1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc. 4 * Author: Joerg Roedel <jroedel@suse.de> 5 * Leo Duran <leo.duran@amd.com> 6 */ 7 8 #define pr_fmt(fmt) "AMD-Vi: " fmt 9 #define dev_fmt(fmt) pr_fmt(fmt) 10 11 #include <linux/ratelimit.h> 12 #include <linux/pci.h> 13 #include <linux/acpi.h> 14 #include <linux/pci-ats.h> 15 #include <linux/bitmap.h> 16 #include <linux/slab.h> 17 #include <linux/debugfs.h> 18 #include <linux/scatterlist.h> 19 #include <linux/dma-map-ops.h> 20 #include <linux/dma-direct.h> 21 #include <linux/iommu-helper.h> 22 #include <linux/delay.h> 23 #include <linux/amd-iommu.h> 24 #include <linux/notifier.h> 25 #include <linux/export.h> 26 #include <linux/irq.h> 27 #include <linux/msi.h> 28 #include <linux/irqdomain.h> 29 #include <linux/percpu.h> 30 #include <linux/io-pgtable.h> 31 #include <linux/cc_platform.h> 32 #include <asm/irq_remapping.h> 33 #include <asm/io_apic.h> 34 #include <asm/apic.h> 35 #include <asm/hw_irq.h> 36 #include <asm/proto.h> 37 #include <asm/iommu.h> 38 #include <asm/gart.h> 39 #include <asm/dma.h> 40 41 #include "amd_iommu.h" 42 #include "../dma-iommu.h" 43 #include "../irq_remapping.h" 44 45 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28)) 46 47 #define LOOP_TIMEOUT 100000 48 49 /* IO virtual address start page frame number */ 50 #define IOVA_START_PFN (1) 51 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT) 52 53 /* Reserved IOVA ranges */ 54 #define MSI_RANGE_START (0xfee00000) 55 #define MSI_RANGE_END (0xfeefffff) 56 #define HT_RANGE_START (0xfd00000000ULL) 57 #define HT_RANGE_END (0xffffffffffULL) 58 59 #define DEFAULT_PGTABLE_LEVEL PAGE_MODE_3_LEVEL 60 61 static DEFINE_SPINLOCK(pd_bitmap_lock); 62 63 LIST_HEAD(ioapic_map); 64 LIST_HEAD(hpet_map); 65 LIST_HEAD(acpihid_map); 66 67 const struct iommu_ops amd_iommu_ops; 68 69 static ATOMIC_NOTIFIER_HEAD(ppr_notifier); 70 int amd_iommu_max_glx_val = -1; 71 72 /* 73 * general struct to manage commands send to an IOMMU 74 */ 75 struct iommu_cmd { 76 u32 data[4]; 77 }; 78 79 struct kmem_cache *amd_iommu_irq_cache; 80 81 static void detach_device(struct device *dev); 82 static int domain_enable_v2(struct protection_domain *domain, int pasids); 83 84 /**************************************************************************** 85 * 86 * Helper functions 87 * 88 ****************************************************************************/ 89 90 static inline int get_acpihid_device_id(struct device *dev, 91 struct acpihid_map_entry **entry) 92 { 93 struct acpi_device *adev = ACPI_COMPANION(dev); 94 struct acpihid_map_entry *p; 95 96 if (!adev) 97 return -ENODEV; 98 99 list_for_each_entry(p, &acpihid_map, list) { 100 if (acpi_dev_hid_uid_match(adev, p->hid, 101 p->uid[0] ? p->uid : NULL)) { 102 if (entry) 103 *entry = p; 104 return p->devid; 105 } 106 } 107 return -EINVAL; 108 } 109 110 static inline int get_device_sbdf_id(struct device *dev) 111 { 112 int sbdf; 113 114 if (dev_is_pci(dev)) 115 sbdf = get_pci_sbdf_id(to_pci_dev(dev)); 116 else 117 sbdf = get_acpihid_device_id(dev, NULL); 118 119 return sbdf; 120 } 121 122 struct dev_table_entry *get_dev_table(struct amd_iommu *iommu) 123 { 124 struct dev_table_entry *dev_table; 125 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; 126 127 BUG_ON(pci_seg == NULL); 128 dev_table = pci_seg->dev_table; 129 BUG_ON(dev_table == NULL); 130 131 return dev_table; 132 } 133 134 static inline u16 get_device_segment(struct device *dev) 135 { 136 u16 seg; 137 138 if (dev_is_pci(dev)) { 139 struct pci_dev *pdev = to_pci_dev(dev); 140 141 seg = pci_domain_nr(pdev->bus); 142 } else { 143 u32 devid = get_acpihid_device_id(dev, NULL); 144 145 seg = PCI_SBDF_TO_SEGID(devid); 146 } 147 148 return seg; 149 } 150 151 /* Writes the specific IOMMU for a device into the PCI segment rlookup table */ 152 void amd_iommu_set_rlookup_table(struct amd_iommu *iommu, u16 devid) 153 { 154 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; 155 156 pci_seg->rlookup_table[devid] = iommu; 157 } 158 159 static struct amd_iommu *__rlookup_amd_iommu(u16 seg, u16 devid) 160 { 161 struct amd_iommu_pci_seg *pci_seg; 162 163 for_each_pci_segment(pci_seg) { 164 if (pci_seg->id == seg) 165 return pci_seg->rlookup_table[devid]; 166 } 167 return NULL; 168 } 169 170 static struct amd_iommu *rlookup_amd_iommu(struct device *dev) 171 { 172 u16 seg = get_device_segment(dev); 173 int devid = get_device_sbdf_id(dev); 174 175 if (devid < 0) 176 return NULL; 177 return __rlookup_amd_iommu(seg, PCI_SBDF_TO_DEVID(devid)); 178 } 179 180 static struct protection_domain *to_pdomain(struct iommu_domain *dom) 181 { 182 return container_of(dom, struct protection_domain, domain); 183 } 184 185 static struct iommu_dev_data *alloc_dev_data(struct amd_iommu *iommu, u16 devid) 186 { 187 struct iommu_dev_data *dev_data; 188 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; 189 190 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL); 191 if (!dev_data) 192 return NULL; 193 194 spin_lock_init(&dev_data->lock); 195 dev_data->devid = devid; 196 ratelimit_default_init(&dev_data->rs); 197 198 llist_add(&dev_data->dev_data_list, &pci_seg->dev_data_list); 199 return dev_data; 200 } 201 202 static struct iommu_dev_data *search_dev_data(struct amd_iommu *iommu, u16 devid) 203 { 204 struct iommu_dev_data *dev_data; 205 struct llist_node *node; 206 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; 207 208 if (llist_empty(&pci_seg->dev_data_list)) 209 return NULL; 210 211 node = pci_seg->dev_data_list.first; 212 llist_for_each_entry(dev_data, node, dev_data_list) { 213 if (dev_data->devid == devid) 214 return dev_data; 215 } 216 217 return NULL; 218 } 219 220 static int clone_alias(struct pci_dev *pdev, u16 alias, void *data) 221 { 222 struct amd_iommu *iommu; 223 struct dev_table_entry *dev_table; 224 u16 devid = pci_dev_id(pdev); 225 226 if (devid == alias) 227 return 0; 228 229 iommu = rlookup_amd_iommu(&pdev->dev); 230 if (!iommu) 231 return 0; 232 233 amd_iommu_set_rlookup_table(iommu, alias); 234 dev_table = get_dev_table(iommu); 235 memcpy(dev_table[alias].data, 236 dev_table[devid].data, 237 sizeof(dev_table[alias].data)); 238 239 return 0; 240 } 241 242 static void clone_aliases(struct amd_iommu *iommu, struct device *dev) 243 { 244 struct pci_dev *pdev; 245 246 if (!dev_is_pci(dev)) 247 return; 248 pdev = to_pci_dev(dev); 249 250 /* 251 * The IVRS alias stored in the alias table may not be 252 * part of the PCI DMA aliases if it's bus differs 253 * from the original device. 254 */ 255 clone_alias(pdev, iommu->pci_seg->alias_table[pci_dev_id(pdev)], NULL); 256 257 pci_for_each_dma_alias(pdev, clone_alias, NULL); 258 } 259 260 static void setup_aliases(struct amd_iommu *iommu, struct device *dev) 261 { 262 struct pci_dev *pdev = to_pci_dev(dev); 263 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; 264 u16 ivrs_alias; 265 266 /* For ACPI HID devices, there are no aliases */ 267 if (!dev_is_pci(dev)) 268 return; 269 270 /* 271 * Add the IVRS alias to the pci aliases if it is on the same 272 * bus. The IVRS table may know about a quirk that we don't. 273 */ 274 ivrs_alias = pci_seg->alias_table[pci_dev_id(pdev)]; 275 if (ivrs_alias != pci_dev_id(pdev) && 276 PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) 277 pci_add_dma_alias(pdev, ivrs_alias & 0xff, 1); 278 279 clone_aliases(iommu, dev); 280 } 281 282 static struct iommu_dev_data *find_dev_data(struct amd_iommu *iommu, u16 devid) 283 { 284 struct iommu_dev_data *dev_data; 285 286 dev_data = search_dev_data(iommu, devid); 287 288 if (dev_data == NULL) { 289 dev_data = alloc_dev_data(iommu, devid); 290 if (!dev_data) 291 return NULL; 292 293 if (translation_pre_enabled(iommu)) 294 dev_data->defer_attach = true; 295 } 296 297 return dev_data; 298 } 299 300 /* 301 * Find or create an IOMMU group for a acpihid device. 302 */ 303 static struct iommu_group *acpihid_device_group(struct device *dev) 304 { 305 struct acpihid_map_entry *p, *entry = NULL; 306 int devid; 307 308 devid = get_acpihid_device_id(dev, &entry); 309 if (devid < 0) 310 return ERR_PTR(devid); 311 312 list_for_each_entry(p, &acpihid_map, list) { 313 if ((devid == p->devid) && p->group) 314 entry->group = p->group; 315 } 316 317 if (!entry->group) 318 entry->group = generic_device_group(dev); 319 else 320 iommu_group_ref_get(entry->group); 321 322 return entry->group; 323 } 324 325 static bool pci_iommuv2_capable(struct pci_dev *pdev) 326 { 327 static const int caps[] = { 328 PCI_EXT_CAP_ID_PRI, 329 PCI_EXT_CAP_ID_PASID, 330 }; 331 int i, pos; 332 333 if (!pci_ats_supported(pdev)) 334 return false; 335 336 for (i = 0; i < 2; ++i) { 337 pos = pci_find_ext_capability(pdev, caps[i]); 338 if (pos == 0) 339 return false; 340 } 341 342 return true; 343 } 344 345 /* 346 * This function checks if the driver got a valid device from the caller to 347 * avoid dereferencing invalid pointers. 348 */ 349 static bool check_device(struct device *dev) 350 { 351 struct amd_iommu_pci_seg *pci_seg; 352 struct amd_iommu *iommu; 353 int devid, sbdf; 354 355 if (!dev) 356 return false; 357 358 sbdf = get_device_sbdf_id(dev); 359 if (sbdf < 0) 360 return false; 361 devid = PCI_SBDF_TO_DEVID(sbdf); 362 363 iommu = rlookup_amd_iommu(dev); 364 if (!iommu) 365 return false; 366 367 /* Out of our scope? */ 368 pci_seg = iommu->pci_seg; 369 if (devid > pci_seg->last_bdf) 370 return false; 371 372 return true; 373 } 374 375 static int iommu_init_device(struct amd_iommu *iommu, struct device *dev) 376 { 377 struct iommu_dev_data *dev_data; 378 int devid, sbdf; 379 380 if (dev_iommu_priv_get(dev)) 381 return 0; 382 383 sbdf = get_device_sbdf_id(dev); 384 if (sbdf < 0) 385 return sbdf; 386 387 devid = PCI_SBDF_TO_DEVID(sbdf); 388 dev_data = find_dev_data(iommu, devid); 389 if (!dev_data) 390 return -ENOMEM; 391 392 dev_data->dev = dev; 393 setup_aliases(iommu, dev); 394 395 /* 396 * By default we use passthrough mode for IOMMUv2 capable device. 397 * But if amd_iommu=force_isolation is set (e.g. to debug DMA to 398 * invalid address), we ignore the capability for the device so 399 * it'll be forced to go into translation mode. 400 */ 401 if ((iommu_default_passthrough() || !amd_iommu_force_isolation) && 402 dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) { 403 dev_data->iommu_v2 = iommu->is_iommu_v2; 404 } 405 406 dev_iommu_priv_set(dev, dev_data); 407 408 return 0; 409 } 410 411 static void iommu_ignore_device(struct amd_iommu *iommu, struct device *dev) 412 { 413 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; 414 struct dev_table_entry *dev_table = get_dev_table(iommu); 415 int devid, sbdf; 416 417 sbdf = get_device_sbdf_id(dev); 418 if (sbdf < 0) 419 return; 420 421 devid = PCI_SBDF_TO_DEVID(sbdf); 422 pci_seg->rlookup_table[devid] = NULL; 423 memset(&dev_table[devid], 0, sizeof(struct dev_table_entry)); 424 425 setup_aliases(iommu, dev); 426 } 427 428 static void amd_iommu_uninit_device(struct device *dev) 429 { 430 struct iommu_dev_data *dev_data; 431 432 dev_data = dev_iommu_priv_get(dev); 433 if (!dev_data) 434 return; 435 436 if (dev_data->domain) 437 detach_device(dev); 438 439 dev_iommu_priv_set(dev, NULL); 440 441 /* 442 * We keep dev_data around for unplugged devices and reuse it when the 443 * device is re-plugged - not doing so would introduce a ton of races. 444 */ 445 } 446 447 /**************************************************************************** 448 * 449 * Interrupt handling functions 450 * 451 ****************************************************************************/ 452 453 static void dump_dte_entry(struct amd_iommu *iommu, u16 devid) 454 { 455 int i; 456 struct dev_table_entry *dev_table = get_dev_table(iommu); 457 458 for (i = 0; i < 4; ++i) 459 pr_err("DTE[%d]: %016llx\n", i, dev_table[devid].data[i]); 460 } 461 462 static void dump_command(unsigned long phys_addr) 463 { 464 struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr); 465 int i; 466 467 for (i = 0; i < 4; ++i) 468 pr_err("CMD[%d]: %08x\n", i, cmd->data[i]); 469 } 470 471 static void amd_iommu_report_rmp_hw_error(struct amd_iommu *iommu, volatile u32 *event) 472 { 473 struct iommu_dev_data *dev_data = NULL; 474 int devid, vmg_tag, flags; 475 struct pci_dev *pdev; 476 u64 spa; 477 478 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK; 479 vmg_tag = (event[1]) & 0xFFFF; 480 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK; 481 spa = ((u64)event[3] << 32) | (event[2] & 0xFFFFFFF8); 482 483 pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid), 484 devid & 0xff); 485 if (pdev) 486 dev_data = dev_iommu_priv_get(&pdev->dev); 487 488 if (dev_data) { 489 if (__ratelimit(&dev_data->rs)) { 490 pci_err(pdev, "Event logged [RMP_HW_ERROR vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n", 491 vmg_tag, spa, flags); 492 } 493 } else { 494 pr_err_ratelimited("Event logged [RMP_HW_ERROR device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n", 495 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 496 vmg_tag, spa, flags); 497 } 498 499 if (pdev) 500 pci_dev_put(pdev); 501 } 502 503 static void amd_iommu_report_rmp_fault(struct amd_iommu *iommu, volatile u32 *event) 504 { 505 struct iommu_dev_data *dev_data = NULL; 506 int devid, flags_rmp, vmg_tag, flags; 507 struct pci_dev *pdev; 508 u64 gpa; 509 510 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK; 511 flags_rmp = (event[0] >> EVENT_FLAGS_SHIFT) & 0xFF; 512 vmg_tag = (event[1]) & 0xFFFF; 513 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK; 514 gpa = ((u64)event[3] << 32) | event[2]; 515 516 pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid), 517 devid & 0xff); 518 if (pdev) 519 dev_data = dev_iommu_priv_get(&pdev->dev); 520 521 if (dev_data) { 522 if (__ratelimit(&dev_data->rs)) { 523 pci_err(pdev, "Event logged [RMP_PAGE_FAULT vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n", 524 vmg_tag, gpa, flags_rmp, flags); 525 } 526 } else { 527 pr_err_ratelimited("Event logged [RMP_PAGE_FAULT device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n", 528 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 529 vmg_tag, gpa, flags_rmp, flags); 530 } 531 532 if (pdev) 533 pci_dev_put(pdev); 534 } 535 536 #define IS_IOMMU_MEM_TRANSACTION(flags) \ 537 (((flags) & EVENT_FLAG_I) == 0) 538 539 #define IS_WRITE_REQUEST(flags) \ 540 ((flags) & EVENT_FLAG_RW) 541 542 static void amd_iommu_report_page_fault(struct amd_iommu *iommu, 543 u16 devid, u16 domain_id, 544 u64 address, int flags) 545 { 546 struct iommu_dev_data *dev_data = NULL; 547 struct pci_dev *pdev; 548 549 pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid), 550 devid & 0xff); 551 if (pdev) 552 dev_data = dev_iommu_priv_get(&pdev->dev); 553 554 if (dev_data) { 555 /* 556 * If this is a DMA fault (for which the I(nterrupt) 557 * bit will be unset), allow report_iommu_fault() to 558 * prevent logging it. 559 */ 560 if (IS_IOMMU_MEM_TRANSACTION(flags)) { 561 if (!report_iommu_fault(&dev_data->domain->domain, 562 &pdev->dev, address, 563 IS_WRITE_REQUEST(flags) ? 564 IOMMU_FAULT_WRITE : 565 IOMMU_FAULT_READ)) 566 goto out; 567 } 568 569 if (__ratelimit(&dev_data->rs)) { 570 pci_err(pdev, "Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%llx flags=0x%04x]\n", 571 domain_id, address, flags); 572 } 573 } else { 574 pr_err_ratelimited("Event logged [IO_PAGE_FAULT device=%04x:%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n", 575 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 576 domain_id, address, flags); 577 } 578 579 out: 580 if (pdev) 581 pci_dev_put(pdev); 582 } 583 584 static void iommu_print_event(struct amd_iommu *iommu, void *__evt) 585 { 586 struct device *dev = iommu->iommu.dev; 587 int type, devid, flags, tag; 588 volatile u32 *event = __evt; 589 int count = 0; 590 u64 address; 591 u32 pasid; 592 593 retry: 594 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK; 595 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK; 596 pasid = (event[0] & EVENT_DOMID_MASK_HI) | 597 (event[1] & EVENT_DOMID_MASK_LO); 598 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK; 599 address = (u64)(((u64)event[3]) << 32) | event[2]; 600 601 if (type == 0) { 602 /* Did we hit the erratum? */ 603 if (++count == LOOP_TIMEOUT) { 604 pr_err("No event written to event log\n"); 605 return; 606 } 607 udelay(1); 608 goto retry; 609 } 610 611 if (type == EVENT_TYPE_IO_FAULT) { 612 amd_iommu_report_page_fault(iommu, devid, pasid, address, flags); 613 return; 614 } 615 616 switch (type) { 617 case EVENT_TYPE_ILL_DEV: 618 dev_err(dev, "Event logged [ILLEGAL_DEV_TABLE_ENTRY device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n", 619 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 620 pasid, address, flags); 621 dump_dte_entry(iommu, devid); 622 break; 623 case EVENT_TYPE_DEV_TAB_ERR: 624 dev_err(dev, "Event logged [DEV_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x " 625 "address=0x%llx flags=0x%04x]\n", 626 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 627 address, flags); 628 break; 629 case EVENT_TYPE_PAGE_TAB_ERR: 630 dev_err(dev, "Event logged [PAGE_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x pasid=0x%04x address=0x%llx flags=0x%04x]\n", 631 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 632 pasid, address, flags); 633 break; 634 case EVENT_TYPE_ILL_CMD: 635 dev_err(dev, "Event logged [ILLEGAL_COMMAND_ERROR address=0x%llx]\n", address); 636 dump_command(address); 637 break; 638 case EVENT_TYPE_CMD_HARD_ERR: 639 dev_err(dev, "Event logged [COMMAND_HARDWARE_ERROR address=0x%llx flags=0x%04x]\n", 640 address, flags); 641 break; 642 case EVENT_TYPE_IOTLB_INV_TO: 643 dev_err(dev, "Event logged [IOTLB_INV_TIMEOUT device=%04x:%02x:%02x.%x address=0x%llx]\n", 644 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 645 address); 646 break; 647 case EVENT_TYPE_INV_DEV_REQ: 648 dev_err(dev, "Event logged [INVALID_DEVICE_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n", 649 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 650 pasid, address, flags); 651 break; 652 case EVENT_TYPE_RMP_FAULT: 653 amd_iommu_report_rmp_fault(iommu, event); 654 break; 655 case EVENT_TYPE_RMP_HW_ERR: 656 amd_iommu_report_rmp_hw_error(iommu, event); 657 break; 658 case EVENT_TYPE_INV_PPR_REQ: 659 pasid = PPR_PASID(*((u64 *)__evt)); 660 tag = event[1] & 0x03FF; 661 dev_err(dev, "Event logged [INVALID_PPR_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x tag=0x%03x]\n", 662 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 663 pasid, address, flags, tag); 664 break; 665 default: 666 dev_err(dev, "Event logged [UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n", 667 event[0], event[1], event[2], event[3]); 668 } 669 670 memset(__evt, 0, 4 * sizeof(u32)); 671 } 672 673 static void iommu_poll_events(struct amd_iommu *iommu) 674 { 675 u32 head, tail; 676 677 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET); 678 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET); 679 680 while (head != tail) { 681 iommu_print_event(iommu, iommu->evt_buf + head); 682 head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE; 683 } 684 685 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET); 686 } 687 688 static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw) 689 { 690 struct amd_iommu_fault fault; 691 692 if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) { 693 pr_err_ratelimited("Unknown PPR request received\n"); 694 return; 695 } 696 697 fault.address = raw[1]; 698 fault.pasid = PPR_PASID(raw[0]); 699 fault.sbdf = PCI_SEG_DEVID_TO_SBDF(iommu->pci_seg->id, PPR_DEVID(raw[0])); 700 fault.tag = PPR_TAG(raw[0]); 701 fault.flags = PPR_FLAGS(raw[0]); 702 703 atomic_notifier_call_chain(&ppr_notifier, 0, &fault); 704 } 705 706 static void iommu_poll_ppr_log(struct amd_iommu *iommu) 707 { 708 u32 head, tail; 709 710 if (iommu->ppr_log == NULL) 711 return; 712 713 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET); 714 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET); 715 716 while (head != tail) { 717 volatile u64 *raw; 718 u64 entry[2]; 719 int i; 720 721 raw = (u64 *)(iommu->ppr_log + head); 722 723 /* 724 * Hardware bug: Interrupt may arrive before the entry is 725 * written to memory. If this happens we need to wait for the 726 * entry to arrive. 727 */ 728 for (i = 0; i < LOOP_TIMEOUT; ++i) { 729 if (PPR_REQ_TYPE(raw[0]) != 0) 730 break; 731 udelay(1); 732 } 733 734 /* Avoid memcpy function-call overhead */ 735 entry[0] = raw[0]; 736 entry[1] = raw[1]; 737 738 /* 739 * To detect the hardware bug we need to clear the entry 740 * back to zero. 741 */ 742 raw[0] = raw[1] = 0UL; 743 744 /* Update head pointer of hardware ring-buffer */ 745 head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE; 746 writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET); 747 748 /* Handle PPR entry */ 749 iommu_handle_ppr_entry(iommu, entry); 750 751 /* Refresh ring-buffer information */ 752 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET); 753 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET); 754 } 755 } 756 757 #ifdef CONFIG_IRQ_REMAP 758 static int (*iommu_ga_log_notifier)(u32); 759 760 int amd_iommu_register_ga_log_notifier(int (*notifier)(u32)) 761 { 762 iommu_ga_log_notifier = notifier; 763 764 return 0; 765 } 766 EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier); 767 768 static void iommu_poll_ga_log(struct amd_iommu *iommu) 769 { 770 u32 head, tail, cnt = 0; 771 772 if (iommu->ga_log == NULL) 773 return; 774 775 head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET); 776 tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET); 777 778 while (head != tail) { 779 volatile u64 *raw; 780 u64 log_entry; 781 782 raw = (u64 *)(iommu->ga_log + head); 783 cnt++; 784 785 /* Avoid memcpy function-call overhead */ 786 log_entry = *raw; 787 788 /* Update head pointer of hardware ring-buffer */ 789 head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE; 790 writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET); 791 792 /* Handle GA entry */ 793 switch (GA_REQ_TYPE(log_entry)) { 794 case GA_GUEST_NR: 795 if (!iommu_ga_log_notifier) 796 break; 797 798 pr_debug("%s: devid=%#x, ga_tag=%#x\n", 799 __func__, GA_DEVID(log_entry), 800 GA_TAG(log_entry)); 801 802 if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0) 803 pr_err("GA log notifier failed.\n"); 804 break; 805 default: 806 break; 807 } 808 } 809 } 810 811 static void 812 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu) 813 { 814 if (!irq_remapping_enabled || !dev_is_pci(dev) || 815 pci_dev_has_special_msi_domain(to_pci_dev(dev))) 816 return; 817 818 dev_set_msi_domain(dev, iommu->msi_domain); 819 } 820 821 #else /* CONFIG_IRQ_REMAP */ 822 static inline void 823 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu) { } 824 #endif /* !CONFIG_IRQ_REMAP */ 825 826 #define AMD_IOMMU_INT_MASK \ 827 (MMIO_STATUS_EVT_OVERFLOW_INT_MASK | \ 828 MMIO_STATUS_EVT_INT_MASK | \ 829 MMIO_STATUS_PPR_INT_MASK | \ 830 MMIO_STATUS_GALOG_INT_MASK) 831 832 irqreturn_t amd_iommu_int_thread(int irq, void *data) 833 { 834 struct amd_iommu *iommu = (struct amd_iommu *) data; 835 u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET); 836 837 while (status & AMD_IOMMU_INT_MASK) { 838 /* Enable interrupt sources again */ 839 writel(AMD_IOMMU_INT_MASK, 840 iommu->mmio_base + MMIO_STATUS_OFFSET); 841 842 if (status & MMIO_STATUS_EVT_INT_MASK) { 843 pr_devel("Processing IOMMU Event Log\n"); 844 iommu_poll_events(iommu); 845 } 846 847 if (status & MMIO_STATUS_PPR_INT_MASK) { 848 pr_devel("Processing IOMMU PPR Log\n"); 849 iommu_poll_ppr_log(iommu); 850 } 851 852 #ifdef CONFIG_IRQ_REMAP 853 if (status & MMIO_STATUS_GALOG_INT_MASK) { 854 pr_devel("Processing IOMMU GA Log\n"); 855 iommu_poll_ga_log(iommu); 856 } 857 #endif 858 859 if (status & MMIO_STATUS_EVT_OVERFLOW_INT_MASK) { 860 pr_info_ratelimited("IOMMU event log overflow\n"); 861 amd_iommu_restart_event_logging(iommu); 862 } 863 864 /* 865 * Hardware bug: ERBT1312 866 * When re-enabling interrupt (by writing 1 867 * to clear the bit), the hardware might also try to set 868 * the interrupt bit in the event status register. 869 * In this scenario, the bit will be set, and disable 870 * subsequent interrupts. 871 * 872 * Workaround: The IOMMU driver should read back the 873 * status register and check if the interrupt bits are cleared. 874 * If not, driver will need to go through the interrupt handler 875 * again and re-clear the bits 876 */ 877 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET); 878 } 879 return IRQ_HANDLED; 880 } 881 882 irqreturn_t amd_iommu_int_handler(int irq, void *data) 883 { 884 return IRQ_WAKE_THREAD; 885 } 886 887 /**************************************************************************** 888 * 889 * IOMMU command queuing functions 890 * 891 ****************************************************************************/ 892 893 static int wait_on_sem(struct amd_iommu *iommu, u64 data) 894 { 895 int i = 0; 896 897 while (*iommu->cmd_sem != data && i < LOOP_TIMEOUT) { 898 udelay(1); 899 i += 1; 900 } 901 902 if (i == LOOP_TIMEOUT) { 903 pr_alert("Completion-Wait loop timed out\n"); 904 return -EIO; 905 } 906 907 return 0; 908 } 909 910 static void copy_cmd_to_buffer(struct amd_iommu *iommu, 911 struct iommu_cmd *cmd) 912 { 913 u8 *target; 914 u32 tail; 915 916 /* Copy command to buffer */ 917 tail = iommu->cmd_buf_tail; 918 target = iommu->cmd_buf + tail; 919 memcpy(target, cmd, sizeof(*cmd)); 920 921 tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE; 922 iommu->cmd_buf_tail = tail; 923 924 /* Tell the IOMMU about it */ 925 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET); 926 } 927 928 static void build_completion_wait(struct iommu_cmd *cmd, 929 struct amd_iommu *iommu, 930 u64 data) 931 { 932 u64 paddr = iommu_virt_to_phys((void *)iommu->cmd_sem); 933 934 memset(cmd, 0, sizeof(*cmd)); 935 cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK; 936 cmd->data[1] = upper_32_bits(paddr); 937 cmd->data[2] = lower_32_bits(data); 938 cmd->data[3] = upper_32_bits(data); 939 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT); 940 } 941 942 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid) 943 { 944 memset(cmd, 0, sizeof(*cmd)); 945 cmd->data[0] = devid; 946 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY); 947 } 948 949 /* 950 * Builds an invalidation address which is suitable for one page or multiple 951 * pages. Sets the size bit (S) as needed is more than one page is flushed. 952 */ 953 static inline u64 build_inv_address(u64 address, size_t size) 954 { 955 u64 pages, end, msb_diff; 956 957 pages = iommu_num_pages(address, size, PAGE_SIZE); 958 959 if (pages == 1) 960 return address & PAGE_MASK; 961 962 end = address + size - 1; 963 964 /* 965 * msb_diff would hold the index of the most significant bit that 966 * flipped between the start and end. 967 */ 968 msb_diff = fls64(end ^ address) - 1; 969 970 /* 971 * Bits 63:52 are sign extended. If for some reason bit 51 is different 972 * between the start and the end, invalidate everything. 973 */ 974 if (unlikely(msb_diff > 51)) { 975 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS; 976 } else { 977 /* 978 * The msb-bit must be clear on the address. Just set all the 979 * lower bits. 980 */ 981 address |= (1ull << msb_diff) - 1; 982 } 983 984 /* Clear bits 11:0 */ 985 address &= PAGE_MASK; 986 987 /* Set the size bit - we flush more than one 4kb page */ 988 return address | CMD_INV_IOMMU_PAGES_SIZE_MASK; 989 } 990 991 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address, 992 size_t size, u16 domid, int pde) 993 { 994 u64 inv_address = build_inv_address(address, size); 995 996 memset(cmd, 0, sizeof(*cmd)); 997 cmd->data[1] |= domid; 998 cmd->data[2] = lower_32_bits(inv_address); 999 cmd->data[3] = upper_32_bits(inv_address); 1000 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES); 1001 if (pde) /* PDE bit - we want to flush everything, not only the PTEs */ 1002 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK; 1003 } 1004 1005 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep, 1006 u64 address, size_t size) 1007 { 1008 u64 inv_address = build_inv_address(address, size); 1009 1010 memset(cmd, 0, sizeof(*cmd)); 1011 cmd->data[0] = devid; 1012 cmd->data[0] |= (qdep & 0xff) << 24; 1013 cmd->data[1] = devid; 1014 cmd->data[2] = lower_32_bits(inv_address); 1015 cmd->data[3] = upper_32_bits(inv_address); 1016 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES); 1017 } 1018 1019 static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, u32 pasid, 1020 u64 address, bool size) 1021 { 1022 memset(cmd, 0, sizeof(*cmd)); 1023 1024 address &= ~(0xfffULL); 1025 1026 cmd->data[0] = pasid; 1027 cmd->data[1] = domid; 1028 cmd->data[2] = lower_32_bits(address); 1029 cmd->data[3] = upper_32_bits(address); 1030 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK; 1031 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK; 1032 if (size) 1033 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK; 1034 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES); 1035 } 1036 1037 static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, u32 pasid, 1038 int qdep, u64 address, bool size) 1039 { 1040 memset(cmd, 0, sizeof(*cmd)); 1041 1042 address &= ~(0xfffULL); 1043 1044 cmd->data[0] = devid; 1045 cmd->data[0] |= ((pasid >> 8) & 0xff) << 16; 1046 cmd->data[0] |= (qdep & 0xff) << 24; 1047 cmd->data[1] = devid; 1048 cmd->data[1] |= (pasid & 0xff) << 16; 1049 cmd->data[2] = lower_32_bits(address); 1050 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK; 1051 cmd->data[3] = upper_32_bits(address); 1052 if (size) 1053 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK; 1054 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES); 1055 } 1056 1057 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, u32 pasid, 1058 int status, int tag, bool gn) 1059 { 1060 memset(cmd, 0, sizeof(*cmd)); 1061 1062 cmd->data[0] = devid; 1063 if (gn) { 1064 cmd->data[1] = pasid; 1065 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK; 1066 } 1067 cmd->data[3] = tag & 0x1ff; 1068 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT; 1069 1070 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR); 1071 } 1072 1073 static void build_inv_all(struct iommu_cmd *cmd) 1074 { 1075 memset(cmd, 0, sizeof(*cmd)); 1076 CMD_SET_TYPE(cmd, CMD_INV_ALL); 1077 } 1078 1079 static void build_inv_irt(struct iommu_cmd *cmd, u16 devid) 1080 { 1081 memset(cmd, 0, sizeof(*cmd)); 1082 cmd->data[0] = devid; 1083 CMD_SET_TYPE(cmd, CMD_INV_IRT); 1084 } 1085 1086 /* 1087 * Writes the command to the IOMMUs command buffer and informs the 1088 * hardware about the new command. 1089 */ 1090 static int __iommu_queue_command_sync(struct amd_iommu *iommu, 1091 struct iommu_cmd *cmd, 1092 bool sync) 1093 { 1094 unsigned int count = 0; 1095 u32 left, next_tail; 1096 1097 next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE; 1098 again: 1099 left = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE; 1100 1101 if (left <= 0x20) { 1102 /* Skip udelay() the first time around */ 1103 if (count++) { 1104 if (count == LOOP_TIMEOUT) { 1105 pr_err("Command buffer timeout\n"); 1106 return -EIO; 1107 } 1108 1109 udelay(1); 1110 } 1111 1112 /* Update head and recheck remaining space */ 1113 iommu->cmd_buf_head = readl(iommu->mmio_base + 1114 MMIO_CMD_HEAD_OFFSET); 1115 1116 goto again; 1117 } 1118 1119 copy_cmd_to_buffer(iommu, cmd); 1120 1121 /* Do we need to make sure all commands are processed? */ 1122 iommu->need_sync = sync; 1123 1124 return 0; 1125 } 1126 1127 static int iommu_queue_command_sync(struct amd_iommu *iommu, 1128 struct iommu_cmd *cmd, 1129 bool sync) 1130 { 1131 unsigned long flags; 1132 int ret; 1133 1134 raw_spin_lock_irqsave(&iommu->lock, flags); 1135 ret = __iommu_queue_command_sync(iommu, cmd, sync); 1136 raw_spin_unlock_irqrestore(&iommu->lock, flags); 1137 1138 return ret; 1139 } 1140 1141 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd) 1142 { 1143 return iommu_queue_command_sync(iommu, cmd, true); 1144 } 1145 1146 /* 1147 * This function queues a completion wait command into the command 1148 * buffer of an IOMMU 1149 */ 1150 static int iommu_completion_wait(struct amd_iommu *iommu) 1151 { 1152 struct iommu_cmd cmd; 1153 unsigned long flags; 1154 int ret; 1155 u64 data; 1156 1157 if (!iommu->need_sync) 1158 return 0; 1159 1160 raw_spin_lock_irqsave(&iommu->lock, flags); 1161 1162 data = ++iommu->cmd_sem_val; 1163 build_completion_wait(&cmd, iommu, data); 1164 1165 ret = __iommu_queue_command_sync(iommu, &cmd, false); 1166 if (ret) 1167 goto out_unlock; 1168 1169 ret = wait_on_sem(iommu, data); 1170 1171 out_unlock: 1172 raw_spin_unlock_irqrestore(&iommu->lock, flags); 1173 1174 return ret; 1175 } 1176 1177 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid) 1178 { 1179 struct iommu_cmd cmd; 1180 1181 build_inv_dte(&cmd, devid); 1182 1183 return iommu_queue_command(iommu, &cmd); 1184 } 1185 1186 static void amd_iommu_flush_dte_all(struct amd_iommu *iommu) 1187 { 1188 u32 devid; 1189 u16 last_bdf = iommu->pci_seg->last_bdf; 1190 1191 for (devid = 0; devid <= last_bdf; ++devid) 1192 iommu_flush_dte(iommu, devid); 1193 1194 iommu_completion_wait(iommu); 1195 } 1196 1197 /* 1198 * This function uses heavy locking and may disable irqs for some time. But 1199 * this is no issue because it is only called during resume. 1200 */ 1201 static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu) 1202 { 1203 u32 dom_id; 1204 u16 last_bdf = iommu->pci_seg->last_bdf; 1205 1206 for (dom_id = 0; dom_id <= last_bdf; ++dom_id) { 1207 struct iommu_cmd cmd; 1208 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1209 dom_id, 1); 1210 iommu_queue_command(iommu, &cmd); 1211 } 1212 1213 iommu_completion_wait(iommu); 1214 } 1215 1216 static void amd_iommu_flush_tlb_domid(struct amd_iommu *iommu, u32 dom_id) 1217 { 1218 struct iommu_cmd cmd; 1219 1220 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1221 dom_id, 1); 1222 iommu_queue_command(iommu, &cmd); 1223 1224 iommu_completion_wait(iommu); 1225 } 1226 1227 static void amd_iommu_flush_all(struct amd_iommu *iommu) 1228 { 1229 struct iommu_cmd cmd; 1230 1231 build_inv_all(&cmd); 1232 1233 iommu_queue_command(iommu, &cmd); 1234 iommu_completion_wait(iommu); 1235 } 1236 1237 static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid) 1238 { 1239 struct iommu_cmd cmd; 1240 1241 build_inv_irt(&cmd, devid); 1242 1243 iommu_queue_command(iommu, &cmd); 1244 } 1245 1246 static void amd_iommu_flush_irt_all(struct amd_iommu *iommu) 1247 { 1248 u32 devid; 1249 u16 last_bdf = iommu->pci_seg->last_bdf; 1250 1251 for (devid = 0; devid <= last_bdf; devid++) 1252 iommu_flush_irt(iommu, devid); 1253 1254 iommu_completion_wait(iommu); 1255 } 1256 1257 void iommu_flush_all_caches(struct amd_iommu *iommu) 1258 { 1259 if (iommu_feature(iommu, FEATURE_IA)) { 1260 amd_iommu_flush_all(iommu); 1261 } else { 1262 amd_iommu_flush_dte_all(iommu); 1263 amd_iommu_flush_irt_all(iommu); 1264 amd_iommu_flush_tlb_all(iommu); 1265 } 1266 } 1267 1268 /* 1269 * Command send function for flushing on-device TLB 1270 */ 1271 static int device_flush_iotlb(struct iommu_dev_data *dev_data, 1272 u64 address, size_t size) 1273 { 1274 struct amd_iommu *iommu; 1275 struct iommu_cmd cmd; 1276 int qdep; 1277 1278 qdep = dev_data->ats.qdep; 1279 iommu = rlookup_amd_iommu(dev_data->dev); 1280 if (!iommu) 1281 return -EINVAL; 1282 1283 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size); 1284 1285 return iommu_queue_command(iommu, &cmd); 1286 } 1287 1288 static int device_flush_dte_alias(struct pci_dev *pdev, u16 alias, void *data) 1289 { 1290 struct amd_iommu *iommu = data; 1291 1292 return iommu_flush_dte(iommu, alias); 1293 } 1294 1295 /* 1296 * Command send function for invalidating a device table entry 1297 */ 1298 static int device_flush_dte(struct iommu_dev_data *dev_data) 1299 { 1300 struct amd_iommu *iommu; 1301 struct pci_dev *pdev = NULL; 1302 struct amd_iommu_pci_seg *pci_seg; 1303 u16 alias; 1304 int ret; 1305 1306 iommu = rlookup_amd_iommu(dev_data->dev); 1307 if (!iommu) 1308 return -EINVAL; 1309 1310 if (dev_is_pci(dev_data->dev)) 1311 pdev = to_pci_dev(dev_data->dev); 1312 1313 if (pdev) 1314 ret = pci_for_each_dma_alias(pdev, 1315 device_flush_dte_alias, iommu); 1316 else 1317 ret = iommu_flush_dte(iommu, dev_data->devid); 1318 if (ret) 1319 return ret; 1320 1321 pci_seg = iommu->pci_seg; 1322 alias = pci_seg->alias_table[dev_data->devid]; 1323 if (alias != dev_data->devid) { 1324 ret = iommu_flush_dte(iommu, alias); 1325 if (ret) 1326 return ret; 1327 } 1328 1329 if (dev_data->ats.enabled) 1330 ret = device_flush_iotlb(dev_data, 0, ~0UL); 1331 1332 return ret; 1333 } 1334 1335 /* 1336 * TLB invalidation function which is called from the mapping functions. 1337 * It invalidates a single PTE if the range to flush is within a single 1338 * page. Otherwise it flushes the whole TLB of the IOMMU. 1339 */ 1340 static void __domain_flush_pages(struct protection_domain *domain, 1341 u64 address, size_t size, int pde) 1342 { 1343 struct iommu_dev_data *dev_data; 1344 struct iommu_cmd cmd; 1345 int ret = 0, i; 1346 1347 build_inv_iommu_pages(&cmd, address, size, domain->id, pde); 1348 1349 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) { 1350 if (!domain->dev_iommu[i]) 1351 continue; 1352 1353 /* 1354 * Devices of this domain are behind this IOMMU 1355 * We need a TLB flush 1356 */ 1357 ret |= iommu_queue_command(amd_iommus[i], &cmd); 1358 } 1359 1360 list_for_each_entry(dev_data, &domain->dev_list, list) { 1361 1362 if (!dev_data->ats.enabled) 1363 continue; 1364 1365 ret |= device_flush_iotlb(dev_data, address, size); 1366 } 1367 1368 WARN_ON(ret); 1369 } 1370 1371 static void domain_flush_pages(struct protection_domain *domain, 1372 u64 address, size_t size, int pde) 1373 { 1374 if (likely(!amd_iommu_np_cache)) { 1375 __domain_flush_pages(domain, address, size, pde); 1376 return; 1377 } 1378 1379 /* 1380 * When NpCache is on, we infer that we run in a VM and use a vIOMMU. 1381 * In such setups it is best to avoid flushes of ranges which are not 1382 * naturally aligned, since it would lead to flushes of unmodified 1383 * PTEs. Such flushes would require the hypervisor to do more work than 1384 * necessary. Therefore, perform repeated flushes of aligned ranges 1385 * until you cover the range. Each iteration flushes the smaller 1386 * between the natural alignment of the address that we flush and the 1387 * greatest naturally aligned region that fits in the range. 1388 */ 1389 while (size != 0) { 1390 int addr_alignment = __ffs(address); 1391 int size_alignment = __fls(size); 1392 int min_alignment; 1393 size_t flush_size; 1394 1395 /* 1396 * size is always non-zero, but address might be zero, causing 1397 * addr_alignment to be negative. As the casting of the 1398 * argument in __ffs(address) to long might trim the high bits 1399 * of the address on x86-32, cast to long when doing the check. 1400 */ 1401 if (likely((unsigned long)address != 0)) 1402 min_alignment = min(addr_alignment, size_alignment); 1403 else 1404 min_alignment = size_alignment; 1405 1406 flush_size = 1ul << min_alignment; 1407 1408 __domain_flush_pages(domain, address, flush_size, pde); 1409 address += flush_size; 1410 size -= flush_size; 1411 } 1412 } 1413 1414 /* Flush the whole IO/TLB for a given protection domain - including PDE */ 1415 void amd_iommu_domain_flush_tlb_pde(struct protection_domain *domain) 1416 { 1417 domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1); 1418 } 1419 1420 void amd_iommu_domain_flush_complete(struct protection_domain *domain) 1421 { 1422 int i; 1423 1424 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) { 1425 if (domain && !domain->dev_iommu[i]) 1426 continue; 1427 1428 /* 1429 * Devices of this domain are behind this IOMMU 1430 * We need to wait for completion of all commands. 1431 */ 1432 iommu_completion_wait(amd_iommus[i]); 1433 } 1434 } 1435 1436 /* Flush the not present cache if it exists */ 1437 static void domain_flush_np_cache(struct protection_domain *domain, 1438 dma_addr_t iova, size_t size) 1439 { 1440 if (unlikely(amd_iommu_np_cache)) { 1441 unsigned long flags; 1442 1443 spin_lock_irqsave(&domain->lock, flags); 1444 domain_flush_pages(domain, iova, size, 1); 1445 amd_iommu_domain_flush_complete(domain); 1446 spin_unlock_irqrestore(&domain->lock, flags); 1447 } 1448 } 1449 1450 1451 /* 1452 * This function flushes the DTEs for all devices in domain 1453 */ 1454 static void domain_flush_devices(struct protection_domain *domain) 1455 { 1456 struct iommu_dev_data *dev_data; 1457 1458 list_for_each_entry(dev_data, &domain->dev_list, list) 1459 device_flush_dte(dev_data); 1460 } 1461 1462 /**************************************************************************** 1463 * 1464 * The next functions belong to the domain allocation. A domain is 1465 * allocated for every IOMMU as the default domain. If device isolation 1466 * is enabled, every device get its own domain. The most important thing 1467 * about domains is the page table mapping the DMA address space they 1468 * contain. 1469 * 1470 ****************************************************************************/ 1471 1472 static u16 domain_id_alloc(void) 1473 { 1474 int id; 1475 1476 spin_lock(&pd_bitmap_lock); 1477 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID); 1478 BUG_ON(id == 0); 1479 if (id > 0 && id < MAX_DOMAIN_ID) 1480 __set_bit(id, amd_iommu_pd_alloc_bitmap); 1481 else 1482 id = 0; 1483 spin_unlock(&pd_bitmap_lock); 1484 1485 return id; 1486 } 1487 1488 static void domain_id_free(int id) 1489 { 1490 spin_lock(&pd_bitmap_lock); 1491 if (id > 0 && id < MAX_DOMAIN_ID) 1492 __clear_bit(id, amd_iommu_pd_alloc_bitmap); 1493 spin_unlock(&pd_bitmap_lock); 1494 } 1495 1496 static void free_gcr3_tbl_level1(u64 *tbl) 1497 { 1498 u64 *ptr; 1499 int i; 1500 1501 for (i = 0; i < 512; ++i) { 1502 if (!(tbl[i] & GCR3_VALID)) 1503 continue; 1504 1505 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK); 1506 1507 free_page((unsigned long)ptr); 1508 } 1509 } 1510 1511 static void free_gcr3_tbl_level2(u64 *tbl) 1512 { 1513 u64 *ptr; 1514 int i; 1515 1516 for (i = 0; i < 512; ++i) { 1517 if (!(tbl[i] & GCR3_VALID)) 1518 continue; 1519 1520 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK); 1521 1522 free_gcr3_tbl_level1(ptr); 1523 } 1524 } 1525 1526 static void free_gcr3_table(struct protection_domain *domain) 1527 { 1528 if (domain->glx == 2) 1529 free_gcr3_tbl_level2(domain->gcr3_tbl); 1530 else if (domain->glx == 1) 1531 free_gcr3_tbl_level1(domain->gcr3_tbl); 1532 else 1533 BUG_ON(domain->glx != 0); 1534 1535 free_page((unsigned long)domain->gcr3_tbl); 1536 } 1537 1538 static void set_dte_entry(struct amd_iommu *iommu, u16 devid, 1539 struct protection_domain *domain, bool ats, bool ppr) 1540 { 1541 u64 pte_root = 0; 1542 u64 flags = 0; 1543 u32 old_domid; 1544 struct dev_table_entry *dev_table = get_dev_table(iommu); 1545 1546 if (domain->iop.mode != PAGE_MODE_NONE) 1547 pte_root = iommu_virt_to_phys(domain->iop.root); 1548 1549 pte_root |= (domain->iop.mode & DEV_ENTRY_MODE_MASK) 1550 << DEV_ENTRY_MODE_SHIFT; 1551 1552 pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V; 1553 1554 /* 1555 * When SNP is enabled, Only set TV bit when IOMMU 1556 * page translation is in use. 1557 */ 1558 if (!amd_iommu_snp_en || (domain->id != 0)) 1559 pte_root |= DTE_FLAG_TV; 1560 1561 flags = dev_table[devid].data[1]; 1562 1563 if (ats) 1564 flags |= DTE_FLAG_IOTLB; 1565 1566 if (ppr) { 1567 if (iommu_feature(iommu, FEATURE_EPHSUP)) 1568 pte_root |= 1ULL << DEV_ENTRY_PPR; 1569 } 1570 1571 if (domain->flags & PD_IOMMUV2_MASK) { 1572 u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl); 1573 u64 glx = domain->glx; 1574 u64 tmp; 1575 1576 pte_root |= DTE_FLAG_GV; 1577 pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT; 1578 1579 /* First mask out possible old values for GCR3 table */ 1580 tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B; 1581 flags &= ~tmp; 1582 1583 tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C; 1584 flags &= ~tmp; 1585 1586 /* Encode GCR3 table into DTE */ 1587 tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A; 1588 pte_root |= tmp; 1589 1590 tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B; 1591 flags |= tmp; 1592 1593 tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C; 1594 flags |= tmp; 1595 1596 if (domain->flags & PD_GIOV_MASK) 1597 pte_root |= DTE_FLAG_GIOV; 1598 } 1599 1600 flags &= ~DEV_DOMID_MASK; 1601 flags |= domain->id; 1602 1603 old_domid = dev_table[devid].data[1] & DEV_DOMID_MASK; 1604 dev_table[devid].data[1] = flags; 1605 dev_table[devid].data[0] = pte_root; 1606 1607 /* 1608 * A kdump kernel might be replacing a domain ID that was copied from 1609 * the previous kernel--if so, it needs to flush the translation cache 1610 * entries for the old domain ID that is being overwritten 1611 */ 1612 if (old_domid) { 1613 amd_iommu_flush_tlb_domid(iommu, old_domid); 1614 } 1615 } 1616 1617 static void clear_dte_entry(struct amd_iommu *iommu, u16 devid) 1618 { 1619 struct dev_table_entry *dev_table = get_dev_table(iommu); 1620 1621 /* remove entry from the device table seen by the hardware */ 1622 dev_table[devid].data[0] = DTE_FLAG_V; 1623 1624 if (!amd_iommu_snp_en) 1625 dev_table[devid].data[0] |= DTE_FLAG_TV; 1626 1627 dev_table[devid].data[1] &= DTE_FLAG_MASK; 1628 1629 amd_iommu_apply_erratum_63(iommu, devid); 1630 } 1631 1632 static void do_attach(struct iommu_dev_data *dev_data, 1633 struct protection_domain *domain) 1634 { 1635 struct amd_iommu *iommu; 1636 bool ats; 1637 1638 iommu = rlookup_amd_iommu(dev_data->dev); 1639 if (!iommu) 1640 return; 1641 ats = dev_data->ats.enabled; 1642 1643 /* Update data structures */ 1644 dev_data->domain = domain; 1645 list_add(&dev_data->list, &domain->dev_list); 1646 1647 /* Do reference counting */ 1648 domain->dev_iommu[iommu->index] += 1; 1649 domain->dev_cnt += 1; 1650 1651 /* Override supported page sizes */ 1652 if (domain->flags & PD_GIOV_MASK) 1653 domain->domain.pgsize_bitmap = AMD_IOMMU_PGSIZES_V2; 1654 1655 /* Update device table */ 1656 set_dte_entry(iommu, dev_data->devid, domain, 1657 ats, dev_data->iommu_v2); 1658 clone_aliases(iommu, dev_data->dev); 1659 1660 device_flush_dte(dev_data); 1661 } 1662 1663 static void do_detach(struct iommu_dev_data *dev_data) 1664 { 1665 struct protection_domain *domain = dev_data->domain; 1666 struct amd_iommu *iommu; 1667 1668 iommu = rlookup_amd_iommu(dev_data->dev); 1669 if (!iommu) 1670 return; 1671 1672 /* Update data structures */ 1673 dev_data->domain = NULL; 1674 list_del(&dev_data->list); 1675 clear_dte_entry(iommu, dev_data->devid); 1676 clone_aliases(iommu, dev_data->dev); 1677 1678 /* Flush the DTE entry */ 1679 device_flush_dte(dev_data); 1680 1681 /* Flush IOTLB */ 1682 amd_iommu_domain_flush_tlb_pde(domain); 1683 1684 /* Wait for the flushes to finish */ 1685 amd_iommu_domain_flush_complete(domain); 1686 1687 /* decrease reference counters - needs to happen after the flushes */ 1688 domain->dev_iommu[iommu->index] -= 1; 1689 domain->dev_cnt -= 1; 1690 } 1691 1692 static void pdev_iommuv2_disable(struct pci_dev *pdev) 1693 { 1694 pci_disable_ats(pdev); 1695 pci_disable_pri(pdev); 1696 pci_disable_pasid(pdev); 1697 } 1698 1699 static int pdev_pri_ats_enable(struct pci_dev *pdev) 1700 { 1701 int ret; 1702 1703 /* Only allow access to user-accessible pages */ 1704 ret = pci_enable_pasid(pdev, 0); 1705 if (ret) 1706 goto out_err; 1707 1708 /* First reset the PRI state of the device */ 1709 ret = pci_reset_pri(pdev); 1710 if (ret) 1711 goto out_err; 1712 1713 /* Enable PRI */ 1714 /* FIXME: Hardcode number of outstanding requests for now */ 1715 ret = pci_enable_pri(pdev, 32); 1716 if (ret) 1717 goto out_err; 1718 1719 ret = pci_enable_ats(pdev, PAGE_SHIFT); 1720 if (ret) 1721 goto out_err; 1722 1723 return 0; 1724 1725 out_err: 1726 pci_disable_pri(pdev); 1727 pci_disable_pasid(pdev); 1728 1729 return ret; 1730 } 1731 1732 /* 1733 * If a device is not yet associated with a domain, this function makes the 1734 * device visible in the domain 1735 */ 1736 static int attach_device(struct device *dev, 1737 struct protection_domain *domain) 1738 { 1739 struct iommu_dev_data *dev_data; 1740 struct pci_dev *pdev; 1741 unsigned long flags; 1742 int ret; 1743 1744 spin_lock_irqsave(&domain->lock, flags); 1745 1746 dev_data = dev_iommu_priv_get(dev); 1747 1748 spin_lock(&dev_data->lock); 1749 1750 ret = -EBUSY; 1751 if (dev_data->domain != NULL) 1752 goto out; 1753 1754 if (!dev_is_pci(dev)) 1755 goto skip_ats_check; 1756 1757 pdev = to_pci_dev(dev); 1758 if (domain->flags & PD_IOMMUV2_MASK) { 1759 struct iommu_domain *def_domain = iommu_get_dma_domain(dev); 1760 1761 ret = -EINVAL; 1762 1763 /* 1764 * In case of using AMD_IOMMU_V1 page table mode and the device 1765 * is enabling for PPR/ATS support (using v2 table), 1766 * we need to make sure that the domain type is identity map. 1767 */ 1768 if ((amd_iommu_pgtable == AMD_IOMMU_V1) && 1769 def_domain->type != IOMMU_DOMAIN_IDENTITY) { 1770 goto out; 1771 } 1772 1773 if (dev_data->iommu_v2) { 1774 if (pdev_pri_ats_enable(pdev) != 0) 1775 goto out; 1776 1777 dev_data->ats.enabled = true; 1778 dev_data->ats.qdep = pci_ats_queue_depth(pdev); 1779 dev_data->pri_tlp = pci_prg_resp_pasid_required(pdev); 1780 } 1781 } else if (amd_iommu_iotlb_sup && 1782 pci_enable_ats(pdev, PAGE_SHIFT) == 0) { 1783 dev_data->ats.enabled = true; 1784 dev_data->ats.qdep = pci_ats_queue_depth(pdev); 1785 } 1786 1787 skip_ats_check: 1788 ret = 0; 1789 1790 do_attach(dev_data, domain); 1791 1792 /* 1793 * We might boot into a crash-kernel here. The crashed kernel 1794 * left the caches in the IOMMU dirty. So we have to flush 1795 * here to evict all dirty stuff. 1796 */ 1797 amd_iommu_domain_flush_tlb_pde(domain); 1798 1799 amd_iommu_domain_flush_complete(domain); 1800 1801 out: 1802 spin_unlock(&dev_data->lock); 1803 1804 spin_unlock_irqrestore(&domain->lock, flags); 1805 1806 return ret; 1807 } 1808 1809 /* 1810 * Removes a device from a protection domain (with devtable_lock held) 1811 */ 1812 static void detach_device(struct device *dev) 1813 { 1814 struct protection_domain *domain; 1815 struct iommu_dev_data *dev_data; 1816 unsigned long flags; 1817 1818 dev_data = dev_iommu_priv_get(dev); 1819 domain = dev_data->domain; 1820 1821 spin_lock_irqsave(&domain->lock, flags); 1822 1823 spin_lock(&dev_data->lock); 1824 1825 /* 1826 * First check if the device is still attached. It might already 1827 * be detached from its domain because the generic 1828 * iommu_detach_group code detached it and we try again here in 1829 * our alias handling. 1830 */ 1831 if (WARN_ON(!dev_data->domain)) 1832 goto out; 1833 1834 do_detach(dev_data); 1835 1836 if (!dev_is_pci(dev)) 1837 goto out; 1838 1839 if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2) 1840 pdev_iommuv2_disable(to_pci_dev(dev)); 1841 else if (dev_data->ats.enabled) 1842 pci_disable_ats(to_pci_dev(dev)); 1843 1844 dev_data->ats.enabled = false; 1845 1846 out: 1847 spin_unlock(&dev_data->lock); 1848 1849 spin_unlock_irqrestore(&domain->lock, flags); 1850 } 1851 1852 static struct iommu_device *amd_iommu_probe_device(struct device *dev) 1853 { 1854 struct iommu_device *iommu_dev; 1855 struct amd_iommu *iommu; 1856 int ret; 1857 1858 if (!check_device(dev)) 1859 return ERR_PTR(-ENODEV); 1860 1861 iommu = rlookup_amd_iommu(dev); 1862 if (!iommu) 1863 return ERR_PTR(-ENODEV); 1864 1865 /* Not registered yet? */ 1866 if (!iommu->iommu.ops) 1867 return ERR_PTR(-ENODEV); 1868 1869 if (dev_iommu_priv_get(dev)) 1870 return &iommu->iommu; 1871 1872 ret = iommu_init_device(iommu, dev); 1873 if (ret) { 1874 if (ret != -ENOTSUPP) 1875 dev_err(dev, "Failed to initialize - trying to proceed anyway\n"); 1876 iommu_dev = ERR_PTR(ret); 1877 iommu_ignore_device(iommu, dev); 1878 } else { 1879 amd_iommu_set_pci_msi_domain(dev, iommu); 1880 iommu_dev = &iommu->iommu; 1881 } 1882 1883 iommu_completion_wait(iommu); 1884 1885 return iommu_dev; 1886 } 1887 1888 static void amd_iommu_probe_finalize(struct device *dev) 1889 { 1890 /* Domains are initialized for this device - have a look what we ended up with */ 1891 set_dma_ops(dev, NULL); 1892 iommu_setup_dma_ops(dev, 0, U64_MAX); 1893 } 1894 1895 static void amd_iommu_release_device(struct device *dev) 1896 { 1897 struct amd_iommu *iommu; 1898 1899 if (!check_device(dev)) 1900 return; 1901 1902 iommu = rlookup_amd_iommu(dev); 1903 if (!iommu) 1904 return; 1905 1906 amd_iommu_uninit_device(dev); 1907 iommu_completion_wait(iommu); 1908 } 1909 1910 static struct iommu_group *amd_iommu_device_group(struct device *dev) 1911 { 1912 if (dev_is_pci(dev)) 1913 return pci_device_group(dev); 1914 1915 return acpihid_device_group(dev); 1916 } 1917 1918 /***************************************************************************** 1919 * 1920 * The next functions belong to the dma_ops mapping/unmapping code. 1921 * 1922 *****************************************************************************/ 1923 1924 static void update_device_table(struct protection_domain *domain) 1925 { 1926 struct iommu_dev_data *dev_data; 1927 1928 list_for_each_entry(dev_data, &domain->dev_list, list) { 1929 struct amd_iommu *iommu = rlookup_amd_iommu(dev_data->dev); 1930 1931 if (!iommu) 1932 continue; 1933 set_dte_entry(iommu, dev_data->devid, domain, 1934 dev_data->ats.enabled, dev_data->iommu_v2); 1935 clone_aliases(iommu, dev_data->dev); 1936 } 1937 } 1938 1939 void amd_iommu_update_and_flush_device_table(struct protection_domain *domain) 1940 { 1941 update_device_table(domain); 1942 domain_flush_devices(domain); 1943 } 1944 1945 void amd_iommu_domain_update(struct protection_domain *domain) 1946 { 1947 /* Update device table */ 1948 amd_iommu_update_and_flush_device_table(domain); 1949 1950 /* Flush domain TLB(s) and wait for completion */ 1951 amd_iommu_domain_flush_tlb_pde(domain); 1952 amd_iommu_domain_flush_complete(domain); 1953 } 1954 1955 /***************************************************************************** 1956 * 1957 * The following functions belong to the exported interface of AMD IOMMU 1958 * 1959 * This interface allows access to lower level functions of the IOMMU 1960 * like protection domain handling and assignement of devices to domains 1961 * which is not possible with the dma_ops interface. 1962 * 1963 *****************************************************************************/ 1964 1965 static void cleanup_domain(struct protection_domain *domain) 1966 { 1967 struct iommu_dev_data *entry; 1968 unsigned long flags; 1969 1970 spin_lock_irqsave(&domain->lock, flags); 1971 1972 while (!list_empty(&domain->dev_list)) { 1973 entry = list_first_entry(&domain->dev_list, 1974 struct iommu_dev_data, list); 1975 BUG_ON(!entry->domain); 1976 do_detach(entry); 1977 } 1978 1979 spin_unlock_irqrestore(&domain->lock, flags); 1980 } 1981 1982 static void protection_domain_free(struct protection_domain *domain) 1983 { 1984 if (!domain) 1985 return; 1986 1987 if (domain->iop.pgtbl_cfg.tlb) 1988 free_io_pgtable_ops(&domain->iop.iop.ops); 1989 1990 if (domain->id) 1991 domain_id_free(domain->id); 1992 1993 kfree(domain); 1994 } 1995 1996 static int protection_domain_init_v1(struct protection_domain *domain, int mode) 1997 { 1998 u64 *pt_root = NULL; 1999 2000 BUG_ON(mode < PAGE_MODE_NONE || mode > PAGE_MODE_6_LEVEL); 2001 2002 spin_lock_init(&domain->lock); 2003 domain->id = domain_id_alloc(); 2004 if (!domain->id) 2005 return -ENOMEM; 2006 INIT_LIST_HEAD(&domain->dev_list); 2007 2008 if (mode != PAGE_MODE_NONE) { 2009 pt_root = (void *)get_zeroed_page(GFP_KERNEL); 2010 if (!pt_root) { 2011 domain_id_free(domain->id); 2012 return -ENOMEM; 2013 } 2014 } 2015 2016 amd_iommu_domain_set_pgtable(domain, pt_root, mode); 2017 2018 return 0; 2019 } 2020 2021 static int protection_domain_init_v2(struct protection_domain *domain) 2022 { 2023 spin_lock_init(&domain->lock); 2024 domain->id = domain_id_alloc(); 2025 if (!domain->id) 2026 return -ENOMEM; 2027 INIT_LIST_HEAD(&domain->dev_list); 2028 2029 domain->flags |= PD_GIOV_MASK; 2030 2031 if (domain_enable_v2(domain, 1)) { 2032 domain_id_free(domain->id); 2033 return -ENOMEM; 2034 } 2035 2036 return 0; 2037 } 2038 2039 static struct protection_domain *protection_domain_alloc(unsigned int type) 2040 { 2041 struct io_pgtable_ops *pgtbl_ops; 2042 struct protection_domain *domain; 2043 int pgtable = amd_iommu_pgtable; 2044 int mode = DEFAULT_PGTABLE_LEVEL; 2045 int ret; 2046 2047 domain = kzalloc(sizeof(*domain), GFP_KERNEL); 2048 if (!domain) 2049 return NULL; 2050 2051 /* 2052 * Force IOMMU v1 page table when iommu=pt and 2053 * when allocating domain for pass-through devices. 2054 */ 2055 if (type == IOMMU_DOMAIN_IDENTITY) { 2056 pgtable = AMD_IOMMU_V1; 2057 mode = PAGE_MODE_NONE; 2058 } else if (type == IOMMU_DOMAIN_UNMANAGED) { 2059 pgtable = AMD_IOMMU_V1; 2060 } 2061 2062 switch (pgtable) { 2063 case AMD_IOMMU_V1: 2064 ret = protection_domain_init_v1(domain, mode); 2065 break; 2066 case AMD_IOMMU_V2: 2067 ret = protection_domain_init_v2(domain); 2068 break; 2069 default: 2070 ret = -EINVAL; 2071 } 2072 2073 if (ret) 2074 goto out_err; 2075 2076 pgtbl_ops = alloc_io_pgtable_ops(pgtable, &domain->iop.pgtbl_cfg, domain); 2077 if (!pgtbl_ops) { 2078 domain_id_free(domain->id); 2079 goto out_err; 2080 } 2081 2082 return domain; 2083 out_err: 2084 kfree(domain); 2085 return NULL; 2086 } 2087 2088 static struct iommu_domain *amd_iommu_domain_alloc(unsigned type) 2089 { 2090 struct protection_domain *domain; 2091 2092 /* 2093 * Since DTE[Mode]=0 is prohibited on SNP-enabled system, 2094 * default to use IOMMU_DOMAIN_DMA[_FQ]. 2095 */ 2096 if (amd_iommu_snp_en && (type == IOMMU_DOMAIN_IDENTITY)) 2097 return NULL; 2098 2099 domain = protection_domain_alloc(type); 2100 if (!domain) 2101 return NULL; 2102 2103 domain->domain.geometry.aperture_start = 0; 2104 domain->domain.geometry.aperture_end = ~0ULL; 2105 domain->domain.geometry.force_aperture = true; 2106 2107 return &domain->domain; 2108 } 2109 2110 static void amd_iommu_domain_free(struct iommu_domain *dom) 2111 { 2112 struct protection_domain *domain; 2113 2114 domain = to_pdomain(dom); 2115 2116 if (domain->dev_cnt > 0) 2117 cleanup_domain(domain); 2118 2119 BUG_ON(domain->dev_cnt != 0); 2120 2121 if (!dom) 2122 return; 2123 2124 if (domain->flags & PD_IOMMUV2_MASK) 2125 free_gcr3_table(domain); 2126 2127 protection_domain_free(domain); 2128 } 2129 2130 static void amd_iommu_detach_device(struct iommu_domain *dom, 2131 struct device *dev) 2132 { 2133 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev); 2134 struct amd_iommu *iommu; 2135 2136 if (!check_device(dev)) 2137 return; 2138 2139 if (dev_data->domain != NULL) 2140 detach_device(dev); 2141 2142 iommu = rlookup_amd_iommu(dev); 2143 if (!iommu) 2144 return; 2145 2146 #ifdef CONFIG_IRQ_REMAP 2147 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) && 2148 (dom->type == IOMMU_DOMAIN_UNMANAGED)) 2149 dev_data->use_vapic = 0; 2150 #endif 2151 2152 iommu_completion_wait(iommu); 2153 } 2154 2155 static int amd_iommu_attach_device(struct iommu_domain *dom, 2156 struct device *dev) 2157 { 2158 struct protection_domain *domain = to_pdomain(dom); 2159 struct iommu_dev_data *dev_data; 2160 struct amd_iommu *iommu; 2161 int ret; 2162 2163 if (!check_device(dev)) 2164 return -EINVAL; 2165 2166 dev_data = dev_iommu_priv_get(dev); 2167 dev_data->defer_attach = false; 2168 2169 iommu = rlookup_amd_iommu(dev); 2170 if (!iommu) 2171 return -EINVAL; 2172 2173 if (dev_data->domain) 2174 detach_device(dev); 2175 2176 ret = attach_device(dev, domain); 2177 2178 #ifdef CONFIG_IRQ_REMAP 2179 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) { 2180 if (dom->type == IOMMU_DOMAIN_UNMANAGED) 2181 dev_data->use_vapic = 1; 2182 else 2183 dev_data->use_vapic = 0; 2184 } 2185 #endif 2186 2187 iommu_completion_wait(iommu); 2188 2189 return ret; 2190 } 2191 2192 static void amd_iommu_iotlb_sync_map(struct iommu_domain *dom, 2193 unsigned long iova, size_t size) 2194 { 2195 struct protection_domain *domain = to_pdomain(dom); 2196 struct io_pgtable_ops *ops = &domain->iop.iop.ops; 2197 2198 if (ops->map_pages) 2199 domain_flush_np_cache(domain, iova, size); 2200 } 2201 2202 static int amd_iommu_map_pages(struct iommu_domain *dom, unsigned long iova, 2203 phys_addr_t paddr, size_t pgsize, size_t pgcount, 2204 int iommu_prot, gfp_t gfp, size_t *mapped) 2205 { 2206 struct protection_domain *domain = to_pdomain(dom); 2207 struct io_pgtable_ops *ops = &domain->iop.iop.ops; 2208 int prot = 0; 2209 int ret = -EINVAL; 2210 2211 if ((amd_iommu_pgtable == AMD_IOMMU_V1) && 2212 (domain->iop.mode == PAGE_MODE_NONE)) 2213 return -EINVAL; 2214 2215 if (iommu_prot & IOMMU_READ) 2216 prot |= IOMMU_PROT_IR; 2217 if (iommu_prot & IOMMU_WRITE) 2218 prot |= IOMMU_PROT_IW; 2219 2220 if (ops->map_pages) { 2221 ret = ops->map_pages(ops, iova, paddr, pgsize, 2222 pgcount, prot, gfp, mapped); 2223 } 2224 2225 return ret; 2226 } 2227 2228 static void amd_iommu_iotlb_gather_add_page(struct iommu_domain *domain, 2229 struct iommu_iotlb_gather *gather, 2230 unsigned long iova, size_t size) 2231 { 2232 /* 2233 * AMD's IOMMU can flush as many pages as necessary in a single flush. 2234 * Unless we run in a virtual machine, which can be inferred according 2235 * to whether "non-present cache" is on, it is probably best to prefer 2236 * (potentially) too extensive TLB flushing (i.e., more misses) over 2237 * mutliple TLB flushes (i.e., more flushes). For virtual machines the 2238 * hypervisor needs to synchronize the host IOMMU PTEs with those of 2239 * the guest, and the trade-off is different: unnecessary TLB flushes 2240 * should be avoided. 2241 */ 2242 if (amd_iommu_np_cache && 2243 iommu_iotlb_gather_is_disjoint(gather, iova, size)) 2244 iommu_iotlb_sync(domain, gather); 2245 2246 iommu_iotlb_gather_add_range(gather, iova, size); 2247 } 2248 2249 static size_t amd_iommu_unmap_pages(struct iommu_domain *dom, unsigned long iova, 2250 size_t pgsize, size_t pgcount, 2251 struct iommu_iotlb_gather *gather) 2252 { 2253 struct protection_domain *domain = to_pdomain(dom); 2254 struct io_pgtable_ops *ops = &domain->iop.iop.ops; 2255 size_t r; 2256 2257 if ((amd_iommu_pgtable == AMD_IOMMU_V1) && 2258 (domain->iop.mode == PAGE_MODE_NONE)) 2259 return 0; 2260 2261 r = (ops->unmap_pages) ? ops->unmap_pages(ops, iova, pgsize, pgcount, NULL) : 0; 2262 2263 if (r) 2264 amd_iommu_iotlb_gather_add_page(dom, gather, iova, r); 2265 2266 return r; 2267 } 2268 2269 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom, 2270 dma_addr_t iova) 2271 { 2272 struct protection_domain *domain = to_pdomain(dom); 2273 struct io_pgtable_ops *ops = &domain->iop.iop.ops; 2274 2275 return ops->iova_to_phys(ops, iova); 2276 } 2277 2278 static bool amd_iommu_capable(struct device *dev, enum iommu_cap cap) 2279 { 2280 switch (cap) { 2281 case IOMMU_CAP_CACHE_COHERENCY: 2282 return true; 2283 case IOMMU_CAP_INTR_REMAP: 2284 return (irq_remapping_enabled == 1); 2285 case IOMMU_CAP_NOEXEC: 2286 return false; 2287 case IOMMU_CAP_PRE_BOOT_PROTECTION: 2288 return amdr_ivrs_remap_support; 2289 default: 2290 break; 2291 } 2292 2293 return false; 2294 } 2295 2296 static void amd_iommu_get_resv_regions(struct device *dev, 2297 struct list_head *head) 2298 { 2299 struct iommu_resv_region *region; 2300 struct unity_map_entry *entry; 2301 struct amd_iommu *iommu; 2302 struct amd_iommu_pci_seg *pci_seg; 2303 int devid, sbdf; 2304 2305 sbdf = get_device_sbdf_id(dev); 2306 if (sbdf < 0) 2307 return; 2308 2309 devid = PCI_SBDF_TO_DEVID(sbdf); 2310 iommu = rlookup_amd_iommu(dev); 2311 if (!iommu) 2312 return; 2313 pci_seg = iommu->pci_seg; 2314 2315 list_for_each_entry(entry, &pci_seg->unity_map, list) { 2316 int type, prot = 0; 2317 size_t length; 2318 2319 if (devid < entry->devid_start || devid > entry->devid_end) 2320 continue; 2321 2322 type = IOMMU_RESV_DIRECT; 2323 length = entry->address_end - entry->address_start; 2324 if (entry->prot & IOMMU_PROT_IR) 2325 prot |= IOMMU_READ; 2326 if (entry->prot & IOMMU_PROT_IW) 2327 prot |= IOMMU_WRITE; 2328 if (entry->prot & IOMMU_UNITY_MAP_FLAG_EXCL_RANGE) 2329 /* Exclusion range */ 2330 type = IOMMU_RESV_RESERVED; 2331 2332 region = iommu_alloc_resv_region(entry->address_start, 2333 length, prot, type, 2334 GFP_KERNEL); 2335 if (!region) { 2336 dev_err(dev, "Out of memory allocating dm-regions\n"); 2337 return; 2338 } 2339 list_add_tail(®ion->list, head); 2340 } 2341 2342 region = iommu_alloc_resv_region(MSI_RANGE_START, 2343 MSI_RANGE_END - MSI_RANGE_START + 1, 2344 0, IOMMU_RESV_MSI, GFP_KERNEL); 2345 if (!region) 2346 return; 2347 list_add_tail(®ion->list, head); 2348 2349 region = iommu_alloc_resv_region(HT_RANGE_START, 2350 HT_RANGE_END - HT_RANGE_START + 1, 2351 0, IOMMU_RESV_RESERVED, GFP_KERNEL); 2352 if (!region) 2353 return; 2354 list_add_tail(®ion->list, head); 2355 } 2356 2357 bool amd_iommu_is_attach_deferred(struct device *dev) 2358 { 2359 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev); 2360 2361 return dev_data->defer_attach; 2362 } 2363 EXPORT_SYMBOL_GPL(amd_iommu_is_attach_deferred); 2364 2365 static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain) 2366 { 2367 struct protection_domain *dom = to_pdomain(domain); 2368 unsigned long flags; 2369 2370 spin_lock_irqsave(&dom->lock, flags); 2371 amd_iommu_domain_flush_tlb_pde(dom); 2372 amd_iommu_domain_flush_complete(dom); 2373 spin_unlock_irqrestore(&dom->lock, flags); 2374 } 2375 2376 static void amd_iommu_iotlb_sync(struct iommu_domain *domain, 2377 struct iommu_iotlb_gather *gather) 2378 { 2379 struct protection_domain *dom = to_pdomain(domain); 2380 unsigned long flags; 2381 2382 spin_lock_irqsave(&dom->lock, flags); 2383 domain_flush_pages(dom, gather->start, gather->end - gather->start, 1); 2384 amd_iommu_domain_flush_complete(dom); 2385 spin_unlock_irqrestore(&dom->lock, flags); 2386 } 2387 2388 static int amd_iommu_def_domain_type(struct device *dev) 2389 { 2390 struct iommu_dev_data *dev_data; 2391 2392 dev_data = dev_iommu_priv_get(dev); 2393 if (!dev_data) 2394 return 0; 2395 2396 /* 2397 * Do not identity map IOMMUv2 capable devices when memory encryption is 2398 * active, because some of those devices (AMD GPUs) don't have the 2399 * encryption bit in their DMA-mask and require remapping. 2400 */ 2401 if (!cc_platform_has(CC_ATTR_MEM_ENCRYPT) && dev_data->iommu_v2) 2402 return IOMMU_DOMAIN_IDENTITY; 2403 2404 return 0; 2405 } 2406 2407 static bool amd_iommu_enforce_cache_coherency(struct iommu_domain *domain) 2408 { 2409 /* IOMMU_PTE_FC is always set */ 2410 return true; 2411 } 2412 2413 const struct iommu_ops amd_iommu_ops = { 2414 .capable = amd_iommu_capable, 2415 .domain_alloc = amd_iommu_domain_alloc, 2416 .probe_device = amd_iommu_probe_device, 2417 .release_device = amd_iommu_release_device, 2418 .probe_finalize = amd_iommu_probe_finalize, 2419 .device_group = amd_iommu_device_group, 2420 .get_resv_regions = amd_iommu_get_resv_regions, 2421 .is_attach_deferred = amd_iommu_is_attach_deferred, 2422 .pgsize_bitmap = AMD_IOMMU_PGSIZES, 2423 .def_domain_type = amd_iommu_def_domain_type, 2424 .default_domain_ops = &(const struct iommu_domain_ops) { 2425 .attach_dev = amd_iommu_attach_device, 2426 .detach_dev = amd_iommu_detach_device, 2427 .map_pages = amd_iommu_map_pages, 2428 .unmap_pages = amd_iommu_unmap_pages, 2429 .iotlb_sync_map = amd_iommu_iotlb_sync_map, 2430 .iova_to_phys = amd_iommu_iova_to_phys, 2431 .flush_iotlb_all = amd_iommu_flush_iotlb_all, 2432 .iotlb_sync = amd_iommu_iotlb_sync, 2433 .free = amd_iommu_domain_free, 2434 .enforce_cache_coherency = amd_iommu_enforce_cache_coherency, 2435 } 2436 }; 2437 2438 /***************************************************************************** 2439 * 2440 * The next functions do a basic initialization of IOMMU for pass through 2441 * mode 2442 * 2443 * In passthrough mode the IOMMU is initialized and enabled but not used for 2444 * DMA-API translation. 2445 * 2446 *****************************************************************************/ 2447 2448 /* IOMMUv2 specific functions */ 2449 int amd_iommu_register_ppr_notifier(struct notifier_block *nb) 2450 { 2451 return atomic_notifier_chain_register(&ppr_notifier, nb); 2452 } 2453 EXPORT_SYMBOL(amd_iommu_register_ppr_notifier); 2454 2455 int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb) 2456 { 2457 return atomic_notifier_chain_unregister(&ppr_notifier, nb); 2458 } 2459 EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier); 2460 2461 void amd_iommu_domain_direct_map(struct iommu_domain *dom) 2462 { 2463 struct protection_domain *domain = to_pdomain(dom); 2464 unsigned long flags; 2465 2466 spin_lock_irqsave(&domain->lock, flags); 2467 2468 if (domain->iop.pgtbl_cfg.tlb) 2469 free_io_pgtable_ops(&domain->iop.iop.ops); 2470 2471 spin_unlock_irqrestore(&domain->lock, flags); 2472 } 2473 EXPORT_SYMBOL(amd_iommu_domain_direct_map); 2474 2475 /* Note: This function expects iommu_domain->lock to be held prior calling the function. */ 2476 static int domain_enable_v2(struct protection_domain *domain, int pasids) 2477 { 2478 int levels; 2479 2480 /* Number of GCR3 table levels required */ 2481 for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9) 2482 levels += 1; 2483 2484 if (levels > amd_iommu_max_glx_val) 2485 return -EINVAL; 2486 2487 domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC); 2488 if (domain->gcr3_tbl == NULL) 2489 return -ENOMEM; 2490 2491 domain->glx = levels; 2492 domain->flags |= PD_IOMMUV2_MASK; 2493 2494 amd_iommu_domain_update(domain); 2495 2496 return 0; 2497 } 2498 2499 int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids) 2500 { 2501 struct protection_domain *pdom = to_pdomain(dom); 2502 unsigned long flags; 2503 int ret; 2504 2505 spin_lock_irqsave(&pdom->lock, flags); 2506 2507 /* 2508 * Save us all sanity checks whether devices already in the 2509 * domain support IOMMUv2. Just force that the domain has no 2510 * devices attached when it is switched into IOMMUv2 mode. 2511 */ 2512 ret = -EBUSY; 2513 if (pdom->dev_cnt > 0 || pdom->flags & PD_IOMMUV2_MASK) 2514 goto out; 2515 2516 if (!pdom->gcr3_tbl) 2517 ret = domain_enable_v2(pdom, pasids); 2518 2519 out: 2520 spin_unlock_irqrestore(&pdom->lock, flags); 2521 return ret; 2522 } 2523 EXPORT_SYMBOL(amd_iommu_domain_enable_v2); 2524 2525 static int __flush_pasid(struct protection_domain *domain, u32 pasid, 2526 u64 address, bool size) 2527 { 2528 struct iommu_dev_data *dev_data; 2529 struct iommu_cmd cmd; 2530 int i, ret; 2531 2532 if (!(domain->flags & PD_IOMMUV2_MASK)) 2533 return -EINVAL; 2534 2535 build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size); 2536 2537 /* 2538 * IOMMU TLB needs to be flushed before Device TLB to 2539 * prevent device TLB refill from IOMMU TLB 2540 */ 2541 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) { 2542 if (domain->dev_iommu[i] == 0) 2543 continue; 2544 2545 ret = iommu_queue_command(amd_iommus[i], &cmd); 2546 if (ret != 0) 2547 goto out; 2548 } 2549 2550 /* Wait until IOMMU TLB flushes are complete */ 2551 amd_iommu_domain_flush_complete(domain); 2552 2553 /* Now flush device TLBs */ 2554 list_for_each_entry(dev_data, &domain->dev_list, list) { 2555 struct amd_iommu *iommu; 2556 int qdep; 2557 2558 /* 2559 There might be non-IOMMUv2 capable devices in an IOMMUv2 2560 * domain. 2561 */ 2562 if (!dev_data->ats.enabled) 2563 continue; 2564 2565 qdep = dev_data->ats.qdep; 2566 iommu = rlookup_amd_iommu(dev_data->dev); 2567 if (!iommu) 2568 continue; 2569 build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid, 2570 qdep, address, size); 2571 2572 ret = iommu_queue_command(iommu, &cmd); 2573 if (ret != 0) 2574 goto out; 2575 } 2576 2577 /* Wait until all device TLBs are flushed */ 2578 amd_iommu_domain_flush_complete(domain); 2579 2580 ret = 0; 2581 2582 out: 2583 2584 return ret; 2585 } 2586 2587 static int __amd_iommu_flush_page(struct protection_domain *domain, u32 pasid, 2588 u64 address) 2589 { 2590 return __flush_pasid(domain, pasid, address, false); 2591 } 2592 2593 int amd_iommu_flush_page(struct iommu_domain *dom, u32 pasid, 2594 u64 address) 2595 { 2596 struct protection_domain *domain = to_pdomain(dom); 2597 unsigned long flags; 2598 int ret; 2599 2600 spin_lock_irqsave(&domain->lock, flags); 2601 ret = __amd_iommu_flush_page(domain, pasid, address); 2602 spin_unlock_irqrestore(&domain->lock, flags); 2603 2604 return ret; 2605 } 2606 EXPORT_SYMBOL(amd_iommu_flush_page); 2607 2608 static int __amd_iommu_flush_tlb(struct protection_domain *domain, u32 pasid) 2609 { 2610 return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 2611 true); 2612 } 2613 2614 int amd_iommu_flush_tlb(struct iommu_domain *dom, u32 pasid) 2615 { 2616 struct protection_domain *domain = to_pdomain(dom); 2617 unsigned long flags; 2618 int ret; 2619 2620 spin_lock_irqsave(&domain->lock, flags); 2621 ret = __amd_iommu_flush_tlb(domain, pasid); 2622 spin_unlock_irqrestore(&domain->lock, flags); 2623 2624 return ret; 2625 } 2626 EXPORT_SYMBOL(amd_iommu_flush_tlb); 2627 2628 static u64 *__get_gcr3_pte(u64 *root, int level, u32 pasid, bool alloc) 2629 { 2630 int index; 2631 u64 *pte; 2632 2633 while (true) { 2634 2635 index = (pasid >> (9 * level)) & 0x1ff; 2636 pte = &root[index]; 2637 2638 if (level == 0) 2639 break; 2640 2641 if (!(*pte & GCR3_VALID)) { 2642 if (!alloc) 2643 return NULL; 2644 2645 root = (void *)get_zeroed_page(GFP_ATOMIC); 2646 if (root == NULL) 2647 return NULL; 2648 2649 *pte = iommu_virt_to_phys(root) | GCR3_VALID; 2650 } 2651 2652 root = iommu_phys_to_virt(*pte & PAGE_MASK); 2653 2654 level -= 1; 2655 } 2656 2657 return pte; 2658 } 2659 2660 static int __set_gcr3(struct protection_domain *domain, u32 pasid, 2661 unsigned long cr3) 2662 { 2663 u64 *pte; 2664 2665 if (domain->iop.mode != PAGE_MODE_NONE) 2666 return -EINVAL; 2667 2668 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true); 2669 if (pte == NULL) 2670 return -ENOMEM; 2671 2672 *pte = (cr3 & PAGE_MASK) | GCR3_VALID; 2673 2674 return __amd_iommu_flush_tlb(domain, pasid); 2675 } 2676 2677 static int __clear_gcr3(struct protection_domain *domain, u32 pasid) 2678 { 2679 u64 *pte; 2680 2681 if (domain->iop.mode != PAGE_MODE_NONE) 2682 return -EINVAL; 2683 2684 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false); 2685 if (pte == NULL) 2686 return 0; 2687 2688 *pte = 0; 2689 2690 return __amd_iommu_flush_tlb(domain, pasid); 2691 } 2692 2693 int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, u32 pasid, 2694 unsigned long cr3) 2695 { 2696 struct protection_domain *domain = to_pdomain(dom); 2697 unsigned long flags; 2698 int ret; 2699 2700 spin_lock_irqsave(&domain->lock, flags); 2701 ret = __set_gcr3(domain, pasid, cr3); 2702 spin_unlock_irqrestore(&domain->lock, flags); 2703 2704 return ret; 2705 } 2706 EXPORT_SYMBOL(amd_iommu_domain_set_gcr3); 2707 2708 int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, u32 pasid) 2709 { 2710 struct protection_domain *domain = to_pdomain(dom); 2711 unsigned long flags; 2712 int ret; 2713 2714 spin_lock_irqsave(&domain->lock, flags); 2715 ret = __clear_gcr3(domain, pasid); 2716 spin_unlock_irqrestore(&domain->lock, flags); 2717 2718 return ret; 2719 } 2720 EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3); 2721 2722 int amd_iommu_complete_ppr(struct pci_dev *pdev, u32 pasid, 2723 int status, int tag) 2724 { 2725 struct iommu_dev_data *dev_data; 2726 struct amd_iommu *iommu; 2727 struct iommu_cmd cmd; 2728 2729 dev_data = dev_iommu_priv_get(&pdev->dev); 2730 iommu = rlookup_amd_iommu(&pdev->dev); 2731 if (!iommu) 2732 return -ENODEV; 2733 2734 build_complete_ppr(&cmd, dev_data->devid, pasid, status, 2735 tag, dev_data->pri_tlp); 2736 2737 return iommu_queue_command(iommu, &cmd); 2738 } 2739 EXPORT_SYMBOL(amd_iommu_complete_ppr); 2740 2741 int amd_iommu_device_info(struct pci_dev *pdev, 2742 struct amd_iommu_device_info *info) 2743 { 2744 int max_pasids; 2745 int pos; 2746 2747 if (pdev == NULL || info == NULL) 2748 return -EINVAL; 2749 2750 if (!amd_iommu_v2_supported()) 2751 return -EINVAL; 2752 2753 memset(info, 0, sizeof(*info)); 2754 2755 if (pci_ats_supported(pdev)) 2756 info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP; 2757 2758 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI); 2759 if (pos) 2760 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP; 2761 2762 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID); 2763 if (pos) { 2764 int features; 2765 2766 max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1)); 2767 max_pasids = min(max_pasids, (1 << 20)); 2768 2769 info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP; 2770 info->max_pasids = min(pci_max_pasids(pdev), max_pasids); 2771 2772 features = pci_pasid_features(pdev); 2773 if (features & PCI_PASID_CAP_EXEC) 2774 info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP; 2775 if (features & PCI_PASID_CAP_PRIV) 2776 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP; 2777 } 2778 2779 return 0; 2780 } 2781 EXPORT_SYMBOL(amd_iommu_device_info); 2782 2783 #ifdef CONFIG_IRQ_REMAP 2784 2785 /***************************************************************************** 2786 * 2787 * Interrupt Remapping Implementation 2788 * 2789 *****************************************************************************/ 2790 2791 static struct irq_chip amd_ir_chip; 2792 static DEFINE_SPINLOCK(iommu_table_lock); 2793 2794 static void set_dte_irq_entry(struct amd_iommu *iommu, u16 devid, 2795 struct irq_remap_table *table) 2796 { 2797 u64 dte; 2798 struct dev_table_entry *dev_table = get_dev_table(iommu); 2799 2800 dte = dev_table[devid].data[2]; 2801 dte &= ~DTE_IRQ_PHYS_ADDR_MASK; 2802 dte |= iommu_virt_to_phys(table->table); 2803 dte |= DTE_IRQ_REMAP_INTCTL; 2804 dte |= DTE_INTTABLEN; 2805 dte |= DTE_IRQ_REMAP_ENABLE; 2806 2807 dev_table[devid].data[2] = dte; 2808 } 2809 2810 static struct irq_remap_table *get_irq_table(struct amd_iommu *iommu, u16 devid) 2811 { 2812 struct irq_remap_table *table; 2813 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; 2814 2815 if (WARN_ONCE(!pci_seg->rlookup_table[devid], 2816 "%s: no iommu for devid %x:%x\n", 2817 __func__, pci_seg->id, devid)) 2818 return NULL; 2819 2820 table = pci_seg->irq_lookup_table[devid]; 2821 if (WARN_ONCE(!table, "%s: no table for devid %x:%x\n", 2822 __func__, pci_seg->id, devid)) 2823 return NULL; 2824 2825 return table; 2826 } 2827 2828 static struct irq_remap_table *__alloc_irq_table(void) 2829 { 2830 struct irq_remap_table *table; 2831 2832 table = kzalloc(sizeof(*table), GFP_KERNEL); 2833 if (!table) 2834 return NULL; 2835 2836 table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL); 2837 if (!table->table) { 2838 kfree(table); 2839 return NULL; 2840 } 2841 raw_spin_lock_init(&table->lock); 2842 2843 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir)) 2844 memset(table->table, 0, 2845 MAX_IRQS_PER_TABLE * sizeof(u32)); 2846 else 2847 memset(table->table, 0, 2848 (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2))); 2849 return table; 2850 } 2851 2852 static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid, 2853 struct irq_remap_table *table) 2854 { 2855 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; 2856 2857 pci_seg->irq_lookup_table[devid] = table; 2858 set_dte_irq_entry(iommu, devid, table); 2859 iommu_flush_dte(iommu, devid); 2860 } 2861 2862 static int set_remap_table_entry_alias(struct pci_dev *pdev, u16 alias, 2863 void *data) 2864 { 2865 struct irq_remap_table *table = data; 2866 struct amd_iommu_pci_seg *pci_seg; 2867 struct amd_iommu *iommu = rlookup_amd_iommu(&pdev->dev); 2868 2869 if (!iommu) 2870 return -EINVAL; 2871 2872 pci_seg = iommu->pci_seg; 2873 pci_seg->irq_lookup_table[alias] = table; 2874 set_dte_irq_entry(iommu, alias, table); 2875 iommu_flush_dte(pci_seg->rlookup_table[alias], alias); 2876 2877 return 0; 2878 } 2879 2880 static struct irq_remap_table *alloc_irq_table(struct amd_iommu *iommu, 2881 u16 devid, struct pci_dev *pdev) 2882 { 2883 struct irq_remap_table *table = NULL; 2884 struct irq_remap_table *new_table = NULL; 2885 struct amd_iommu_pci_seg *pci_seg; 2886 unsigned long flags; 2887 u16 alias; 2888 2889 spin_lock_irqsave(&iommu_table_lock, flags); 2890 2891 pci_seg = iommu->pci_seg; 2892 table = pci_seg->irq_lookup_table[devid]; 2893 if (table) 2894 goto out_unlock; 2895 2896 alias = pci_seg->alias_table[devid]; 2897 table = pci_seg->irq_lookup_table[alias]; 2898 if (table) { 2899 set_remap_table_entry(iommu, devid, table); 2900 goto out_wait; 2901 } 2902 spin_unlock_irqrestore(&iommu_table_lock, flags); 2903 2904 /* Nothing there yet, allocate new irq remapping table */ 2905 new_table = __alloc_irq_table(); 2906 if (!new_table) 2907 return NULL; 2908 2909 spin_lock_irqsave(&iommu_table_lock, flags); 2910 2911 table = pci_seg->irq_lookup_table[devid]; 2912 if (table) 2913 goto out_unlock; 2914 2915 table = pci_seg->irq_lookup_table[alias]; 2916 if (table) { 2917 set_remap_table_entry(iommu, devid, table); 2918 goto out_wait; 2919 } 2920 2921 table = new_table; 2922 new_table = NULL; 2923 2924 if (pdev) 2925 pci_for_each_dma_alias(pdev, set_remap_table_entry_alias, 2926 table); 2927 else 2928 set_remap_table_entry(iommu, devid, table); 2929 2930 if (devid != alias) 2931 set_remap_table_entry(iommu, alias, table); 2932 2933 out_wait: 2934 iommu_completion_wait(iommu); 2935 2936 out_unlock: 2937 spin_unlock_irqrestore(&iommu_table_lock, flags); 2938 2939 if (new_table) { 2940 kmem_cache_free(amd_iommu_irq_cache, new_table->table); 2941 kfree(new_table); 2942 } 2943 return table; 2944 } 2945 2946 static int alloc_irq_index(struct amd_iommu *iommu, u16 devid, int count, 2947 bool align, struct pci_dev *pdev) 2948 { 2949 struct irq_remap_table *table; 2950 int index, c, alignment = 1; 2951 unsigned long flags; 2952 2953 table = alloc_irq_table(iommu, devid, pdev); 2954 if (!table) 2955 return -ENODEV; 2956 2957 if (align) 2958 alignment = roundup_pow_of_two(count); 2959 2960 raw_spin_lock_irqsave(&table->lock, flags); 2961 2962 /* Scan table for free entries */ 2963 for (index = ALIGN(table->min_index, alignment), c = 0; 2964 index < MAX_IRQS_PER_TABLE;) { 2965 if (!iommu->irte_ops->is_allocated(table, index)) { 2966 c += 1; 2967 } else { 2968 c = 0; 2969 index = ALIGN(index + 1, alignment); 2970 continue; 2971 } 2972 2973 if (c == count) { 2974 for (; c != 0; --c) 2975 iommu->irte_ops->set_allocated(table, index - c + 1); 2976 2977 index -= count - 1; 2978 goto out; 2979 } 2980 2981 index++; 2982 } 2983 2984 index = -ENOSPC; 2985 2986 out: 2987 raw_spin_unlock_irqrestore(&table->lock, flags); 2988 2989 return index; 2990 } 2991 2992 static int modify_irte_ga(struct amd_iommu *iommu, u16 devid, int index, 2993 struct irte_ga *irte, struct amd_ir_data *data) 2994 { 2995 bool ret; 2996 struct irq_remap_table *table; 2997 unsigned long flags; 2998 struct irte_ga *entry; 2999 3000 table = get_irq_table(iommu, devid); 3001 if (!table) 3002 return -ENOMEM; 3003 3004 raw_spin_lock_irqsave(&table->lock, flags); 3005 3006 entry = (struct irte_ga *)table->table; 3007 entry = &entry[index]; 3008 3009 ret = cmpxchg_double(&entry->lo.val, &entry->hi.val, 3010 entry->lo.val, entry->hi.val, 3011 irte->lo.val, irte->hi.val); 3012 /* 3013 * We use cmpxchg16 to atomically update the 128-bit IRTE, 3014 * and it cannot be updated by the hardware or other processors 3015 * behind us, so the return value of cmpxchg16 should be the 3016 * same as the old value. 3017 */ 3018 WARN_ON(!ret); 3019 3020 if (data) 3021 data->ref = entry; 3022 3023 raw_spin_unlock_irqrestore(&table->lock, flags); 3024 3025 iommu_flush_irt(iommu, devid); 3026 iommu_completion_wait(iommu); 3027 3028 return 0; 3029 } 3030 3031 static int modify_irte(struct amd_iommu *iommu, 3032 u16 devid, int index, union irte *irte) 3033 { 3034 struct irq_remap_table *table; 3035 unsigned long flags; 3036 3037 table = get_irq_table(iommu, devid); 3038 if (!table) 3039 return -ENOMEM; 3040 3041 raw_spin_lock_irqsave(&table->lock, flags); 3042 table->table[index] = irte->val; 3043 raw_spin_unlock_irqrestore(&table->lock, flags); 3044 3045 iommu_flush_irt(iommu, devid); 3046 iommu_completion_wait(iommu); 3047 3048 return 0; 3049 } 3050 3051 static void free_irte(struct amd_iommu *iommu, u16 devid, int index) 3052 { 3053 struct irq_remap_table *table; 3054 unsigned long flags; 3055 3056 table = get_irq_table(iommu, devid); 3057 if (!table) 3058 return; 3059 3060 raw_spin_lock_irqsave(&table->lock, flags); 3061 iommu->irte_ops->clear_allocated(table, index); 3062 raw_spin_unlock_irqrestore(&table->lock, flags); 3063 3064 iommu_flush_irt(iommu, devid); 3065 iommu_completion_wait(iommu); 3066 } 3067 3068 static void irte_prepare(void *entry, 3069 u32 delivery_mode, bool dest_mode, 3070 u8 vector, u32 dest_apicid, int devid) 3071 { 3072 union irte *irte = (union irte *) entry; 3073 3074 irte->val = 0; 3075 irte->fields.vector = vector; 3076 irte->fields.int_type = delivery_mode; 3077 irte->fields.destination = dest_apicid; 3078 irte->fields.dm = dest_mode; 3079 irte->fields.valid = 1; 3080 } 3081 3082 static void irte_ga_prepare(void *entry, 3083 u32 delivery_mode, bool dest_mode, 3084 u8 vector, u32 dest_apicid, int devid) 3085 { 3086 struct irte_ga *irte = (struct irte_ga *) entry; 3087 3088 irte->lo.val = 0; 3089 irte->hi.val = 0; 3090 irte->lo.fields_remap.int_type = delivery_mode; 3091 irte->lo.fields_remap.dm = dest_mode; 3092 irte->hi.fields.vector = vector; 3093 irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid); 3094 irte->hi.fields.destination = APICID_TO_IRTE_DEST_HI(dest_apicid); 3095 irte->lo.fields_remap.valid = 1; 3096 } 3097 3098 static void irte_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index) 3099 { 3100 union irte *irte = (union irte *) entry; 3101 3102 irte->fields.valid = 1; 3103 modify_irte(iommu, devid, index, irte); 3104 } 3105 3106 static void irte_ga_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index) 3107 { 3108 struct irte_ga *irte = (struct irte_ga *) entry; 3109 3110 irte->lo.fields_remap.valid = 1; 3111 modify_irte_ga(iommu, devid, index, irte, NULL); 3112 } 3113 3114 static void irte_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index) 3115 { 3116 union irte *irte = (union irte *) entry; 3117 3118 irte->fields.valid = 0; 3119 modify_irte(iommu, devid, index, irte); 3120 } 3121 3122 static void irte_ga_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index) 3123 { 3124 struct irte_ga *irte = (struct irte_ga *) entry; 3125 3126 irte->lo.fields_remap.valid = 0; 3127 modify_irte_ga(iommu, devid, index, irte, NULL); 3128 } 3129 3130 static void irte_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index, 3131 u8 vector, u32 dest_apicid) 3132 { 3133 union irte *irte = (union irte *) entry; 3134 3135 irte->fields.vector = vector; 3136 irte->fields.destination = dest_apicid; 3137 modify_irte(iommu, devid, index, irte); 3138 } 3139 3140 static void irte_ga_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index, 3141 u8 vector, u32 dest_apicid) 3142 { 3143 struct irte_ga *irte = (struct irte_ga *) entry; 3144 3145 if (!irte->lo.fields_remap.guest_mode) { 3146 irte->hi.fields.vector = vector; 3147 irte->lo.fields_remap.destination = 3148 APICID_TO_IRTE_DEST_LO(dest_apicid); 3149 irte->hi.fields.destination = 3150 APICID_TO_IRTE_DEST_HI(dest_apicid); 3151 modify_irte_ga(iommu, devid, index, irte, NULL); 3152 } 3153 } 3154 3155 #define IRTE_ALLOCATED (~1U) 3156 static void irte_set_allocated(struct irq_remap_table *table, int index) 3157 { 3158 table->table[index] = IRTE_ALLOCATED; 3159 } 3160 3161 static void irte_ga_set_allocated(struct irq_remap_table *table, int index) 3162 { 3163 struct irte_ga *ptr = (struct irte_ga *)table->table; 3164 struct irte_ga *irte = &ptr[index]; 3165 3166 memset(&irte->lo.val, 0, sizeof(u64)); 3167 memset(&irte->hi.val, 0, sizeof(u64)); 3168 irte->hi.fields.vector = 0xff; 3169 } 3170 3171 static bool irte_is_allocated(struct irq_remap_table *table, int index) 3172 { 3173 union irte *ptr = (union irte *)table->table; 3174 union irte *irte = &ptr[index]; 3175 3176 return irte->val != 0; 3177 } 3178 3179 static bool irte_ga_is_allocated(struct irq_remap_table *table, int index) 3180 { 3181 struct irte_ga *ptr = (struct irte_ga *)table->table; 3182 struct irte_ga *irte = &ptr[index]; 3183 3184 return irte->hi.fields.vector != 0; 3185 } 3186 3187 static void irte_clear_allocated(struct irq_remap_table *table, int index) 3188 { 3189 table->table[index] = 0; 3190 } 3191 3192 static void irte_ga_clear_allocated(struct irq_remap_table *table, int index) 3193 { 3194 struct irte_ga *ptr = (struct irte_ga *)table->table; 3195 struct irte_ga *irte = &ptr[index]; 3196 3197 memset(&irte->lo.val, 0, sizeof(u64)); 3198 memset(&irte->hi.val, 0, sizeof(u64)); 3199 } 3200 3201 static int get_devid(struct irq_alloc_info *info) 3202 { 3203 switch (info->type) { 3204 case X86_IRQ_ALLOC_TYPE_IOAPIC: 3205 return get_ioapic_devid(info->devid); 3206 case X86_IRQ_ALLOC_TYPE_HPET: 3207 return get_hpet_devid(info->devid); 3208 case X86_IRQ_ALLOC_TYPE_PCI_MSI: 3209 case X86_IRQ_ALLOC_TYPE_PCI_MSIX: 3210 return get_device_sbdf_id(msi_desc_to_dev(info->desc)); 3211 default: 3212 WARN_ON_ONCE(1); 3213 return -1; 3214 } 3215 } 3216 3217 struct irq_remap_ops amd_iommu_irq_ops = { 3218 .prepare = amd_iommu_prepare, 3219 .enable = amd_iommu_enable, 3220 .disable = amd_iommu_disable, 3221 .reenable = amd_iommu_reenable, 3222 .enable_faulting = amd_iommu_enable_faulting, 3223 }; 3224 3225 static void fill_msi_msg(struct msi_msg *msg, u32 index) 3226 { 3227 msg->data = index; 3228 msg->address_lo = 0; 3229 msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW; 3230 msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH; 3231 } 3232 3233 static void irq_remapping_prepare_irte(struct amd_ir_data *data, 3234 struct irq_cfg *irq_cfg, 3235 struct irq_alloc_info *info, 3236 int devid, int index, int sub_handle) 3237 { 3238 struct irq_2_irte *irte_info = &data->irq_2_irte; 3239 struct amd_iommu *iommu = data->iommu; 3240 3241 if (!iommu) 3242 return; 3243 3244 data->irq_2_irte.devid = devid; 3245 data->irq_2_irte.index = index + sub_handle; 3246 iommu->irte_ops->prepare(data->entry, apic->delivery_mode, 3247 apic->dest_mode_logical, irq_cfg->vector, 3248 irq_cfg->dest_apicid, devid); 3249 3250 switch (info->type) { 3251 case X86_IRQ_ALLOC_TYPE_IOAPIC: 3252 case X86_IRQ_ALLOC_TYPE_HPET: 3253 case X86_IRQ_ALLOC_TYPE_PCI_MSI: 3254 case X86_IRQ_ALLOC_TYPE_PCI_MSIX: 3255 fill_msi_msg(&data->msi_entry, irte_info->index); 3256 break; 3257 3258 default: 3259 BUG_ON(1); 3260 break; 3261 } 3262 } 3263 3264 struct amd_irte_ops irte_32_ops = { 3265 .prepare = irte_prepare, 3266 .activate = irte_activate, 3267 .deactivate = irte_deactivate, 3268 .set_affinity = irte_set_affinity, 3269 .set_allocated = irte_set_allocated, 3270 .is_allocated = irte_is_allocated, 3271 .clear_allocated = irte_clear_allocated, 3272 }; 3273 3274 struct amd_irte_ops irte_128_ops = { 3275 .prepare = irte_ga_prepare, 3276 .activate = irte_ga_activate, 3277 .deactivate = irte_ga_deactivate, 3278 .set_affinity = irte_ga_set_affinity, 3279 .set_allocated = irte_ga_set_allocated, 3280 .is_allocated = irte_ga_is_allocated, 3281 .clear_allocated = irte_ga_clear_allocated, 3282 }; 3283 3284 static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq, 3285 unsigned int nr_irqs, void *arg) 3286 { 3287 struct irq_alloc_info *info = arg; 3288 struct irq_data *irq_data; 3289 struct amd_ir_data *data = NULL; 3290 struct amd_iommu *iommu; 3291 struct irq_cfg *cfg; 3292 int i, ret, devid, seg, sbdf; 3293 int index; 3294 3295 if (!info) 3296 return -EINVAL; 3297 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI && 3298 info->type != X86_IRQ_ALLOC_TYPE_PCI_MSIX) 3299 return -EINVAL; 3300 3301 /* 3302 * With IRQ remapping enabled, don't need contiguous CPU vectors 3303 * to support multiple MSI interrupts. 3304 */ 3305 if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI) 3306 info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS; 3307 3308 sbdf = get_devid(info); 3309 if (sbdf < 0) 3310 return -EINVAL; 3311 3312 seg = PCI_SBDF_TO_SEGID(sbdf); 3313 devid = PCI_SBDF_TO_DEVID(sbdf); 3314 iommu = __rlookup_amd_iommu(seg, devid); 3315 if (!iommu) 3316 return -EINVAL; 3317 3318 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg); 3319 if (ret < 0) 3320 return ret; 3321 3322 if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) { 3323 struct irq_remap_table *table; 3324 3325 table = alloc_irq_table(iommu, devid, NULL); 3326 if (table) { 3327 if (!table->min_index) { 3328 /* 3329 * Keep the first 32 indexes free for IOAPIC 3330 * interrupts. 3331 */ 3332 table->min_index = 32; 3333 for (i = 0; i < 32; ++i) 3334 iommu->irte_ops->set_allocated(table, i); 3335 } 3336 WARN_ON(table->min_index != 32); 3337 index = info->ioapic.pin; 3338 } else { 3339 index = -ENOMEM; 3340 } 3341 } else if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI || 3342 info->type == X86_IRQ_ALLOC_TYPE_PCI_MSIX) { 3343 bool align = (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI); 3344 3345 index = alloc_irq_index(iommu, devid, nr_irqs, align, 3346 msi_desc_to_pci_dev(info->desc)); 3347 } else { 3348 index = alloc_irq_index(iommu, devid, nr_irqs, false, NULL); 3349 } 3350 3351 if (index < 0) { 3352 pr_warn("Failed to allocate IRTE\n"); 3353 ret = index; 3354 goto out_free_parent; 3355 } 3356 3357 for (i = 0; i < nr_irqs; i++) { 3358 irq_data = irq_domain_get_irq_data(domain, virq + i); 3359 cfg = irq_data ? irqd_cfg(irq_data) : NULL; 3360 if (!cfg) { 3361 ret = -EINVAL; 3362 goto out_free_data; 3363 } 3364 3365 ret = -ENOMEM; 3366 data = kzalloc(sizeof(*data), GFP_KERNEL); 3367 if (!data) 3368 goto out_free_data; 3369 3370 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir)) 3371 data->entry = kzalloc(sizeof(union irte), GFP_KERNEL); 3372 else 3373 data->entry = kzalloc(sizeof(struct irte_ga), 3374 GFP_KERNEL); 3375 if (!data->entry) { 3376 kfree(data); 3377 goto out_free_data; 3378 } 3379 3380 data->iommu = iommu; 3381 irq_data->hwirq = (devid << 16) + i; 3382 irq_data->chip_data = data; 3383 irq_data->chip = &amd_ir_chip; 3384 irq_remapping_prepare_irte(data, cfg, info, devid, index, i); 3385 irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT); 3386 } 3387 3388 return 0; 3389 3390 out_free_data: 3391 for (i--; i >= 0; i--) { 3392 irq_data = irq_domain_get_irq_data(domain, virq + i); 3393 if (irq_data) 3394 kfree(irq_data->chip_data); 3395 } 3396 for (i = 0; i < nr_irqs; i++) 3397 free_irte(iommu, devid, index + i); 3398 out_free_parent: 3399 irq_domain_free_irqs_common(domain, virq, nr_irqs); 3400 return ret; 3401 } 3402 3403 static void irq_remapping_free(struct irq_domain *domain, unsigned int virq, 3404 unsigned int nr_irqs) 3405 { 3406 struct irq_2_irte *irte_info; 3407 struct irq_data *irq_data; 3408 struct amd_ir_data *data; 3409 int i; 3410 3411 for (i = 0; i < nr_irqs; i++) { 3412 irq_data = irq_domain_get_irq_data(domain, virq + i); 3413 if (irq_data && irq_data->chip_data) { 3414 data = irq_data->chip_data; 3415 irte_info = &data->irq_2_irte; 3416 free_irte(data->iommu, irte_info->devid, irte_info->index); 3417 kfree(data->entry); 3418 kfree(data); 3419 } 3420 } 3421 irq_domain_free_irqs_common(domain, virq, nr_irqs); 3422 } 3423 3424 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu, 3425 struct amd_ir_data *ir_data, 3426 struct irq_2_irte *irte_info, 3427 struct irq_cfg *cfg); 3428 3429 static int irq_remapping_activate(struct irq_domain *domain, 3430 struct irq_data *irq_data, bool reserve) 3431 { 3432 struct amd_ir_data *data = irq_data->chip_data; 3433 struct irq_2_irte *irte_info = &data->irq_2_irte; 3434 struct amd_iommu *iommu = data->iommu; 3435 struct irq_cfg *cfg = irqd_cfg(irq_data); 3436 3437 if (!iommu) 3438 return 0; 3439 3440 iommu->irte_ops->activate(iommu, data->entry, irte_info->devid, 3441 irte_info->index); 3442 amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg); 3443 return 0; 3444 } 3445 3446 static void irq_remapping_deactivate(struct irq_domain *domain, 3447 struct irq_data *irq_data) 3448 { 3449 struct amd_ir_data *data = irq_data->chip_data; 3450 struct irq_2_irte *irte_info = &data->irq_2_irte; 3451 struct amd_iommu *iommu = data->iommu; 3452 3453 if (iommu) 3454 iommu->irte_ops->deactivate(iommu, data->entry, irte_info->devid, 3455 irte_info->index); 3456 } 3457 3458 static int irq_remapping_select(struct irq_domain *d, struct irq_fwspec *fwspec, 3459 enum irq_domain_bus_token bus_token) 3460 { 3461 struct amd_iommu *iommu; 3462 int devid = -1; 3463 3464 if (!amd_iommu_irq_remap) 3465 return 0; 3466 3467 if (x86_fwspec_is_ioapic(fwspec)) 3468 devid = get_ioapic_devid(fwspec->param[0]); 3469 else if (x86_fwspec_is_hpet(fwspec)) 3470 devid = get_hpet_devid(fwspec->param[0]); 3471 3472 if (devid < 0) 3473 return 0; 3474 iommu = __rlookup_amd_iommu((devid >> 16), (devid & 0xffff)); 3475 3476 return iommu && iommu->ir_domain == d; 3477 } 3478 3479 static const struct irq_domain_ops amd_ir_domain_ops = { 3480 .select = irq_remapping_select, 3481 .alloc = irq_remapping_alloc, 3482 .free = irq_remapping_free, 3483 .activate = irq_remapping_activate, 3484 .deactivate = irq_remapping_deactivate, 3485 }; 3486 3487 int amd_iommu_activate_guest_mode(void *data) 3488 { 3489 struct amd_ir_data *ir_data = (struct amd_ir_data *)data; 3490 struct irte_ga *entry = (struct irte_ga *) ir_data->entry; 3491 u64 valid; 3492 3493 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) || 3494 !entry || entry->lo.fields_vapic.guest_mode) 3495 return 0; 3496 3497 valid = entry->lo.fields_vapic.valid; 3498 3499 entry->lo.val = 0; 3500 entry->hi.val = 0; 3501 3502 entry->lo.fields_vapic.valid = valid; 3503 entry->lo.fields_vapic.guest_mode = 1; 3504 entry->lo.fields_vapic.ga_log_intr = 1; 3505 entry->hi.fields.ga_root_ptr = ir_data->ga_root_ptr; 3506 entry->hi.fields.vector = ir_data->ga_vector; 3507 entry->lo.fields_vapic.ga_tag = ir_data->ga_tag; 3508 3509 return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid, 3510 ir_data->irq_2_irte.index, entry, ir_data); 3511 } 3512 EXPORT_SYMBOL(amd_iommu_activate_guest_mode); 3513 3514 int amd_iommu_deactivate_guest_mode(void *data) 3515 { 3516 struct amd_ir_data *ir_data = (struct amd_ir_data *)data; 3517 struct irte_ga *entry = (struct irte_ga *) ir_data->entry; 3518 struct irq_cfg *cfg = ir_data->cfg; 3519 u64 valid; 3520 3521 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) || 3522 !entry || !entry->lo.fields_vapic.guest_mode) 3523 return 0; 3524 3525 valid = entry->lo.fields_remap.valid; 3526 3527 entry->lo.val = 0; 3528 entry->hi.val = 0; 3529 3530 entry->lo.fields_remap.valid = valid; 3531 entry->lo.fields_remap.dm = apic->dest_mode_logical; 3532 entry->lo.fields_remap.int_type = apic->delivery_mode; 3533 entry->hi.fields.vector = cfg->vector; 3534 entry->lo.fields_remap.destination = 3535 APICID_TO_IRTE_DEST_LO(cfg->dest_apicid); 3536 entry->hi.fields.destination = 3537 APICID_TO_IRTE_DEST_HI(cfg->dest_apicid); 3538 3539 return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid, 3540 ir_data->irq_2_irte.index, entry, ir_data); 3541 } 3542 EXPORT_SYMBOL(amd_iommu_deactivate_guest_mode); 3543 3544 static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info) 3545 { 3546 int ret; 3547 struct amd_iommu_pi_data *pi_data = vcpu_info; 3548 struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data; 3549 struct amd_ir_data *ir_data = data->chip_data; 3550 struct irq_2_irte *irte_info = &ir_data->irq_2_irte; 3551 struct iommu_dev_data *dev_data; 3552 3553 if (ir_data->iommu == NULL) 3554 return -EINVAL; 3555 3556 dev_data = search_dev_data(ir_data->iommu, irte_info->devid); 3557 3558 /* Note: 3559 * This device has never been set up for guest mode. 3560 * we should not modify the IRTE 3561 */ 3562 if (!dev_data || !dev_data->use_vapic) 3563 return 0; 3564 3565 ir_data->cfg = irqd_cfg(data); 3566 pi_data->ir_data = ir_data; 3567 3568 /* Note: 3569 * SVM tries to set up for VAPIC mode, but we are in 3570 * legacy mode. So, we force legacy mode instead. 3571 */ 3572 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) { 3573 pr_debug("%s: Fall back to using intr legacy remap\n", 3574 __func__); 3575 pi_data->is_guest_mode = false; 3576 } 3577 3578 pi_data->prev_ga_tag = ir_data->cached_ga_tag; 3579 if (pi_data->is_guest_mode) { 3580 ir_data->ga_root_ptr = (pi_data->base >> 12); 3581 ir_data->ga_vector = vcpu_pi_info->vector; 3582 ir_data->ga_tag = pi_data->ga_tag; 3583 ret = amd_iommu_activate_guest_mode(ir_data); 3584 if (!ret) 3585 ir_data->cached_ga_tag = pi_data->ga_tag; 3586 } else { 3587 ret = amd_iommu_deactivate_guest_mode(ir_data); 3588 3589 /* 3590 * This communicates the ga_tag back to the caller 3591 * so that it can do all the necessary clean up. 3592 */ 3593 if (!ret) 3594 ir_data->cached_ga_tag = 0; 3595 } 3596 3597 return ret; 3598 } 3599 3600 3601 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu, 3602 struct amd_ir_data *ir_data, 3603 struct irq_2_irte *irte_info, 3604 struct irq_cfg *cfg) 3605 { 3606 3607 /* 3608 * Atomically updates the IRTE with the new destination, vector 3609 * and flushes the interrupt entry cache. 3610 */ 3611 iommu->irte_ops->set_affinity(iommu, ir_data->entry, irte_info->devid, 3612 irte_info->index, cfg->vector, 3613 cfg->dest_apicid); 3614 } 3615 3616 static int amd_ir_set_affinity(struct irq_data *data, 3617 const struct cpumask *mask, bool force) 3618 { 3619 struct amd_ir_data *ir_data = data->chip_data; 3620 struct irq_2_irte *irte_info = &ir_data->irq_2_irte; 3621 struct irq_cfg *cfg = irqd_cfg(data); 3622 struct irq_data *parent = data->parent_data; 3623 struct amd_iommu *iommu = ir_data->iommu; 3624 int ret; 3625 3626 if (!iommu) 3627 return -ENODEV; 3628 3629 ret = parent->chip->irq_set_affinity(parent, mask, force); 3630 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE) 3631 return ret; 3632 3633 amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg); 3634 /* 3635 * After this point, all the interrupts will start arriving 3636 * at the new destination. So, time to cleanup the previous 3637 * vector allocation. 3638 */ 3639 send_cleanup_vector(cfg); 3640 3641 return IRQ_SET_MASK_OK_DONE; 3642 } 3643 3644 static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg) 3645 { 3646 struct amd_ir_data *ir_data = irq_data->chip_data; 3647 3648 *msg = ir_data->msi_entry; 3649 } 3650 3651 static struct irq_chip amd_ir_chip = { 3652 .name = "AMD-IR", 3653 .irq_ack = apic_ack_irq, 3654 .irq_set_affinity = amd_ir_set_affinity, 3655 .irq_set_vcpu_affinity = amd_ir_set_vcpu_affinity, 3656 .irq_compose_msi_msg = ir_compose_msi_msg, 3657 }; 3658 3659 int amd_iommu_create_irq_domain(struct amd_iommu *iommu) 3660 { 3661 struct fwnode_handle *fn; 3662 3663 fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index); 3664 if (!fn) 3665 return -ENOMEM; 3666 iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu); 3667 if (!iommu->ir_domain) { 3668 irq_domain_free_fwnode(fn); 3669 return -ENOMEM; 3670 } 3671 3672 iommu->ir_domain->parent = arch_get_ir_parent_domain(); 3673 iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain, 3674 "AMD-IR-MSI", 3675 iommu->index); 3676 return 0; 3677 } 3678 3679 int amd_iommu_update_ga(int cpu, bool is_run, void *data) 3680 { 3681 unsigned long flags; 3682 struct amd_iommu *iommu; 3683 struct irq_remap_table *table; 3684 struct amd_ir_data *ir_data = (struct amd_ir_data *)data; 3685 int devid = ir_data->irq_2_irte.devid; 3686 struct irte_ga *entry = (struct irte_ga *) ir_data->entry; 3687 struct irte_ga *ref = (struct irte_ga *) ir_data->ref; 3688 3689 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) || 3690 !ref || !entry || !entry->lo.fields_vapic.guest_mode) 3691 return 0; 3692 3693 iommu = ir_data->iommu; 3694 if (!iommu) 3695 return -ENODEV; 3696 3697 table = get_irq_table(iommu, devid); 3698 if (!table) 3699 return -ENODEV; 3700 3701 raw_spin_lock_irqsave(&table->lock, flags); 3702 3703 if (ref->lo.fields_vapic.guest_mode) { 3704 if (cpu >= 0) { 3705 ref->lo.fields_vapic.destination = 3706 APICID_TO_IRTE_DEST_LO(cpu); 3707 ref->hi.fields.destination = 3708 APICID_TO_IRTE_DEST_HI(cpu); 3709 } 3710 ref->lo.fields_vapic.is_run = is_run; 3711 barrier(); 3712 } 3713 3714 raw_spin_unlock_irqrestore(&table->lock, flags); 3715 3716 iommu_flush_irt(iommu, devid); 3717 iommu_completion_wait(iommu); 3718 return 0; 3719 } 3720 EXPORT_SYMBOL(amd_iommu_update_ga); 3721 #endif 3722