd_ir_data *ir_data,
3602 			       struct irq_2_irte *irte_info,
3603 			       struct irq_cfg *cfg)
3604 {
3605 
3606 	/*
3607 	 * Atomically updates the IRTE with the new destination, vector
3608 	 * and flushes the interrupt entry cache.
3609 	 */
3610 	iommu->irte_ops->set_affinity(iommu, ir_data->entry, irte_info->devid,
3611 				      irte_info->index, cfg->vector,
3612 				      cfg->dest_apicid);
3613 }
3614 
3615 static int amd_ir_set_affinity(struct irq_data *data,
3616 			       const struct cpumask *mask, bool force)
3617 {
3618 	struct amd_ir_data *ir_data = data->chip_data;
3619 	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
3620 	struct irq_cfg *cfg = irqd_cfg(data);
3621 	struct irq_data *parent = data->parent_data;
3622 	struct amd_iommu *iommu = ir_data->iommu;
3623 	int ret;
3624 
3625 	if (!iommu)
3626 		return -ENODEV;
3627 
3628 	ret = parent->chip->irq_set_affinity(parent, mask, force);
3629 	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
3630 		return ret;
3631 
3632 	amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
3633 	/*
3634 	 * After this point, all the interrupts will start arriving
3635 	 * at the new destination. So, time to cleanup the previous
3636 	 * vector allocation.
3637 	 */
3638 	send_cleanup_vector(cfg);
3639 
3640 	return IRQ_SET_MASK_OK_DONE;
3641 }
3642 
3643 static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
3644 {
3645 	struct amd_ir_data *ir_data = irq_data->chip_data;
3646 
3647 	*msg = ir_data->msi_entry;
3648 }
3649 
3650 static struct irq_chip amd_ir_chip = {
3651 	.name			= "AMD-IR",
3652 	.irq_ack		= apic_ack_irq,
3653 	.irq_set_affinity	= amd_ir_set_affinity,
3654 	.irq_set_vcpu_affinity	= amd_ir_set_vcpu_affinity,
3655 	.irq_compose_msi_msg	= ir_compose_msi_msg,
3656 };
3657 
3658 int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
3659 {
3660 	struct fwnode_handle *fn;
3661 
3662 	fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
3663 	if (!fn)
3664 		return -ENOMEM;
3665 	iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu);
3666 	if (!iommu->ir_domain) {
3667 		irq_domain_free_fwnode(fn);
3668 		return -ENOMEM;
3669 	}
3670 
3671 	iommu->ir_domain->parent = arch_get_ir_parent_domain();
3672 	iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain,
3673 							     "AMD-IR-MSI",
3674 							     iommu->index);
3675 	return 0;
3676 }
3677 
3678 int amd_iommu_update_ga(int cpu, bool is_run, void *data)
3679 {
3680 	unsigned long flags;
3681 	struct amd_iommu *iommu;
3682 	struct irq_remap_table *table;
3683 	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3684 	int devid = ir_data->irq_2_irte.devid;
3685 	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3686 	struct irte_ga *ref = (struct irte_ga *) ir_data->ref;
3687 
3688 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
3689 	    !ref || !entry || !entry->lo.fields_vapic.guest_mode)
3690 		return 0;
3691 
3692 	iommu = ir_data->iommu;
3693 	if (!iommu)
3694 		return -ENODEV;
3695 
3696 	table = get_irq_table(iommu, devid);
3697 	if (!table)
3698 		return -ENODEV;
3699 
3700 	raw_spin_lock_irqsave(&table->lock, flags);
3701 
3702 	if (ref->lo.fields_vapic.guest_mode) {
3703 		if (cpu >= 0) {
3704 			ref->lo.fields_vapic.destination =
3705 						APICID_TO_IRTE_DEST_LO(cpu);
3706 			ref->hi.fields.destination =
3707 						APICID_TO_IRTE_DEST_HI(cpu);
3708 		}
3709 		ref->lo.fields_vapic.is_run = is_run;
3710 		barrier();
3711 	}
3712 
3713 	raw_spin_unlock_irqrestore(&table->lock, flags);
3714 
3715 	iommu_flush_irt(iommu, devid);
3716 	iommu_completion_wait(iommu);
3717 	return 0;
3718 }
3719 EXPORT_SYMBOL(amd_iommu_update_ga);
3720 #endif
3721