1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc. 4 * Author: Joerg Roedel <jroedel@suse.de> 5 * Leo Duran <leo.duran@amd.com> 6 */ 7 8 #define pr_fmt(fmt) "AMD-Vi: " fmt 9 #define dev_fmt(fmt) pr_fmt(fmt) 10 11 #include <linux/ratelimit.h> 12 #include <linux/pci.h> 13 #include <linux/acpi.h> 14 #include <linux/amba/bus.h> 15 #include <linux/platform_device.h> 16 #include <linux/pci-ats.h> 17 #include <linux/bitmap.h> 18 #include <linux/slab.h> 19 #include <linux/debugfs.h> 20 #include <linux/scatterlist.h> 21 #include <linux/dma-map-ops.h> 22 #include <linux/dma-direct.h> 23 #include <linux/dma-iommu.h> 24 #include <linux/iommu-helper.h> 25 #include <linux/delay.h> 26 #include <linux/amd-iommu.h> 27 #include <linux/notifier.h> 28 #include <linux/export.h> 29 #include <linux/irq.h> 30 #include <linux/msi.h> 31 #include <linux/irqdomain.h> 32 #include <linux/percpu.h> 33 #include <linux/io-pgtable.h> 34 #include <linux/cc_platform.h> 35 #include <asm/irq_remapping.h> 36 #include <asm/io_apic.h> 37 #include <asm/apic.h> 38 #include <asm/hw_irq.h> 39 #include <asm/proto.h> 40 #include <asm/iommu.h> 41 #include <asm/gart.h> 42 #include <asm/dma.h> 43 44 #include "amd_iommu.h" 45 #include "../irq_remapping.h" 46 47 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28)) 48 49 #define LOOP_TIMEOUT 100000 50 51 /* IO virtual address start page frame number */ 52 #define IOVA_START_PFN (1) 53 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT) 54 55 /* Reserved IOVA ranges */ 56 #define MSI_RANGE_START (0xfee00000) 57 #define MSI_RANGE_END (0xfeefffff) 58 #define HT_RANGE_START (0xfd00000000ULL) 59 #define HT_RANGE_END (0xffffffffffULL) 60 61 #define DEFAULT_PGTABLE_LEVEL PAGE_MODE_3_LEVEL 62 63 static DEFINE_SPINLOCK(pd_bitmap_lock); 64 65 /* List of all available dev_data structures */ 66 static LLIST_HEAD(dev_data_list); 67 68 LIST_HEAD(ioapic_map); 69 LIST_HEAD(hpet_map); 70 LIST_HEAD(acpihid_map); 71 72 /* 73 * Domain for untranslated devices - only allocated 74 * if iommu=pt passed on kernel cmd line. 75 */ 76 const struct iommu_ops amd_iommu_ops; 77 78 static ATOMIC_NOTIFIER_HEAD(ppr_notifier); 79 int amd_iommu_max_glx_val = -1; 80 81 /* 82 * general struct to manage commands send to an IOMMU 83 */ 84 struct iommu_cmd { 85 u32 data[4]; 86 }; 87 88 struct kmem_cache *amd_iommu_irq_cache; 89 90 static void detach_device(struct device *dev); 91 92 /**************************************************************************** 93 * 94 * Helper functions 95 * 96 ****************************************************************************/ 97 98 static inline u16 get_pci_device_id(struct device *dev) 99 { 100 struct pci_dev *pdev = to_pci_dev(dev); 101 102 return pci_dev_id(pdev); 103 } 104 105 static inline int get_acpihid_device_id(struct device *dev, 106 struct acpihid_map_entry **entry) 107 { 108 struct acpi_device *adev = ACPI_COMPANION(dev); 109 struct acpihid_map_entry *p; 110 111 if (!adev) 112 return -ENODEV; 113 114 list_for_each_entry(p, &acpihid_map, list) { 115 if (acpi_dev_hid_uid_match(adev, p->hid, 116 p->uid[0] ? p->uid : NULL)) { 117 if (entry) 118 *entry = p; 119 return p->devid; 120 } 121 } 122 return -EINVAL; 123 } 124 125 static inline int get_device_id(struct device *dev) 126 { 127 int devid; 128 129 if (dev_is_pci(dev)) 130 devid = get_pci_device_id(dev); 131 else 132 devid = get_acpihid_device_id(dev, NULL); 133 134 return devid; 135 } 136 137 static struct protection_domain *to_pdomain(struct iommu_domain *dom) 138 { 139 return container_of(dom, struct protection_domain, domain); 140 } 141 142 static struct iommu_dev_data *alloc_dev_data(u16 devid) 143 { 144 struct iommu_dev_data *dev_data; 145 146 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL); 147 if (!dev_data) 148 return NULL; 149 150 spin_lock_init(&dev_data->lock); 151 dev_data->devid = devid; 152 ratelimit_default_init(&dev_data->rs); 153 154 llist_add(&dev_data->dev_data_list, &dev_data_list); 155 return dev_data; 156 } 157 158 static struct iommu_dev_data *search_dev_data(u16 devid) 159 { 160 struct iommu_dev_data *dev_data; 161 struct llist_node *node; 162 163 if (llist_empty(&dev_data_list)) 164 return NULL; 165 166 node = dev_data_list.first; 167 llist_for_each_entry(dev_data, node, dev_data_list) { 168 if (dev_data->devid == devid) 169 return dev_data; 170 } 171 172 return NULL; 173 } 174 175 static int clone_alias(struct pci_dev *pdev, u16 alias, void *data) 176 { 177 u16 devid = pci_dev_id(pdev); 178 179 if (devid == alias) 180 return 0; 181 182 amd_iommu_rlookup_table[alias] = 183 amd_iommu_rlookup_table[devid]; 184 memcpy(amd_iommu_dev_table[alias].data, 185 amd_iommu_dev_table[devid].data, 186 sizeof(amd_iommu_dev_table[alias].data)); 187 188 return 0; 189 } 190 191 static void clone_aliases(struct pci_dev *pdev) 192 { 193 if (!pdev) 194 return; 195 196 /* 197 * The IVRS alias stored in the alias table may not be 198 * part of the PCI DMA aliases if it's bus differs 199 * from the original device. 200 */ 201 clone_alias(pdev, amd_iommu_alias_table[pci_dev_id(pdev)], NULL); 202 203 pci_for_each_dma_alias(pdev, clone_alias, NULL); 204 } 205 206 static struct pci_dev *setup_aliases(struct device *dev) 207 { 208 struct pci_dev *pdev = to_pci_dev(dev); 209 u16 ivrs_alias; 210 211 /* For ACPI HID devices, there are no aliases */ 212 if (!dev_is_pci(dev)) 213 return NULL; 214 215 /* 216 * Add the IVRS alias to the pci aliases if it is on the same 217 * bus. The IVRS table may know about a quirk that we don't. 218 */ 219 ivrs_alias = amd_iommu_alias_table[pci_dev_id(pdev)]; 220 if (ivrs_alias != pci_dev_id(pdev) && 221 PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) 222 pci_add_dma_alias(pdev, ivrs_alias & 0xff, 1); 223 224 clone_aliases(pdev); 225 226 return pdev; 227 } 228 229 static struct iommu_dev_data *find_dev_data(u16 devid) 230 { 231 struct iommu_dev_data *dev_data; 232 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid]; 233 234 dev_data = search_dev_data(devid); 235 236 if (dev_data == NULL) { 237 dev_data = alloc_dev_data(devid); 238 if (!dev_data) 239 return NULL; 240 241 if (translation_pre_enabled(iommu)) 242 dev_data->defer_attach = true; 243 } 244 245 return dev_data; 246 } 247 248 /* 249 * Find or create an IOMMU group for a acpihid device. 250 */ 251 static struct iommu_group *acpihid_device_group(struct device *dev) 252 { 253 struct acpihid_map_entry *p, *entry = NULL; 254 int devid; 255 256 devid = get_acpihid_device_id(dev, &entry); 257 if (devid < 0) 258 return ERR_PTR(devid); 259 260 list_for_each_entry(p, &acpihid_map, list) { 261 if ((devid == p->devid) && p->group) 262 entry->group = p->group; 263 } 264 265 if (!entry->group) 266 entry->group = generic_device_group(dev); 267 else 268 iommu_group_ref_get(entry->group); 269 270 return entry->group; 271 } 272 273 static bool pci_iommuv2_capable(struct pci_dev *pdev) 274 { 275 static const int caps[] = { 276 PCI_EXT_CAP_ID_PRI, 277 PCI_EXT_CAP_ID_PASID, 278 }; 279 int i, pos; 280 281 if (!pci_ats_supported(pdev)) 282 return false; 283 284 for (i = 0; i < 2; ++i) { 285 pos = pci_find_ext_capability(pdev, caps[i]); 286 if (pos == 0) 287 return false; 288 } 289 290 return true; 291 } 292 293 /* 294 * This function checks if the driver got a valid device from the caller to 295 * avoid dereferencing invalid pointers. 296 */ 297 static bool check_device(struct device *dev) 298 { 299 int devid; 300 301 if (!dev) 302 return false; 303 304 devid = get_device_id(dev); 305 if (devid < 0) 306 return false; 307 308 /* Out of our scope? */ 309 if (devid > amd_iommu_last_bdf) 310 return false; 311 312 if (amd_iommu_rlookup_table[devid] == NULL) 313 return false; 314 315 return true; 316 } 317 318 static int iommu_init_device(struct device *dev) 319 { 320 struct iommu_dev_data *dev_data; 321 int devid; 322 323 if (dev_iommu_priv_get(dev)) 324 return 0; 325 326 devid = get_device_id(dev); 327 if (devid < 0) 328 return devid; 329 330 dev_data = find_dev_data(devid); 331 if (!dev_data) 332 return -ENOMEM; 333 334 dev_data->pdev = setup_aliases(dev); 335 336 /* 337 * By default we use passthrough mode for IOMMUv2 capable device. 338 * But if amd_iommu=force_isolation is set (e.g. to debug DMA to 339 * invalid address), we ignore the capability for the device so 340 * it'll be forced to go into translation mode. 341 */ 342 if ((iommu_default_passthrough() || !amd_iommu_force_isolation) && 343 dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) { 344 struct amd_iommu *iommu; 345 346 iommu = amd_iommu_rlookup_table[dev_data->devid]; 347 dev_data->iommu_v2 = iommu->is_iommu_v2; 348 } 349 350 dev_iommu_priv_set(dev, dev_data); 351 352 return 0; 353 } 354 355 static void iommu_ignore_device(struct device *dev) 356 { 357 int devid; 358 359 devid = get_device_id(dev); 360 if (devid < 0) 361 return; 362 363 amd_iommu_rlookup_table[devid] = NULL; 364 memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry)); 365 366 setup_aliases(dev); 367 } 368 369 static void amd_iommu_uninit_device(struct device *dev) 370 { 371 struct iommu_dev_data *dev_data; 372 373 dev_data = dev_iommu_priv_get(dev); 374 if (!dev_data) 375 return; 376 377 if (dev_data->domain) 378 detach_device(dev); 379 380 dev_iommu_priv_set(dev, NULL); 381 382 /* 383 * We keep dev_data around for unplugged devices and reuse it when the 384 * device is re-plugged - not doing so would introduce a ton of races. 385 */ 386 } 387 388 /**************************************************************************** 389 * 390 * Interrupt handling functions 391 * 392 ****************************************************************************/ 393 394 static void dump_dte_entry(u16 devid) 395 { 396 int i; 397 398 for (i = 0; i < 4; ++i) 399 pr_err("DTE[%d]: %016llx\n", i, 400 amd_iommu_dev_table[devid].data[i]); 401 } 402 403 static void dump_command(unsigned long phys_addr) 404 { 405 struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr); 406 int i; 407 408 for (i = 0; i < 4; ++i) 409 pr_err("CMD[%d]: %08x\n", i, cmd->data[i]); 410 } 411 412 static void amd_iommu_report_rmp_hw_error(volatile u32 *event) 413 { 414 struct iommu_dev_data *dev_data = NULL; 415 int devid, vmg_tag, flags; 416 struct pci_dev *pdev; 417 u64 spa; 418 419 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK; 420 vmg_tag = (event[1]) & 0xFFFF; 421 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK; 422 spa = ((u64)event[3] << 32) | (event[2] & 0xFFFFFFF8); 423 424 pdev = pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid), 425 devid & 0xff); 426 if (pdev) 427 dev_data = dev_iommu_priv_get(&pdev->dev); 428 429 if (dev_data) { 430 if (__ratelimit(&dev_data->rs)) { 431 pci_err(pdev, "Event logged [RMP_HW_ERROR vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n", 432 vmg_tag, spa, flags); 433 } 434 } else { 435 pr_err_ratelimited("Event logged [RMP_HW_ERROR device=%02x:%02x.%x, vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n", 436 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 437 vmg_tag, spa, flags); 438 } 439 440 if (pdev) 441 pci_dev_put(pdev); 442 } 443 444 static void amd_iommu_report_rmp_fault(volatile u32 *event) 445 { 446 struct iommu_dev_data *dev_data = NULL; 447 int devid, flags_rmp, vmg_tag, flags; 448 struct pci_dev *pdev; 449 u64 gpa; 450 451 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK; 452 flags_rmp = (event[0] >> EVENT_FLAGS_SHIFT) & 0xFF; 453 vmg_tag = (event[1]) & 0xFFFF; 454 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK; 455 gpa = ((u64)event[3] << 32) | event[2]; 456 457 pdev = pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid), 458 devid & 0xff); 459 if (pdev) 460 dev_data = dev_iommu_priv_get(&pdev->dev); 461 462 if (dev_data) { 463 if (__ratelimit(&dev_data->rs)) { 464 pci_err(pdev, "Event logged [RMP_PAGE_FAULT vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n", 465 vmg_tag, gpa, flags_rmp, flags); 466 } 467 } else { 468 pr_err_ratelimited("Event logged [RMP_PAGE_FAULT device=%02x:%02x.%x, vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n", 469 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 470 vmg_tag, gpa, flags_rmp, flags); 471 } 472 473 if (pdev) 474 pci_dev_put(pdev); 475 } 476 477 #define IS_IOMMU_MEM_TRANSACTION(flags) \ 478 (((flags) & EVENT_FLAG_I) == 0) 479 480 #define IS_WRITE_REQUEST(flags) \ 481 ((flags) & EVENT_FLAG_RW) 482 483 static void amd_iommu_report_page_fault(u16 devid, u16 domain_id, 484 u64 address, int flags) 485 { 486 struct iommu_dev_data *dev_data = NULL; 487 struct pci_dev *pdev; 488 489 pdev = pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid), 490 devid & 0xff); 491 if (pdev) 492 dev_data = dev_iommu_priv_get(&pdev->dev); 493 494 if (dev_data) { 495 /* 496 * If this is a DMA fault (for which the I(nterrupt) 497 * bit will be unset), allow report_iommu_fault() to 498 * prevent logging it. 499 */ 500 if (IS_IOMMU_MEM_TRANSACTION(flags)) { 501 if (!report_iommu_fault(&dev_data->domain->domain, 502 &pdev->dev, address, 503 IS_WRITE_REQUEST(flags) ? 504 IOMMU_FAULT_WRITE : 505 IOMMU_FAULT_READ)) 506 goto out; 507 } 508 509 if (__ratelimit(&dev_data->rs)) { 510 pci_err(pdev, "Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%llx flags=0x%04x]\n", 511 domain_id, address, flags); 512 } 513 } else { 514 pr_err_ratelimited("Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n", 515 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 516 domain_id, address, flags); 517 } 518 519 out: 520 if (pdev) 521 pci_dev_put(pdev); 522 } 523 524 static void iommu_print_event(struct amd_iommu *iommu, void *__evt) 525 { 526 struct device *dev = iommu->iommu.dev; 527 int type, devid, flags, tag; 528 volatile u32 *event = __evt; 529 int count = 0; 530 u64 address; 531 u32 pasid; 532 533 retry: 534 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK; 535 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK; 536 pasid = (event[0] & EVENT_DOMID_MASK_HI) | 537 (event[1] & EVENT_DOMID_MASK_LO); 538 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK; 539 address = (u64)(((u64)event[3]) << 32) | event[2]; 540 541 if (type == 0) { 542 /* Did we hit the erratum? */ 543 if (++count == LOOP_TIMEOUT) { 544 pr_err("No event written to event log\n"); 545 return; 546 } 547 udelay(1); 548 goto retry; 549 } 550 551 if (type == EVENT_TYPE_IO_FAULT) { 552 amd_iommu_report_page_fault(devid, pasid, address, flags); 553 return; 554 } 555 556 switch (type) { 557 case EVENT_TYPE_ILL_DEV: 558 dev_err(dev, "Event logged [ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n", 559 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 560 pasid, address, flags); 561 dump_dte_entry(devid); 562 break; 563 case EVENT_TYPE_DEV_TAB_ERR: 564 dev_err(dev, "Event logged [DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x " 565 "address=0x%llx flags=0x%04x]\n", 566 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 567 address, flags); 568 break; 569 case EVENT_TYPE_PAGE_TAB_ERR: 570 dev_err(dev, "Event logged [PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x pasid=0x%04x address=0x%llx flags=0x%04x]\n", 571 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 572 pasid, address, flags); 573 break; 574 case EVENT_TYPE_ILL_CMD: 575 dev_err(dev, "Event logged [ILLEGAL_COMMAND_ERROR address=0x%llx]\n", address); 576 dump_command(address); 577 break; 578 case EVENT_TYPE_CMD_HARD_ERR: 579 dev_err(dev, "Event logged [COMMAND_HARDWARE_ERROR address=0x%llx flags=0x%04x]\n", 580 address, flags); 581 break; 582 case EVENT_TYPE_IOTLB_INV_TO: 583 dev_err(dev, "Event logged [IOTLB_INV_TIMEOUT device=%02x:%02x.%x address=0x%llx]\n", 584 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 585 address); 586 break; 587 case EVENT_TYPE_INV_DEV_REQ: 588 dev_err(dev, "Event logged [INVALID_DEVICE_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n", 589 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 590 pasid, address, flags); 591 break; 592 case EVENT_TYPE_RMP_FAULT: 593 amd_iommu_report_rmp_fault(event); 594 break; 595 case EVENT_TYPE_RMP_HW_ERR: 596 amd_iommu_report_rmp_hw_error(event); 597 break; 598 case EVENT_TYPE_INV_PPR_REQ: 599 pasid = PPR_PASID(*((u64 *)__evt)); 600 tag = event[1] & 0x03FF; 601 dev_err(dev, "Event logged [INVALID_PPR_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x tag=0x%03x]\n", 602 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 603 pasid, address, flags, tag); 604 break; 605 default: 606 dev_err(dev, "Event logged [UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n", 607 event[0], event[1], event[2], event[3]); 608 } 609 610 memset(__evt, 0, 4 * sizeof(u32)); 611 } 612 613 static void iommu_poll_events(struct amd_iommu *iommu) 614 { 615 u32 head, tail; 616 617 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET); 618 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET); 619 620 while (head != tail) { 621 iommu_print_event(iommu, iommu->evt_buf + head); 622 head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE; 623 } 624 625 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET); 626 } 627 628 static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw) 629 { 630 struct amd_iommu_fault fault; 631 632 if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) { 633 pr_err_ratelimited("Unknown PPR request received\n"); 634 return; 635 } 636 637 fault.address = raw[1]; 638 fault.pasid = PPR_PASID(raw[0]); 639 fault.device_id = PPR_DEVID(raw[0]); 640 fault.tag = PPR_TAG(raw[0]); 641 fault.flags = PPR_FLAGS(raw[0]); 642 643 atomic_notifier_call_chain(&ppr_notifier, 0, &fault); 644 } 645 646 static void iommu_poll_ppr_log(struct amd_iommu *iommu) 647 { 648 u32 head, tail; 649 650 if (iommu->ppr_log == NULL) 651 return; 652 653 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET); 654 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET); 655 656 while (head != tail) { 657 volatile u64 *raw; 658 u64 entry[2]; 659 int i; 660 661 raw = (u64 *)(iommu->ppr_log + head); 662 663 /* 664 * Hardware bug: Interrupt may arrive before the entry is 665 * written to memory. If this happens we need to wait for the 666 * entry to arrive. 667 */ 668 for (i = 0; i < LOOP_TIMEOUT; ++i) { 669 if (PPR_REQ_TYPE(raw[0]) != 0) 670 break; 671 udelay(1); 672 } 673 674 /* Avoid memcpy function-call overhead */ 675 entry[0] = raw[0]; 676 entry[1] = raw[1]; 677 678 /* 679 * To detect the hardware bug we need to clear the entry 680 * back to zero. 681 */ 682 raw[0] = raw[1] = 0UL; 683 684 /* Update head pointer of hardware ring-buffer */ 685 head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE; 686 writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET); 687 688 /* Handle PPR entry */ 689 iommu_handle_ppr_entry(iommu, entry); 690 691 /* Refresh ring-buffer information */ 692 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET); 693 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET); 694 } 695 } 696 697 #ifdef CONFIG_IRQ_REMAP 698 static int (*iommu_ga_log_notifier)(u32); 699 700 int amd_iommu_register_ga_log_notifier(int (*notifier)(u32)) 701 { 702 iommu_ga_log_notifier = notifier; 703 704 return 0; 705 } 706 EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier); 707 708 static void iommu_poll_ga_log(struct amd_iommu *iommu) 709 { 710 u32 head, tail, cnt = 0; 711 712 if (iommu->ga_log == NULL) 713 return; 714 715 head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET); 716 tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET); 717 718 while (head != tail) { 719 volatile u64 *raw; 720 u64 log_entry; 721 722 raw = (u64 *)(iommu->ga_log + head); 723 cnt++; 724 725 /* Avoid memcpy function-call overhead */ 726 log_entry = *raw; 727 728 /* Update head pointer of hardware ring-buffer */ 729 head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE; 730 writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET); 731 732 /* Handle GA entry */ 733 switch (GA_REQ_TYPE(log_entry)) { 734 case GA_GUEST_NR: 735 if (!iommu_ga_log_notifier) 736 break; 737 738 pr_debug("%s: devid=%#x, ga_tag=%#x\n", 739 __func__, GA_DEVID(log_entry), 740 GA_TAG(log_entry)); 741 742 if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0) 743 pr_err("GA log notifier failed.\n"); 744 break; 745 default: 746 break; 747 } 748 } 749 } 750 751 static void 752 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu) 753 { 754 if (!irq_remapping_enabled || !dev_is_pci(dev) || 755 pci_dev_has_special_msi_domain(to_pci_dev(dev))) 756 return; 757 758 dev_set_msi_domain(dev, iommu->msi_domain); 759 } 760 761 #else /* CONFIG_IRQ_REMAP */ 762 static inline void 763 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu) { } 764 #endif /* !CONFIG_IRQ_REMAP */ 765 766 #define AMD_IOMMU_INT_MASK \ 767 (MMIO_STATUS_EVT_OVERFLOW_INT_MASK | \ 768 MMIO_STATUS_EVT_INT_MASK | \ 769 MMIO_STATUS_PPR_INT_MASK | \ 770 MMIO_STATUS_GALOG_INT_MASK) 771 772 irqreturn_t amd_iommu_int_thread(int irq, void *data) 773 { 774 struct amd_iommu *iommu = (struct amd_iommu *) data; 775 u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET); 776 777 while (status & AMD_IOMMU_INT_MASK) { 778 /* Enable interrupt sources again */ 779 writel(AMD_IOMMU_INT_MASK, 780 iommu->mmio_base + MMIO_STATUS_OFFSET); 781 782 if (status & MMIO_STATUS_EVT_INT_MASK) { 783 pr_devel("Processing IOMMU Event Log\n"); 784 iommu_poll_events(iommu); 785 } 786 787 if (status & MMIO_STATUS_PPR_INT_MASK) { 788 pr_devel("Processing IOMMU PPR Log\n"); 789 iommu_poll_ppr_log(iommu); 790 } 791 792 #ifdef CONFIG_IRQ_REMAP 793 if (status & MMIO_STATUS_GALOG_INT_MASK) { 794 pr_devel("Processing IOMMU GA Log\n"); 795 iommu_poll_ga_log(iommu); 796 } 797 #endif 798 799 if (status & MMIO_STATUS_EVT_OVERFLOW_INT_MASK) { 800 pr_info_ratelimited("IOMMU event log overflow\n"); 801 amd_iommu_restart_event_logging(iommu); 802 } 803 804 /* 805 * Hardware bug: ERBT1312 806 * When re-enabling interrupt (by writing 1 807 * to clear the bit), the hardware might also try to set 808 * the interrupt bit in the event status register. 809 * In this scenario, the bit will be set, and disable 810 * subsequent interrupts. 811 * 812 * Workaround: The IOMMU driver should read back the 813 * status register and check if the interrupt bits are cleared. 814 * If not, driver will need to go through the interrupt handler 815 * again and re-clear the bits 816 */ 817 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET); 818 } 819 return IRQ_HANDLED; 820 } 821 822 irqreturn_t amd_iommu_int_handler(int irq, void *data) 823 { 824 return IRQ_WAKE_THREAD; 825 } 826 827 /**************************************************************************** 828 * 829 * IOMMU command queuing functions 830 * 831 ****************************************************************************/ 832 833 static int wait_on_sem(struct amd_iommu *iommu, u64 data) 834 { 835 int i = 0; 836 837 while (*iommu->cmd_sem != data && i < LOOP_TIMEOUT) { 838 udelay(1); 839 i += 1; 840 } 841 842 if (i == LOOP_TIMEOUT) { 843 pr_alert("Completion-Wait loop timed out\n"); 844 return -EIO; 845 } 846 847 return 0; 848 } 849 850 static void copy_cmd_to_buffer(struct amd_iommu *iommu, 851 struct iommu_cmd *cmd) 852 { 853 u8 *target; 854 u32 tail; 855 856 /* Copy command to buffer */ 857 tail = iommu->cmd_buf_tail; 858 target = iommu->cmd_buf + tail; 859 memcpy(target, cmd, sizeof(*cmd)); 860 861 tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE; 862 iommu->cmd_buf_tail = tail; 863 864 /* Tell the IOMMU about it */ 865 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET); 866 } 867 868 static void build_completion_wait(struct iommu_cmd *cmd, 869 struct amd_iommu *iommu, 870 u64 data) 871 { 872 u64 paddr = iommu_virt_to_phys((void *)iommu->cmd_sem); 873 874 memset(cmd, 0, sizeof(*cmd)); 875 cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK; 876 cmd->data[1] = upper_32_bits(paddr); 877 cmd->data[2] = data; 878 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT); 879 } 880 881 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid) 882 { 883 memset(cmd, 0, sizeof(*cmd)); 884 cmd->data[0] = devid; 885 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY); 886 } 887 888 /* 889 * Builds an invalidation address which is suitable for one page or multiple 890 * pages. Sets the size bit (S) as needed is more than one page is flushed. 891 */ 892 static inline u64 build_inv_address(u64 address, size_t size) 893 { 894 u64 pages, end, msb_diff; 895 896 pages = iommu_num_pages(address, size, PAGE_SIZE); 897 898 if (pages == 1) 899 return address & PAGE_MASK; 900 901 end = address + size - 1; 902 903 /* 904 * msb_diff would hold the index of the most significant bit that 905 * flipped between the start and end. 906 */ 907 msb_diff = fls64(end ^ address) - 1; 908 909 /* 910 * Bits 63:52 are sign extended. If for some reason bit 51 is different 911 * between the start and the end, invalidate everything. 912 */ 913 if (unlikely(msb_diff > 51)) { 914 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS; 915 } else { 916 /* 917 * The msb-bit must be clear on the address. Just set all the 918 * lower bits. 919 */ 920 address |= (1ull << msb_diff) - 1; 921 } 922 923 /* Clear bits 11:0 */ 924 address &= PAGE_MASK; 925 926 /* Set the size bit - we flush more than one 4kb page */ 927 return address | CMD_INV_IOMMU_PAGES_SIZE_MASK; 928 } 929 930 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address, 931 size_t size, u16 domid, int pde) 932 { 933 u64 inv_address = build_inv_address(address, size); 934 935 memset(cmd, 0, sizeof(*cmd)); 936 cmd->data[1] |= domid; 937 cmd->data[2] = lower_32_bits(inv_address); 938 cmd->data[3] = upper_32_bits(inv_address); 939 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES); 940 if (pde) /* PDE bit - we want to flush everything, not only the PTEs */ 941 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK; 942 } 943 944 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep, 945 u64 address, size_t size) 946 { 947 u64 inv_address = build_inv_address(address, size); 948 949 memset(cmd, 0, sizeof(*cmd)); 950 cmd->data[0] = devid; 951 cmd->data[0] |= (qdep & 0xff) << 24; 952 cmd->data[1] = devid; 953 cmd->data[2] = lower_32_bits(inv_address); 954 cmd->data[3] = upper_32_bits(inv_address); 955 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES); 956 } 957 958 static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, u32 pasid, 959 u64 address, bool size) 960 { 961 memset(cmd, 0, sizeof(*cmd)); 962 963 address &= ~(0xfffULL); 964 965 cmd->data[0] = pasid; 966 cmd->data[1] = domid; 967 cmd->data[2] = lower_32_bits(address); 968 cmd->data[3] = upper_32_bits(address); 969 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK; 970 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK; 971 if (size) 972 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK; 973 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES); 974 } 975 976 static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, u32 pasid, 977 int qdep, u64 address, bool size) 978 { 979 memset(cmd, 0, sizeof(*cmd)); 980 981 address &= ~(0xfffULL); 982 983 cmd->data[0] = devid; 984 cmd->data[0] |= ((pasid >> 8) & 0xff) << 16; 985 cmd->data[0] |= (qdep & 0xff) << 24; 986 cmd->data[1] = devid; 987 cmd->data[1] |= (pasid & 0xff) << 16; 988 cmd->data[2] = lower_32_bits(address); 989 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK; 990 cmd->data[3] = upper_32_bits(address); 991 if (size) 992 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK; 993 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES); 994 } 995 996 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, u32 pasid, 997 int status, int tag, bool gn) 998 { 999 memset(cmd, 0, sizeof(*cmd)); 1000 1001 cmd->data[0] = devid; 1002 if (gn) { 1003 cmd->data[1] = pasid; 1004 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK; 1005 } 1006 cmd->data[3] = tag & 0x1ff; 1007 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT; 1008 1009 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR); 1010 } 1011 1012 static void build_inv_all(struct iommu_cmd *cmd) 1013 { 1014 memset(cmd, 0, sizeof(*cmd)); 1015 CMD_SET_TYPE(cmd, CMD_INV_ALL); 1016 } 1017 1018 static void build_inv_irt(struct iommu_cmd *cmd, u16 devid) 1019 { 1020 memset(cmd, 0, sizeof(*cmd)); 1021 cmd->data[0] = devid; 1022 CMD_SET_TYPE(cmd, CMD_INV_IRT); 1023 } 1024 1025 /* 1026 * Writes the command to the IOMMUs command buffer and informs the 1027 * hardware about the new command. 1028 */ 1029 static int __iommu_queue_command_sync(struct amd_iommu *iommu, 1030 struct iommu_cmd *cmd, 1031 bool sync) 1032 { 1033 unsigned int count = 0; 1034 u32 left, next_tail; 1035 1036 next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE; 1037 again: 1038 left = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE; 1039 1040 if (left <= 0x20) { 1041 /* Skip udelay() the first time around */ 1042 if (count++) { 1043 if (count == LOOP_TIMEOUT) { 1044 pr_err("Command buffer timeout\n"); 1045 return -EIO; 1046 } 1047 1048 udelay(1); 1049 } 1050 1051 /* Update head and recheck remaining space */ 1052 iommu->cmd_buf_head = readl(iommu->mmio_base + 1053 MMIO_CMD_HEAD_OFFSET); 1054 1055 goto again; 1056 } 1057 1058 copy_cmd_to_buffer(iommu, cmd); 1059 1060 /* Do we need to make sure all commands are processed? */ 1061 iommu->need_sync = sync; 1062 1063 return 0; 1064 } 1065 1066 static int iommu_queue_command_sync(struct amd_iommu *iommu, 1067 struct iommu_cmd *cmd, 1068 bool sync) 1069 { 1070 unsigned long flags; 1071 int ret; 1072 1073 raw_spin_lock_irqsave(&iommu->lock, flags); 1074 ret = __iommu_queue_command_sync(iommu, cmd, sync); 1075 raw_spin_unlock_irqrestore(&iommu->lock, flags); 1076 1077 return ret; 1078 } 1079 1080 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd) 1081 { 1082 return iommu_queue_command_sync(iommu, cmd, true); 1083 } 1084 1085 /* 1086 * This function queues a completion wait command into the command 1087 * buffer of an IOMMU 1088 */ 1089 static int iommu_completion_wait(struct amd_iommu *iommu) 1090 { 1091 struct iommu_cmd cmd; 1092 unsigned long flags; 1093 int ret; 1094 u64 data; 1095 1096 if (!iommu->need_sync) 1097 return 0; 1098 1099 raw_spin_lock_irqsave(&iommu->lock, flags); 1100 1101 data = ++iommu->cmd_sem_val; 1102 build_completion_wait(&cmd, iommu, data); 1103 1104 ret = __iommu_queue_command_sync(iommu, &cmd, false); 1105 if (ret) 1106 goto out_unlock; 1107 1108 ret = wait_on_sem(iommu, data); 1109 1110 out_unlock: 1111 raw_spin_unlock_irqrestore(&iommu->lock, flags); 1112 1113 return ret; 1114 } 1115 1116 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid) 1117 { 1118 struct iommu_cmd cmd; 1119 1120 build_inv_dte(&cmd, devid); 1121 1122 return iommu_queue_command(iommu, &cmd); 1123 } 1124 1125 static void amd_iommu_flush_dte_all(struct amd_iommu *iommu) 1126 { 1127 u32 devid; 1128 1129 for (devid = 0; devid <= 0xffff; ++devid) 1130 iommu_flush_dte(iommu, devid); 1131 1132 iommu_completion_wait(iommu); 1133 } 1134 1135 /* 1136 * This function uses heavy locking and may disable irqs for some time. But 1137 * this is no issue because it is only called during resume. 1138 */ 1139 static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu) 1140 { 1141 u32 dom_id; 1142 1143 for (dom_id = 0; dom_id <= 0xffff; ++dom_id) { 1144 struct iommu_cmd cmd; 1145 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1146 dom_id, 1); 1147 iommu_queue_command(iommu, &cmd); 1148 } 1149 1150 iommu_completion_wait(iommu); 1151 } 1152 1153 static void amd_iommu_flush_tlb_domid(struct amd_iommu *iommu, u32 dom_id) 1154 { 1155 struct iommu_cmd cmd; 1156 1157 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1158 dom_id, 1); 1159 iommu_queue_command(iommu, &cmd); 1160 1161 iommu_completion_wait(iommu); 1162 } 1163 1164 static void amd_iommu_flush_all(struct amd_iommu *iommu) 1165 { 1166 struct iommu_cmd cmd; 1167 1168 build_inv_all(&cmd); 1169 1170 iommu_queue_command(iommu, &cmd); 1171 iommu_completion_wait(iommu); 1172 } 1173 1174 static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid) 1175 { 1176 struct iommu_cmd cmd; 1177 1178 build_inv_irt(&cmd, devid); 1179 1180 iommu_queue_command(iommu, &cmd); 1181 } 1182 1183 static void amd_iommu_flush_irt_all(struct amd_iommu *iommu) 1184 { 1185 u32 devid; 1186 1187 for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++) 1188 iommu_flush_irt(iommu, devid); 1189 1190 iommu_completion_wait(iommu); 1191 } 1192 1193 void iommu_flush_all_caches(struct amd_iommu *iommu) 1194 { 1195 if (iommu_feature(iommu, FEATURE_IA)) { 1196 amd_iommu_flush_all(iommu); 1197 } else { 1198 amd_iommu_flush_dte_all(iommu); 1199 amd_iommu_flush_irt_all(iommu); 1200 amd_iommu_flush_tlb_all(iommu); 1201 } 1202 } 1203 1204 /* 1205 * Command send function for flushing on-device TLB 1206 */ 1207 static int device_flush_iotlb(struct iommu_dev_data *dev_data, 1208 u64 address, size_t size) 1209 { 1210 struct amd_iommu *iommu; 1211 struct iommu_cmd cmd; 1212 int qdep; 1213 1214 qdep = dev_data->ats.qdep; 1215 iommu = amd_iommu_rlookup_table[dev_data->devid]; 1216 1217 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size); 1218 1219 return iommu_queue_command(iommu, &cmd); 1220 } 1221 1222 static int device_flush_dte_alias(struct pci_dev *pdev, u16 alias, void *data) 1223 { 1224 struct amd_iommu *iommu = data; 1225 1226 return iommu_flush_dte(iommu, alias); 1227 } 1228 1229 /* 1230 * Command send function for invalidating a device table entry 1231 */ 1232 static int device_flush_dte(struct iommu_dev_data *dev_data) 1233 { 1234 struct amd_iommu *iommu; 1235 u16 alias; 1236 int ret; 1237 1238 iommu = amd_iommu_rlookup_table[dev_data->devid]; 1239 1240 if (dev_data->pdev) 1241 ret = pci_for_each_dma_alias(dev_data->pdev, 1242 device_flush_dte_alias, iommu); 1243 else 1244 ret = iommu_flush_dte(iommu, dev_data->devid); 1245 if (ret) 1246 return ret; 1247 1248 alias = amd_iommu_alias_table[dev_data->devid]; 1249 if (alias != dev_data->devid) { 1250 ret = iommu_flush_dte(iommu, alias); 1251 if (ret) 1252 return ret; 1253 } 1254 1255 if (dev_data->ats.enabled) 1256 ret = device_flush_iotlb(dev_data, 0, ~0UL); 1257 1258 return ret; 1259 } 1260 1261 /* 1262 * TLB invalidation function which is called from the mapping functions. 1263 * It invalidates a single PTE if the range to flush is within a single 1264 * page. Otherwise it flushes the whole TLB of the IOMMU. 1265 */ 1266 static void __domain_flush_pages(struct protection_domain *domain, 1267 u64 address, size_t size, int pde) 1268 { 1269 struct iommu_dev_data *dev_data; 1270 struct iommu_cmd cmd; 1271 int ret = 0, i; 1272 1273 build_inv_iommu_pages(&cmd, address, size, domain->id, pde); 1274 1275 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) { 1276 if (!domain->dev_iommu[i]) 1277 continue; 1278 1279 /* 1280 * Devices of this domain are behind this IOMMU 1281 * We need a TLB flush 1282 */ 1283 ret |= iommu_queue_command(amd_iommus[i], &cmd); 1284 } 1285 1286 list_for_each_entry(dev_data, &domain->dev_list, list) { 1287 1288 if (!dev_data->ats.enabled) 1289 continue; 1290 1291 ret |= device_flush_iotlb(dev_data, address, size); 1292 } 1293 1294 WARN_ON(ret); 1295 } 1296 1297 static void domain_flush_pages(struct protection_domain *domain, 1298 u64 address, size_t size, int pde) 1299 { 1300 if (likely(!amd_iommu_np_cache)) { 1301 __domain_flush_pages(domain, address, size, pde); 1302 return; 1303 } 1304 1305 /* 1306 * When NpCache is on, we infer that we run in a VM and use a vIOMMU. 1307 * In such setups it is best to avoid flushes of ranges which are not 1308 * naturally aligned, since it would lead to flushes of unmodified 1309 * PTEs. Such flushes would require the hypervisor to do more work than 1310 * necessary. Therefore, perform repeated flushes of aligned ranges 1311 * until you cover the range. Each iteration flushes the smaller 1312 * between the natural alignment of the address that we flush and the 1313 * greatest naturally aligned region that fits in the range. 1314 */ 1315 while (size != 0) { 1316 int addr_alignment = __ffs(address); 1317 int size_alignment = __fls(size); 1318 int min_alignment; 1319 size_t flush_size; 1320 1321 /* 1322 * size is always non-zero, but address might be zero, causing 1323 * addr_alignment to be negative. As the casting of the 1324 * argument in __ffs(address) to long might trim the high bits 1325 * of the address on x86-32, cast to long when doing the check. 1326 */ 1327 if (likely((unsigned long)address != 0)) 1328 min_alignment = min(addr_alignment, size_alignment); 1329 else 1330 min_alignment = size_alignment; 1331 1332 flush_size = 1ul << min_alignment; 1333 1334 __domain_flush_pages(domain, address, flush_size, pde); 1335 address += flush_size; 1336 size -= flush_size; 1337 } 1338 } 1339 1340 /* Flush the whole IO/TLB for a given protection domain - including PDE */ 1341 void amd_iommu_domain_flush_tlb_pde(struct protection_domain *domain) 1342 { 1343 domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1); 1344 } 1345 1346 void amd_iommu_domain_flush_complete(struct protection_domain *domain) 1347 { 1348 int i; 1349 1350 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) { 1351 if (domain && !domain->dev_iommu[i]) 1352 continue; 1353 1354 /* 1355 * Devices of this domain are behind this IOMMU 1356 * We need to wait for completion of all commands. 1357 */ 1358 iommu_completion_wait(amd_iommus[i]); 1359 } 1360 } 1361 1362 /* Flush the not present cache if it exists */ 1363 static void domain_flush_np_cache(struct protection_domain *domain, 1364 dma_addr_t iova, size_t size) 1365 { 1366 if (unlikely(amd_iommu_np_cache)) { 1367 unsigned long flags; 1368 1369 spin_lock_irqsave(&domain->lock, flags); 1370 domain_flush_pages(domain, iova, size, 1); 1371 amd_iommu_domain_flush_complete(domain); 1372 spin_unlock_irqrestore(&domain->lock, flags); 1373 } 1374 } 1375 1376 1377 /* 1378 * This function flushes the DTEs for all devices in domain 1379 */ 1380 static void domain_flush_devices(struct protection_domain *domain) 1381 { 1382 struct iommu_dev_data *dev_data; 1383 1384 list_for_each_entry(dev_data, &domain->dev_list, list) 1385 device_flush_dte(dev_data); 1386 } 1387 1388 /**************************************************************************** 1389 * 1390 * The next functions belong to the domain allocation. A domain is 1391 * allocated for every IOMMU as the default domain. If device isolation 1392 * is enabled, every device get its own domain. The most important thing 1393 * about domains is the page table mapping the DMA address space they 1394 * contain. 1395 * 1396 ****************************************************************************/ 1397 1398 static u16 domain_id_alloc(void) 1399 { 1400 int id; 1401 1402 spin_lock(&pd_bitmap_lock); 1403 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID); 1404 BUG_ON(id == 0); 1405 if (id > 0 && id < MAX_DOMAIN_ID) 1406 __set_bit(id, amd_iommu_pd_alloc_bitmap); 1407 else 1408 id = 0; 1409 spin_unlock(&pd_bitmap_lock); 1410 1411 return id; 1412 } 1413 1414 static void domain_id_free(int id) 1415 { 1416 spin_lock(&pd_bitmap_lock); 1417 if (id > 0 && id < MAX_DOMAIN_ID) 1418 __clear_bit(id, amd_iommu_pd_alloc_bitmap); 1419 spin_unlock(&pd_bitmap_lock); 1420 } 1421 1422 static void free_gcr3_tbl_level1(u64 *tbl) 1423 { 1424 u64 *ptr; 1425 int i; 1426 1427 for (i = 0; i < 512; ++i) { 1428 if (!(tbl[i] & GCR3_VALID)) 1429 continue; 1430 1431 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK); 1432 1433 free_page((unsigned long)ptr); 1434 } 1435 } 1436 1437 static void free_gcr3_tbl_level2(u64 *tbl) 1438 { 1439 u64 *ptr; 1440 int i; 1441 1442 for (i = 0; i < 512; ++i) { 1443 if (!(tbl[i] & GCR3_VALID)) 1444 continue; 1445 1446 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK); 1447 1448 free_gcr3_tbl_level1(ptr); 1449 } 1450 } 1451 1452 static void free_gcr3_table(struct protection_domain *domain) 1453 { 1454 if (domain->glx == 2) 1455 free_gcr3_tbl_level2(domain->gcr3_tbl); 1456 else if (domain->glx == 1) 1457 free_gcr3_tbl_level1(domain->gcr3_tbl); 1458 else 1459 BUG_ON(domain->glx != 0); 1460 1461 free_page((unsigned long)domain->gcr3_tbl); 1462 } 1463 1464 static void set_dte_entry(u16 devid, struct protection_domain *domain, 1465 bool ats, bool ppr) 1466 { 1467 u64 pte_root = 0; 1468 u64 flags = 0; 1469 u32 old_domid; 1470 1471 if (domain->iop.mode != PAGE_MODE_NONE) 1472 pte_root = iommu_virt_to_phys(domain->iop.root); 1473 1474 pte_root |= (domain->iop.mode & DEV_ENTRY_MODE_MASK) 1475 << DEV_ENTRY_MODE_SHIFT; 1476 pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V | DTE_FLAG_TV; 1477 1478 flags = amd_iommu_dev_table[devid].data[1]; 1479 1480 if (ats) 1481 flags |= DTE_FLAG_IOTLB; 1482 1483 if (ppr) { 1484 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid]; 1485 1486 if (iommu_feature(iommu, FEATURE_EPHSUP)) 1487 pte_root |= 1ULL << DEV_ENTRY_PPR; 1488 } 1489 1490 if (domain->flags & PD_IOMMUV2_MASK) { 1491 u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl); 1492 u64 glx = domain->glx; 1493 u64 tmp; 1494 1495 pte_root |= DTE_FLAG_GV; 1496 pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT; 1497 1498 /* First mask out possible old values for GCR3 table */ 1499 tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B; 1500 flags &= ~tmp; 1501 1502 tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C; 1503 flags &= ~tmp; 1504 1505 /* Encode GCR3 table into DTE */ 1506 tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A; 1507 pte_root |= tmp; 1508 1509 tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B; 1510 flags |= tmp; 1511 1512 tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C; 1513 flags |= tmp; 1514 } 1515 1516 flags &= ~DEV_DOMID_MASK; 1517 flags |= domain->id; 1518 1519 old_domid = amd_iommu_dev_table[devid].data[1] & DEV_DOMID_MASK; 1520 amd_iommu_dev_table[devid].data[1] = flags; 1521 amd_iommu_dev_table[devid].data[0] = pte_root; 1522 1523 /* 1524 * A kdump kernel might be replacing a domain ID that was copied from 1525 * the previous kernel--if so, it needs to flush the translation cache 1526 * entries for the old domain ID that is being overwritten 1527 */ 1528 if (old_domid) { 1529 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid]; 1530 1531 amd_iommu_flush_tlb_domid(iommu, old_domid); 1532 } 1533 } 1534 1535 static void clear_dte_entry(u16 devid) 1536 { 1537 /* remove entry from the device table seen by the hardware */ 1538 amd_iommu_dev_table[devid].data[0] = DTE_FLAG_V | DTE_FLAG_TV; 1539 amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK; 1540 1541 amd_iommu_apply_erratum_63(devid); 1542 } 1543 1544 static void do_attach(struct iommu_dev_data *dev_data, 1545 struct protection_domain *domain) 1546 { 1547 struct amd_iommu *iommu; 1548 bool ats; 1549 1550 iommu = amd_iommu_rlookup_table[dev_data->devid]; 1551 ats = dev_data->ats.enabled; 1552 1553 /* Update data structures */ 1554 dev_data->domain = domain; 1555 list_add(&dev_data->list, &domain->dev_list); 1556 1557 /* Do reference counting */ 1558 domain->dev_iommu[iommu->index] += 1; 1559 domain->dev_cnt += 1; 1560 1561 /* Update device table */ 1562 set_dte_entry(dev_data->devid, domain, 1563 ats, dev_data->iommu_v2); 1564 clone_aliases(dev_data->pdev); 1565 1566 device_flush_dte(dev_data); 1567 } 1568 1569 static void do_detach(struct iommu_dev_data *dev_data) 1570 { 1571 struct protection_domain *domain = dev_data->domain; 1572 struct amd_iommu *iommu; 1573 1574 iommu = amd_iommu_rlookup_table[dev_data->devid]; 1575 1576 /* Update data structures */ 1577 dev_data->domain = NULL; 1578 list_del(&dev_data->list); 1579 clear_dte_entry(dev_data->devid); 1580 clone_aliases(dev_data->pdev); 1581 1582 /* Flush the DTE entry */ 1583 device_flush_dte(dev_data); 1584 1585 /* Flush IOTLB */ 1586 amd_iommu_domain_flush_tlb_pde(domain); 1587 1588 /* Wait for the flushes to finish */ 1589 amd_iommu_domain_flush_complete(domain); 1590 1591 /* decrease reference counters - needs to happen after the flushes */ 1592 domain->dev_iommu[iommu->index] -= 1; 1593 domain->dev_cnt -= 1; 1594 } 1595 1596 static void pdev_iommuv2_disable(struct pci_dev *pdev) 1597 { 1598 pci_disable_ats(pdev); 1599 pci_disable_pri(pdev); 1600 pci_disable_pasid(pdev); 1601 } 1602 1603 static int pdev_iommuv2_enable(struct pci_dev *pdev) 1604 { 1605 int ret; 1606 1607 /* Only allow access to user-accessible pages */ 1608 ret = pci_enable_pasid(pdev, 0); 1609 if (ret) 1610 goto out_err; 1611 1612 /* First reset the PRI state of the device */ 1613 ret = pci_reset_pri(pdev); 1614 if (ret) 1615 goto out_err; 1616 1617 /* Enable PRI */ 1618 /* FIXME: Hardcode number of outstanding requests for now */ 1619 ret = pci_enable_pri(pdev, 32); 1620 if (ret) 1621 goto out_err; 1622 1623 ret = pci_enable_ats(pdev, PAGE_SHIFT); 1624 if (ret) 1625 goto out_err; 1626 1627 return 0; 1628 1629 out_err: 1630 pci_disable_pri(pdev); 1631 pci_disable_pasid(pdev); 1632 1633 return ret; 1634 } 1635 1636 /* 1637 * If a device is not yet associated with a domain, this function makes the 1638 * device visible in the domain 1639 */ 1640 static int attach_device(struct device *dev, 1641 struct protection_domain *domain) 1642 { 1643 struct iommu_dev_data *dev_data; 1644 struct pci_dev *pdev; 1645 unsigned long flags; 1646 int ret; 1647 1648 spin_lock_irqsave(&domain->lock, flags); 1649 1650 dev_data = dev_iommu_priv_get(dev); 1651 1652 spin_lock(&dev_data->lock); 1653 1654 ret = -EBUSY; 1655 if (dev_data->domain != NULL) 1656 goto out; 1657 1658 if (!dev_is_pci(dev)) 1659 goto skip_ats_check; 1660 1661 pdev = to_pci_dev(dev); 1662 if (domain->flags & PD_IOMMUV2_MASK) { 1663 struct iommu_domain *def_domain = iommu_get_dma_domain(dev); 1664 1665 ret = -EINVAL; 1666 if (def_domain->type != IOMMU_DOMAIN_IDENTITY) 1667 goto out; 1668 1669 if (dev_data->iommu_v2) { 1670 if (pdev_iommuv2_enable(pdev) != 0) 1671 goto out; 1672 1673 dev_data->ats.enabled = true; 1674 dev_data->ats.qdep = pci_ats_queue_depth(pdev); 1675 dev_data->pri_tlp = pci_prg_resp_pasid_required(pdev); 1676 } 1677 } else if (amd_iommu_iotlb_sup && 1678 pci_enable_ats(pdev, PAGE_SHIFT) == 0) { 1679 dev_data->ats.enabled = true; 1680 dev_data->ats.qdep = pci_ats_queue_depth(pdev); 1681 } 1682 1683 skip_ats_check: 1684 ret = 0; 1685 1686 do_attach(dev_data, domain); 1687 1688 /* 1689 * We might boot into a crash-kernel here. The crashed kernel 1690 * left the caches in the IOMMU dirty. So we have to flush 1691 * here to evict all dirty stuff. 1692 */ 1693 amd_iommu_domain_flush_tlb_pde(domain); 1694 1695 amd_iommu_domain_flush_complete(domain); 1696 1697 out: 1698 spin_unlock(&dev_data->lock); 1699 1700 spin_unlock_irqrestore(&domain->lock, flags); 1701 1702 return ret; 1703 } 1704 1705 /* 1706 * Removes a device from a protection domain (with devtable_lock held) 1707 */ 1708 static void detach_device(struct device *dev) 1709 { 1710 struct protection_domain *domain; 1711 struct iommu_dev_data *dev_data; 1712 unsigned long flags; 1713 1714 dev_data = dev_iommu_priv_get(dev); 1715 domain = dev_data->domain; 1716 1717 spin_lock_irqsave(&domain->lock, flags); 1718 1719 spin_lock(&dev_data->lock); 1720 1721 /* 1722 * First check if the device is still attached. It might already 1723 * be detached from its domain because the generic 1724 * iommu_detach_group code detached it and we try again here in 1725 * our alias handling. 1726 */ 1727 if (WARN_ON(!dev_data->domain)) 1728 goto out; 1729 1730 do_detach(dev_data); 1731 1732 if (!dev_is_pci(dev)) 1733 goto out; 1734 1735 if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2) 1736 pdev_iommuv2_disable(to_pci_dev(dev)); 1737 else if (dev_data->ats.enabled) 1738 pci_disable_ats(to_pci_dev(dev)); 1739 1740 dev_data->ats.enabled = false; 1741 1742 out: 1743 spin_unlock(&dev_data->lock); 1744 1745 spin_unlock_irqrestore(&domain->lock, flags); 1746 } 1747 1748 static struct iommu_device *amd_iommu_probe_device(struct device *dev) 1749 { 1750 struct iommu_device *iommu_dev; 1751 struct amd_iommu *iommu; 1752 int ret, devid; 1753 1754 if (!check_device(dev)) 1755 return ERR_PTR(-ENODEV); 1756 1757 devid = get_device_id(dev); 1758 iommu = amd_iommu_rlookup_table[devid]; 1759 1760 if (dev_iommu_priv_get(dev)) 1761 return &iommu->iommu; 1762 1763 ret = iommu_init_device(dev); 1764 if (ret) { 1765 if (ret != -ENOTSUPP) 1766 dev_err(dev, "Failed to initialize - trying to proceed anyway\n"); 1767 iommu_dev = ERR_PTR(ret); 1768 iommu_ignore_device(dev); 1769 } else { 1770 amd_iommu_set_pci_msi_domain(dev, iommu); 1771 iommu_dev = &iommu->iommu; 1772 } 1773 1774 iommu_completion_wait(iommu); 1775 1776 return iommu_dev; 1777 } 1778 1779 static void amd_iommu_probe_finalize(struct device *dev) 1780 { 1781 /* Domains are initialized for this device - have a look what we ended up with */ 1782 set_dma_ops(dev, NULL); 1783 iommu_setup_dma_ops(dev, 0, U64_MAX); 1784 } 1785 1786 static void amd_iommu_release_device(struct device *dev) 1787 { 1788 int devid = get_device_id(dev); 1789 struct amd_iommu *iommu; 1790 1791 if (!check_device(dev)) 1792 return; 1793 1794 iommu = amd_iommu_rlookup_table[devid]; 1795 1796 amd_iommu_uninit_device(dev); 1797 iommu_completion_wait(iommu); 1798 } 1799 1800 static struct iommu_group *amd_iommu_device_group(struct device *dev) 1801 { 1802 if (dev_is_pci(dev)) 1803 return pci_device_group(dev); 1804 1805 return acpihid_device_group(dev); 1806 } 1807 1808 /***************************************************************************** 1809 * 1810 * The next functions belong to the dma_ops mapping/unmapping code. 1811 * 1812 *****************************************************************************/ 1813 1814 static void update_device_table(struct protection_domain *domain) 1815 { 1816 struct iommu_dev_data *dev_data; 1817 1818 list_for_each_entry(dev_data, &domain->dev_list, list) { 1819 set_dte_entry(dev_data->devid, domain, 1820 dev_data->ats.enabled, dev_data->iommu_v2); 1821 clone_aliases(dev_data->pdev); 1822 } 1823 } 1824 1825 void amd_iommu_update_and_flush_device_table(struct protection_domain *domain) 1826 { 1827 update_device_table(domain); 1828 domain_flush_devices(domain); 1829 } 1830 1831 void amd_iommu_domain_update(struct protection_domain *domain) 1832 { 1833 /* Update device table */ 1834 amd_iommu_update_and_flush_device_table(domain); 1835 1836 /* Flush domain TLB(s) and wait for completion */ 1837 amd_iommu_domain_flush_tlb_pde(domain); 1838 amd_iommu_domain_flush_complete(domain); 1839 } 1840 1841 static void __init amd_iommu_init_dma_ops(void) 1842 { 1843 swiotlb = (iommu_default_passthrough() || sme_me_mask) ? 1 : 0; 1844 } 1845 1846 int __init amd_iommu_init_api(void) 1847 { 1848 int err; 1849 1850 amd_iommu_init_dma_ops(); 1851 1852 err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops); 1853 if (err) 1854 return err; 1855 #ifdef CONFIG_ARM_AMBA 1856 err = bus_set_iommu(&amba_bustype, &amd_iommu_ops); 1857 if (err) 1858 return err; 1859 #endif 1860 err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops); 1861 if (err) 1862 return err; 1863 1864 return 0; 1865 } 1866 1867 /***************************************************************************** 1868 * 1869 * The following functions belong to the exported interface of AMD IOMMU 1870 * 1871 * This interface allows access to lower level functions of the IOMMU 1872 * like protection domain handling and assignement of devices to domains 1873 * which is not possible with the dma_ops interface. 1874 * 1875 *****************************************************************************/ 1876 1877 static void cleanup_domain(struct protection_domain *domain) 1878 { 1879 struct iommu_dev_data *entry; 1880 unsigned long flags; 1881 1882 spin_lock_irqsave(&domain->lock, flags); 1883 1884 while (!list_empty(&domain->dev_list)) { 1885 entry = list_first_entry(&domain->dev_list, 1886 struct iommu_dev_data, list); 1887 BUG_ON(!entry->domain); 1888 do_detach(entry); 1889 } 1890 1891 spin_unlock_irqrestore(&domain->lock, flags); 1892 } 1893 1894 static void protection_domain_free(struct protection_domain *domain) 1895 { 1896 if (!domain) 1897 return; 1898 1899 if (domain->id) 1900 domain_id_free(domain->id); 1901 1902 if (domain->iop.pgtbl_cfg.tlb) 1903 free_io_pgtable_ops(&domain->iop.iop.ops); 1904 1905 kfree(domain); 1906 } 1907 1908 static int protection_domain_init_v1(struct protection_domain *domain, int mode) 1909 { 1910 u64 *pt_root = NULL; 1911 1912 BUG_ON(mode < PAGE_MODE_NONE || mode > PAGE_MODE_6_LEVEL); 1913 1914 spin_lock_init(&domain->lock); 1915 domain->id = domain_id_alloc(); 1916 if (!domain->id) 1917 return -ENOMEM; 1918 INIT_LIST_HEAD(&domain->dev_list); 1919 1920 if (mode != PAGE_MODE_NONE) { 1921 pt_root = (void *)get_zeroed_page(GFP_KERNEL); 1922 if (!pt_root) 1923 return -ENOMEM; 1924 } 1925 1926 amd_iommu_domain_set_pgtable(domain, pt_root, mode); 1927 1928 return 0; 1929 } 1930 1931 static struct protection_domain *protection_domain_alloc(unsigned int type) 1932 { 1933 struct io_pgtable_ops *pgtbl_ops; 1934 struct protection_domain *domain; 1935 int pgtable = amd_iommu_pgtable; 1936 int mode = DEFAULT_PGTABLE_LEVEL; 1937 int ret; 1938 1939 domain = kzalloc(sizeof(*domain), GFP_KERNEL); 1940 if (!domain) 1941 return NULL; 1942 1943 /* 1944 * Force IOMMU v1 page table when iommu=pt and 1945 * when allocating domain for pass-through devices. 1946 */ 1947 if (type == IOMMU_DOMAIN_IDENTITY) { 1948 pgtable = AMD_IOMMU_V1; 1949 mode = PAGE_MODE_NONE; 1950 } else if (type == IOMMU_DOMAIN_UNMANAGED) { 1951 pgtable = AMD_IOMMU_V1; 1952 } 1953 1954 switch (pgtable) { 1955 case AMD_IOMMU_V1: 1956 ret = protection_domain_init_v1(domain, mode); 1957 break; 1958 default: 1959 ret = -EINVAL; 1960 } 1961 1962 if (ret) 1963 goto out_err; 1964 1965 pgtbl_ops = alloc_io_pgtable_ops(pgtable, &domain->iop.pgtbl_cfg, domain); 1966 if (!pgtbl_ops) 1967 goto out_err; 1968 1969 return domain; 1970 out_err: 1971 kfree(domain); 1972 return NULL; 1973 } 1974 1975 static struct iommu_domain *amd_iommu_domain_alloc(unsigned type) 1976 { 1977 struct protection_domain *domain; 1978 1979 domain = protection_domain_alloc(type); 1980 if (!domain) 1981 return NULL; 1982 1983 domain->domain.geometry.aperture_start = 0; 1984 domain->domain.geometry.aperture_end = ~0ULL; 1985 domain->domain.geometry.force_aperture = true; 1986 1987 return &domain->domain; 1988 } 1989 1990 static void amd_iommu_domain_free(struct iommu_domain *dom) 1991 { 1992 struct protection_domain *domain; 1993 1994 domain = to_pdomain(dom); 1995 1996 if (domain->dev_cnt > 0) 1997 cleanup_domain(domain); 1998 1999 BUG_ON(domain->dev_cnt != 0); 2000 2001 if (!dom) 2002 return; 2003 2004 if (domain->flags & PD_IOMMUV2_MASK) 2005 free_gcr3_table(domain); 2006 2007 protection_domain_free(domain); 2008 } 2009 2010 static void amd_iommu_detach_device(struct iommu_domain *dom, 2011 struct device *dev) 2012 { 2013 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev); 2014 int devid = get_device_id(dev); 2015 struct amd_iommu *iommu; 2016 2017 if (!check_device(dev)) 2018 return; 2019 2020 if (dev_data->domain != NULL) 2021 detach_device(dev); 2022 2023 iommu = amd_iommu_rlookup_table[devid]; 2024 if (!iommu) 2025 return; 2026 2027 #ifdef CONFIG_IRQ_REMAP 2028 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) && 2029 (dom->type == IOMMU_DOMAIN_UNMANAGED)) 2030 dev_data->use_vapic = 0; 2031 #endif 2032 2033 iommu_completion_wait(iommu); 2034 } 2035 2036 static int amd_iommu_attach_device(struct iommu_domain *dom, 2037 struct device *dev) 2038 { 2039 struct protection_domain *domain = to_pdomain(dom); 2040 struct iommu_dev_data *dev_data; 2041 struct amd_iommu *iommu; 2042 int ret; 2043 2044 if (!check_device(dev)) 2045 return -EINVAL; 2046 2047 dev_data = dev_iommu_priv_get(dev); 2048 dev_data->defer_attach = false; 2049 2050 iommu = amd_iommu_rlookup_table[dev_data->devid]; 2051 if (!iommu) 2052 return -EINVAL; 2053 2054 if (dev_data->domain) 2055 detach_device(dev); 2056 2057 ret = attach_device(dev, domain); 2058 2059 #ifdef CONFIG_IRQ_REMAP 2060 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) { 2061 if (dom->type == IOMMU_DOMAIN_UNMANAGED) 2062 dev_data->use_vapic = 1; 2063 else 2064 dev_data->use_vapic = 0; 2065 } 2066 #endif 2067 2068 iommu_completion_wait(iommu); 2069 2070 return ret; 2071 } 2072 2073 static void amd_iommu_iotlb_sync_map(struct iommu_domain *dom, 2074 unsigned long iova, size_t size) 2075 { 2076 struct protection_domain *domain = to_pdomain(dom); 2077 struct io_pgtable_ops *ops = &domain->iop.iop.ops; 2078 2079 if (ops->map) 2080 domain_flush_np_cache(domain, iova, size); 2081 } 2082 2083 static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova, 2084 phys_addr_t paddr, size_t page_size, int iommu_prot, 2085 gfp_t gfp) 2086 { 2087 struct protection_domain *domain = to_pdomain(dom); 2088 struct io_pgtable_ops *ops = &domain->iop.iop.ops; 2089 int prot = 0; 2090 int ret = -EINVAL; 2091 2092 if ((amd_iommu_pgtable == AMD_IOMMU_V1) && 2093 (domain->iop.mode == PAGE_MODE_NONE)) 2094 return -EINVAL; 2095 2096 if (iommu_prot & IOMMU_READ) 2097 prot |= IOMMU_PROT_IR; 2098 if (iommu_prot & IOMMU_WRITE) 2099 prot |= IOMMU_PROT_IW; 2100 2101 if (ops->map) 2102 ret = ops->map(ops, iova, paddr, page_size, prot, gfp); 2103 2104 return ret; 2105 } 2106 2107 static void amd_iommu_iotlb_gather_add_page(struct iommu_domain *domain, 2108 struct iommu_iotlb_gather *gather, 2109 unsigned long iova, size_t size) 2110 { 2111 /* 2112 * AMD's IOMMU can flush as many pages as necessary in a single flush. 2113 * Unless we run in a virtual machine, which can be inferred according 2114 * to whether "non-present cache" is on, it is probably best to prefer 2115 * (potentially) too extensive TLB flushing (i.e., more misses) over 2116 * mutliple TLB flushes (i.e., more flushes). For virtual machines the 2117 * hypervisor needs to synchronize the host IOMMU PTEs with those of 2118 * the guest, and the trade-off is different: unnecessary TLB flushes 2119 * should be avoided. 2120 */ 2121 if (amd_iommu_np_cache && 2122 iommu_iotlb_gather_is_disjoint(gather, iova, size)) 2123 iommu_iotlb_sync(domain, gather); 2124 2125 iommu_iotlb_gather_add_range(gather, iova, size); 2126 } 2127 2128 static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova, 2129 size_t page_size, 2130 struct iommu_iotlb_gather *gather) 2131 { 2132 struct protection_domain *domain = to_pdomain(dom); 2133 struct io_pgtable_ops *ops = &domain->iop.iop.ops; 2134 size_t r; 2135 2136 if ((amd_iommu_pgtable == AMD_IOMMU_V1) && 2137 (domain->iop.mode == PAGE_MODE_NONE)) 2138 return 0; 2139 2140 r = (ops->unmap) ? ops->unmap(ops, iova, page_size, gather) : 0; 2141 2142 amd_iommu_iotlb_gather_add_page(dom, gather, iova, page_size); 2143 2144 return r; 2145 } 2146 2147 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom, 2148 dma_addr_t iova) 2149 { 2150 struct protection_domain *domain = to_pdomain(dom); 2151 struct io_pgtable_ops *ops = &domain->iop.iop.ops; 2152 2153 return ops->iova_to_phys(ops, iova); 2154 } 2155 2156 static bool amd_iommu_capable(enum iommu_cap cap) 2157 { 2158 switch (cap) { 2159 case IOMMU_CAP_CACHE_COHERENCY: 2160 return true; 2161 case IOMMU_CAP_INTR_REMAP: 2162 return (irq_remapping_enabled == 1); 2163 case IOMMU_CAP_NOEXEC: 2164 return false; 2165 default: 2166 break; 2167 } 2168 2169 return false; 2170 } 2171 2172 static void amd_iommu_get_resv_regions(struct device *dev, 2173 struct list_head *head) 2174 { 2175 struct iommu_resv_region *region; 2176 struct unity_map_entry *entry; 2177 int devid; 2178 2179 devid = get_device_id(dev); 2180 if (devid < 0) 2181 return; 2182 2183 list_for_each_entry(entry, &amd_iommu_unity_map, list) { 2184 int type, prot = 0; 2185 size_t length; 2186 2187 if (devid < entry->devid_start || devid > entry->devid_end) 2188 continue; 2189 2190 type = IOMMU_RESV_DIRECT; 2191 length = entry->address_end - entry->address_start; 2192 if (entry->prot & IOMMU_PROT_IR) 2193 prot |= IOMMU_READ; 2194 if (entry->prot & IOMMU_PROT_IW) 2195 prot |= IOMMU_WRITE; 2196 if (entry->prot & IOMMU_UNITY_MAP_FLAG_EXCL_RANGE) 2197 /* Exclusion range */ 2198 type = IOMMU_RESV_RESERVED; 2199 2200 region = iommu_alloc_resv_region(entry->address_start, 2201 length, prot, type); 2202 if (!region) { 2203 dev_err(dev, "Out of memory allocating dm-regions\n"); 2204 return; 2205 } 2206 list_add_tail(®ion->list, head); 2207 } 2208 2209 region = iommu_alloc_resv_region(MSI_RANGE_START, 2210 MSI_RANGE_END - MSI_RANGE_START + 1, 2211 0, IOMMU_RESV_MSI); 2212 if (!region) 2213 return; 2214 list_add_tail(®ion->list, head); 2215 2216 region = iommu_alloc_resv_region(HT_RANGE_START, 2217 HT_RANGE_END - HT_RANGE_START + 1, 2218 0, IOMMU_RESV_RESERVED); 2219 if (!region) 2220 return; 2221 list_add_tail(®ion->list, head); 2222 } 2223 2224 bool amd_iommu_is_attach_deferred(struct iommu_domain *domain, 2225 struct device *dev) 2226 { 2227 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev); 2228 2229 return dev_data->defer_attach; 2230 } 2231 EXPORT_SYMBOL_GPL(amd_iommu_is_attach_deferred); 2232 2233 static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain) 2234 { 2235 struct protection_domain *dom = to_pdomain(domain); 2236 unsigned long flags; 2237 2238 spin_lock_irqsave(&dom->lock, flags); 2239 amd_iommu_domain_flush_tlb_pde(dom); 2240 amd_iommu_domain_flush_complete(dom); 2241 spin_unlock_irqrestore(&dom->lock, flags); 2242 } 2243 2244 static void amd_iommu_iotlb_sync(struct iommu_domain *domain, 2245 struct iommu_iotlb_gather *gather) 2246 { 2247 struct protection_domain *dom = to_pdomain(domain); 2248 unsigned long flags; 2249 2250 spin_lock_irqsave(&dom->lock, flags); 2251 domain_flush_pages(dom, gather->start, gather->end - gather->start, 1); 2252 amd_iommu_domain_flush_complete(dom); 2253 spin_unlock_irqrestore(&dom->lock, flags); 2254 } 2255 2256 static int amd_iommu_def_domain_type(struct device *dev) 2257 { 2258 struct iommu_dev_data *dev_data; 2259 2260 dev_data = dev_iommu_priv_get(dev); 2261 if (!dev_data) 2262 return 0; 2263 2264 /* 2265 * Do not identity map IOMMUv2 capable devices when memory encryption is 2266 * active, because some of those devices (AMD GPUs) don't have the 2267 * encryption bit in their DMA-mask and require remapping. 2268 */ 2269 if (!cc_platform_has(CC_ATTR_MEM_ENCRYPT) && dev_data->iommu_v2) 2270 return IOMMU_DOMAIN_IDENTITY; 2271 2272 return 0; 2273 } 2274 2275 const struct iommu_ops amd_iommu_ops = { 2276 .capable = amd_iommu_capable, 2277 .domain_alloc = amd_iommu_domain_alloc, 2278 .domain_free = amd_iommu_domain_free, 2279 .attach_dev = amd_iommu_attach_device, 2280 .detach_dev = amd_iommu_detach_device, 2281 .map = amd_iommu_map, 2282 .iotlb_sync_map = amd_iommu_iotlb_sync_map, 2283 .unmap = amd_iommu_unmap, 2284 .iova_to_phys = amd_iommu_iova_to_phys, 2285 .probe_device = amd_iommu_probe_device, 2286 .release_device = amd_iommu_release_device, 2287 .probe_finalize = amd_iommu_probe_finalize, 2288 .device_group = amd_iommu_device_group, 2289 .get_resv_regions = amd_iommu_get_resv_regions, 2290 .put_resv_regions = generic_iommu_put_resv_regions, 2291 .is_attach_deferred = amd_iommu_is_attach_deferred, 2292 .pgsize_bitmap = AMD_IOMMU_PGSIZES, 2293 .flush_iotlb_all = amd_iommu_flush_iotlb_all, 2294 .iotlb_sync = amd_iommu_iotlb_sync, 2295 .def_domain_type = amd_iommu_def_domain_type, 2296 }; 2297 2298 /***************************************************************************** 2299 * 2300 * The next functions do a basic initialization of IOMMU for pass through 2301 * mode 2302 * 2303 * In passthrough mode the IOMMU is initialized and enabled but not used for 2304 * DMA-API translation. 2305 * 2306 *****************************************************************************/ 2307 2308 /* IOMMUv2 specific functions */ 2309 int amd_iommu_register_ppr_notifier(struct notifier_block *nb) 2310 { 2311 return atomic_notifier_chain_register(&ppr_notifier, nb); 2312 } 2313 EXPORT_SYMBOL(amd_iommu_register_ppr_notifier); 2314 2315 int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb) 2316 { 2317 return atomic_notifier_chain_unregister(&ppr_notifier, nb); 2318 } 2319 EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier); 2320 2321 void amd_iommu_domain_direct_map(struct iommu_domain *dom) 2322 { 2323 struct protection_domain *domain = to_pdomain(dom); 2324 unsigned long flags; 2325 2326 spin_lock_irqsave(&domain->lock, flags); 2327 2328 if (domain->iop.pgtbl_cfg.tlb) 2329 free_io_pgtable_ops(&domain->iop.iop.ops); 2330 2331 spin_unlock_irqrestore(&domain->lock, flags); 2332 } 2333 EXPORT_SYMBOL(amd_iommu_domain_direct_map); 2334 2335 int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids) 2336 { 2337 struct protection_domain *domain = to_pdomain(dom); 2338 unsigned long flags; 2339 int levels, ret; 2340 2341 /* Number of GCR3 table levels required */ 2342 for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9) 2343 levels += 1; 2344 2345 if (levels > amd_iommu_max_glx_val) 2346 return -EINVAL; 2347 2348 spin_lock_irqsave(&domain->lock, flags); 2349 2350 /* 2351 * Save us all sanity checks whether devices already in the 2352 * domain support IOMMUv2. Just force that the domain has no 2353 * devices attached when it is switched into IOMMUv2 mode. 2354 */ 2355 ret = -EBUSY; 2356 if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK) 2357 goto out; 2358 2359 ret = -ENOMEM; 2360 domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC); 2361 if (domain->gcr3_tbl == NULL) 2362 goto out; 2363 2364 domain->glx = levels; 2365 domain->flags |= PD_IOMMUV2_MASK; 2366 2367 amd_iommu_domain_update(domain); 2368 2369 ret = 0; 2370 2371 out: 2372 spin_unlock_irqrestore(&domain->lock, flags); 2373 2374 return ret; 2375 } 2376 EXPORT_SYMBOL(amd_iommu_domain_enable_v2); 2377 2378 static int __flush_pasid(struct protection_domain *domain, u32 pasid, 2379 u64 address, bool size) 2380 { 2381 struct iommu_dev_data *dev_data; 2382 struct iommu_cmd cmd; 2383 int i, ret; 2384 2385 if (!(domain->flags & PD_IOMMUV2_MASK)) 2386 return -EINVAL; 2387 2388 build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size); 2389 2390 /* 2391 * IOMMU TLB needs to be flushed before Device TLB to 2392 * prevent device TLB refill from IOMMU TLB 2393 */ 2394 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) { 2395 if (domain->dev_iommu[i] == 0) 2396 continue; 2397 2398 ret = iommu_queue_command(amd_iommus[i], &cmd); 2399 if (ret != 0) 2400 goto out; 2401 } 2402 2403 /* Wait until IOMMU TLB flushes are complete */ 2404 amd_iommu_domain_flush_complete(domain); 2405 2406 /* Now flush device TLBs */ 2407 list_for_each_entry(dev_data, &domain->dev_list, list) { 2408 struct amd_iommu *iommu; 2409 int qdep; 2410 2411 /* 2412 There might be non-IOMMUv2 capable devices in an IOMMUv2 2413 * domain. 2414 */ 2415 if (!dev_data->ats.enabled) 2416 continue; 2417 2418 qdep = dev_data->ats.qdep; 2419 iommu = amd_iommu_rlookup_table[dev_data->devid]; 2420 2421 build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid, 2422 qdep, address, size); 2423 2424 ret = iommu_queue_command(iommu, &cmd); 2425 if (ret != 0) 2426 goto out; 2427 } 2428 2429 /* Wait until all device TLBs are flushed */ 2430 amd_iommu_domain_flush_complete(domain); 2431 2432 ret = 0; 2433 2434 out: 2435 2436 return ret; 2437 } 2438 2439 static int __amd_iommu_flush_page(struct protection_domain *domain, u32 pasid, 2440 u64 address) 2441 { 2442 return __flush_pasid(domain, pasid, address, false); 2443 } 2444 2445 int amd_iommu_flush_page(struct iommu_domain *dom, u32 pasid, 2446 u64 address) 2447 { 2448 struct protection_domain *domain = to_pdomain(dom); 2449 unsigned long flags; 2450 int ret; 2451 2452 spin_lock_irqsave(&domain->lock, flags); 2453 ret = __amd_iommu_flush_page(domain, pasid, address); 2454 spin_unlock_irqrestore(&domain->lock, flags); 2455 2456 return ret; 2457 } 2458 EXPORT_SYMBOL(amd_iommu_flush_page); 2459 2460 static int __amd_iommu_flush_tlb(struct protection_domain *domain, u32 pasid) 2461 { 2462 return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 2463 true); 2464 } 2465 2466 int amd_iommu_flush_tlb(struct iommu_domain *dom, u32 pasid) 2467 { 2468 struct protection_domain *domain = to_pdomain(dom); 2469 unsigned long flags; 2470 int ret; 2471 2472 spin_lock_irqsave(&domain->lock, flags); 2473 ret = __amd_iommu_flush_tlb(domain, pasid); 2474 spin_unlock_irqrestore(&domain->lock, flags); 2475 2476 return ret; 2477 } 2478 EXPORT_SYMBOL(amd_iommu_flush_tlb); 2479 2480 static u64 *__get_gcr3_pte(u64 *root, int level, u32 pasid, bool alloc) 2481 { 2482 int index; 2483 u64 *pte; 2484 2485 while (true) { 2486 2487 index = (pasid >> (9 * level)) & 0x1ff; 2488 pte = &root[index]; 2489 2490 if (level == 0) 2491 break; 2492 2493 if (!(*pte & GCR3_VALID)) { 2494 if (!alloc) 2495 return NULL; 2496 2497 root = (void *)get_zeroed_page(GFP_ATOMIC); 2498 if (root == NULL) 2499 return NULL; 2500 2501 *pte = iommu_virt_to_phys(root) | GCR3_VALID; 2502 } 2503 2504 root = iommu_phys_to_virt(*pte & PAGE_MASK); 2505 2506 level -= 1; 2507 } 2508 2509 return pte; 2510 } 2511 2512 static int __set_gcr3(struct protection_domain *domain, u32 pasid, 2513 unsigned long cr3) 2514 { 2515 u64 *pte; 2516 2517 if (domain->iop.mode != PAGE_MODE_NONE) 2518 return -EINVAL; 2519 2520 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true); 2521 if (pte == NULL) 2522 return -ENOMEM; 2523 2524 *pte = (cr3 & PAGE_MASK) | GCR3_VALID; 2525 2526 return __amd_iommu_flush_tlb(domain, pasid); 2527 } 2528 2529 static int __clear_gcr3(struct protection_domain *domain, u32 pasid) 2530 { 2531 u64 *pte; 2532 2533 if (domain->iop.mode != PAGE_MODE_NONE) 2534 return -EINVAL; 2535 2536 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false); 2537 if (pte == NULL) 2538 return 0; 2539 2540 *pte = 0; 2541 2542 return __amd_iommu_flush_tlb(domain, pasid); 2543 } 2544 2545 int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, u32 pasid, 2546 unsigned long cr3) 2547 { 2548 struct protection_domain *domain = to_pdomain(dom); 2549 unsigned long flags; 2550 int ret; 2551 2552 spin_lock_irqsave(&domain->lock, flags); 2553 ret = __set_gcr3(domain, pasid, cr3); 2554 spin_unlock_irqrestore(&domain->lock, flags); 2555 2556 return ret; 2557 } 2558 EXPORT_SYMBOL(amd_iommu_domain_set_gcr3); 2559 2560 int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, u32 pasid) 2561 { 2562 struct protection_domain *domain = to_pdomain(dom); 2563 unsigned long flags; 2564 int ret; 2565 2566 spin_lock_irqsave(&domain->lock, flags); 2567 ret = __clear_gcr3(domain, pasid); 2568 spin_unlock_irqrestore(&domain->lock, flags); 2569 2570 return ret; 2571 } 2572 EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3); 2573 2574 int amd_iommu_complete_ppr(struct pci_dev *pdev, u32 pasid, 2575 int status, int tag) 2576 { 2577 struct iommu_dev_data *dev_data; 2578 struct amd_iommu *iommu; 2579 struct iommu_cmd cmd; 2580 2581 dev_data = dev_iommu_priv_get(&pdev->dev); 2582 iommu = amd_iommu_rlookup_table[dev_data->devid]; 2583 2584 build_complete_ppr(&cmd, dev_data->devid, pasid, status, 2585 tag, dev_data->pri_tlp); 2586 2587 return iommu_queue_command(iommu, &cmd); 2588 } 2589 EXPORT_SYMBOL(amd_iommu_complete_ppr); 2590 2591 int amd_iommu_device_info(struct pci_dev *pdev, 2592 struct amd_iommu_device_info *info) 2593 { 2594 int max_pasids; 2595 int pos; 2596 2597 if (pdev == NULL || info == NULL) 2598 return -EINVAL; 2599 2600 if (!amd_iommu_v2_supported()) 2601 return -EINVAL; 2602 2603 memset(info, 0, sizeof(*info)); 2604 2605 if (pci_ats_supported(pdev)) 2606 info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP; 2607 2608 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI); 2609 if (pos) 2610 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP; 2611 2612 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID); 2613 if (pos) { 2614 int features; 2615 2616 max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1)); 2617 max_pasids = min(max_pasids, (1 << 20)); 2618 2619 info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP; 2620 info->max_pasids = min(pci_max_pasids(pdev), max_pasids); 2621 2622 features = pci_pasid_features(pdev); 2623 if (features & PCI_PASID_CAP_EXEC) 2624 info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP; 2625 if (features & PCI_PASID_CAP_PRIV) 2626 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP; 2627 } 2628 2629 return 0; 2630 } 2631 EXPORT_SYMBOL(amd_iommu_device_info); 2632 2633 #ifdef CONFIG_IRQ_REMAP 2634 2635 /***************************************************************************** 2636 * 2637 * Interrupt Remapping Implementation 2638 * 2639 *****************************************************************************/ 2640 2641 static struct irq_chip amd_ir_chip; 2642 static DEFINE_SPINLOCK(iommu_table_lock); 2643 2644 static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table) 2645 { 2646 u64 dte; 2647 2648 dte = amd_iommu_dev_table[devid].data[2]; 2649 dte &= ~DTE_IRQ_PHYS_ADDR_MASK; 2650 dte |= iommu_virt_to_phys(table->table); 2651 dte |= DTE_IRQ_REMAP_INTCTL; 2652 dte |= DTE_INTTABLEN; 2653 dte |= DTE_IRQ_REMAP_ENABLE; 2654 2655 amd_iommu_dev_table[devid].data[2] = dte; 2656 } 2657 2658 static struct irq_remap_table *get_irq_table(u16 devid) 2659 { 2660 struct irq_remap_table *table; 2661 2662 if (WARN_ONCE(!amd_iommu_rlookup_table[devid], 2663 "%s: no iommu for devid %x\n", __func__, devid)) 2664 return NULL; 2665 2666 table = irq_lookup_table[devid]; 2667 if (WARN_ONCE(!table, "%s: no table for devid %x\n", __func__, devid)) 2668 return NULL; 2669 2670 return table; 2671 } 2672 2673 static struct irq_remap_table *__alloc_irq_table(void) 2674 { 2675 struct irq_remap_table *table; 2676 2677 table = kzalloc(sizeof(*table), GFP_KERNEL); 2678 if (!table) 2679 return NULL; 2680 2681 table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL); 2682 if (!table->table) { 2683 kfree(table); 2684 return NULL; 2685 } 2686 raw_spin_lock_init(&table->lock); 2687 2688 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir)) 2689 memset(table->table, 0, 2690 MAX_IRQS_PER_TABLE * sizeof(u32)); 2691 else 2692 memset(table->table, 0, 2693 (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2))); 2694 return table; 2695 } 2696 2697 static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid, 2698 struct irq_remap_table *table) 2699 { 2700 irq_lookup_table[devid] = table; 2701 set_dte_irq_entry(devid, table); 2702 iommu_flush_dte(iommu, devid); 2703 } 2704 2705 static int set_remap_table_entry_alias(struct pci_dev *pdev, u16 alias, 2706 void *data) 2707 { 2708 struct irq_remap_table *table = data; 2709 2710 irq_lookup_table[alias] = table; 2711 set_dte_irq_entry(alias, table); 2712 2713 iommu_flush_dte(amd_iommu_rlookup_table[alias], alias); 2714 2715 return 0; 2716 } 2717 2718 static struct irq_remap_table *alloc_irq_table(u16 devid, struct pci_dev *pdev) 2719 { 2720 struct irq_remap_table *table = NULL; 2721 struct irq_remap_table *new_table = NULL; 2722 struct amd_iommu *iommu; 2723 unsigned long flags; 2724 u16 alias; 2725 2726 spin_lock_irqsave(&iommu_table_lock, flags); 2727 2728 iommu = amd_iommu_rlookup_table[devid]; 2729 if (!iommu) 2730 goto out_unlock; 2731 2732 table = irq_lookup_table[devid]; 2733 if (table) 2734 goto out_unlock; 2735 2736 alias = amd_iommu_alias_table[devid]; 2737 table = irq_lookup_table[alias]; 2738 if (table) { 2739 set_remap_table_entry(iommu, devid, table); 2740 goto out_wait; 2741 } 2742 spin_unlock_irqrestore(&iommu_table_lock, flags); 2743 2744 /* Nothing there yet, allocate new irq remapping table */ 2745 new_table = __alloc_irq_table(); 2746 if (!new_table) 2747 return NULL; 2748 2749 spin_lock_irqsave(&iommu_table_lock, flags); 2750 2751 table = irq_lookup_table[devid]; 2752 if (table) 2753 goto out_unlock; 2754 2755 table = irq_lookup_table[alias]; 2756 if (table) { 2757 set_remap_table_entry(iommu, devid, table); 2758 goto out_wait; 2759 } 2760 2761 table = new_table; 2762 new_table = NULL; 2763 2764 if (pdev) 2765 pci_for_each_dma_alias(pdev, set_remap_table_entry_alias, 2766 table); 2767 else 2768 set_remap_table_entry(iommu, devid, table); 2769 2770 if (devid != alias) 2771 set_remap_table_entry(iommu, alias, table); 2772 2773 out_wait: 2774 iommu_completion_wait(iommu); 2775 2776 out_unlock: 2777 spin_unlock_irqrestore(&iommu_table_lock, flags); 2778 2779 if (new_table) { 2780 kmem_cache_free(amd_iommu_irq_cache, new_table->table); 2781 kfree(new_table); 2782 } 2783 return table; 2784 } 2785 2786 static int alloc_irq_index(u16 devid, int count, bool align, 2787 struct pci_dev *pdev) 2788 { 2789 struct irq_remap_table *table; 2790 int index, c, alignment = 1; 2791 unsigned long flags; 2792 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid]; 2793 2794 if (!iommu) 2795 return -ENODEV; 2796 2797 table = alloc_irq_table(devid, pdev); 2798 if (!table) 2799 return -ENODEV; 2800 2801 if (align) 2802 alignment = roundup_pow_of_two(count); 2803 2804 raw_spin_lock_irqsave(&table->lock, flags); 2805 2806 /* Scan table for free entries */ 2807 for (index = ALIGN(table->min_index, alignment), c = 0; 2808 index < MAX_IRQS_PER_TABLE;) { 2809 if (!iommu->irte_ops->is_allocated(table, index)) { 2810 c += 1; 2811 } else { 2812 c = 0; 2813 index = ALIGN(index + 1, alignment); 2814 continue; 2815 } 2816 2817 if (c == count) { 2818 for (; c != 0; --c) 2819 iommu->irte_ops->set_allocated(table, index - c + 1); 2820 2821 index -= count - 1; 2822 goto out; 2823 } 2824 2825 index++; 2826 } 2827 2828 index = -ENOSPC; 2829 2830 out: 2831 raw_spin_unlock_irqrestore(&table->lock, flags); 2832 2833 return index; 2834 } 2835 2836 static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte, 2837 struct amd_ir_data *data) 2838 { 2839 bool ret; 2840 struct irq_remap_table *table; 2841 struct amd_iommu *iommu; 2842 unsigned long flags; 2843 struct irte_ga *entry; 2844 2845 iommu = amd_iommu_rlookup_table[devid]; 2846 if (iommu == NULL) 2847 return -EINVAL; 2848 2849 table = get_irq_table(devid); 2850 if (!table) 2851 return -ENOMEM; 2852 2853 raw_spin_lock_irqsave(&table->lock, flags); 2854 2855 entry = (struct irte_ga *)table->table; 2856 entry = &entry[index]; 2857 2858 ret = cmpxchg_double(&entry->lo.val, &entry->hi.val, 2859 entry->lo.val, entry->hi.val, 2860 irte->lo.val, irte->hi.val); 2861 /* 2862 * We use cmpxchg16 to atomically update the 128-bit IRTE, 2863 * and it cannot be updated by the hardware or other processors 2864 * behind us, so the return value of cmpxchg16 should be the 2865 * same as the old value. 2866 */ 2867 WARN_ON(!ret); 2868 2869 if (data) 2870 data->ref = entry; 2871 2872 raw_spin_unlock_irqrestore(&table->lock, flags); 2873 2874 iommu_flush_irt(iommu, devid); 2875 iommu_completion_wait(iommu); 2876 2877 return 0; 2878 } 2879 2880 static int modify_irte(u16 devid, int index, union irte *irte) 2881 { 2882 struct irq_remap_table *table; 2883 struct amd_iommu *iommu; 2884 unsigned long flags; 2885 2886 iommu = amd_iommu_rlookup_table[devid]; 2887 if (iommu == NULL) 2888 return -EINVAL; 2889 2890 table = get_irq_table(devid); 2891 if (!table) 2892 return -ENOMEM; 2893 2894 raw_spin_lock_irqsave(&table->lock, flags); 2895 table->table[index] = irte->val; 2896 raw_spin_unlock_irqrestore(&table->lock, flags); 2897 2898 iommu_flush_irt(iommu, devid); 2899 iommu_completion_wait(iommu); 2900 2901 return 0; 2902 } 2903 2904 static void free_irte(u16 devid, int index) 2905 { 2906 struct irq_remap_table *table; 2907 struct amd_iommu *iommu; 2908 unsigned long flags; 2909 2910 iommu = amd_iommu_rlookup_table[devid]; 2911 if (iommu == NULL) 2912 return; 2913 2914 table = get_irq_table(devid); 2915 if (!table) 2916 return; 2917 2918 raw_spin_lock_irqsave(&table->lock, flags); 2919 iommu->irte_ops->clear_allocated(table, index); 2920 raw_spin_unlock_irqrestore(&table->lock, flags); 2921 2922 iommu_flush_irt(iommu, devid); 2923 iommu_completion_wait(iommu); 2924 } 2925 2926 static void irte_prepare(void *entry, 2927 u32 delivery_mode, bool dest_mode, 2928 u8 vector, u32 dest_apicid, int devid) 2929 { 2930 union irte *irte = (union irte *) entry; 2931 2932 irte->val = 0; 2933 irte->fields.vector = vector; 2934 irte->fields.int_type = delivery_mode; 2935 irte->fields.destination = dest_apicid; 2936 irte->fields.dm = dest_mode; 2937 irte->fields.valid = 1; 2938 } 2939 2940 static void irte_ga_prepare(void *entry, 2941 u32 delivery_mode, bool dest_mode, 2942 u8 vector, u32 dest_apicid, int devid) 2943 { 2944 struct irte_ga *irte = (struct irte_ga *) entry; 2945 2946 irte->lo.val = 0; 2947 irte->hi.val = 0; 2948 irte->lo.fields_remap.int_type = delivery_mode; 2949 irte->lo.fields_remap.dm = dest_mode; 2950 irte->hi.fields.vector = vector; 2951 irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid); 2952 irte->hi.fields.destination = APICID_TO_IRTE_DEST_HI(dest_apicid); 2953 irte->lo.fields_remap.valid = 1; 2954 } 2955 2956 static void irte_activate(void *entry, u16 devid, u16 index) 2957 { 2958 union irte *irte = (union irte *) entry; 2959 2960 irte->fields.valid = 1; 2961 modify_irte(devid, index, irte); 2962 } 2963 2964 static void irte_ga_activate(void *entry, u16 devid, u16 index) 2965 { 2966 struct irte_ga *irte = (struct irte_ga *) entry; 2967 2968 irte->lo.fields_remap.valid = 1; 2969 modify_irte_ga(devid, index, irte, NULL); 2970 } 2971 2972 static void irte_deactivate(void *entry, u16 devid, u16 index) 2973 { 2974 union irte *irte = (union irte *) entry; 2975 2976 irte->fields.valid = 0; 2977 modify_irte(devid, index, irte); 2978 } 2979 2980 static void irte_ga_deactivate(void *entry, u16 devid, u16 index) 2981 { 2982 struct irte_ga *irte = (struct irte_ga *) entry; 2983 2984 irte->lo.fields_remap.valid = 0; 2985 modify_irte_ga(devid, index, irte, NULL); 2986 } 2987 2988 static void irte_set_affinity(void *entry, u16 devid, u16 index, 2989 u8 vector, u32 dest_apicid) 2990 { 2991 union irte *irte = (union irte *) entry; 2992 2993 irte->fields.vector = vector; 2994 irte->fields.destination = dest_apicid; 2995 modify_irte(devid, index, irte); 2996 } 2997 2998 static void irte_ga_set_affinity(void *entry, u16 devid, u16 index, 2999 u8 vector, u32 dest_apicid) 3000 { 3001 struct irte_ga *irte = (struct irte_ga *) entry; 3002 3003 if (!irte->lo.fields_remap.guest_mode) { 3004 irte->hi.fields.vector = vector; 3005 irte->lo.fields_remap.destination = 3006 APICID_TO_IRTE_DEST_LO(dest_apicid); 3007 irte->hi.fields.destination = 3008 APICID_TO_IRTE_DEST_HI(dest_apicid); 3009 modify_irte_ga(devid, index, irte, NULL); 3010 } 3011 } 3012 3013 #define IRTE_ALLOCATED (~1U) 3014 static void irte_set_allocated(struct irq_remap_table *table, int index) 3015 { 3016 table->table[index] = IRTE_ALLOCATED; 3017 } 3018 3019 static void irte_ga_set_allocated(struct irq_remap_table *table, int index) 3020 { 3021 struct irte_ga *ptr = (struct irte_ga *)table->table; 3022 struct irte_ga *irte = &ptr[index]; 3023 3024 memset(&irte->lo.val, 0, sizeof(u64)); 3025 memset(&irte->hi.val, 0, sizeof(u64)); 3026 irte->hi.fields.vector = 0xff; 3027 } 3028 3029 static bool irte_is_allocated(struct irq_remap_table *table, int index) 3030 { 3031 union irte *ptr = (union irte *)table->table; 3032 union irte *irte = &ptr[index]; 3033 3034 return irte->val != 0; 3035 } 3036 3037 static bool irte_ga_is_allocated(struct irq_remap_table *table, int index) 3038 { 3039 struct irte_ga *ptr = (struct irte_ga *)table->table; 3040 struct irte_ga *irte = &ptr[index]; 3041 3042 return irte->hi.fields.vector != 0; 3043 } 3044 3045 static void irte_clear_allocated(struct irq_remap_table *table, int index) 3046 { 3047 table->table[index] = 0; 3048 } 3049 3050 static void irte_ga_clear_allocated(struct irq_remap_table *table, int index) 3051 { 3052 struct irte_ga *ptr = (struct irte_ga *)table->table; 3053 struct irte_ga *irte = &ptr[index]; 3054 3055 memset(&irte->lo.val, 0, sizeof(u64)); 3056 memset(&irte->hi.val, 0, sizeof(u64)); 3057 } 3058 3059 static int get_devid(struct irq_alloc_info *info) 3060 { 3061 switch (info->type) { 3062 case X86_IRQ_ALLOC_TYPE_IOAPIC: 3063 return get_ioapic_devid(info->devid); 3064 case X86_IRQ_ALLOC_TYPE_HPET: 3065 return get_hpet_devid(info->devid); 3066 case X86_IRQ_ALLOC_TYPE_PCI_MSI: 3067 case X86_IRQ_ALLOC_TYPE_PCI_MSIX: 3068 return get_device_id(msi_desc_to_dev(info->desc)); 3069 default: 3070 WARN_ON_ONCE(1); 3071 return -1; 3072 } 3073 } 3074 3075 struct irq_remap_ops amd_iommu_irq_ops = { 3076 .prepare = amd_iommu_prepare, 3077 .enable = amd_iommu_enable, 3078 .disable = amd_iommu_disable, 3079 .reenable = amd_iommu_reenable, 3080 .enable_faulting = amd_iommu_enable_faulting, 3081 }; 3082 3083 static void fill_msi_msg(struct msi_msg *msg, u32 index) 3084 { 3085 msg->data = index; 3086 msg->address_lo = 0; 3087 msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW; 3088 msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH; 3089 } 3090 3091 static void irq_remapping_prepare_irte(struct amd_ir_data *data, 3092 struct irq_cfg *irq_cfg, 3093 struct irq_alloc_info *info, 3094 int devid, int index, int sub_handle) 3095 { 3096 struct irq_2_irte *irte_info = &data->irq_2_irte; 3097 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid]; 3098 3099 if (!iommu) 3100 return; 3101 3102 data->irq_2_irte.devid = devid; 3103 data->irq_2_irte.index = index + sub_handle; 3104 iommu->irte_ops->prepare(data->entry, apic->delivery_mode, 3105 apic->dest_mode_logical, irq_cfg->vector, 3106 irq_cfg->dest_apicid, devid); 3107 3108 switch (info->type) { 3109 case X86_IRQ_ALLOC_TYPE_IOAPIC: 3110 case X86_IRQ_ALLOC_TYPE_HPET: 3111 case X86_IRQ_ALLOC_TYPE_PCI_MSI: 3112 case X86_IRQ_ALLOC_TYPE_PCI_MSIX: 3113 fill_msi_msg(&data->msi_entry, irte_info->index); 3114 break; 3115 3116 default: 3117 BUG_ON(1); 3118 break; 3119 } 3120 } 3121 3122 struct amd_irte_ops irte_32_ops = { 3123 .prepare = irte_prepare, 3124 .activate = irte_activate, 3125 .deactivate = irte_deactivate, 3126 .set_affinity = irte_set_affinity, 3127 .set_allocated = irte_set_allocated, 3128 .is_allocated = irte_is_allocated, 3129 .clear_allocated = irte_clear_allocated, 3130 }; 3131 3132 struct amd_irte_ops irte_128_ops = { 3133 .prepare = irte_ga_prepare, 3134 .activate = irte_ga_activate, 3135 .deactivate = irte_ga_deactivate, 3136 .set_affinity = irte_ga_set_affinity, 3137 .set_allocated = irte_ga_set_allocated, 3138 .is_allocated = irte_ga_is_allocated, 3139 .clear_allocated = irte_ga_clear_allocated, 3140 }; 3141 3142 static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq, 3143 unsigned int nr_irqs, void *arg) 3144 { 3145 struct irq_alloc_info *info = arg; 3146 struct irq_data *irq_data; 3147 struct amd_ir_data *data = NULL; 3148 struct irq_cfg *cfg; 3149 int i, ret, devid; 3150 int index; 3151 3152 if (!info) 3153 return -EINVAL; 3154 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI && 3155 info->type != X86_IRQ_ALLOC_TYPE_PCI_MSIX) 3156 return -EINVAL; 3157 3158 /* 3159 * With IRQ remapping enabled, don't need contiguous CPU vectors 3160 * to support multiple MSI interrupts. 3161 */ 3162 if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI) 3163 info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS; 3164 3165 devid = get_devid(info); 3166 if (devid < 0) 3167 return -EINVAL; 3168 3169 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg); 3170 if (ret < 0) 3171 return ret; 3172 3173 if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) { 3174 struct irq_remap_table *table; 3175 struct amd_iommu *iommu; 3176 3177 table = alloc_irq_table(devid, NULL); 3178 if (table) { 3179 if (!table->min_index) { 3180 /* 3181 * Keep the first 32 indexes free for IOAPIC 3182 * interrupts. 3183 */ 3184 table->min_index = 32; 3185 iommu = amd_iommu_rlookup_table[devid]; 3186 for (i = 0; i < 32; ++i) 3187 iommu->irte_ops->set_allocated(table, i); 3188 } 3189 WARN_ON(table->min_index != 32); 3190 index = info->ioapic.pin; 3191 } else { 3192 index = -ENOMEM; 3193 } 3194 } else if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI || 3195 info->type == X86_IRQ_ALLOC_TYPE_PCI_MSIX) { 3196 bool align = (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI); 3197 3198 index = alloc_irq_index(devid, nr_irqs, align, 3199 msi_desc_to_pci_dev(info->desc)); 3200 } else { 3201 index = alloc_irq_index(devid, nr_irqs, false, NULL); 3202 } 3203 3204 if (index < 0) { 3205 pr_warn("Failed to allocate IRTE\n"); 3206 ret = index; 3207 goto out_free_parent; 3208 } 3209 3210 for (i = 0; i < nr_irqs; i++) { 3211 irq_data = irq_domain_get_irq_data(domain, virq + i); 3212 cfg = irq_data ? irqd_cfg(irq_data) : NULL; 3213 if (!cfg) { 3214 ret = -EINVAL; 3215 goto out_free_data; 3216 } 3217 3218 ret = -ENOMEM; 3219 data = kzalloc(sizeof(*data), GFP_KERNEL); 3220 if (!data) 3221 goto out_free_data; 3222 3223 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir)) 3224 data->entry = kzalloc(sizeof(union irte), GFP_KERNEL); 3225 else 3226 data->entry = kzalloc(sizeof(struct irte_ga), 3227 GFP_KERNEL); 3228 if (!data->entry) { 3229 kfree(data); 3230 goto out_free_data; 3231 } 3232 3233 irq_data->hwirq = (devid << 16) + i; 3234 irq_data->chip_data = data; 3235 irq_data->chip = &amd_ir_chip; 3236 irq_remapping_prepare_irte(data, cfg, info, devid, index, i); 3237 irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT); 3238 } 3239 3240 return 0; 3241 3242 out_free_data: 3243 for (i--; i >= 0; i--) { 3244 irq_data = irq_domain_get_irq_data(domain, virq + i); 3245 if (irq_data) 3246 kfree(irq_data->chip_data); 3247 } 3248 for (i = 0; i < nr_irqs; i++) 3249 free_irte(devid, index + i); 3250 out_free_parent: 3251 irq_domain_free_irqs_common(domain, virq, nr_irqs); 3252 return ret; 3253 } 3254 3255 static void irq_remapping_free(struct irq_domain *domain, unsigned int virq, 3256 unsigned int nr_irqs) 3257 { 3258 struct irq_2_irte *irte_info; 3259 struct irq_data *irq_data; 3260 struct amd_ir_data *data; 3261 int i; 3262 3263 for (i = 0; i < nr_irqs; i++) { 3264 irq_data = irq_domain_get_irq_data(domain, virq + i); 3265 if (irq_data && irq_data->chip_data) { 3266 data = irq_data->chip_data; 3267 irte_info = &data->irq_2_irte; 3268 free_irte(irte_info->devid, irte_info->index); 3269 kfree(data->entry); 3270 kfree(data); 3271 } 3272 } 3273 irq_domain_free_irqs_common(domain, virq, nr_irqs); 3274 } 3275 3276 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu, 3277 struct amd_ir_data *ir_data, 3278 struct irq_2_irte *irte_info, 3279 struct irq_cfg *cfg); 3280 3281 static int irq_remapping_activate(struct irq_domain *domain, 3282 struct irq_data *irq_data, bool reserve) 3283 { 3284 struct amd_ir_data *data = irq_data->chip_data; 3285 struct irq_2_irte *irte_info = &data->irq_2_irte; 3286 struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid]; 3287 struct irq_cfg *cfg = irqd_cfg(irq_data); 3288 3289 if (!iommu) 3290 return 0; 3291 3292 iommu->irte_ops->activate(data->entry, irte_info->devid, 3293 irte_info->index); 3294 amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg); 3295 return 0; 3296 } 3297 3298 static void irq_remapping_deactivate(struct irq_domain *domain, 3299 struct irq_data *irq_data) 3300 { 3301 struct amd_ir_data *data = irq_data->chip_data; 3302 struct irq_2_irte *irte_info = &data->irq_2_irte; 3303 struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid]; 3304 3305 if (iommu) 3306 iommu->irte_ops->deactivate(data->entry, irte_info->devid, 3307 irte_info->index); 3308 } 3309 3310 static int irq_remapping_select(struct irq_domain *d, struct irq_fwspec *fwspec, 3311 enum irq_domain_bus_token bus_token) 3312 { 3313 struct amd_iommu *iommu; 3314 int devid = -1; 3315 3316 if (!amd_iommu_irq_remap) 3317 return 0; 3318 3319 if (x86_fwspec_is_ioapic(fwspec)) 3320 devid = get_ioapic_devid(fwspec->param[0]); 3321 else if (x86_fwspec_is_hpet(fwspec)) 3322 devid = get_hpet_devid(fwspec->param[0]); 3323 3324 if (devid < 0) 3325 return 0; 3326 3327 iommu = amd_iommu_rlookup_table[devid]; 3328 return iommu && iommu->ir_domain == d; 3329 } 3330 3331 static const struct irq_domain_ops amd_ir_domain_ops = { 3332 .select = irq_remapping_select, 3333 .alloc = irq_remapping_alloc, 3334 .free = irq_remapping_free, 3335 .activate = irq_remapping_activate, 3336 .deactivate = irq_remapping_deactivate, 3337 }; 3338 3339 int amd_iommu_activate_guest_mode(void *data) 3340 { 3341 struct amd_ir_data *ir_data = (struct amd_ir_data *)data; 3342 struct irte_ga *entry = (struct irte_ga *) ir_data->entry; 3343 u64 valid; 3344 3345 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) || 3346 !entry || entry->lo.fields_vapic.guest_mode) 3347 return 0; 3348 3349 valid = entry->lo.fields_vapic.valid; 3350 3351 entry->lo.val = 0; 3352 entry->hi.val = 0; 3353 3354 entry->lo.fields_vapic.valid = valid; 3355 entry->lo.fields_vapic.guest_mode = 1; 3356 entry->lo.fields_vapic.ga_log_intr = 1; 3357 entry->hi.fields.ga_root_ptr = ir_data->ga_root_ptr; 3358 entry->hi.fields.vector = ir_data->ga_vector; 3359 entry->lo.fields_vapic.ga_tag = ir_data->ga_tag; 3360 3361 return modify_irte_ga(ir_data->irq_2_irte.devid, 3362 ir_data->irq_2_irte.index, entry, ir_data); 3363 } 3364 EXPORT_SYMBOL(amd_iommu_activate_guest_mode); 3365 3366 int amd_iommu_deactivate_guest_mode(void *data) 3367 { 3368 struct amd_ir_data *ir_data = (struct amd_ir_data *)data; 3369 struct irte_ga *entry = (struct irte_ga *) ir_data->entry; 3370 struct irq_cfg *cfg = ir_data->cfg; 3371 u64 valid; 3372 3373 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) || 3374 !entry || !entry->lo.fields_vapic.guest_mode) 3375 return 0; 3376 3377 valid = entry->lo.fields_remap.valid; 3378 3379 entry->lo.val = 0; 3380 entry->hi.val = 0; 3381 3382 entry->lo.fields_remap.valid = valid; 3383 entry->lo.fields_remap.dm = apic->dest_mode_logical; 3384 entry->lo.fields_remap.int_type = apic->delivery_mode; 3385 entry->hi.fields.vector = cfg->vector; 3386 entry->lo.fields_remap.destination = 3387 APICID_TO_IRTE_DEST_LO(cfg->dest_apicid); 3388 entry->hi.fields.destination = 3389 APICID_TO_IRTE_DEST_HI(cfg->dest_apicid); 3390 3391 return modify_irte_ga(ir_data->irq_2_irte.devid, 3392 ir_data->irq_2_irte.index, entry, ir_data); 3393 } 3394 EXPORT_SYMBOL(amd_iommu_deactivate_guest_mode); 3395 3396 static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info) 3397 { 3398 int ret; 3399 struct amd_iommu *iommu; 3400 struct amd_iommu_pi_data *pi_data = vcpu_info; 3401 struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data; 3402 struct amd_ir_data *ir_data = data->chip_data; 3403 struct irq_2_irte *irte_info = &ir_data->irq_2_irte; 3404 struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid); 3405 3406 /* Note: 3407 * This device has never been set up for guest mode. 3408 * we should not modify the IRTE 3409 */ 3410 if (!dev_data || !dev_data->use_vapic) 3411 return 0; 3412 3413 ir_data->cfg = irqd_cfg(data); 3414 pi_data->ir_data = ir_data; 3415 3416 /* Note: 3417 * SVM tries to set up for VAPIC mode, but we are in 3418 * legacy mode. So, we force legacy mode instead. 3419 */ 3420 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) { 3421 pr_debug("%s: Fall back to using intr legacy remap\n", 3422 __func__); 3423 pi_data->is_guest_mode = false; 3424 } 3425 3426 iommu = amd_iommu_rlookup_table[irte_info->devid]; 3427 if (iommu == NULL) 3428 return -EINVAL; 3429 3430 pi_data->prev_ga_tag = ir_data->cached_ga_tag; 3431 if (pi_data->is_guest_mode) { 3432 ir_data->ga_root_ptr = (pi_data->base >> 12); 3433 ir_data->ga_vector = vcpu_pi_info->vector; 3434 ir_data->ga_tag = pi_data->ga_tag; 3435 ret = amd_iommu_activate_guest_mode(ir_data); 3436 if (!ret) 3437 ir_data->cached_ga_tag = pi_data->ga_tag; 3438 } else { 3439 ret = amd_iommu_deactivate_guest_mode(ir_data); 3440 3441 /* 3442 * This communicates the ga_tag back to the caller 3443 * so that it can do all the necessary clean up. 3444 */ 3445 if (!ret) 3446 ir_data->cached_ga_tag = 0; 3447 } 3448 3449 return ret; 3450 } 3451 3452 3453 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu, 3454 struct amd_ir_data *ir_data, 3455 struct irq_2_irte *irte_info, 3456 struct irq_cfg *cfg) 3457 { 3458 3459 /* 3460 * Atomically updates the IRTE with the new destination, vector 3461 * and flushes the interrupt entry cache. 3462 */ 3463 iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid, 3464 irte_info->index, cfg->vector, 3465 cfg->dest_apicid); 3466 } 3467 3468 static int amd_ir_set_affinity(struct irq_data *data, 3469 const struct cpumask *mask, bool force) 3470 { 3471 struct amd_ir_data *ir_data = data->chip_data; 3472 struct irq_2_irte *irte_info = &ir_data->irq_2_irte; 3473 struct irq_cfg *cfg = irqd_cfg(data); 3474 struct irq_data *parent = data->parent_data; 3475 struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid]; 3476 int ret; 3477 3478 if (!iommu) 3479 return -ENODEV; 3480 3481 ret = parent->chip->irq_set_affinity(parent, mask, force); 3482 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE) 3483 return ret; 3484 3485 amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg); 3486 /* 3487 * After this point, all the interrupts will start arriving 3488 * at the new destination. So, time to cleanup the previous 3489 * vector allocation. 3490 */ 3491 send_cleanup_vector(cfg); 3492 3493 return IRQ_SET_MASK_OK_DONE; 3494 } 3495 3496 static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg) 3497 { 3498 struct amd_ir_data *ir_data = irq_data->chip_data; 3499 3500 *msg = ir_data->msi_entry; 3501 } 3502 3503 static struct irq_chip amd_ir_chip = { 3504 .name = "AMD-IR", 3505 .irq_ack = apic_ack_irq, 3506 .irq_set_affinity = amd_ir_set_affinity, 3507 .irq_set_vcpu_affinity = amd_ir_set_vcpu_affinity, 3508 .irq_compose_msi_msg = ir_compose_msi_msg, 3509 }; 3510 3511 int amd_iommu_create_irq_domain(struct amd_iommu *iommu) 3512 { 3513 struct fwnode_handle *fn; 3514 3515 fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index); 3516 if (!fn) 3517 return -ENOMEM; 3518 iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu); 3519 if (!iommu->ir_domain) { 3520 irq_domain_free_fwnode(fn); 3521 return -ENOMEM; 3522 } 3523 3524 iommu->ir_domain->parent = arch_get_ir_parent_domain(); 3525 iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain, 3526 "AMD-IR-MSI", 3527 iommu->index); 3528 return 0; 3529 } 3530 3531 int amd_iommu_update_ga(int cpu, bool is_run, void *data) 3532 { 3533 unsigned long flags; 3534 struct amd_iommu *iommu; 3535 struct irq_remap_table *table; 3536 struct amd_ir_data *ir_data = (struct amd_ir_data *)data; 3537 int devid = ir_data->irq_2_irte.devid; 3538 struct irte_ga *entry = (struct irte_ga *) ir_data->entry; 3539 struct irte_ga *ref = (struct irte_ga *) ir_data->ref; 3540 3541 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) || 3542 !ref || !entry || !entry->lo.fields_vapic.guest_mode) 3543 return 0; 3544 3545 iommu = amd_iommu_rlookup_table[devid]; 3546 if (!iommu) 3547 return -ENODEV; 3548 3549 table = get_irq_table(devid); 3550 if (!table) 3551 return -ENODEV; 3552 3553 raw_spin_lock_irqsave(&table->lock, flags); 3554 3555 if (ref->lo.fields_vapic.guest_mode) { 3556 if (cpu >= 0) { 3557 ref->lo.fields_vapic.destination = 3558 APICID_TO_IRTE_DEST_LO(cpu); 3559 ref->hi.fields.destination = 3560 APICID_TO_IRTE_DEST_HI(cpu); 3561 } 3562 ref->lo.fields_vapic.is_run = is_run; 3563 barrier(); 3564 } 3565 3566 raw_spin_unlock_irqrestore(&table->lock, flags); 3567 3568 iommu_flush_irt(iommu, devid); 3569 iommu_completion_wait(iommu); 3570 return 0; 3571 } 3572 EXPORT_SYMBOL(amd_iommu_update_ga); 3573 #endif 3574