xref: /openbmc/linux/drivers/iommu/amd/iommu.c (revision 801543b2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
4  * Author: Joerg Roedel <jroedel@suse.de>
5  *         Leo Duran <leo.duran@amd.com>
6  */
7 
8 #define pr_fmt(fmt)     "AMD-Vi: " fmt
9 #define dev_fmt(fmt)    pr_fmt(fmt)
10 
11 #include <linux/ratelimit.h>
12 #include <linux/pci.h>
13 #include <linux/acpi.h>
14 #include <linux/amba/bus.h>
15 #include <linux/platform_device.h>
16 #include <linux/pci-ats.h>
17 #include <linux/bitmap.h>
18 #include <linux/slab.h>
19 #include <linux/debugfs.h>
20 #include <linux/scatterlist.h>
21 #include <linux/dma-map-ops.h>
22 #include <linux/dma-direct.h>
23 #include <linux/dma-iommu.h>
24 #include <linux/iommu-helper.h>
25 #include <linux/delay.h>
26 #include <linux/amd-iommu.h>
27 #include <linux/notifier.h>
28 #include <linux/export.h>
29 #include <linux/irq.h>
30 #include <linux/msi.h>
31 #include <linux/irqdomain.h>
32 #include <linux/percpu.h>
33 #include <linux/io-pgtable.h>
34 #include <linux/cc_platform.h>
35 #include <asm/irq_remapping.h>
36 #include <asm/io_apic.h>
37 #include <asm/apic.h>
38 #include <asm/hw_irq.h>
39 #include <asm/proto.h>
40 #include <asm/iommu.h>
41 #include <asm/gart.h>
42 #include <asm/dma.h>
43 
44 #include "amd_iommu.h"
45 #include "../irq_remapping.h"
46 
47 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
48 
49 #define LOOP_TIMEOUT	100000
50 
51 /* IO virtual address start page frame number */
52 #define IOVA_START_PFN		(1)
53 #define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)
54 
55 /* Reserved IOVA ranges */
56 #define MSI_RANGE_START		(0xfee00000)
57 #define MSI_RANGE_END		(0xfeefffff)
58 #define HT_RANGE_START		(0xfd00000000ULL)
59 #define HT_RANGE_END		(0xffffffffffULL)
60 
61 #define DEFAULT_PGTABLE_LEVEL	PAGE_MODE_3_LEVEL
62 
63 static DEFINE_SPINLOCK(pd_bitmap_lock);
64 
65 LIST_HEAD(ioapic_map);
66 LIST_HEAD(hpet_map);
67 LIST_HEAD(acpihid_map);
68 
69 /*
70  * Domain for untranslated devices - only allocated
71  * if iommu=pt passed on kernel cmd line.
72  */
73 const struct iommu_ops amd_iommu_ops;
74 
75 static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
76 int amd_iommu_max_glx_val = -1;
77 
78 /*
79  * general struct to manage commands send to an IOMMU
80  */
81 struct iommu_cmd {
82 	u32 data[4];
83 };
84 
85 struct kmem_cache *amd_iommu_irq_cache;
86 
87 static void detach_device(struct device *dev);
88 
89 /****************************************************************************
90  *
91  * Helper functions
92  *
93  ****************************************************************************/
94 
95 static inline int get_acpihid_device_id(struct device *dev,
96 					struct acpihid_map_entry **entry)
97 {
98 	struct acpi_device *adev = ACPI_COMPANION(dev);
99 	struct acpihid_map_entry *p;
100 
101 	if (!adev)
102 		return -ENODEV;
103 
104 	list_for_each_entry(p, &acpihid_map, list) {
105 		if (acpi_dev_hid_uid_match(adev, p->hid,
106 					   p->uid[0] ? p->uid : NULL)) {
107 			if (entry)
108 				*entry = p;
109 			return p->devid;
110 		}
111 	}
112 	return -EINVAL;
113 }
114 
115 static inline int get_device_sbdf_id(struct device *dev)
116 {
117 	int sbdf;
118 
119 	if (dev_is_pci(dev))
120 		sbdf = get_pci_sbdf_id(to_pci_dev(dev));
121 	else
122 		sbdf = get_acpihid_device_id(dev, NULL);
123 
124 	return sbdf;
125 }
126 
127 struct dev_table_entry *get_dev_table(struct amd_iommu *iommu)
128 {
129 	struct dev_table_entry *dev_table;
130 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
131 
132 	BUG_ON(pci_seg == NULL);
133 	dev_table = pci_seg->dev_table;
134 	BUG_ON(dev_table == NULL);
135 
136 	return dev_table;
137 }
138 
139 static inline u16 get_device_segment(struct device *dev)
140 {
141 	u16 seg;
142 
143 	if (dev_is_pci(dev)) {
144 		struct pci_dev *pdev = to_pci_dev(dev);
145 
146 		seg = pci_domain_nr(pdev->bus);
147 	} else {
148 		u32 devid = get_acpihid_device_id(dev, NULL);
149 
150 		seg = PCI_SBDF_TO_SEGID(devid);
151 	}
152 
153 	return seg;
154 }
155 
156 /* Writes the specific IOMMU for a device into the PCI segment rlookup table */
157 void amd_iommu_set_rlookup_table(struct amd_iommu *iommu, u16 devid)
158 {
159 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
160 
161 	pci_seg->rlookup_table[devid] = iommu;
162 }
163 
164 static struct amd_iommu *__rlookup_amd_iommu(u16 seg, u16 devid)
165 {
166 	struct amd_iommu_pci_seg *pci_seg;
167 
168 	for_each_pci_segment(pci_seg) {
169 		if (pci_seg->id == seg)
170 			return pci_seg->rlookup_table[devid];
171 	}
172 	return NULL;
173 }
174 
175 static struct amd_iommu *rlookup_amd_iommu(struct device *dev)
176 {
177 	u16 seg = get_device_segment(dev);
178 	int devid = get_device_sbdf_id(dev);
179 
180 	if (devid < 0)
181 		return NULL;
182 	return __rlookup_amd_iommu(seg, PCI_SBDF_TO_DEVID(devid));
183 }
184 
185 static struct protection_domain *to_pdomain(struct iommu_domain *dom)
186 {
187 	return container_of(dom, struct protection_domain, domain);
188 }
189 
190 static struct iommu_dev_data *alloc_dev_data(struct amd_iommu *iommu, u16 devid)
191 {
192 	struct iommu_dev_data *dev_data;
193 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
194 
195 	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
196 	if (!dev_data)
197 		return NULL;
198 
199 	spin_lock_init(&dev_data->lock);
200 	dev_data->devid = devid;
201 	ratelimit_default_init(&dev_data->rs);
202 
203 	llist_add(&dev_data->dev_data_list, &pci_seg->dev_data_list);
204 	return dev_data;
205 }
206 
207 static struct iommu_dev_data *search_dev_data(struct amd_iommu *iommu, u16 devid)
208 {
209 	struct iommu_dev_data *dev_data;
210 	struct llist_node *node;
211 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
212 
213 	if (llist_empty(&pci_seg->dev_data_list))
214 		return NULL;
215 
216 	node = pci_seg->dev_data_list.first;
217 	llist_for_each_entry(dev_data, node, dev_data_list) {
218 		if (dev_data->devid == devid)
219 			return dev_data;
220 	}
221 
222 	return NULL;
223 }
224 
225 static int clone_alias(struct pci_dev *pdev, u16 alias, void *data)
226 {
227 	struct amd_iommu *iommu;
228 	struct dev_table_entry *dev_table;
229 	u16 devid = pci_dev_id(pdev);
230 
231 	if (devid == alias)
232 		return 0;
233 
234 	iommu = rlookup_amd_iommu(&pdev->dev);
235 	if (!iommu)
236 		return 0;
237 
238 	amd_iommu_set_rlookup_table(iommu, alias);
239 	dev_table = get_dev_table(iommu);
240 	memcpy(dev_table[alias].data,
241 	       dev_table[devid].data,
242 	       sizeof(dev_table[alias].data));
243 
244 	return 0;
245 }
246 
247 static void clone_aliases(struct amd_iommu *iommu, struct device *dev)
248 {
249 	struct pci_dev *pdev;
250 
251 	if (!dev_is_pci(dev))
252 		return;
253 	pdev = to_pci_dev(dev);
254 
255 	/*
256 	 * The IVRS alias stored in the alias table may not be
257 	 * part of the PCI DMA aliases if it's bus differs
258 	 * from the original device.
259 	 */
260 	clone_alias(pdev, iommu->pci_seg->alias_table[pci_dev_id(pdev)], NULL);
261 
262 	pci_for_each_dma_alias(pdev, clone_alias, NULL);
263 }
264 
265 static void setup_aliases(struct amd_iommu *iommu, struct device *dev)
266 {
267 	struct pci_dev *pdev = to_pci_dev(dev);
268 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
269 	u16 ivrs_alias;
270 
271 	/* For ACPI HID devices, there are no aliases */
272 	if (!dev_is_pci(dev))
273 		return;
274 
275 	/*
276 	 * Add the IVRS alias to the pci aliases if it is on the same
277 	 * bus. The IVRS table may know about a quirk that we don't.
278 	 */
279 	ivrs_alias = pci_seg->alias_table[pci_dev_id(pdev)];
280 	if (ivrs_alias != pci_dev_id(pdev) &&
281 	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number)
282 		pci_add_dma_alias(pdev, ivrs_alias & 0xff, 1);
283 
284 	clone_aliases(iommu, dev);
285 }
286 
287 static struct iommu_dev_data *find_dev_data(struct amd_iommu *iommu, u16 devid)
288 {
289 	struct iommu_dev_data *dev_data;
290 
291 	dev_data = search_dev_data(iommu, devid);
292 
293 	if (dev_data == NULL) {
294 		dev_data = alloc_dev_data(iommu, devid);
295 		if (!dev_data)
296 			return NULL;
297 
298 		if (translation_pre_enabled(iommu))
299 			dev_data->defer_attach = true;
300 	}
301 
302 	return dev_data;
303 }
304 
305 /*
306 * Find or create an IOMMU group for a acpihid device.
307 */
308 static struct iommu_group *acpihid_device_group(struct device *dev)
309 {
310 	struct acpihid_map_entry *p, *entry = NULL;
311 	int devid;
312 
313 	devid = get_acpihid_device_id(dev, &entry);
314 	if (devid < 0)
315 		return ERR_PTR(devid);
316 
317 	list_for_each_entry(p, &acpihid_map, list) {
318 		if ((devid == p->devid) && p->group)
319 			entry->group = p->group;
320 	}
321 
322 	if (!entry->group)
323 		entry->group = generic_device_group(dev);
324 	else
325 		iommu_group_ref_get(entry->group);
326 
327 	return entry->group;
328 }
329 
330 static bool pci_iommuv2_capable(struct pci_dev *pdev)
331 {
332 	static const int caps[] = {
333 		PCI_EXT_CAP_ID_PRI,
334 		PCI_EXT_CAP_ID_PASID,
335 	};
336 	int i, pos;
337 
338 	if (!pci_ats_supported(pdev))
339 		return false;
340 
341 	for (i = 0; i < 2; ++i) {
342 		pos = pci_find_ext_capability(pdev, caps[i]);
343 		if (pos == 0)
344 			return false;
345 	}
346 
347 	return true;
348 }
349 
350 /*
351  * This function checks if the driver got a valid device from the caller to
352  * avoid dereferencing invalid pointers.
353  */
354 static bool check_device(struct device *dev)
355 {
356 	struct amd_iommu_pci_seg *pci_seg;
357 	struct amd_iommu *iommu;
358 	int devid, sbdf;
359 
360 	if (!dev)
361 		return false;
362 
363 	sbdf = get_device_sbdf_id(dev);
364 	if (sbdf < 0)
365 		return false;
366 	devid = PCI_SBDF_TO_DEVID(sbdf);
367 
368 	iommu = rlookup_amd_iommu(dev);
369 	if (!iommu)
370 		return false;
371 
372 	/* Out of our scope? */
373 	pci_seg = iommu->pci_seg;
374 	if (devid > pci_seg->last_bdf)
375 		return false;
376 
377 	return true;
378 }
379 
380 static int iommu_init_device(struct amd_iommu *iommu, struct device *dev)
381 {
382 	struct iommu_dev_data *dev_data;
383 	int devid, sbdf;
384 
385 	if (dev_iommu_priv_get(dev))
386 		return 0;
387 
388 	sbdf = get_device_sbdf_id(dev);
389 	if (sbdf < 0)
390 		return sbdf;
391 
392 	devid = PCI_SBDF_TO_DEVID(sbdf);
393 	dev_data = find_dev_data(iommu, devid);
394 	if (!dev_data)
395 		return -ENOMEM;
396 
397 	dev_data->dev = dev;
398 	setup_aliases(iommu, dev);
399 
400 	/*
401 	 * By default we use passthrough mode for IOMMUv2 capable device.
402 	 * But if amd_iommu=force_isolation is set (e.g. to debug DMA to
403 	 * invalid address), we ignore the capability for the device so
404 	 * it'll be forced to go into translation mode.
405 	 */
406 	if ((iommu_default_passthrough() || !amd_iommu_force_isolation) &&
407 	    dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
408 		dev_data->iommu_v2 = iommu->is_iommu_v2;
409 	}
410 
411 	dev_iommu_priv_set(dev, dev_data);
412 
413 	return 0;
414 }
415 
416 static void iommu_ignore_device(struct amd_iommu *iommu, struct device *dev)
417 {
418 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
419 	struct dev_table_entry *dev_table = get_dev_table(iommu);
420 	int devid, sbdf;
421 
422 	sbdf = get_device_sbdf_id(dev);
423 	if (sbdf < 0)
424 		return;
425 
426 	devid = PCI_SBDF_TO_DEVID(sbdf);
427 	pci_seg->rlookup_table[devid] = NULL;
428 	memset(&dev_table[devid], 0, sizeof(struct dev_table_entry));
429 
430 	setup_aliases(iommu, dev);
431 }
432 
433 static void amd_iommu_uninit_device(struct device *dev)
434 {
435 	struct iommu_dev_data *dev_data;
436 
437 	dev_data = dev_iommu_priv_get(dev);
438 	if (!dev_data)
439 		return;
440 
441 	if (dev_data->domain)
442 		detach_device(dev);
443 
444 	dev_iommu_priv_set(dev, NULL);
445 
446 	/*
447 	 * We keep dev_data around for unplugged devices and reuse it when the
448 	 * device is re-plugged - not doing so would introduce a ton of races.
449 	 */
450 }
451 
452 /****************************************************************************
453  *
454  * Interrupt handling functions
455  *
456  ****************************************************************************/
457 
458 static void dump_dte_entry(struct amd_iommu *iommu, u16 devid)
459 {
460 	int i;
461 	struct dev_table_entry *dev_table = get_dev_table(iommu);
462 
463 	for (i = 0; i < 4; ++i)
464 		pr_err("DTE[%d]: %016llx\n", i, dev_table[devid].data[i]);
465 }
466 
467 static void dump_command(unsigned long phys_addr)
468 {
469 	struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
470 	int i;
471 
472 	for (i = 0; i < 4; ++i)
473 		pr_err("CMD[%d]: %08x\n", i, cmd->data[i]);
474 }
475 
476 static void amd_iommu_report_rmp_hw_error(struct amd_iommu *iommu, volatile u32 *event)
477 {
478 	struct iommu_dev_data *dev_data = NULL;
479 	int devid, vmg_tag, flags;
480 	struct pci_dev *pdev;
481 	u64 spa;
482 
483 	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
484 	vmg_tag = (event[1]) & 0xFFFF;
485 	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
486 	spa     = ((u64)event[3] << 32) | (event[2] & 0xFFFFFFF8);
487 
488 	pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
489 					   devid & 0xff);
490 	if (pdev)
491 		dev_data = dev_iommu_priv_get(&pdev->dev);
492 
493 	if (dev_data) {
494 		if (__ratelimit(&dev_data->rs)) {
495 			pci_err(pdev, "Event logged [RMP_HW_ERROR vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n",
496 				vmg_tag, spa, flags);
497 		}
498 	} else {
499 		pr_err_ratelimited("Event logged [RMP_HW_ERROR device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n",
500 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
501 			vmg_tag, spa, flags);
502 	}
503 
504 	if (pdev)
505 		pci_dev_put(pdev);
506 }
507 
508 static void amd_iommu_report_rmp_fault(struct amd_iommu *iommu, volatile u32 *event)
509 {
510 	struct iommu_dev_data *dev_data = NULL;
511 	int devid, flags_rmp, vmg_tag, flags;
512 	struct pci_dev *pdev;
513 	u64 gpa;
514 
515 	devid     = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
516 	flags_rmp = (event[0] >> EVENT_FLAGS_SHIFT) & 0xFF;
517 	vmg_tag   = (event[1]) & 0xFFFF;
518 	flags     = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
519 	gpa       = ((u64)event[3] << 32) | event[2];
520 
521 	pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
522 					   devid & 0xff);
523 	if (pdev)
524 		dev_data = dev_iommu_priv_get(&pdev->dev);
525 
526 	if (dev_data) {
527 		if (__ratelimit(&dev_data->rs)) {
528 			pci_err(pdev, "Event logged [RMP_PAGE_FAULT vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n",
529 				vmg_tag, gpa, flags_rmp, flags);
530 		}
531 	} else {
532 		pr_err_ratelimited("Event logged [RMP_PAGE_FAULT device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n",
533 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
534 			vmg_tag, gpa, flags_rmp, flags);
535 	}
536 
537 	if (pdev)
538 		pci_dev_put(pdev);
539 }
540 
541 #define IS_IOMMU_MEM_TRANSACTION(flags)		\
542 	(((flags) & EVENT_FLAG_I) == 0)
543 
544 #define IS_WRITE_REQUEST(flags)			\
545 	((flags) & EVENT_FLAG_RW)
546 
547 static void amd_iommu_report_page_fault(struct amd_iommu *iommu,
548 					u16 devid, u16 domain_id,
549 					u64 address, int flags)
550 {
551 	struct iommu_dev_data *dev_data = NULL;
552 	struct pci_dev *pdev;
553 
554 	pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
555 					   devid & 0xff);
556 	if (pdev)
557 		dev_data = dev_iommu_priv_get(&pdev->dev);
558 
559 	if (dev_data) {
560 		/*
561 		 * If this is a DMA fault (for which the I(nterrupt)
562 		 * bit will be unset), allow report_iommu_fault() to
563 		 * prevent logging it.
564 		 */
565 		if (IS_IOMMU_MEM_TRANSACTION(flags)) {
566 			if (!report_iommu_fault(&dev_data->domain->domain,
567 						&pdev->dev, address,
568 						IS_WRITE_REQUEST(flags) ?
569 							IOMMU_FAULT_WRITE :
570 							IOMMU_FAULT_READ))
571 				goto out;
572 		}
573 
574 		if (__ratelimit(&dev_data->rs)) {
575 			pci_err(pdev, "Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%llx flags=0x%04x]\n",
576 				domain_id, address, flags);
577 		}
578 	} else {
579 		pr_err_ratelimited("Event logged [IO_PAGE_FAULT device=%04x:%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n",
580 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
581 			domain_id, address, flags);
582 	}
583 
584 out:
585 	if (pdev)
586 		pci_dev_put(pdev);
587 }
588 
589 static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
590 {
591 	struct device *dev = iommu->iommu.dev;
592 	int type, devid, flags, tag;
593 	volatile u32 *event = __evt;
594 	int count = 0;
595 	u64 address;
596 	u32 pasid;
597 
598 retry:
599 	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
600 	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
601 	pasid   = (event[0] & EVENT_DOMID_MASK_HI) |
602 		  (event[1] & EVENT_DOMID_MASK_LO);
603 	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
604 	address = (u64)(((u64)event[3]) << 32) | event[2];
605 
606 	if (type == 0) {
607 		/* Did we hit the erratum? */
608 		if (++count == LOOP_TIMEOUT) {
609 			pr_err("No event written to event log\n");
610 			return;
611 		}
612 		udelay(1);
613 		goto retry;
614 	}
615 
616 	if (type == EVENT_TYPE_IO_FAULT) {
617 		amd_iommu_report_page_fault(iommu, devid, pasid, address, flags);
618 		return;
619 	}
620 
621 	switch (type) {
622 	case EVENT_TYPE_ILL_DEV:
623 		dev_err(dev, "Event logged [ILLEGAL_DEV_TABLE_ENTRY device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
624 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
625 			pasid, address, flags);
626 		dump_dte_entry(iommu, devid);
627 		break;
628 	case EVENT_TYPE_DEV_TAB_ERR:
629 		dev_err(dev, "Event logged [DEV_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x "
630 			"address=0x%llx flags=0x%04x]\n",
631 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
632 			address, flags);
633 		break;
634 	case EVENT_TYPE_PAGE_TAB_ERR:
635 		dev_err(dev, "Event logged [PAGE_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x pasid=0x%04x address=0x%llx flags=0x%04x]\n",
636 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
637 			pasid, address, flags);
638 		break;
639 	case EVENT_TYPE_ILL_CMD:
640 		dev_err(dev, "Event logged [ILLEGAL_COMMAND_ERROR address=0x%llx]\n", address);
641 		dump_command(address);
642 		break;
643 	case EVENT_TYPE_CMD_HARD_ERR:
644 		dev_err(dev, "Event logged [COMMAND_HARDWARE_ERROR address=0x%llx flags=0x%04x]\n",
645 			address, flags);
646 		break;
647 	case EVENT_TYPE_IOTLB_INV_TO:
648 		dev_err(dev, "Event logged [IOTLB_INV_TIMEOUT device=%04x:%02x:%02x.%x address=0x%llx]\n",
649 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
650 			address);
651 		break;
652 	case EVENT_TYPE_INV_DEV_REQ:
653 		dev_err(dev, "Event logged [INVALID_DEVICE_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
654 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
655 			pasid, address, flags);
656 		break;
657 	case EVENT_TYPE_RMP_FAULT:
658 		amd_iommu_report_rmp_fault(iommu, event);
659 		break;
660 	case EVENT_TYPE_RMP_HW_ERR:
661 		amd_iommu_report_rmp_hw_error(iommu, event);
662 		break;
663 	case EVENT_TYPE_INV_PPR_REQ:
664 		pasid = PPR_PASID(*((u64 *)__evt));
665 		tag = event[1] & 0x03FF;
666 		dev_err(dev, "Event logged [INVALID_PPR_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x tag=0x%03x]\n",
667 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
668 			pasid, address, flags, tag);
669 		break;
670 	default:
671 		dev_err(dev, "Event logged [UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
672 			event[0], event[1], event[2], event[3]);
673 	}
674 
675 	memset(__evt, 0, 4 * sizeof(u32));
676 }
677 
678 static void iommu_poll_events(struct amd_iommu *iommu)
679 {
680 	u32 head, tail;
681 
682 	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
683 	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
684 
685 	while (head != tail) {
686 		iommu_print_event(iommu, iommu->evt_buf + head);
687 		head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
688 	}
689 
690 	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
691 }
692 
693 static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
694 {
695 	struct amd_iommu_fault fault;
696 
697 	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
698 		pr_err_ratelimited("Unknown PPR request received\n");
699 		return;
700 	}
701 
702 	fault.address   = raw[1];
703 	fault.pasid     = PPR_PASID(raw[0]);
704 	fault.sbdf      = PCI_SEG_DEVID_TO_SBDF(iommu->pci_seg->id, PPR_DEVID(raw[0]));
705 	fault.tag       = PPR_TAG(raw[0]);
706 	fault.flags     = PPR_FLAGS(raw[0]);
707 
708 	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
709 }
710 
711 static void iommu_poll_ppr_log(struct amd_iommu *iommu)
712 {
713 	u32 head, tail;
714 
715 	if (iommu->ppr_log == NULL)
716 		return;
717 
718 	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
719 	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
720 
721 	while (head != tail) {
722 		volatile u64 *raw;
723 		u64 entry[2];
724 		int i;
725 
726 		raw = (u64 *)(iommu->ppr_log + head);
727 
728 		/*
729 		 * Hardware bug: Interrupt may arrive before the entry is
730 		 * written to memory. If this happens we need to wait for the
731 		 * entry to arrive.
732 		 */
733 		for (i = 0; i < LOOP_TIMEOUT; ++i) {
734 			if (PPR_REQ_TYPE(raw[0]) != 0)
735 				break;
736 			udelay(1);
737 		}
738 
739 		/* Avoid memcpy function-call overhead */
740 		entry[0] = raw[0];
741 		entry[1] = raw[1];
742 
743 		/*
744 		 * To detect the hardware bug we need to clear the entry
745 		 * back to zero.
746 		 */
747 		raw[0] = raw[1] = 0UL;
748 
749 		/* Update head pointer of hardware ring-buffer */
750 		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
751 		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
752 
753 		/* Handle PPR entry */
754 		iommu_handle_ppr_entry(iommu, entry);
755 
756 		/* Refresh ring-buffer information */
757 		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
758 		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
759 	}
760 }
761 
762 #ifdef CONFIG_IRQ_REMAP
763 static int (*iommu_ga_log_notifier)(u32);
764 
765 int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
766 {
767 	iommu_ga_log_notifier = notifier;
768 
769 	return 0;
770 }
771 EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);
772 
773 static void iommu_poll_ga_log(struct amd_iommu *iommu)
774 {
775 	u32 head, tail, cnt = 0;
776 
777 	if (iommu->ga_log == NULL)
778 		return;
779 
780 	head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
781 	tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);
782 
783 	while (head != tail) {
784 		volatile u64 *raw;
785 		u64 log_entry;
786 
787 		raw = (u64 *)(iommu->ga_log + head);
788 		cnt++;
789 
790 		/* Avoid memcpy function-call overhead */
791 		log_entry = *raw;
792 
793 		/* Update head pointer of hardware ring-buffer */
794 		head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
795 		writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
796 
797 		/* Handle GA entry */
798 		switch (GA_REQ_TYPE(log_entry)) {
799 		case GA_GUEST_NR:
800 			if (!iommu_ga_log_notifier)
801 				break;
802 
803 			pr_debug("%s: devid=%#x, ga_tag=%#x\n",
804 				 __func__, GA_DEVID(log_entry),
805 				 GA_TAG(log_entry));
806 
807 			if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
808 				pr_err("GA log notifier failed.\n");
809 			break;
810 		default:
811 			break;
812 		}
813 	}
814 }
815 
816 static void
817 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu)
818 {
819 	if (!irq_remapping_enabled || !dev_is_pci(dev) ||
820 	    pci_dev_has_special_msi_domain(to_pci_dev(dev)))
821 		return;
822 
823 	dev_set_msi_domain(dev, iommu->msi_domain);
824 }
825 
826 #else /* CONFIG_IRQ_REMAP */
827 static inline void
828 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu) { }
829 #endif /* !CONFIG_IRQ_REMAP */
830 
831 #define AMD_IOMMU_INT_MASK	\
832 	(MMIO_STATUS_EVT_OVERFLOW_INT_MASK | \
833 	 MMIO_STATUS_EVT_INT_MASK | \
834 	 MMIO_STATUS_PPR_INT_MASK | \
835 	 MMIO_STATUS_GALOG_INT_MASK)
836 
837 irqreturn_t amd_iommu_int_thread(int irq, void *data)
838 {
839 	struct amd_iommu *iommu = (struct amd_iommu *) data;
840 	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
841 
842 	while (status & AMD_IOMMU_INT_MASK) {
843 		/* Enable interrupt sources again */
844 		writel(AMD_IOMMU_INT_MASK,
845 			iommu->mmio_base + MMIO_STATUS_OFFSET);
846 
847 		if (status & MMIO_STATUS_EVT_INT_MASK) {
848 			pr_devel("Processing IOMMU Event Log\n");
849 			iommu_poll_events(iommu);
850 		}
851 
852 		if (status & MMIO_STATUS_PPR_INT_MASK) {
853 			pr_devel("Processing IOMMU PPR Log\n");
854 			iommu_poll_ppr_log(iommu);
855 		}
856 
857 #ifdef CONFIG_IRQ_REMAP
858 		if (status & MMIO_STATUS_GALOG_INT_MASK) {
859 			pr_devel("Processing IOMMU GA Log\n");
860 			iommu_poll_ga_log(iommu);
861 		}
862 #endif
863 
864 		if (status & MMIO_STATUS_EVT_OVERFLOW_INT_MASK) {
865 			pr_info_ratelimited("IOMMU event log overflow\n");
866 			amd_iommu_restart_event_logging(iommu);
867 		}
868 
869 		/*
870 		 * Hardware bug: ERBT1312
871 		 * When re-enabling interrupt (by writing 1
872 		 * to clear the bit), the hardware might also try to set
873 		 * the interrupt bit in the event status register.
874 		 * In this scenario, the bit will be set, and disable
875 		 * subsequent interrupts.
876 		 *
877 		 * Workaround: The IOMMU driver should read back the
878 		 * status register and check if the interrupt bits are cleared.
879 		 * If not, driver will need to go through the interrupt handler
880 		 * again and re-clear the bits
881 		 */
882 		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
883 	}
884 	return IRQ_HANDLED;
885 }
886 
887 irqreturn_t amd_iommu_int_handler(int irq, void *data)
888 {
889 	return IRQ_WAKE_THREAD;
890 }
891 
892 /****************************************************************************
893  *
894  * IOMMU command queuing functions
895  *
896  ****************************************************************************/
897 
898 static int wait_on_sem(struct amd_iommu *iommu, u64 data)
899 {
900 	int i = 0;
901 
902 	while (*iommu->cmd_sem != data && i < LOOP_TIMEOUT) {
903 		udelay(1);
904 		i += 1;
905 	}
906 
907 	if (i == LOOP_TIMEOUT) {
908 		pr_alert("Completion-Wait loop timed out\n");
909 		return -EIO;
910 	}
911 
912 	return 0;
913 }
914 
915 static void copy_cmd_to_buffer(struct amd_iommu *iommu,
916 			       struct iommu_cmd *cmd)
917 {
918 	u8 *target;
919 	u32 tail;
920 
921 	/* Copy command to buffer */
922 	tail = iommu->cmd_buf_tail;
923 	target = iommu->cmd_buf + tail;
924 	memcpy(target, cmd, sizeof(*cmd));
925 
926 	tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
927 	iommu->cmd_buf_tail = tail;
928 
929 	/* Tell the IOMMU about it */
930 	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
931 }
932 
933 static void build_completion_wait(struct iommu_cmd *cmd,
934 				  struct amd_iommu *iommu,
935 				  u64 data)
936 {
937 	u64 paddr = iommu_virt_to_phys((void *)iommu->cmd_sem);
938 
939 	memset(cmd, 0, sizeof(*cmd));
940 	cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
941 	cmd->data[1] = upper_32_bits(paddr);
942 	cmd->data[2] = data;
943 	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
944 }
945 
946 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
947 {
948 	memset(cmd, 0, sizeof(*cmd));
949 	cmd->data[0] = devid;
950 	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
951 }
952 
953 /*
954  * Builds an invalidation address which is suitable for one page or multiple
955  * pages. Sets the size bit (S) as needed is more than one page is flushed.
956  */
957 static inline u64 build_inv_address(u64 address, size_t size)
958 {
959 	u64 pages, end, msb_diff;
960 
961 	pages = iommu_num_pages(address, size, PAGE_SIZE);
962 
963 	if (pages == 1)
964 		return address & PAGE_MASK;
965 
966 	end = address + size - 1;
967 
968 	/*
969 	 * msb_diff would hold the index of the most significant bit that
970 	 * flipped between the start and end.
971 	 */
972 	msb_diff = fls64(end ^ address) - 1;
973 
974 	/*
975 	 * Bits 63:52 are sign extended. If for some reason bit 51 is different
976 	 * between the start and the end, invalidate everything.
977 	 */
978 	if (unlikely(msb_diff > 51)) {
979 		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
980 	} else {
981 		/*
982 		 * The msb-bit must be clear on the address. Just set all the
983 		 * lower bits.
984 		 */
985 		address |= (1ull << msb_diff) - 1;
986 	}
987 
988 	/* Clear bits 11:0 */
989 	address &= PAGE_MASK;
990 
991 	/* Set the size bit - we flush more than one 4kb page */
992 	return address | CMD_INV_IOMMU_PAGES_SIZE_MASK;
993 }
994 
995 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
996 				  size_t size, u16 domid, int pde)
997 {
998 	u64 inv_address = build_inv_address(address, size);
999 
1000 	memset(cmd, 0, sizeof(*cmd));
1001 	cmd->data[1] |= domid;
1002 	cmd->data[2]  = lower_32_bits(inv_address);
1003 	cmd->data[3]  = upper_32_bits(inv_address);
1004 	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
1005 	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
1006 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
1007 }
1008 
1009 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
1010 				  u64 address, size_t size)
1011 {
1012 	u64 inv_address = build_inv_address(address, size);
1013 
1014 	memset(cmd, 0, sizeof(*cmd));
1015 	cmd->data[0]  = devid;
1016 	cmd->data[0] |= (qdep & 0xff) << 24;
1017 	cmd->data[1]  = devid;
1018 	cmd->data[2]  = lower_32_bits(inv_address);
1019 	cmd->data[3]  = upper_32_bits(inv_address);
1020 	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
1021 }
1022 
1023 static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, u32 pasid,
1024 				  u64 address, bool size)
1025 {
1026 	memset(cmd, 0, sizeof(*cmd));
1027 
1028 	address &= ~(0xfffULL);
1029 
1030 	cmd->data[0]  = pasid;
1031 	cmd->data[1]  = domid;
1032 	cmd->data[2]  = lower_32_bits(address);
1033 	cmd->data[3]  = upper_32_bits(address);
1034 	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
1035 	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
1036 	if (size)
1037 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
1038 	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
1039 }
1040 
1041 static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, u32 pasid,
1042 				  int qdep, u64 address, bool size)
1043 {
1044 	memset(cmd, 0, sizeof(*cmd));
1045 
1046 	address &= ~(0xfffULL);
1047 
1048 	cmd->data[0]  = devid;
1049 	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
1050 	cmd->data[0] |= (qdep  & 0xff) << 24;
1051 	cmd->data[1]  = devid;
1052 	cmd->data[1] |= (pasid & 0xff) << 16;
1053 	cmd->data[2]  = lower_32_bits(address);
1054 	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
1055 	cmd->data[3]  = upper_32_bits(address);
1056 	if (size)
1057 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
1058 	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
1059 }
1060 
1061 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, u32 pasid,
1062 			       int status, int tag, bool gn)
1063 {
1064 	memset(cmd, 0, sizeof(*cmd));
1065 
1066 	cmd->data[0]  = devid;
1067 	if (gn) {
1068 		cmd->data[1]  = pasid;
1069 		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
1070 	}
1071 	cmd->data[3]  = tag & 0x1ff;
1072 	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
1073 
1074 	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
1075 }
1076 
1077 static void build_inv_all(struct iommu_cmd *cmd)
1078 {
1079 	memset(cmd, 0, sizeof(*cmd));
1080 	CMD_SET_TYPE(cmd, CMD_INV_ALL);
1081 }
1082 
1083 static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
1084 {
1085 	memset(cmd, 0, sizeof(*cmd));
1086 	cmd->data[0] = devid;
1087 	CMD_SET_TYPE(cmd, CMD_INV_IRT);
1088 }
1089 
1090 /*
1091  * Writes the command to the IOMMUs command buffer and informs the
1092  * hardware about the new command.
1093  */
1094 static int __iommu_queue_command_sync(struct amd_iommu *iommu,
1095 				      struct iommu_cmd *cmd,
1096 				      bool sync)
1097 {
1098 	unsigned int count = 0;
1099 	u32 left, next_tail;
1100 
1101 	next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1102 again:
1103 	left      = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1104 
1105 	if (left <= 0x20) {
1106 		/* Skip udelay() the first time around */
1107 		if (count++) {
1108 			if (count == LOOP_TIMEOUT) {
1109 				pr_err("Command buffer timeout\n");
1110 				return -EIO;
1111 			}
1112 
1113 			udelay(1);
1114 		}
1115 
1116 		/* Update head and recheck remaining space */
1117 		iommu->cmd_buf_head = readl(iommu->mmio_base +
1118 					    MMIO_CMD_HEAD_OFFSET);
1119 
1120 		goto again;
1121 	}
1122 
1123 	copy_cmd_to_buffer(iommu, cmd);
1124 
1125 	/* Do we need to make sure all commands are processed? */
1126 	iommu->need_sync = sync;
1127 
1128 	return 0;
1129 }
1130 
1131 static int iommu_queue_command_sync(struct amd_iommu *iommu,
1132 				    struct iommu_cmd *cmd,
1133 				    bool sync)
1134 {
1135 	unsigned long flags;
1136 	int ret;
1137 
1138 	raw_spin_lock_irqsave(&iommu->lock, flags);
1139 	ret = __iommu_queue_command_sync(iommu, cmd, sync);
1140 	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1141 
1142 	return ret;
1143 }
1144 
1145 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1146 {
1147 	return iommu_queue_command_sync(iommu, cmd, true);
1148 }
1149 
1150 /*
1151  * This function queues a completion wait command into the command
1152  * buffer of an IOMMU
1153  */
1154 static int iommu_completion_wait(struct amd_iommu *iommu)
1155 {
1156 	struct iommu_cmd cmd;
1157 	unsigned long flags;
1158 	int ret;
1159 	u64 data;
1160 
1161 	if (!iommu->need_sync)
1162 		return 0;
1163 
1164 	raw_spin_lock_irqsave(&iommu->lock, flags);
1165 
1166 	data = ++iommu->cmd_sem_val;
1167 	build_completion_wait(&cmd, iommu, data);
1168 
1169 	ret = __iommu_queue_command_sync(iommu, &cmd, false);
1170 	if (ret)
1171 		goto out_unlock;
1172 
1173 	ret = wait_on_sem(iommu, data);
1174 
1175 out_unlock:
1176 	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1177 
1178 	return ret;
1179 }
1180 
1181 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1182 {
1183 	struct iommu_cmd cmd;
1184 
1185 	build_inv_dte(&cmd, devid);
1186 
1187 	return iommu_queue_command(iommu, &cmd);
1188 }
1189 
1190 static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
1191 {
1192 	u32 devid;
1193 	u16 last_bdf = iommu->pci_seg->last_bdf;
1194 
1195 	for (devid = 0; devid <= last_bdf; ++devid)
1196 		iommu_flush_dte(iommu, devid);
1197 
1198 	iommu_completion_wait(iommu);
1199 }
1200 
1201 /*
1202  * This function uses heavy locking and may disable irqs for some time. But
1203  * this is no issue because it is only called during resume.
1204  */
1205 static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
1206 {
1207 	u32 dom_id;
1208 	u16 last_bdf = iommu->pci_seg->last_bdf;
1209 
1210 	for (dom_id = 0; dom_id <= last_bdf; ++dom_id) {
1211 		struct iommu_cmd cmd;
1212 		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1213 				      dom_id, 1);
1214 		iommu_queue_command(iommu, &cmd);
1215 	}
1216 
1217 	iommu_completion_wait(iommu);
1218 }
1219 
1220 static void amd_iommu_flush_tlb_domid(struct amd_iommu *iommu, u32 dom_id)
1221 {
1222 	struct iommu_cmd cmd;
1223 
1224 	build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1225 			      dom_id, 1);
1226 	iommu_queue_command(iommu, &cmd);
1227 
1228 	iommu_completion_wait(iommu);
1229 }
1230 
1231 static void amd_iommu_flush_all(struct amd_iommu *iommu)
1232 {
1233 	struct iommu_cmd cmd;
1234 
1235 	build_inv_all(&cmd);
1236 
1237 	iommu_queue_command(iommu, &cmd);
1238 	iommu_completion_wait(iommu);
1239 }
1240 
1241 static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1242 {
1243 	struct iommu_cmd cmd;
1244 
1245 	build_inv_irt(&cmd, devid);
1246 
1247 	iommu_queue_command(iommu, &cmd);
1248 }
1249 
1250 static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
1251 {
1252 	u32 devid;
1253 	u16 last_bdf = iommu->pci_seg->last_bdf;
1254 
1255 	for (devid = 0; devid <= last_bdf; devid++)
1256 		iommu_flush_irt(iommu, devid);
1257 
1258 	iommu_completion_wait(iommu);
1259 }
1260 
1261 void iommu_flush_all_caches(struct amd_iommu *iommu)
1262 {
1263 	if (iommu_feature(iommu, FEATURE_IA)) {
1264 		amd_iommu_flush_all(iommu);
1265 	} else {
1266 		amd_iommu_flush_dte_all(iommu);
1267 		amd_iommu_flush_irt_all(iommu);
1268 		amd_iommu_flush_tlb_all(iommu);
1269 	}
1270 }
1271 
1272 /*
1273  * Command send function for flushing on-device TLB
1274  */
1275 static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1276 			      u64 address, size_t size)
1277 {
1278 	struct amd_iommu *iommu;
1279 	struct iommu_cmd cmd;
1280 	int qdep;
1281 
1282 	qdep     = dev_data->ats.qdep;
1283 	iommu    = rlookup_amd_iommu(dev_data->dev);
1284 	if (!iommu)
1285 		return -EINVAL;
1286 
1287 	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1288 
1289 	return iommu_queue_command(iommu, &cmd);
1290 }
1291 
1292 static int device_flush_dte_alias(struct pci_dev *pdev, u16 alias, void *data)
1293 {
1294 	struct amd_iommu *iommu = data;
1295 
1296 	return iommu_flush_dte(iommu, alias);
1297 }
1298 
1299 /*
1300  * Command send function for invalidating a device table entry
1301  */
1302 static int device_flush_dte(struct iommu_dev_data *dev_data)
1303 {
1304 	struct amd_iommu *iommu;
1305 	struct pci_dev *pdev = NULL;
1306 	struct amd_iommu_pci_seg *pci_seg;
1307 	u16 alias;
1308 	int ret;
1309 
1310 	iommu = rlookup_amd_iommu(dev_data->dev);
1311 	if (!iommu)
1312 		return -EINVAL;
1313 
1314 	if (dev_is_pci(dev_data->dev))
1315 		pdev = to_pci_dev(dev_data->dev);
1316 
1317 	if (pdev)
1318 		ret = pci_for_each_dma_alias(pdev,
1319 					     device_flush_dte_alias, iommu);
1320 	else
1321 		ret = iommu_flush_dte(iommu, dev_data->devid);
1322 	if (ret)
1323 		return ret;
1324 
1325 	pci_seg = iommu->pci_seg;
1326 	alias = pci_seg->alias_table[dev_data->devid];
1327 	if (alias != dev_data->devid) {
1328 		ret = iommu_flush_dte(iommu, alias);
1329 		if (ret)
1330 			return ret;
1331 	}
1332 
1333 	if (dev_data->ats.enabled)
1334 		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1335 
1336 	return ret;
1337 }
1338 
1339 /*
1340  * TLB invalidation function which is called from the mapping functions.
1341  * It invalidates a single PTE if the range to flush is within a single
1342  * page. Otherwise it flushes the whole TLB of the IOMMU.
1343  */
1344 static void __domain_flush_pages(struct protection_domain *domain,
1345 				 u64 address, size_t size, int pde)
1346 {
1347 	struct iommu_dev_data *dev_data;
1348 	struct iommu_cmd cmd;
1349 	int ret = 0, i;
1350 
1351 	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1352 
1353 	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1354 		if (!domain->dev_iommu[i])
1355 			continue;
1356 
1357 		/*
1358 		 * Devices of this domain are behind this IOMMU
1359 		 * We need a TLB flush
1360 		 */
1361 		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1362 	}
1363 
1364 	list_for_each_entry(dev_data, &domain->dev_list, list) {
1365 
1366 		if (!dev_data->ats.enabled)
1367 			continue;
1368 
1369 		ret |= device_flush_iotlb(dev_data, address, size);
1370 	}
1371 
1372 	WARN_ON(ret);
1373 }
1374 
1375 static void domain_flush_pages(struct protection_domain *domain,
1376 			       u64 address, size_t size, int pde)
1377 {
1378 	if (likely(!amd_iommu_np_cache)) {
1379 		__domain_flush_pages(domain, address, size, pde);
1380 		return;
1381 	}
1382 
1383 	/*
1384 	 * When NpCache is on, we infer that we run in a VM and use a vIOMMU.
1385 	 * In such setups it is best to avoid flushes of ranges which are not
1386 	 * naturally aligned, since it would lead to flushes of unmodified
1387 	 * PTEs. Such flushes would require the hypervisor to do more work than
1388 	 * necessary. Therefore, perform repeated flushes of aligned ranges
1389 	 * until you cover the range. Each iteration flushes the smaller
1390 	 * between the natural alignment of the address that we flush and the
1391 	 * greatest naturally aligned region that fits in the range.
1392 	 */
1393 	while (size != 0) {
1394 		int addr_alignment = __ffs(address);
1395 		int size_alignment = __fls(size);
1396 		int min_alignment;
1397 		size_t flush_size;
1398 
1399 		/*
1400 		 * size is always non-zero, but address might be zero, causing
1401 		 * addr_alignment to be negative. As the casting of the
1402 		 * argument in __ffs(address) to long might trim the high bits
1403 		 * of the address on x86-32, cast to long when doing the check.
1404 		 */
1405 		if (likely((unsigned long)address != 0))
1406 			min_alignment = min(addr_alignment, size_alignment);
1407 		else
1408 			min_alignment = size_alignment;
1409 
1410 		flush_size = 1ul << min_alignment;
1411 
1412 		__domain_flush_pages(domain, address, flush_size, pde);
1413 		address += flush_size;
1414 		size -= flush_size;
1415 	}
1416 }
1417 
1418 /* Flush the whole IO/TLB for a given protection domain - including PDE */
1419 void amd_iommu_domain_flush_tlb_pde(struct protection_domain *domain)
1420 {
1421 	domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1422 }
1423 
1424 void amd_iommu_domain_flush_complete(struct protection_domain *domain)
1425 {
1426 	int i;
1427 
1428 	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1429 		if (domain && !domain->dev_iommu[i])
1430 			continue;
1431 
1432 		/*
1433 		 * Devices of this domain are behind this IOMMU
1434 		 * We need to wait for completion of all commands.
1435 		 */
1436 		iommu_completion_wait(amd_iommus[i]);
1437 	}
1438 }
1439 
1440 /* Flush the not present cache if it exists */
1441 static void domain_flush_np_cache(struct protection_domain *domain,
1442 		dma_addr_t iova, size_t size)
1443 {
1444 	if (unlikely(amd_iommu_np_cache)) {
1445 		unsigned long flags;
1446 
1447 		spin_lock_irqsave(&domain->lock, flags);
1448 		domain_flush_pages(domain, iova, size, 1);
1449 		amd_iommu_domain_flush_complete(domain);
1450 		spin_unlock_irqrestore(&domain->lock, flags);
1451 	}
1452 }
1453 
1454 
1455 /*
1456  * This function flushes the DTEs for all devices in domain
1457  */
1458 static void domain_flush_devices(struct protection_domain *domain)
1459 {
1460 	struct iommu_dev_data *dev_data;
1461 
1462 	list_for_each_entry(dev_data, &domain->dev_list, list)
1463 		device_flush_dte(dev_data);
1464 }
1465 
1466 /****************************************************************************
1467  *
1468  * The next functions belong to the domain allocation. A domain is
1469  * allocated for every IOMMU as the default domain. If device isolation
1470  * is enabled, every device get its own domain. The most important thing
1471  * about domains is the page table mapping the DMA address space they
1472  * contain.
1473  *
1474  ****************************************************************************/
1475 
1476 static u16 domain_id_alloc(void)
1477 {
1478 	int id;
1479 
1480 	spin_lock(&pd_bitmap_lock);
1481 	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1482 	BUG_ON(id == 0);
1483 	if (id > 0 && id < MAX_DOMAIN_ID)
1484 		__set_bit(id, amd_iommu_pd_alloc_bitmap);
1485 	else
1486 		id = 0;
1487 	spin_unlock(&pd_bitmap_lock);
1488 
1489 	return id;
1490 }
1491 
1492 static void domain_id_free(int id)
1493 {
1494 	spin_lock(&pd_bitmap_lock);
1495 	if (id > 0 && id < MAX_DOMAIN_ID)
1496 		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
1497 	spin_unlock(&pd_bitmap_lock);
1498 }
1499 
1500 static void free_gcr3_tbl_level1(u64 *tbl)
1501 {
1502 	u64 *ptr;
1503 	int i;
1504 
1505 	for (i = 0; i < 512; ++i) {
1506 		if (!(tbl[i] & GCR3_VALID))
1507 			continue;
1508 
1509 		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1510 
1511 		free_page((unsigned long)ptr);
1512 	}
1513 }
1514 
1515 static void free_gcr3_tbl_level2(u64 *tbl)
1516 {
1517 	u64 *ptr;
1518 	int i;
1519 
1520 	for (i = 0; i < 512; ++i) {
1521 		if (!(tbl[i] & GCR3_VALID))
1522 			continue;
1523 
1524 		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1525 
1526 		free_gcr3_tbl_level1(ptr);
1527 	}
1528 }
1529 
1530 static void free_gcr3_table(struct protection_domain *domain)
1531 {
1532 	if (domain->glx == 2)
1533 		free_gcr3_tbl_level2(domain->gcr3_tbl);
1534 	else if (domain->glx == 1)
1535 		free_gcr3_tbl_level1(domain->gcr3_tbl);
1536 	else
1537 		BUG_ON(domain->glx != 0);
1538 
1539 	free_page((unsigned long)domain->gcr3_tbl);
1540 }
1541 
1542 static void set_dte_entry(struct amd_iommu *iommu, u16 devid,
1543 			  struct protection_domain *domain, bool ats, bool ppr)
1544 {
1545 	u64 pte_root = 0;
1546 	u64 flags = 0;
1547 	u32 old_domid;
1548 	struct dev_table_entry *dev_table = get_dev_table(iommu);
1549 
1550 	if (domain->iop.mode != PAGE_MODE_NONE)
1551 		pte_root = iommu_virt_to_phys(domain->iop.root);
1552 
1553 	pte_root |= (domain->iop.mode & DEV_ENTRY_MODE_MASK)
1554 		    << DEV_ENTRY_MODE_SHIFT;
1555 
1556 	pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V;
1557 
1558 	/*
1559 	 * When SNP is enabled, Only set TV bit when IOMMU
1560 	 * page translation is in use.
1561 	 */
1562 	if (!amd_iommu_snp_en || (domain->id != 0))
1563 		pte_root |= DTE_FLAG_TV;
1564 
1565 	flags = dev_table[devid].data[1];
1566 
1567 	if (ats)
1568 		flags |= DTE_FLAG_IOTLB;
1569 
1570 	if (ppr) {
1571 		if (iommu_feature(iommu, FEATURE_EPHSUP))
1572 			pte_root |= 1ULL << DEV_ENTRY_PPR;
1573 	}
1574 
1575 	if (domain->flags & PD_IOMMUV2_MASK) {
1576 		u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl);
1577 		u64 glx  = domain->glx;
1578 		u64 tmp;
1579 
1580 		pte_root |= DTE_FLAG_GV;
1581 		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
1582 
1583 		/* First mask out possible old values for GCR3 table */
1584 		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
1585 		flags    &= ~tmp;
1586 
1587 		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
1588 		flags    &= ~tmp;
1589 
1590 		/* Encode GCR3 table into DTE */
1591 		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
1592 		pte_root |= tmp;
1593 
1594 		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
1595 		flags    |= tmp;
1596 
1597 		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
1598 		flags    |= tmp;
1599 	}
1600 
1601 	flags &= ~DEV_DOMID_MASK;
1602 	flags |= domain->id;
1603 
1604 	old_domid = dev_table[devid].data[1] & DEV_DOMID_MASK;
1605 	dev_table[devid].data[1]  = flags;
1606 	dev_table[devid].data[0]  = pte_root;
1607 
1608 	/*
1609 	 * A kdump kernel might be replacing a domain ID that was copied from
1610 	 * the previous kernel--if so, it needs to flush the translation cache
1611 	 * entries for the old domain ID that is being overwritten
1612 	 */
1613 	if (old_domid) {
1614 		amd_iommu_flush_tlb_domid(iommu, old_domid);
1615 	}
1616 }
1617 
1618 static void clear_dte_entry(struct amd_iommu *iommu, u16 devid)
1619 {
1620 	struct dev_table_entry *dev_table = get_dev_table(iommu);
1621 
1622 	/* remove entry from the device table seen by the hardware */
1623 	dev_table[devid].data[0]  = DTE_FLAG_V;
1624 
1625 	if (!amd_iommu_snp_en)
1626 		dev_table[devid].data[0] |= DTE_FLAG_TV;
1627 
1628 	dev_table[devid].data[1] &= DTE_FLAG_MASK;
1629 
1630 	amd_iommu_apply_erratum_63(iommu, devid);
1631 }
1632 
1633 static void do_attach(struct iommu_dev_data *dev_data,
1634 		      struct protection_domain *domain)
1635 {
1636 	struct amd_iommu *iommu;
1637 	bool ats;
1638 
1639 	iommu = rlookup_amd_iommu(dev_data->dev);
1640 	if (!iommu)
1641 		return;
1642 	ats   = dev_data->ats.enabled;
1643 
1644 	/* Update data structures */
1645 	dev_data->domain = domain;
1646 	list_add(&dev_data->list, &domain->dev_list);
1647 
1648 	/* Do reference counting */
1649 	domain->dev_iommu[iommu->index] += 1;
1650 	domain->dev_cnt                 += 1;
1651 
1652 	/* Update device table */
1653 	set_dte_entry(iommu, dev_data->devid, domain,
1654 		      ats, dev_data->iommu_v2);
1655 	clone_aliases(iommu, dev_data->dev);
1656 
1657 	device_flush_dte(dev_data);
1658 }
1659 
1660 static void do_detach(struct iommu_dev_data *dev_data)
1661 {
1662 	struct protection_domain *domain = dev_data->domain;
1663 	struct amd_iommu *iommu;
1664 
1665 	iommu = rlookup_amd_iommu(dev_data->dev);
1666 	if (!iommu)
1667 		return;
1668 
1669 	/* Update data structures */
1670 	dev_data->domain = NULL;
1671 	list_del(&dev_data->list);
1672 	clear_dte_entry(iommu, dev_data->devid);
1673 	clone_aliases(iommu, dev_data->dev);
1674 
1675 	/* Flush the DTE entry */
1676 	device_flush_dte(dev_data);
1677 
1678 	/* Flush IOTLB */
1679 	amd_iommu_domain_flush_tlb_pde(domain);
1680 
1681 	/* Wait for the flushes to finish */
1682 	amd_iommu_domain_flush_complete(domain);
1683 
1684 	/* decrease reference counters - needs to happen after the flushes */
1685 	domain->dev_iommu[iommu->index] -= 1;
1686 	domain->dev_cnt                 -= 1;
1687 }
1688 
1689 static void pdev_iommuv2_disable(struct pci_dev *pdev)
1690 {
1691 	pci_disable_ats(pdev);
1692 	pci_disable_pri(pdev);
1693 	pci_disable_pasid(pdev);
1694 }
1695 
1696 static int pdev_iommuv2_enable(struct pci_dev *pdev)
1697 {
1698 	int ret;
1699 
1700 	/* Only allow access to user-accessible pages */
1701 	ret = pci_enable_pasid(pdev, 0);
1702 	if (ret)
1703 		goto out_err;
1704 
1705 	/* First reset the PRI state of the device */
1706 	ret = pci_reset_pri(pdev);
1707 	if (ret)
1708 		goto out_err;
1709 
1710 	/* Enable PRI */
1711 	/* FIXME: Hardcode number of outstanding requests for now */
1712 	ret = pci_enable_pri(pdev, 32);
1713 	if (ret)
1714 		goto out_err;
1715 
1716 	ret = pci_enable_ats(pdev, PAGE_SHIFT);
1717 	if (ret)
1718 		goto out_err;
1719 
1720 	return 0;
1721 
1722 out_err:
1723 	pci_disable_pri(pdev);
1724 	pci_disable_pasid(pdev);
1725 
1726 	return ret;
1727 }
1728 
1729 /*
1730  * If a device is not yet associated with a domain, this function makes the
1731  * device visible in the domain
1732  */
1733 static int attach_device(struct device *dev,
1734 			 struct protection_domain *domain)
1735 {
1736 	struct iommu_dev_data *dev_data;
1737 	struct pci_dev *pdev;
1738 	unsigned long flags;
1739 	int ret;
1740 
1741 	spin_lock_irqsave(&domain->lock, flags);
1742 
1743 	dev_data = dev_iommu_priv_get(dev);
1744 
1745 	spin_lock(&dev_data->lock);
1746 
1747 	ret = -EBUSY;
1748 	if (dev_data->domain != NULL)
1749 		goto out;
1750 
1751 	if (!dev_is_pci(dev))
1752 		goto skip_ats_check;
1753 
1754 	pdev = to_pci_dev(dev);
1755 	if (domain->flags & PD_IOMMUV2_MASK) {
1756 		struct iommu_domain *def_domain = iommu_get_dma_domain(dev);
1757 
1758 		ret = -EINVAL;
1759 		if (def_domain->type != IOMMU_DOMAIN_IDENTITY)
1760 			goto out;
1761 
1762 		if (dev_data->iommu_v2) {
1763 			if (pdev_iommuv2_enable(pdev) != 0)
1764 				goto out;
1765 
1766 			dev_data->ats.enabled = true;
1767 			dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
1768 			dev_data->pri_tlp     = pci_prg_resp_pasid_required(pdev);
1769 		}
1770 	} else if (amd_iommu_iotlb_sup &&
1771 		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
1772 		dev_data->ats.enabled = true;
1773 		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
1774 	}
1775 
1776 skip_ats_check:
1777 	ret = 0;
1778 
1779 	do_attach(dev_data, domain);
1780 
1781 	/*
1782 	 * We might boot into a crash-kernel here. The crashed kernel
1783 	 * left the caches in the IOMMU dirty. So we have to flush
1784 	 * here to evict all dirty stuff.
1785 	 */
1786 	amd_iommu_domain_flush_tlb_pde(domain);
1787 
1788 	amd_iommu_domain_flush_complete(domain);
1789 
1790 out:
1791 	spin_unlock(&dev_data->lock);
1792 
1793 	spin_unlock_irqrestore(&domain->lock, flags);
1794 
1795 	return ret;
1796 }
1797 
1798 /*
1799  * Removes a device from a protection domain (with devtable_lock held)
1800  */
1801 static void detach_device(struct device *dev)
1802 {
1803 	struct protection_domain *domain;
1804 	struct iommu_dev_data *dev_data;
1805 	unsigned long flags;
1806 
1807 	dev_data = dev_iommu_priv_get(dev);
1808 	domain   = dev_data->domain;
1809 
1810 	spin_lock_irqsave(&domain->lock, flags);
1811 
1812 	spin_lock(&dev_data->lock);
1813 
1814 	/*
1815 	 * First check if the device is still attached. It might already
1816 	 * be detached from its domain because the generic
1817 	 * iommu_detach_group code detached it and we try again here in
1818 	 * our alias handling.
1819 	 */
1820 	if (WARN_ON(!dev_data->domain))
1821 		goto out;
1822 
1823 	do_detach(dev_data);
1824 
1825 	if (!dev_is_pci(dev))
1826 		goto out;
1827 
1828 	if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
1829 		pdev_iommuv2_disable(to_pci_dev(dev));
1830 	else if (dev_data->ats.enabled)
1831 		pci_disable_ats(to_pci_dev(dev));
1832 
1833 	dev_data->ats.enabled = false;
1834 
1835 out:
1836 	spin_unlock(&dev_data->lock);
1837 
1838 	spin_unlock_irqrestore(&domain->lock, flags);
1839 }
1840 
1841 static struct iommu_device *amd_iommu_probe_device(struct device *dev)
1842 {
1843 	struct iommu_device *iommu_dev;
1844 	struct amd_iommu *iommu;
1845 	int ret;
1846 
1847 	if (!check_device(dev))
1848 		return ERR_PTR(-ENODEV);
1849 
1850 	iommu = rlookup_amd_iommu(dev);
1851 	if (!iommu)
1852 		return ERR_PTR(-ENODEV);
1853 
1854 	if (dev_iommu_priv_get(dev))
1855 		return &iommu->iommu;
1856 
1857 	ret = iommu_init_device(iommu, dev);
1858 	if (ret) {
1859 		if (ret != -ENOTSUPP)
1860 			dev_err(dev, "Failed to initialize - trying to proceed anyway\n");
1861 		iommu_dev = ERR_PTR(ret);
1862 		iommu_ignore_device(iommu, dev);
1863 	} else {
1864 		amd_iommu_set_pci_msi_domain(dev, iommu);
1865 		iommu_dev = &iommu->iommu;
1866 	}
1867 
1868 	iommu_completion_wait(iommu);
1869 
1870 	return iommu_dev;
1871 }
1872 
1873 static void amd_iommu_probe_finalize(struct device *dev)
1874 {
1875 	/* Domains are initialized for this device - have a look what we ended up with */
1876 	set_dma_ops(dev, NULL);
1877 	iommu_setup_dma_ops(dev, 0, U64_MAX);
1878 }
1879 
1880 static void amd_iommu_release_device(struct device *dev)
1881 {
1882 	struct amd_iommu *iommu;
1883 
1884 	if (!check_device(dev))
1885 		return;
1886 
1887 	iommu = rlookup_amd_iommu(dev);
1888 	if (!iommu)
1889 		return;
1890 
1891 	amd_iommu_uninit_device(dev);
1892 	iommu_completion_wait(iommu);
1893 }
1894 
1895 static struct iommu_group *amd_iommu_device_group(struct device *dev)
1896 {
1897 	if (dev_is_pci(dev))
1898 		return pci_device_group(dev);
1899 
1900 	return acpihid_device_group(dev);
1901 }
1902 
1903 /*****************************************************************************
1904  *
1905  * The next functions belong to the dma_ops mapping/unmapping code.
1906  *
1907  *****************************************************************************/
1908 
1909 static void update_device_table(struct protection_domain *domain)
1910 {
1911 	struct iommu_dev_data *dev_data;
1912 
1913 	list_for_each_entry(dev_data, &domain->dev_list, list) {
1914 		struct amd_iommu *iommu = rlookup_amd_iommu(dev_data->dev);
1915 
1916 		if (!iommu)
1917 			continue;
1918 		set_dte_entry(iommu, dev_data->devid, domain,
1919 			      dev_data->ats.enabled, dev_data->iommu_v2);
1920 		clone_aliases(iommu, dev_data->dev);
1921 	}
1922 }
1923 
1924 void amd_iommu_update_and_flush_device_table(struct protection_domain *domain)
1925 {
1926 	update_device_table(domain);
1927 	domain_flush_devices(domain);
1928 }
1929 
1930 void amd_iommu_domain_update(struct protection_domain *domain)
1931 {
1932 	/* Update device table */
1933 	amd_iommu_update_and_flush_device_table(domain);
1934 
1935 	/* Flush domain TLB(s) and wait for completion */
1936 	amd_iommu_domain_flush_tlb_pde(domain);
1937 	amd_iommu_domain_flush_complete(domain);
1938 }
1939 
1940 int __init amd_iommu_init_api(void)
1941 {
1942 	int err;
1943 
1944 	err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
1945 	if (err)
1946 		return err;
1947 #ifdef CONFIG_ARM_AMBA
1948 	err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
1949 	if (err)
1950 		return err;
1951 #endif
1952 	err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
1953 	if (err)
1954 		return err;
1955 
1956 	return 0;
1957 }
1958 
1959 /*****************************************************************************
1960  *
1961  * The following functions belong to the exported interface of AMD IOMMU
1962  *
1963  * This interface allows access to lower level functions of the IOMMU
1964  * like protection domain handling and assignement of devices to domains
1965  * which is not possible with the dma_ops interface.
1966  *
1967  *****************************************************************************/
1968 
1969 static void cleanup_domain(struct protection_domain *domain)
1970 {
1971 	struct iommu_dev_data *entry;
1972 	unsigned long flags;
1973 
1974 	spin_lock_irqsave(&domain->lock, flags);
1975 
1976 	while (!list_empty(&domain->dev_list)) {
1977 		entry = list_first_entry(&domain->dev_list,
1978 					 struct iommu_dev_data, list);
1979 		BUG_ON(!entry->domain);
1980 		do_detach(entry);
1981 	}
1982 
1983 	spin_unlock_irqrestore(&domain->lock, flags);
1984 }
1985 
1986 static void protection_domain_free(struct protection_domain *domain)
1987 {
1988 	if (!domain)
1989 		return;
1990 
1991 	if (domain->id)
1992 		domain_id_free(domain->id);
1993 
1994 	if (domain->iop.pgtbl_cfg.tlb)
1995 		free_io_pgtable_ops(&domain->iop.iop.ops);
1996 
1997 	kfree(domain);
1998 }
1999 
2000 static int protection_domain_init_v1(struct protection_domain *domain, int mode)
2001 {
2002 	u64 *pt_root = NULL;
2003 
2004 	BUG_ON(mode < PAGE_MODE_NONE || mode > PAGE_MODE_6_LEVEL);
2005 
2006 	spin_lock_init(&domain->lock);
2007 	domain->id = domain_id_alloc();
2008 	if (!domain->id)
2009 		return -ENOMEM;
2010 	INIT_LIST_HEAD(&domain->dev_list);
2011 
2012 	if (mode != PAGE_MODE_NONE) {
2013 		pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2014 		if (!pt_root)
2015 			return -ENOMEM;
2016 	}
2017 
2018 	amd_iommu_domain_set_pgtable(domain, pt_root, mode);
2019 
2020 	return 0;
2021 }
2022 
2023 static struct protection_domain *protection_domain_alloc(unsigned int type)
2024 {
2025 	struct io_pgtable_ops *pgtbl_ops;
2026 	struct protection_domain *domain;
2027 	int pgtable = amd_iommu_pgtable;
2028 	int mode = DEFAULT_PGTABLE_LEVEL;
2029 	int ret;
2030 
2031 	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2032 	if (!domain)
2033 		return NULL;
2034 
2035 	/*
2036 	 * Force IOMMU v1 page table when iommu=pt and
2037 	 * when allocating domain for pass-through devices.
2038 	 */
2039 	if (type == IOMMU_DOMAIN_IDENTITY) {
2040 		pgtable = AMD_IOMMU_V1;
2041 		mode = PAGE_MODE_NONE;
2042 	} else if (type == IOMMU_DOMAIN_UNMANAGED) {
2043 		pgtable = AMD_IOMMU_V1;
2044 	}
2045 
2046 	switch (pgtable) {
2047 	case AMD_IOMMU_V1:
2048 		ret = protection_domain_init_v1(domain, mode);
2049 		break;
2050 	default:
2051 		ret = -EINVAL;
2052 	}
2053 
2054 	if (ret)
2055 		goto out_err;
2056 
2057 	pgtbl_ops = alloc_io_pgtable_ops(pgtable, &domain->iop.pgtbl_cfg, domain);
2058 	if (!pgtbl_ops)
2059 		goto out_err;
2060 
2061 	return domain;
2062 out_err:
2063 	kfree(domain);
2064 	return NULL;
2065 }
2066 
2067 static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2068 {
2069 	struct protection_domain *domain;
2070 
2071 	/*
2072 	 * Since DTE[Mode]=0 is prohibited on SNP-enabled system,
2073 	 * default to use IOMMU_DOMAIN_DMA[_FQ].
2074 	 */
2075 	if (amd_iommu_snp_en && (type == IOMMU_DOMAIN_IDENTITY))
2076 		return NULL;
2077 
2078 	domain = protection_domain_alloc(type);
2079 	if (!domain)
2080 		return NULL;
2081 
2082 	domain->domain.geometry.aperture_start = 0;
2083 	domain->domain.geometry.aperture_end   = ~0ULL;
2084 	domain->domain.geometry.force_aperture = true;
2085 
2086 	return &domain->domain;
2087 }
2088 
2089 static void amd_iommu_domain_free(struct iommu_domain *dom)
2090 {
2091 	struct protection_domain *domain;
2092 
2093 	domain = to_pdomain(dom);
2094 
2095 	if (domain->dev_cnt > 0)
2096 		cleanup_domain(domain);
2097 
2098 	BUG_ON(domain->dev_cnt != 0);
2099 
2100 	if (!dom)
2101 		return;
2102 
2103 	if (domain->flags & PD_IOMMUV2_MASK)
2104 		free_gcr3_table(domain);
2105 
2106 	protection_domain_free(domain);
2107 }
2108 
2109 static void amd_iommu_detach_device(struct iommu_domain *dom,
2110 				    struct device *dev)
2111 {
2112 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2113 	struct amd_iommu *iommu;
2114 
2115 	if (!check_device(dev))
2116 		return;
2117 
2118 	if (dev_data->domain != NULL)
2119 		detach_device(dev);
2120 
2121 	iommu = rlookup_amd_iommu(dev);
2122 	if (!iommu)
2123 		return;
2124 
2125 #ifdef CONFIG_IRQ_REMAP
2126 	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
2127 	    (dom->type == IOMMU_DOMAIN_UNMANAGED))
2128 		dev_data->use_vapic = 0;
2129 #endif
2130 
2131 	iommu_completion_wait(iommu);
2132 }
2133 
2134 static int amd_iommu_attach_device(struct iommu_domain *dom,
2135 				   struct device *dev)
2136 {
2137 	struct protection_domain *domain = to_pdomain(dom);
2138 	struct iommu_dev_data *dev_data;
2139 	struct amd_iommu *iommu;
2140 	int ret;
2141 
2142 	if (!check_device(dev))
2143 		return -EINVAL;
2144 
2145 	dev_data = dev_iommu_priv_get(dev);
2146 	dev_data->defer_attach = false;
2147 
2148 	iommu = rlookup_amd_iommu(dev);
2149 	if (!iommu)
2150 		return -EINVAL;
2151 
2152 	if (dev_data->domain)
2153 		detach_device(dev);
2154 
2155 	ret = attach_device(dev, domain);
2156 
2157 #ifdef CONFIG_IRQ_REMAP
2158 	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
2159 		if (dom->type == IOMMU_DOMAIN_UNMANAGED)
2160 			dev_data->use_vapic = 1;
2161 		else
2162 			dev_data->use_vapic = 0;
2163 	}
2164 #endif
2165 
2166 	iommu_completion_wait(iommu);
2167 
2168 	return ret;
2169 }
2170 
2171 static void amd_iommu_iotlb_sync_map(struct iommu_domain *dom,
2172 				     unsigned long iova, size_t size)
2173 {
2174 	struct protection_domain *domain = to_pdomain(dom);
2175 	struct io_pgtable_ops *ops = &domain->iop.iop.ops;
2176 
2177 	if (ops->map)
2178 		domain_flush_np_cache(domain, iova, size);
2179 }
2180 
2181 static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
2182 			 phys_addr_t paddr, size_t page_size, int iommu_prot,
2183 			 gfp_t gfp)
2184 {
2185 	struct protection_domain *domain = to_pdomain(dom);
2186 	struct io_pgtable_ops *ops = &domain->iop.iop.ops;
2187 	int prot = 0;
2188 	int ret = -EINVAL;
2189 
2190 	if ((amd_iommu_pgtable == AMD_IOMMU_V1) &&
2191 	    (domain->iop.mode == PAGE_MODE_NONE))
2192 		return -EINVAL;
2193 
2194 	if (iommu_prot & IOMMU_READ)
2195 		prot |= IOMMU_PROT_IR;
2196 	if (iommu_prot & IOMMU_WRITE)
2197 		prot |= IOMMU_PROT_IW;
2198 
2199 	if (ops->map)
2200 		ret = ops->map(ops, iova, paddr, page_size, prot, gfp);
2201 
2202 	return ret;
2203 }
2204 
2205 static void amd_iommu_iotlb_gather_add_page(struct iommu_domain *domain,
2206 					    struct iommu_iotlb_gather *gather,
2207 					    unsigned long iova, size_t size)
2208 {
2209 	/*
2210 	 * AMD's IOMMU can flush as many pages as necessary in a single flush.
2211 	 * Unless we run in a virtual machine, which can be inferred according
2212 	 * to whether "non-present cache" is on, it is probably best to prefer
2213 	 * (potentially) too extensive TLB flushing (i.e., more misses) over
2214 	 * mutliple TLB flushes (i.e., more flushes). For virtual machines the
2215 	 * hypervisor needs to synchronize the host IOMMU PTEs with those of
2216 	 * the guest, and the trade-off is different: unnecessary TLB flushes
2217 	 * should be avoided.
2218 	 */
2219 	if (amd_iommu_np_cache &&
2220 	    iommu_iotlb_gather_is_disjoint(gather, iova, size))
2221 		iommu_iotlb_sync(domain, gather);
2222 
2223 	iommu_iotlb_gather_add_range(gather, iova, size);
2224 }
2225 
2226 static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
2227 			      size_t page_size,
2228 			      struct iommu_iotlb_gather *gather)
2229 {
2230 	struct protection_domain *domain = to_pdomain(dom);
2231 	struct io_pgtable_ops *ops = &domain->iop.iop.ops;
2232 	size_t r;
2233 
2234 	if ((amd_iommu_pgtable == AMD_IOMMU_V1) &&
2235 	    (domain->iop.mode == PAGE_MODE_NONE))
2236 		return 0;
2237 
2238 	r = (ops->unmap) ? ops->unmap(ops, iova, page_size, gather) : 0;
2239 
2240 	amd_iommu_iotlb_gather_add_page(dom, gather, iova, page_size);
2241 
2242 	return r;
2243 }
2244 
2245 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2246 					  dma_addr_t iova)
2247 {
2248 	struct protection_domain *domain = to_pdomain(dom);
2249 	struct io_pgtable_ops *ops = &domain->iop.iop.ops;
2250 
2251 	return ops->iova_to_phys(ops, iova);
2252 }
2253 
2254 static bool amd_iommu_capable(enum iommu_cap cap)
2255 {
2256 	switch (cap) {
2257 	case IOMMU_CAP_CACHE_COHERENCY:
2258 		return true;
2259 	case IOMMU_CAP_INTR_REMAP:
2260 		return (irq_remapping_enabled == 1);
2261 	case IOMMU_CAP_NOEXEC:
2262 		return false;
2263 	case IOMMU_CAP_PRE_BOOT_PROTECTION:
2264 		return amdr_ivrs_remap_support;
2265 	default:
2266 		break;
2267 	}
2268 
2269 	return false;
2270 }
2271 
2272 static void amd_iommu_get_resv_regions(struct device *dev,
2273 				       struct list_head *head)
2274 {
2275 	struct iommu_resv_region *region;
2276 	struct unity_map_entry *entry;
2277 	struct amd_iommu *iommu;
2278 	struct amd_iommu_pci_seg *pci_seg;
2279 	int devid, sbdf;
2280 
2281 	sbdf = get_device_sbdf_id(dev);
2282 	if (sbdf < 0)
2283 		return;
2284 
2285 	devid = PCI_SBDF_TO_DEVID(sbdf);
2286 	iommu = rlookup_amd_iommu(dev);
2287 	if (!iommu)
2288 		return;
2289 	pci_seg = iommu->pci_seg;
2290 
2291 	list_for_each_entry(entry, &pci_seg->unity_map, list) {
2292 		int type, prot = 0;
2293 		size_t length;
2294 
2295 		if (devid < entry->devid_start || devid > entry->devid_end)
2296 			continue;
2297 
2298 		type   = IOMMU_RESV_DIRECT;
2299 		length = entry->address_end - entry->address_start;
2300 		if (entry->prot & IOMMU_PROT_IR)
2301 			prot |= IOMMU_READ;
2302 		if (entry->prot & IOMMU_PROT_IW)
2303 			prot |= IOMMU_WRITE;
2304 		if (entry->prot & IOMMU_UNITY_MAP_FLAG_EXCL_RANGE)
2305 			/* Exclusion range */
2306 			type = IOMMU_RESV_RESERVED;
2307 
2308 		region = iommu_alloc_resv_region(entry->address_start,
2309 						 length, prot, type);
2310 		if (!region) {
2311 			dev_err(dev, "Out of memory allocating dm-regions\n");
2312 			return;
2313 		}
2314 		list_add_tail(&region->list, head);
2315 	}
2316 
2317 	region = iommu_alloc_resv_region(MSI_RANGE_START,
2318 					 MSI_RANGE_END - MSI_RANGE_START + 1,
2319 					 0, IOMMU_RESV_MSI);
2320 	if (!region)
2321 		return;
2322 	list_add_tail(&region->list, head);
2323 
2324 	region = iommu_alloc_resv_region(HT_RANGE_START,
2325 					 HT_RANGE_END - HT_RANGE_START + 1,
2326 					 0, IOMMU_RESV_RESERVED);
2327 	if (!region)
2328 		return;
2329 	list_add_tail(&region->list, head);
2330 }
2331 
2332 bool amd_iommu_is_attach_deferred(struct device *dev)
2333 {
2334 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2335 
2336 	return dev_data->defer_attach;
2337 }
2338 EXPORT_SYMBOL_GPL(amd_iommu_is_attach_deferred);
2339 
2340 static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain)
2341 {
2342 	struct protection_domain *dom = to_pdomain(domain);
2343 	unsigned long flags;
2344 
2345 	spin_lock_irqsave(&dom->lock, flags);
2346 	amd_iommu_domain_flush_tlb_pde(dom);
2347 	amd_iommu_domain_flush_complete(dom);
2348 	spin_unlock_irqrestore(&dom->lock, flags);
2349 }
2350 
2351 static void amd_iommu_iotlb_sync(struct iommu_domain *domain,
2352 				 struct iommu_iotlb_gather *gather)
2353 {
2354 	struct protection_domain *dom = to_pdomain(domain);
2355 	unsigned long flags;
2356 
2357 	spin_lock_irqsave(&dom->lock, flags);
2358 	domain_flush_pages(dom, gather->start, gather->end - gather->start, 1);
2359 	amd_iommu_domain_flush_complete(dom);
2360 	spin_unlock_irqrestore(&dom->lock, flags);
2361 }
2362 
2363 static int amd_iommu_def_domain_type(struct device *dev)
2364 {
2365 	struct iommu_dev_data *dev_data;
2366 
2367 	dev_data = dev_iommu_priv_get(dev);
2368 	if (!dev_data)
2369 		return 0;
2370 
2371 	/*
2372 	 * Do not identity map IOMMUv2 capable devices when memory encryption is
2373 	 * active, because some of those devices (AMD GPUs) don't have the
2374 	 * encryption bit in their DMA-mask and require remapping.
2375 	 */
2376 	if (!cc_platform_has(CC_ATTR_MEM_ENCRYPT) && dev_data->iommu_v2)
2377 		return IOMMU_DOMAIN_IDENTITY;
2378 
2379 	return 0;
2380 }
2381 
2382 static bool amd_iommu_enforce_cache_coherency(struct iommu_domain *domain)
2383 {
2384 	/* IOMMU_PTE_FC is always set */
2385 	return true;
2386 }
2387 
2388 const struct iommu_ops amd_iommu_ops = {
2389 	.capable = amd_iommu_capable,
2390 	.domain_alloc = amd_iommu_domain_alloc,
2391 	.probe_device = amd_iommu_probe_device,
2392 	.release_device = amd_iommu_release_device,
2393 	.probe_finalize = amd_iommu_probe_finalize,
2394 	.device_group = amd_iommu_device_group,
2395 	.get_resv_regions = amd_iommu_get_resv_regions,
2396 	.is_attach_deferred = amd_iommu_is_attach_deferred,
2397 	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
2398 	.def_domain_type = amd_iommu_def_domain_type,
2399 	.default_domain_ops = &(const struct iommu_domain_ops) {
2400 		.attach_dev	= amd_iommu_attach_device,
2401 		.detach_dev	= amd_iommu_detach_device,
2402 		.map		= amd_iommu_map,
2403 		.unmap		= amd_iommu_unmap,
2404 		.iotlb_sync_map	= amd_iommu_iotlb_sync_map,
2405 		.iova_to_phys	= amd_iommu_iova_to_phys,
2406 		.flush_iotlb_all = amd_iommu_flush_iotlb_all,
2407 		.iotlb_sync	= amd_iommu_iotlb_sync,
2408 		.free		= amd_iommu_domain_free,
2409 		.enforce_cache_coherency = amd_iommu_enforce_cache_coherency,
2410 	}
2411 };
2412 
2413 /*****************************************************************************
2414  *
2415  * The next functions do a basic initialization of IOMMU for pass through
2416  * mode
2417  *
2418  * In passthrough mode the IOMMU is initialized and enabled but not used for
2419  * DMA-API translation.
2420  *
2421  *****************************************************************************/
2422 
2423 /* IOMMUv2 specific functions */
2424 int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
2425 {
2426 	return atomic_notifier_chain_register(&ppr_notifier, nb);
2427 }
2428 EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
2429 
2430 int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
2431 {
2432 	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
2433 }
2434 EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
2435 
2436 void amd_iommu_domain_direct_map(struct iommu_domain *dom)
2437 {
2438 	struct protection_domain *domain = to_pdomain(dom);
2439 	unsigned long flags;
2440 
2441 	spin_lock_irqsave(&domain->lock, flags);
2442 
2443 	if (domain->iop.pgtbl_cfg.tlb)
2444 		free_io_pgtable_ops(&domain->iop.iop.ops);
2445 
2446 	spin_unlock_irqrestore(&domain->lock, flags);
2447 }
2448 EXPORT_SYMBOL(amd_iommu_domain_direct_map);
2449 
2450 int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
2451 {
2452 	struct protection_domain *domain = to_pdomain(dom);
2453 	unsigned long flags;
2454 	int levels, ret;
2455 
2456 	/* Number of GCR3 table levels required */
2457 	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
2458 		levels += 1;
2459 
2460 	if (levels > amd_iommu_max_glx_val)
2461 		return -EINVAL;
2462 
2463 	spin_lock_irqsave(&domain->lock, flags);
2464 
2465 	/*
2466 	 * Save us all sanity checks whether devices already in the
2467 	 * domain support IOMMUv2. Just force that the domain has no
2468 	 * devices attached when it is switched into IOMMUv2 mode.
2469 	 */
2470 	ret = -EBUSY;
2471 	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
2472 		goto out;
2473 
2474 	ret = -ENOMEM;
2475 	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
2476 	if (domain->gcr3_tbl == NULL)
2477 		goto out;
2478 
2479 	domain->glx      = levels;
2480 	domain->flags   |= PD_IOMMUV2_MASK;
2481 
2482 	amd_iommu_domain_update(domain);
2483 
2484 	ret = 0;
2485 
2486 out:
2487 	spin_unlock_irqrestore(&domain->lock, flags);
2488 
2489 	return ret;
2490 }
2491 EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
2492 
2493 static int __flush_pasid(struct protection_domain *domain, u32 pasid,
2494 			 u64 address, bool size)
2495 {
2496 	struct iommu_dev_data *dev_data;
2497 	struct iommu_cmd cmd;
2498 	int i, ret;
2499 
2500 	if (!(domain->flags & PD_IOMMUV2_MASK))
2501 		return -EINVAL;
2502 
2503 	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
2504 
2505 	/*
2506 	 * IOMMU TLB needs to be flushed before Device TLB to
2507 	 * prevent device TLB refill from IOMMU TLB
2508 	 */
2509 	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
2510 		if (domain->dev_iommu[i] == 0)
2511 			continue;
2512 
2513 		ret = iommu_queue_command(amd_iommus[i], &cmd);
2514 		if (ret != 0)
2515 			goto out;
2516 	}
2517 
2518 	/* Wait until IOMMU TLB flushes are complete */
2519 	amd_iommu_domain_flush_complete(domain);
2520 
2521 	/* Now flush device TLBs */
2522 	list_for_each_entry(dev_data, &domain->dev_list, list) {
2523 		struct amd_iommu *iommu;
2524 		int qdep;
2525 
2526 		/*
2527 		   There might be non-IOMMUv2 capable devices in an IOMMUv2
2528 		 * domain.
2529 		 */
2530 		if (!dev_data->ats.enabled)
2531 			continue;
2532 
2533 		qdep  = dev_data->ats.qdep;
2534 		iommu = rlookup_amd_iommu(dev_data->dev);
2535 		if (!iommu)
2536 			continue;
2537 		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
2538 				      qdep, address, size);
2539 
2540 		ret = iommu_queue_command(iommu, &cmd);
2541 		if (ret != 0)
2542 			goto out;
2543 	}
2544 
2545 	/* Wait until all device TLBs are flushed */
2546 	amd_iommu_domain_flush_complete(domain);
2547 
2548 	ret = 0;
2549 
2550 out:
2551 
2552 	return ret;
2553 }
2554 
2555 static int __amd_iommu_flush_page(struct protection_domain *domain, u32 pasid,
2556 				  u64 address)
2557 {
2558 	return __flush_pasid(domain, pasid, address, false);
2559 }
2560 
2561 int amd_iommu_flush_page(struct iommu_domain *dom, u32 pasid,
2562 			 u64 address)
2563 {
2564 	struct protection_domain *domain = to_pdomain(dom);
2565 	unsigned long flags;
2566 	int ret;
2567 
2568 	spin_lock_irqsave(&domain->lock, flags);
2569 	ret = __amd_iommu_flush_page(domain, pasid, address);
2570 	spin_unlock_irqrestore(&domain->lock, flags);
2571 
2572 	return ret;
2573 }
2574 EXPORT_SYMBOL(amd_iommu_flush_page);
2575 
2576 static int __amd_iommu_flush_tlb(struct protection_domain *domain, u32 pasid)
2577 {
2578 	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
2579 			     true);
2580 }
2581 
2582 int amd_iommu_flush_tlb(struct iommu_domain *dom, u32 pasid)
2583 {
2584 	struct protection_domain *domain = to_pdomain(dom);
2585 	unsigned long flags;
2586 	int ret;
2587 
2588 	spin_lock_irqsave(&domain->lock, flags);
2589 	ret = __amd_iommu_flush_tlb(domain, pasid);
2590 	spin_unlock_irqrestore(&domain->lock, flags);
2591 
2592 	return ret;
2593 }
2594 EXPORT_SYMBOL(amd_iommu_flush_tlb);
2595 
2596 static u64 *__get_gcr3_pte(u64 *root, int level, u32 pasid, bool alloc)
2597 {
2598 	int index;
2599 	u64 *pte;
2600 
2601 	while (true) {
2602 
2603 		index = (pasid >> (9 * level)) & 0x1ff;
2604 		pte   = &root[index];
2605 
2606 		if (level == 0)
2607 			break;
2608 
2609 		if (!(*pte & GCR3_VALID)) {
2610 			if (!alloc)
2611 				return NULL;
2612 
2613 			root = (void *)get_zeroed_page(GFP_ATOMIC);
2614 			if (root == NULL)
2615 				return NULL;
2616 
2617 			*pte = iommu_virt_to_phys(root) | GCR3_VALID;
2618 		}
2619 
2620 		root = iommu_phys_to_virt(*pte & PAGE_MASK);
2621 
2622 		level -= 1;
2623 	}
2624 
2625 	return pte;
2626 }
2627 
2628 static int __set_gcr3(struct protection_domain *domain, u32 pasid,
2629 		      unsigned long cr3)
2630 {
2631 	u64 *pte;
2632 
2633 	if (domain->iop.mode != PAGE_MODE_NONE)
2634 		return -EINVAL;
2635 
2636 	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
2637 	if (pte == NULL)
2638 		return -ENOMEM;
2639 
2640 	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;
2641 
2642 	return __amd_iommu_flush_tlb(domain, pasid);
2643 }
2644 
2645 static int __clear_gcr3(struct protection_domain *domain, u32 pasid)
2646 {
2647 	u64 *pte;
2648 
2649 	if (domain->iop.mode != PAGE_MODE_NONE)
2650 		return -EINVAL;
2651 
2652 	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
2653 	if (pte == NULL)
2654 		return 0;
2655 
2656 	*pte = 0;
2657 
2658 	return __amd_iommu_flush_tlb(domain, pasid);
2659 }
2660 
2661 int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, u32 pasid,
2662 			      unsigned long cr3)
2663 {
2664 	struct protection_domain *domain = to_pdomain(dom);
2665 	unsigned long flags;
2666 	int ret;
2667 
2668 	spin_lock_irqsave(&domain->lock, flags);
2669 	ret = __set_gcr3(domain, pasid, cr3);
2670 	spin_unlock_irqrestore(&domain->lock, flags);
2671 
2672 	return ret;
2673 }
2674 EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
2675 
2676 int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, u32 pasid)
2677 {
2678 	struct protection_domain *domain = to_pdomain(dom);
2679 	unsigned long flags;
2680 	int ret;
2681 
2682 	spin_lock_irqsave(&domain->lock, flags);
2683 	ret = __clear_gcr3(domain, pasid);
2684 	spin_unlock_irqrestore(&domain->lock, flags);
2685 
2686 	return ret;
2687 }
2688 EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
2689 
2690 int amd_iommu_complete_ppr(struct pci_dev *pdev, u32 pasid,
2691 			   int status, int tag)
2692 {
2693 	struct iommu_dev_data *dev_data;
2694 	struct amd_iommu *iommu;
2695 	struct iommu_cmd cmd;
2696 
2697 	dev_data = dev_iommu_priv_get(&pdev->dev);
2698 	iommu    = rlookup_amd_iommu(&pdev->dev);
2699 	if (!iommu)
2700 		return -ENODEV;
2701 
2702 	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
2703 			   tag, dev_data->pri_tlp);
2704 
2705 	return iommu_queue_command(iommu, &cmd);
2706 }
2707 EXPORT_SYMBOL(amd_iommu_complete_ppr);
2708 
2709 int amd_iommu_device_info(struct pci_dev *pdev,
2710                           struct amd_iommu_device_info *info)
2711 {
2712 	int max_pasids;
2713 	int pos;
2714 
2715 	if (pdev == NULL || info == NULL)
2716 		return -EINVAL;
2717 
2718 	if (!amd_iommu_v2_supported())
2719 		return -EINVAL;
2720 
2721 	memset(info, 0, sizeof(*info));
2722 
2723 	if (pci_ats_supported(pdev))
2724 		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
2725 
2726 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2727 	if (pos)
2728 		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
2729 
2730 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
2731 	if (pos) {
2732 		int features;
2733 
2734 		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
2735 		max_pasids = min(max_pasids, (1 << 20));
2736 
2737 		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
2738 		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
2739 
2740 		features = pci_pasid_features(pdev);
2741 		if (features & PCI_PASID_CAP_EXEC)
2742 			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
2743 		if (features & PCI_PASID_CAP_PRIV)
2744 			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
2745 	}
2746 
2747 	return 0;
2748 }
2749 EXPORT_SYMBOL(amd_iommu_device_info);
2750 
2751 #ifdef CONFIG_IRQ_REMAP
2752 
2753 /*****************************************************************************
2754  *
2755  * Interrupt Remapping Implementation
2756  *
2757  *****************************************************************************/
2758 
2759 static struct irq_chip amd_ir_chip;
2760 static DEFINE_SPINLOCK(iommu_table_lock);
2761 
2762 static void set_dte_irq_entry(struct amd_iommu *iommu, u16 devid,
2763 			      struct irq_remap_table *table)
2764 {
2765 	u64 dte;
2766 	struct dev_table_entry *dev_table = get_dev_table(iommu);
2767 
2768 	dte	= dev_table[devid].data[2];
2769 	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
2770 	dte	|= iommu_virt_to_phys(table->table);
2771 	dte	|= DTE_IRQ_REMAP_INTCTL;
2772 	dte	|= DTE_INTTABLEN;
2773 	dte	|= DTE_IRQ_REMAP_ENABLE;
2774 
2775 	dev_table[devid].data[2] = dte;
2776 }
2777 
2778 static struct irq_remap_table *get_irq_table(struct amd_iommu *iommu, u16 devid)
2779 {
2780 	struct irq_remap_table *table;
2781 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
2782 
2783 	if (WARN_ONCE(!pci_seg->rlookup_table[devid],
2784 		      "%s: no iommu for devid %x:%x\n",
2785 		      __func__, pci_seg->id, devid))
2786 		return NULL;
2787 
2788 	table = pci_seg->irq_lookup_table[devid];
2789 	if (WARN_ONCE(!table, "%s: no table for devid %x:%x\n",
2790 		      __func__, pci_seg->id, devid))
2791 		return NULL;
2792 
2793 	return table;
2794 }
2795 
2796 static struct irq_remap_table *__alloc_irq_table(void)
2797 {
2798 	struct irq_remap_table *table;
2799 
2800 	table = kzalloc(sizeof(*table), GFP_KERNEL);
2801 	if (!table)
2802 		return NULL;
2803 
2804 	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL);
2805 	if (!table->table) {
2806 		kfree(table);
2807 		return NULL;
2808 	}
2809 	raw_spin_lock_init(&table->lock);
2810 
2811 	if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
2812 		memset(table->table, 0,
2813 		       MAX_IRQS_PER_TABLE * sizeof(u32));
2814 	else
2815 		memset(table->table, 0,
2816 		       (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
2817 	return table;
2818 }
2819 
2820 static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid,
2821 				  struct irq_remap_table *table)
2822 {
2823 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
2824 
2825 	pci_seg->irq_lookup_table[devid] = table;
2826 	set_dte_irq_entry(iommu, devid, table);
2827 	iommu_flush_dte(iommu, devid);
2828 }
2829 
2830 static int set_remap_table_entry_alias(struct pci_dev *pdev, u16 alias,
2831 				       void *data)
2832 {
2833 	struct irq_remap_table *table = data;
2834 	struct amd_iommu_pci_seg *pci_seg;
2835 	struct amd_iommu *iommu = rlookup_amd_iommu(&pdev->dev);
2836 
2837 	if (!iommu)
2838 		return -EINVAL;
2839 
2840 	pci_seg = iommu->pci_seg;
2841 	pci_seg->irq_lookup_table[alias] = table;
2842 	set_dte_irq_entry(iommu, alias, table);
2843 	iommu_flush_dte(pci_seg->rlookup_table[alias], alias);
2844 
2845 	return 0;
2846 }
2847 
2848 static struct irq_remap_table *alloc_irq_table(struct amd_iommu *iommu,
2849 					       u16 devid, struct pci_dev *pdev)
2850 {
2851 	struct irq_remap_table *table = NULL;
2852 	struct irq_remap_table *new_table = NULL;
2853 	struct amd_iommu_pci_seg *pci_seg;
2854 	unsigned long flags;
2855 	u16 alias;
2856 
2857 	spin_lock_irqsave(&iommu_table_lock, flags);
2858 
2859 	pci_seg = iommu->pci_seg;
2860 	table = pci_seg->irq_lookup_table[devid];
2861 	if (table)
2862 		goto out_unlock;
2863 
2864 	alias = pci_seg->alias_table[devid];
2865 	table = pci_seg->irq_lookup_table[alias];
2866 	if (table) {
2867 		set_remap_table_entry(iommu, devid, table);
2868 		goto out_wait;
2869 	}
2870 	spin_unlock_irqrestore(&iommu_table_lock, flags);
2871 
2872 	/* Nothing there yet, allocate new irq remapping table */
2873 	new_table = __alloc_irq_table();
2874 	if (!new_table)
2875 		return NULL;
2876 
2877 	spin_lock_irqsave(&iommu_table_lock, flags);
2878 
2879 	table = pci_seg->irq_lookup_table[devid];
2880 	if (table)
2881 		goto out_unlock;
2882 
2883 	table = pci_seg->irq_lookup_table[alias];
2884 	if (table) {
2885 		set_remap_table_entry(iommu, devid, table);
2886 		goto out_wait;
2887 	}
2888 
2889 	table = new_table;
2890 	new_table = NULL;
2891 
2892 	if (pdev)
2893 		pci_for_each_dma_alias(pdev, set_remap_table_entry_alias,
2894 				       table);
2895 	else
2896 		set_remap_table_entry(iommu, devid, table);
2897 
2898 	if (devid != alias)
2899 		set_remap_table_entry(iommu, alias, table);
2900 
2901 out_wait:
2902 	iommu_completion_wait(iommu);
2903 
2904 out_unlock:
2905 	spin_unlock_irqrestore(&iommu_table_lock, flags);
2906 
2907 	if (new_table) {
2908 		kmem_cache_free(amd_iommu_irq_cache, new_table->table);
2909 		kfree(new_table);
2910 	}
2911 	return table;
2912 }
2913 
2914 static int alloc_irq_index(struct amd_iommu *iommu, u16 devid, int count,
2915 			   bool align, struct pci_dev *pdev)
2916 {
2917 	struct irq_remap_table *table;
2918 	int index, c, alignment = 1;
2919 	unsigned long flags;
2920 
2921 	table = alloc_irq_table(iommu, devid, pdev);
2922 	if (!table)
2923 		return -ENODEV;
2924 
2925 	if (align)
2926 		alignment = roundup_pow_of_two(count);
2927 
2928 	raw_spin_lock_irqsave(&table->lock, flags);
2929 
2930 	/* Scan table for free entries */
2931 	for (index = ALIGN(table->min_index, alignment), c = 0;
2932 	     index < MAX_IRQS_PER_TABLE;) {
2933 		if (!iommu->irte_ops->is_allocated(table, index)) {
2934 			c += 1;
2935 		} else {
2936 			c     = 0;
2937 			index = ALIGN(index + 1, alignment);
2938 			continue;
2939 		}
2940 
2941 		if (c == count)	{
2942 			for (; c != 0; --c)
2943 				iommu->irte_ops->set_allocated(table, index - c + 1);
2944 
2945 			index -= count - 1;
2946 			goto out;
2947 		}
2948 
2949 		index++;
2950 	}
2951 
2952 	index = -ENOSPC;
2953 
2954 out:
2955 	raw_spin_unlock_irqrestore(&table->lock, flags);
2956 
2957 	return index;
2958 }
2959 
2960 static int modify_irte_ga(struct amd_iommu *iommu, u16 devid, int index,
2961 			  struct irte_ga *irte, struct amd_ir_data *data)
2962 {
2963 	bool ret;
2964 	struct irq_remap_table *table;
2965 	unsigned long flags;
2966 	struct irte_ga *entry;
2967 
2968 	table = get_irq_table(iommu, devid);
2969 	if (!table)
2970 		return -ENOMEM;
2971 
2972 	raw_spin_lock_irqsave(&table->lock, flags);
2973 
2974 	entry = (struct irte_ga *)table->table;
2975 	entry = &entry[index];
2976 
2977 	ret = cmpxchg_double(&entry->lo.val, &entry->hi.val,
2978 			     entry->lo.val, entry->hi.val,
2979 			     irte->lo.val, irte->hi.val);
2980 	/*
2981 	 * We use cmpxchg16 to atomically update the 128-bit IRTE,
2982 	 * and it cannot be updated by the hardware or other processors
2983 	 * behind us, so the return value of cmpxchg16 should be the
2984 	 * same as the old value.
2985 	 */
2986 	WARN_ON(!ret);
2987 
2988 	if (data)
2989 		data->ref = entry;
2990 
2991 	raw_spin_unlock_irqrestore(&table->lock, flags);
2992 
2993 	iommu_flush_irt(iommu, devid);
2994 	iommu_completion_wait(iommu);
2995 
2996 	return 0;
2997 }
2998 
2999 static int modify_irte(struct amd_iommu *iommu,
3000 		       u16 devid, int index, union irte *irte)
3001 {
3002 	struct irq_remap_table *table;
3003 	unsigned long flags;
3004 
3005 	table = get_irq_table(iommu, devid);
3006 	if (!table)
3007 		return -ENOMEM;
3008 
3009 	raw_spin_lock_irqsave(&table->lock, flags);
3010 	table->table[index] = irte->val;
3011 	raw_spin_unlock_irqrestore(&table->lock, flags);
3012 
3013 	iommu_flush_irt(iommu, devid);
3014 	iommu_completion_wait(iommu);
3015 
3016 	return 0;
3017 }
3018 
3019 static void free_irte(struct amd_iommu *iommu, u16 devid, int index)
3020 {
3021 	struct irq_remap_table *table;
3022 	unsigned long flags;
3023 
3024 	table = get_irq_table(iommu, devid);
3025 	if (!table)
3026 		return;
3027 
3028 	raw_spin_lock_irqsave(&table->lock, flags);
3029 	iommu->irte_ops->clear_allocated(table, index);
3030 	raw_spin_unlock_irqrestore(&table->lock, flags);
3031 
3032 	iommu_flush_irt(iommu, devid);
3033 	iommu_completion_wait(iommu);
3034 }
3035 
3036 static void irte_prepare(void *entry,
3037 			 u32 delivery_mode, bool dest_mode,
3038 			 u8 vector, u32 dest_apicid, int devid)
3039 {
3040 	union irte *irte = (union irte *) entry;
3041 
3042 	irte->val                = 0;
3043 	irte->fields.vector      = vector;
3044 	irte->fields.int_type    = delivery_mode;
3045 	irte->fields.destination = dest_apicid;
3046 	irte->fields.dm          = dest_mode;
3047 	irte->fields.valid       = 1;
3048 }
3049 
3050 static void irte_ga_prepare(void *entry,
3051 			    u32 delivery_mode, bool dest_mode,
3052 			    u8 vector, u32 dest_apicid, int devid)
3053 {
3054 	struct irte_ga *irte = (struct irte_ga *) entry;
3055 
3056 	irte->lo.val                      = 0;
3057 	irte->hi.val                      = 0;
3058 	irte->lo.fields_remap.int_type    = delivery_mode;
3059 	irte->lo.fields_remap.dm          = dest_mode;
3060 	irte->hi.fields.vector            = vector;
3061 	irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid);
3062 	irte->hi.fields.destination       = APICID_TO_IRTE_DEST_HI(dest_apicid);
3063 	irte->lo.fields_remap.valid       = 1;
3064 }
3065 
3066 static void irte_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3067 {
3068 	union irte *irte = (union irte *) entry;
3069 
3070 	irte->fields.valid = 1;
3071 	modify_irte(iommu, devid, index, irte);
3072 }
3073 
3074 static void irte_ga_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3075 {
3076 	struct irte_ga *irte = (struct irte_ga *) entry;
3077 
3078 	irte->lo.fields_remap.valid = 1;
3079 	modify_irte_ga(iommu, devid, index, irte, NULL);
3080 }
3081 
3082 static void irte_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3083 {
3084 	union irte *irte = (union irte *) entry;
3085 
3086 	irte->fields.valid = 0;
3087 	modify_irte(iommu, devid, index, irte);
3088 }
3089 
3090 static void irte_ga_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3091 {
3092 	struct irte_ga *irte = (struct irte_ga *) entry;
3093 
3094 	irte->lo.fields_remap.valid = 0;
3095 	modify_irte_ga(iommu, devid, index, irte, NULL);
3096 }
3097 
3098 static void irte_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index,
3099 			      u8 vector, u32 dest_apicid)
3100 {
3101 	union irte *irte = (union irte *) entry;
3102 
3103 	irte->fields.vector = vector;
3104 	irte->fields.destination = dest_apicid;
3105 	modify_irte(iommu, devid, index, irte);
3106 }
3107 
3108 static void irte_ga_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index,
3109 				 u8 vector, u32 dest_apicid)
3110 {
3111 	struct irte_ga *irte = (struct irte_ga *) entry;
3112 
3113 	if (!irte->lo.fields_remap.guest_mode) {
3114 		irte->hi.fields.vector = vector;
3115 		irte->lo.fields_remap.destination =
3116 					APICID_TO_IRTE_DEST_LO(dest_apicid);
3117 		irte->hi.fields.destination =
3118 					APICID_TO_IRTE_DEST_HI(dest_apicid);
3119 		modify_irte_ga(iommu, devid, index, irte, NULL);
3120 	}
3121 }
3122 
3123 #define IRTE_ALLOCATED (~1U)
3124 static void irte_set_allocated(struct irq_remap_table *table, int index)
3125 {
3126 	table->table[index] = IRTE_ALLOCATED;
3127 }
3128 
3129 static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
3130 {
3131 	struct irte_ga *ptr = (struct irte_ga *)table->table;
3132 	struct irte_ga *irte = &ptr[index];
3133 
3134 	memset(&irte->lo.val, 0, sizeof(u64));
3135 	memset(&irte->hi.val, 0, sizeof(u64));
3136 	irte->hi.fields.vector = 0xff;
3137 }
3138 
3139 static bool irte_is_allocated(struct irq_remap_table *table, int index)
3140 {
3141 	union irte *ptr = (union irte *)table->table;
3142 	union irte *irte = &ptr[index];
3143 
3144 	return irte->val != 0;
3145 }
3146 
3147 static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
3148 {
3149 	struct irte_ga *ptr = (struct irte_ga *)table->table;
3150 	struct irte_ga *irte = &ptr[index];
3151 
3152 	return irte->hi.fields.vector != 0;
3153 }
3154 
3155 static void irte_clear_allocated(struct irq_remap_table *table, int index)
3156 {
3157 	table->table[index] = 0;
3158 }
3159 
3160 static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
3161 {
3162 	struct irte_ga *ptr = (struct irte_ga *)table->table;
3163 	struct irte_ga *irte = &ptr[index];
3164 
3165 	memset(&irte->lo.val, 0, sizeof(u64));
3166 	memset(&irte->hi.val, 0, sizeof(u64));
3167 }
3168 
3169 static int get_devid(struct irq_alloc_info *info)
3170 {
3171 	switch (info->type) {
3172 	case X86_IRQ_ALLOC_TYPE_IOAPIC:
3173 		return get_ioapic_devid(info->devid);
3174 	case X86_IRQ_ALLOC_TYPE_HPET:
3175 		return get_hpet_devid(info->devid);
3176 	case X86_IRQ_ALLOC_TYPE_PCI_MSI:
3177 	case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
3178 		return get_device_sbdf_id(msi_desc_to_dev(info->desc));
3179 	default:
3180 		WARN_ON_ONCE(1);
3181 		return -1;
3182 	}
3183 }
3184 
3185 struct irq_remap_ops amd_iommu_irq_ops = {
3186 	.prepare		= amd_iommu_prepare,
3187 	.enable			= amd_iommu_enable,
3188 	.disable		= amd_iommu_disable,
3189 	.reenable		= amd_iommu_reenable,
3190 	.enable_faulting	= amd_iommu_enable_faulting,
3191 };
3192 
3193 static void fill_msi_msg(struct msi_msg *msg, u32 index)
3194 {
3195 	msg->data = index;
3196 	msg->address_lo = 0;
3197 	msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
3198 	msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
3199 }
3200 
3201 static void irq_remapping_prepare_irte(struct amd_ir_data *data,
3202 				       struct irq_cfg *irq_cfg,
3203 				       struct irq_alloc_info *info,
3204 				       int devid, int index, int sub_handle)
3205 {
3206 	struct irq_2_irte *irte_info = &data->irq_2_irte;
3207 	struct amd_iommu *iommu = data->iommu;
3208 
3209 	if (!iommu)
3210 		return;
3211 
3212 	data->irq_2_irte.devid = devid;
3213 	data->irq_2_irte.index = index + sub_handle;
3214 	iommu->irte_ops->prepare(data->entry, apic->delivery_mode,
3215 				 apic->dest_mode_logical, irq_cfg->vector,
3216 				 irq_cfg->dest_apicid, devid);
3217 
3218 	switch (info->type) {
3219 	case X86_IRQ_ALLOC_TYPE_IOAPIC:
3220 	case X86_IRQ_ALLOC_TYPE_HPET:
3221 	case X86_IRQ_ALLOC_TYPE_PCI_MSI:
3222 	case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
3223 		fill_msi_msg(&data->msi_entry, irte_info->index);
3224 		break;
3225 
3226 	default:
3227 		BUG_ON(1);
3228 		break;
3229 	}
3230 }
3231 
3232 struct amd_irte_ops irte_32_ops = {
3233 	.prepare = irte_prepare,
3234 	.activate = irte_activate,
3235 	.deactivate = irte_deactivate,
3236 	.set_affinity = irte_set_affinity,
3237 	.set_allocated = irte_set_allocated,
3238 	.is_allocated = irte_is_allocated,
3239 	.clear_allocated = irte_clear_allocated,
3240 };
3241 
3242 struct amd_irte_ops irte_128_ops = {
3243 	.prepare = irte_ga_prepare,
3244 	.activate = irte_ga_activate,
3245 	.deactivate = irte_ga_deactivate,
3246 	.set_affinity = irte_ga_set_affinity,
3247 	.set_allocated = irte_ga_set_allocated,
3248 	.is_allocated = irte_ga_is_allocated,
3249 	.clear_allocated = irte_ga_clear_allocated,
3250 };
3251 
3252 static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
3253 			       unsigned int nr_irqs, void *arg)
3254 {
3255 	struct irq_alloc_info *info = arg;
3256 	struct irq_data *irq_data;
3257 	struct amd_ir_data *data = NULL;
3258 	struct amd_iommu *iommu;
3259 	struct irq_cfg *cfg;
3260 	int i, ret, devid, seg, sbdf;
3261 	int index;
3262 
3263 	if (!info)
3264 		return -EINVAL;
3265 	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI &&
3266 	    info->type != X86_IRQ_ALLOC_TYPE_PCI_MSIX)
3267 		return -EINVAL;
3268 
3269 	/*
3270 	 * With IRQ remapping enabled, don't need contiguous CPU vectors
3271 	 * to support multiple MSI interrupts.
3272 	 */
3273 	if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI)
3274 		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
3275 
3276 	sbdf = get_devid(info);
3277 	if (sbdf < 0)
3278 		return -EINVAL;
3279 
3280 	seg = PCI_SBDF_TO_SEGID(sbdf);
3281 	devid = PCI_SBDF_TO_DEVID(sbdf);
3282 	iommu = __rlookup_amd_iommu(seg, devid);
3283 	if (!iommu)
3284 		return -EINVAL;
3285 
3286 	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
3287 	if (ret < 0)
3288 		return ret;
3289 
3290 	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
3291 		struct irq_remap_table *table;
3292 
3293 		table = alloc_irq_table(iommu, devid, NULL);
3294 		if (table) {
3295 			if (!table->min_index) {
3296 				/*
3297 				 * Keep the first 32 indexes free for IOAPIC
3298 				 * interrupts.
3299 				 */
3300 				table->min_index = 32;
3301 				for (i = 0; i < 32; ++i)
3302 					iommu->irte_ops->set_allocated(table, i);
3303 			}
3304 			WARN_ON(table->min_index != 32);
3305 			index = info->ioapic.pin;
3306 		} else {
3307 			index = -ENOMEM;
3308 		}
3309 	} else if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI ||
3310 		   info->type == X86_IRQ_ALLOC_TYPE_PCI_MSIX) {
3311 		bool align = (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI);
3312 
3313 		index = alloc_irq_index(iommu, devid, nr_irqs, align,
3314 					msi_desc_to_pci_dev(info->desc));
3315 	} else {
3316 		index = alloc_irq_index(iommu, devid, nr_irqs, false, NULL);
3317 	}
3318 
3319 	if (index < 0) {
3320 		pr_warn("Failed to allocate IRTE\n");
3321 		ret = index;
3322 		goto out_free_parent;
3323 	}
3324 
3325 	for (i = 0; i < nr_irqs; i++) {
3326 		irq_data = irq_domain_get_irq_data(domain, virq + i);
3327 		cfg = irq_data ? irqd_cfg(irq_data) : NULL;
3328 		if (!cfg) {
3329 			ret = -EINVAL;
3330 			goto out_free_data;
3331 		}
3332 
3333 		ret = -ENOMEM;
3334 		data = kzalloc(sizeof(*data), GFP_KERNEL);
3335 		if (!data)
3336 			goto out_free_data;
3337 
3338 		if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
3339 			data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
3340 		else
3341 			data->entry = kzalloc(sizeof(struct irte_ga),
3342 						     GFP_KERNEL);
3343 		if (!data->entry) {
3344 			kfree(data);
3345 			goto out_free_data;
3346 		}
3347 
3348 		data->iommu = iommu;
3349 		irq_data->hwirq = (devid << 16) + i;
3350 		irq_data->chip_data = data;
3351 		irq_data->chip = &amd_ir_chip;
3352 		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
3353 		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
3354 	}
3355 
3356 	return 0;
3357 
3358 out_free_data:
3359 	for (i--; i >= 0; i--) {
3360 		irq_data = irq_domain_get_irq_data(domain, virq + i);
3361 		if (irq_data)
3362 			kfree(irq_data->chip_data);
3363 	}
3364 	for (i = 0; i < nr_irqs; i++)
3365 		free_irte(iommu, devid, index + i);
3366 out_free_parent:
3367 	irq_domain_free_irqs_common(domain, virq, nr_irqs);
3368 	return ret;
3369 }
3370 
3371 static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
3372 			       unsigned int nr_irqs)
3373 {
3374 	struct irq_2_irte *irte_info;
3375 	struct irq_data *irq_data;
3376 	struct amd_ir_data *data;
3377 	int i;
3378 
3379 	for (i = 0; i < nr_irqs; i++) {
3380 		irq_data = irq_domain_get_irq_data(domain, virq  + i);
3381 		if (irq_data && irq_data->chip_data) {
3382 			data = irq_data->chip_data;
3383 			irte_info = &data->irq_2_irte;
3384 			free_irte(data->iommu, irte_info->devid, irte_info->index);
3385 			kfree(data->entry);
3386 			kfree(data);
3387 		}
3388 	}
3389 	irq_domain_free_irqs_common(domain, virq, nr_irqs);
3390 }
3391 
3392 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
3393 			       struct amd_ir_data *ir_data,
3394 			       struct irq_2_irte *irte_info,
3395 			       struct irq_cfg *cfg);
3396 
3397 static int irq_remapping_activate(struct irq_domain *domain,
3398 				  struct irq_data *irq_data, bool reserve)
3399 {
3400 	struct amd_ir_data *data = irq_data->chip_data;
3401 	struct irq_2_irte *irte_info = &data->irq_2_irte;
3402 	struct amd_iommu *iommu = data->iommu;
3403 	struct irq_cfg *cfg = irqd_cfg(irq_data);
3404 
3405 	if (!iommu)
3406 		return 0;
3407 
3408 	iommu->irte_ops->activate(iommu, data->entry, irte_info->devid,
3409 				  irte_info->index);
3410 	amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
3411 	return 0;
3412 }
3413 
3414 static void irq_remapping_deactivate(struct irq_domain *domain,
3415 				     struct irq_data *irq_data)
3416 {
3417 	struct amd_ir_data *data = irq_data->chip_data;
3418 	struct irq_2_irte *irte_info = &data->irq_2_irte;
3419 	struct amd_iommu *iommu = data->iommu;
3420 
3421 	if (iommu)
3422 		iommu->irte_ops->deactivate(iommu, data->entry, irte_info->devid,
3423 					    irte_info->index);
3424 }
3425 
3426 static int irq_remapping_select(struct irq_domain *d, struct irq_fwspec *fwspec,
3427 				enum irq_domain_bus_token bus_token)
3428 {
3429 	struct amd_iommu *iommu;
3430 	int devid = -1;
3431 
3432 	if (!amd_iommu_irq_remap)
3433 		return 0;
3434 
3435 	if (x86_fwspec_is_ioapic(fwspec))
3436 		devid = get_ioapic_devid(fwspec->param[0]);
3437 	else if (x86_fwspec_is_hpet(fwspec))
3438 		devid = get_hpet_devid(fwspec->param[0]);
3439 
3440 	if (devid < 0)
3441 		return 0;
3442 	iommu = __rlookup_amd_iommu((devid >> 16), (devid & 0xffff));
3443 
3444 	return iommu && iommu->ir_domain == d;
3445 }
3446 
3447 static const struct irq_domain_ops amd_ir_domain_ops = {
3448 	.select = irq_remapping_select,
3449 	.alloc = irq_remapping_alloc,
3450 	.free = irq_remapping_free,
3451 	.activate = irq_remapping_activate,
3452 	.deactivate = irq_remapping_deactivate,
3453 };
3454 
3455 int amd_iommu_activate_guest_mode(void *data)
3456 {
3457 	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3458 	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3459 	u64 valid;
3460 
3461 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
3462 	    !entry || entry->lo.fields_vapic.guest_mode)
3463 		return 0;
3464 
3465 	valid = entry->lo.fields_vapic.valid;
3466 
3467 	entry->lo.val = 0;
3468 	entry->hi.val = 0;
3469 
3470 	entry->lo.fields_vapic.valid       = valid;
3471 	entry->lo.fields_vapic.guest_mode  = 1;
3472 	entry->lo.fields_vapic.ga_log_intr = 1;
3473 	entry->hi.fields.ga_root_ptr       = ir_data->ga_root_ptr;
3474 	entry->hi.fields.vector            = ir_data->ga_vector;
3475 	entry->lo.fields_vapic.ga_tag      = ir_data->ga_tag;
3476 
3477 	return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
3478 			      ir_data->irq_2_irte.index, entry, ir_data);
3479 }
3480 EXPORT_SYMBOL(amd_iommu_activate_guest_mode);
3481 
3482 int amd_iommu_deactivate_guest_mode(void *data)
3483 {
3484 	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3485 	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3486 	struct irq_cfg *cfg = ir_data->cfg;
3487 	u64 valid;
3488 
3489 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
3490 	    !entry || !entry->lo.fields_vapic.guest_mode)
3491 		return 0;
3492 
3493 	valid = entry->lo.fields_remap.valid;
3494 
3495 	entry->lo.val = 0;
3496 	entry->hi.val = 0;
3497 
3498 	entry->lo.fields_remap.valid       = valid;
3499 	entry->lo.fields_remap.dm          = apic->dest_mode_logical;
3500 	entry->lo.fields_remap.int_type    = apic->delivery_mode;
3501 	entry->hi.fields.vector            = cfg->vector;
3502 	entry->lo.fields_remap.destination =
3503 				APICID_TO_IRTE_DEST_LO(cfg->dest_apicid);
3504 	entry->hi.fields.destination =
3505 				APICID_TO_IRTE_DEST_HI(cfg->dest_apicid);
3506 
3507 	return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
3508 			      ir_data->irq_2_irte.index, entry, ir_data);
3509 }
3510 EXPORT_SYMBOL(amd_iommu_deactivate_guest_mode);
3511 
3512 static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
3513 {
3514 	int ret;
3515 	struct amd_iommu_pi_data *pi_data = vcpu_info;
3516 	struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
3517 	struct amd_ir_data *ir_data = data->chip_data;
3518 	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
3519 	struct iommu_dev_data *dev_data;
3520 
3521 	if (ir_data->iommu == NULL)
3522 		return -EINVAL;
3523 
3524 	dev_data = search_dev_data(ir_data->iommu, irte_info->devid);
3525 
3526 	/* Note:
3527 	 * This device has never been set up for guest mode.
3528 	 * we should not modify the IRTE
3529 	 */
3530 	if (!dev_data || !dev_data->use_vapic)
3531 		return 0;
3532 
3533 	ir_data->cfg = irqd_cfg(data);
3534 	pi_data->ir_data = ir_data;
3535 
3536 	/* Note:
3537 	 * SVM tries to set up for VAPIC mode, but we are in
3538 	 * legacy mode. So, we force legacy mode instead.
3539 	 */
3540 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
3541 		pr_debug("%s: Fall back to using intr legacy remap\n",
3542 			 __func__);
3543 		pi_data->is_guest_mode = false;
3544 	}
3545 
3546 	pi_data->prev_ga_tag = ir_data->cached_ga_tag;
3547 	if (pi_data->is_guest_mode) {
3548 		ir_data->ga_root_ptr = (pi_data->base >> 12);
3549 		ir_data->ga_vector = vcpu_pi_info->vector;
3550 		ir_data->ga_tag = pi_data->ga_tag;
3551 		ret = amd_iommu_activate_guest_mode(ir_data);
3552 		if (!ret)
3553 			ir_data->cached_ga_tag = pi_data->ga_tag;
3554 	} else {
3555 		ret = amd_iommu_deactivate_guest_mode(ir_data);
3556 
3557 		/*
3558 		 * This communicates the ga_tag back to the caller
3559 		 * so that it can do all the necessary clean up.
3560 		 */
3561 		if (!ret)
3562 			ir_data->cached_ga_tag = 0;
3563 	}
3564 
3565 	return ret;
3566 }
3567 
3568 
3569 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
3570 			       struct amd_ir_data *ir_data,
3571 			       struct irq_2_irte *irte_info,
3572 			       struct irq_cfg *cfg)
3573 {
3574 
3575 	/*
3576 	 * Atomically updates the IRTE with the new destination, vector
3577 	 * and flushes the interrupt entry cache.
3578 	 */
3579 	iommu->irte_ops->set_affinity(iommu, ir_data->entry, irte_info->devid,
3580 				      irte_info->index, cfg->vector,
3581 				      cfg->dest_apicid);
3582 }
3583 
3584 static int amd_ir_set_affinity(struct irq_data *data,
3585 			       const struct cpumask *mask, bool force)
3586 {
3587 	struct amd_ir_data *ir_data = data->chip_data;
3588 	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
3589 	struct irq_cfg *cfg = irqd_cfg(data);
3590 	struct irq_data *parent = data->parent_data;
3591 	struct amd_iommu *iommu = ir_data->iommu;
3592 	int ret;
3593 
3594 	if (!iommu)
3595 		return -ENODEV;
3596 
3597 	ret = parent->chip->irq_set_affinity(parent, mask, force);
3598 	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
3599 		return ret;
3600 
3601 	amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
3602 	/*
3603 	 * After this point, all the interrupts will start arriving
3604 	 * at the new destination. So, time to cleanup the previous
3605 	 * vector allocation.
3606 	 */
3607 	send_cleanup_vector(cfg);
3608 
3609 	return IRQ_SET_MASK_OK_DONE;
3610 }
3611 
3612 static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
3613 {
3614 	struct amd_ir_data *ir_data = irq_data->chip_data;
3615 
3616 	*msg = ir_data->msi_entry;
3617 }
3618 
3619 static struct irq_chip amd_ir_chip = {
3620 	.name			= "AMD-IR",
3621 	.irq_ack		= apic_ack_irq,
3622 	.irq_set_affinity	= amd_ir_set_affinity,
3623 	.irq_set_vcpu_affinity	= amd_ir_set_vcpu_affinity,
3624 	.irq_compose_msi_msg	= ir_compose_msi_msg,
3625 };
3626 
3627 int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
3628 {
3629 	struct fwnode_handle *fn;
3630 
3631 	fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
3632 	if (!fn)
3633 		return -ENOMEM;
3634 	iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu);
3635 	if (!iommu->ir_domain) {
3636 		irq_domain_free_fwnode(fn);
3637 		return -ENOMEM;
3638 	}
3639 
3640 	iommu->ir_domain->parent = arch_get_ir_parent_domain();
3641 	iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain,
3642 							     "AMD-IR-MSI",
3643 							     iommu->index);
3644 	return 0;
3645 }
3646 
3647 int amd_iommu_update_ga(int cpu, bool is_run, void *data)
3648 {
3649 	unsigned long flags;
3650 	struct amd_iommu *iommu;
3651 	struct irq_remap_table *table;
3652 	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3653 	int devid = ir_data->irq_2_irte.devid;
3654 	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3655 	struct irte_ga *ref = (struct irte_ga *) ir_data->ref;
3656 
3657 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
3658 	    !ref || !entry || !entry->lo.fields_vapic.guest_mode)
3659 		return 0;
3660 
3661 	iommu = ir_data->iommu;
3662 	if (!iommu)
3663 		return -ENODEV;
3664 
3665 	table = get_irq_table(iommu, devid);
3666 	if (!table)
3667 		return -ENODEV;
3668 
3669 	raw_spin_lock_irqsave(&table->lock, flags);
3670 
3671 	if (ref->lo.fields_vapic.guest_mode) {
3672 		if (cpu >= 0) {
3673 			ref->lo.fields_vapic.destination =
3674 						APICID_TO_IRTE_DEST_LO(cpu);
3675 			ref->hi.fields.destination =
3676 						APICID_TO_IRTE_DEST_HI(cpu);
3677 		}
3678 		ref->lo.fields_vapic.is_run = is_run;
3679 		barrier();
3680 	}
3681 
3682 	raw_spin_unlock_irqrestore(&table->lock, flags);
3683 
3684 	iommu_flush_irt(iommu, devid);
3685 	iommu_completion_wait(iommu);
3686 	return 0;
3687 }
3688 EXPORT_SYMBOL(amd_iommu_update_ga);
3689 #endif
3690