1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc. 4 * Author: Joerg Roedel <jroedel@suse.de> 5 * Leo Duran <leo.duran@amd.com> 6 */ 7 8 #define pr_fmt(fmt) "AMD-Vi: " fmt 9 #define dev_fmt(fmt) pr_fmt(fmt) 10 11 #include <linux/ratelimit.h> 12 #include <linux/pci.h> 13 #include <linux/acpi.h> 14 #include <linux/amba/bus.h> 15 #include <linux/platform_device.h> 16 #include <linux/pci-ats.h> 17 #include <linux/bitmap.h> 18 #include <linux/slab.h> 19 #include <linux/debugfs.h> 20 #include <linux/scatterlist.h> 21 #include <linux/dma-map-ops.h> 22 #include <linux/dma-direct.h> 23 #include <linux/dma-iommu.h> 24 #include <linux/iommu-helper.h> 25 #include <linux/delay.h> 26 #include <linux/amd-iommu.h> 27 #include <linux/notifier.h> 28 #include <linux/export.h> 29 #include <linux/irq.h> 30 #include <linux/msi.h> 31 #include <linux/irqdomain.h> 32 #include <linux/percpu.h> 33 #include <linux/io-pgtable.h> 34 #include <linux/cc_platform.h> 35 #include <asm/irq_remapping.h> 36 #include <asm/io_apic.h> 37 #include <asm/apic.h> 38 #include <asm/hw_irq.h> 39 #include <asm/proto.h> 40 #include <asm/iommu.h> 41 #include <asm/gart.h> 42 #include <asm/dma.h> 43 44 #include "amd_iommu.h" 45 #include "../irq_remapping.h" 46 47 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28)) 48 49 #define LOOP_TIMEOUT 100000 50 51 /* IO virtual address start page frame number */ 52 #define IOVA_START_PFN (1) 53 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT) 54 55 /* Reserved IOVA ranges */ 56 #define MSI_RANGE_START (0xfee00000) 57 #define MSI_RANGE_END (0xfeefffff) 58 #define HT_RANGE_START (0xfd00000000ULL) 59 #define HT_RANGE_END (0xffffffffffULL) 60 61 #define DEFAULT_PGTABLE_LEVEL PAGE_MODE_3_LEVEL 62 63 static DEFINE_SPINLOCK(pd_bitmap_lock); 64 65 LIST_HEAD(ioapic_map); 66 LIST_HEAD(hpet_map); 67 LIST_HEAD(acpihid_map); 68 69 /* 70 * Domain for untranslated devices - only allocated 71 * if iommu=pt passed on kernel cmd line. 72 */ 73 const struct iommu_ops amd_iommu_ops; 74 75 static ATOMIC_NOTIFIER_HEAD(ppr_notifier); 76 int amd_iommu_max_glx_val = -1; 77 78 /* 79 * general struct to manage commands send to an IOMMU 80 */ 81 struct iommu_cmd { 82 u32 data[4]; 83 }; 84 85 struct kmem_cache *amd_iommu_irq_cache; 86 87 static void detach_device(struct device *dev); 88 89 /**************************************************************************** 90 * 91 * Helper functions 92 * 93 ****************************************************************************/ 94 95 static inline int get_acpihid_device_id(struct device *dev, 96 struct acpihid_map_entry **entry) 97 { 98 struct acpi_device *adev = ACPI_COMPANION(dev); 99 struct acpihid_map_entry *p; 100 101 if (!adev) 102 return -ENODEV; 103 104 list_for_each_entry(p, &acpihid_map, list) { 105 if (acpi_dev_hid_uid_match(adev, p->hid, 106 p->uid[0] ? p->uid : NULL)) { 107 if (entry) 108 *entry = p; 109 return p->devid; 110 } 111 } 112 return -EINVAL; 113 } 114 115 static inline int get_device_sbdf_id(struct device *dev) 116 { 117 int sbdf; 118 119 if (dev_is_pci(dev)) 120 sbdf = get_pci_sbdf_id(to_pci_dev(dev)); 121 else 122 sbdf = get_acpihid_device_id(dev, NULL); 123 124 return sbdf; 125 } 126 127 struct dev_table_entry *get_dev_table(struct amd_iommu *iommu) 128 { 129 struct dev_table_entry *dev_table; 130 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; 131 132 BUG_ON(pci_seg == NULL); 133 dev_table = pci_seg->dev_table; 134 BUG_ON(dev_table == NULL); 135 136 return dev_table; 137 } 138 139 static inline u16 get_device_segment(struct device *dev) 140 { 141 u16 seg; 142 143 if (dev_is_pci(dev)) { 144 struct pci_dev *pdev = to_pci_dev(dev); 145 146 seg = pci_domain_nr(pdev->bus); 147 } else { 148 u32 devid = get_acpihid_device_id(dev, NULL); 149 150 seg = PCI_SBDF_TO_SEGID(devid); 151 } 152 153 return seg; 154 } 155 156 /* Writes the specific IOMMU for a device into the PCI segment rlookup table */ 157 void amd_iommu_set_rlookup_table(struct amd_iommu *iommu, u16 devid) 158 { 159 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; 160 161 pci_seg->rlookup_table[devid] = iommu; 162 } 163 164 static struct amd_iommu *__rlookup_amd_iommu(u16 seg, u16 devid) 165 { 166 struct amd_iommu_pci_seg *pci_seg; 167 168 for_each_pci_segment(pci_seg) { 169 if (pci_seg->id == seg) 170 return pci_seg->rlookup_table[devid]; 171 } 172 return NULL; 173 } 174 175 static struct amd_iommu *rlookup_amd_iommu(struct device *dev) 176 { 177 u16 seg = get_device_segment(dev); 178 int devid = get_device_sbdf_id(dev); 179 180 if (devid < 0) 181 return NULL; 182 return __rlookup_amd_iommu(seg, PCI_SBDF_TO_DEVID(devid)); 183 } 184 185 static struct protection_domain *to_pdomain(struct iommu_domain *dom) 186 { 187 return container_of(dom, struct protection_domain, domain); 188 } 189 190 static struct iommu_dev_data *alloc_dev_data(struct amd_iommu *iommu, u16 devid) 191 { 192 struct iommu_dev_data *dev_data; 193 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; 194 195 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL); 196 if (!dev_data) 197 return NULL; 198 199 spin_lock_init(&dev_data->lock); 200 dev_data->devid = devid; 201 ratelimit_default_init(&dev_data->rs); 202 203 llist_add(&dev_data->dev_data_list, &pci_seg->dev_data_list); 204 return dev_data; 205 } 206 207 static struct iommu_dev_data *search_dev_data(struct amd_iommu *iommu, u16 devid) 208 { 209 struct iommu_dev_data *dev_data; 210 struct llist_node *node; 211 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; 212 213 if (llist_empty(&pci_seg->dev_data_list)) 214 return NULL; 215 216 node = pci_seg->dev_data_list.first; 217 llist_for_each_entry(dev_data, node, dev_data_list) { 218 if (dev_data->devid == devid) 219 return dev_data; 220 } 221 222 return NULL; 223 } 224 225 static int clone_alias(struct pci_dev *pdev, u16 alias, void *data) 226 { 227 struct amd_iommu *iommu; 228 struct dev_table_entry *dev_table; 229 u16 devid = pci_dev_id(pdev); 230 231 if (devid == alias) 232 return 0; 233 234 iommu = rlookup_amd_iommu(&pdev->dev); 235 if (!iommu) 236 return 0; 237 238 amd_iommu_set_rlookup_table(iommu, alias); 239 dev_table = get_dev_table(iommu); 240 memcpy(dev_table[alias].data, 241 dev_table[devid].data, 242 sizeof(dev_table[alias].data)); 243 244 return 0; 245 } 246 247 static void clone_aliases(struct amd_iommu *iommu, struct device *dev) 248 { 249 struct pci_dev *pdev; 250 251 if (!dev_is_pci(dev)) 252 return; 253 pdev = to_pci_dev(dev); 254 255 /* 256 * The IVRS alias stored in the alias table may not be 257 * part of the PCI DMA aliases if it's bus differs 258 * from the original device. 259 */ 260 clone_alias(pdev, iommu->pci_seg->alias_table[pci_dev_id(pdev)], NULL); 261 262 pci_for_each_dma_alias(pdev, clone_alias, NULL); 263 } 264 265 static void setup_aliases(struct amd_iommu *iommu, struct device *dev) 266 { 267 struct pci_dev *pdev = to_pci_dev(dev); 268 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; 269 u16 ivrs_alias; 270 271 /* For ACPI HID devices, there are no aliases */ 272 if (!dev_is_pci(dev)) 273 return; 274 275 /* 276 * Add the IVRS alias to the pci aliases if it is on the same 277 * bus. The IVRS table may know about a quirk that we don't. 278 */ 279 ivrs_alias = pci_seg->alias_table[pci_dev_id(pdev)]; 280 if (ivrs_alias != pci_dev_id(pdev) && 281 PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) 282 pci_add_dma_alias(pdev, ivrs_alias & 0xff, 1); 283 284 clone_aliases(iommu, dev); 285 } 286 287 static struct iommu_dev_data *find_dev_data(struct amd_iommu *iommu, u16 devid) 288 { 289 struct iommu_dev_data *dev_data; 290 291 dev_data = search_dev_data(iommu, devid); 292 293 if (dev_data == NULL) { 294 dev_data = alloc_dev_data(iommu, devid); 295 if (!dev_data) 296 return NULL; 297 298 if (translation_pre_enabled(iommu)) 299 dev_data->defer_attach = true; 300 } 301 302 return dev_data; 303 } 304 305 /* 306 * Find or create an IOMMU group for a acpihid device. 307 */ 308 static struct iommu_group *acpihid_device_group(struct device *dev) 309 { 310 struct acpihid_map_entry *p, *entry = NULL; 311 int devid; 312 313 devid = get_acpihid_device_id(dev, &entry); 314 if (devid < 0) 315 return ERR_PTR(devid); 316 317 list_for_each_entry(p, &acpihid_map, list) { 318 if ((devid == p->devid) && p->group) 319 entry->group = p->group; 320 } 321 322 if (!entry->group) 323 entry->group = generic_device_group(dev); 324 else 325 iommu_group_ref_get(entry->group); 326 327 return entry->group; 328 } 329 330 static bool pci_iommuv2_capable(struct pci_dev *pdev) 331 { 332 static const int caps[] = { 333 PCI_EXT_CAP_ID_PRI, 334 PCI_EXT_CAP_ID_PASID, 335 }; 336 int i, pos; 337 338 if (!pci_ats_supported(pdev)) 339 return false; 340 341 for (i = 0; i < 2; ++i) { 342 pos = pci_find_ext_capability(pdev, caps[i]); 343 if (pos == 0) 344 return false; 345 } 346 347 return true; 348 } 349 350 /* 351 * This function checks if the driver got a valid device from the caller to 352 * avoid dereferencing invalid pointers. 353 */ 354 static bool check_device(struct device *dev) 355 { 356 struct amd_iommu_pci_seg *pci_seg; 357 struct amd_iommu *iommu; 358 int devid, sbdf; 359 360 if (!dev) 361 return false; 362 363 sbdf = get_device_sbdf_id(dev); 364 if (sbdf < 0) 365 return false; 366 devid = PCI_SBDF_TO_DEVID(sbdf); 367 368 iommu = rlookup_amd_iommu(dev); 369 if (!iommu) 370 return false; 371 372 /* Out of our scope? */ 373 pci_seg = iommu->pci_seg; 374 if (devid > pci_seg->last_bdf) 375 return false; 376 377 return true; 378 } 379 380 static int iommu_init_device(struct amd_iommu *iommu, struct device *dev) 381 { 382 struct iommu_dev_data *dev_data; 383 int devid, sbdf; 384 385 if (dev_iommu_priv_get(dev)) 386 return 0; 387 388 sbdf = get_device_sbdf_id(dev); 389 if (sbdf < 0) 390 return sbdf; 391 392 devid = PCI_SBDF_TO_DEVID(sbdf); 393 dev_data = find_dev_data(iommu, devid); 394 if (!dev_data) 395 return -ENOMEM; 396 397 dev_data->dev = dev; 398 setup_aliases(iommu, dev); 399 400 /* 401 * By default we use passthrough mode for IOMMUv2 capable device. 402 * But if amd_iommu=force_isolation is set (e.g. to debug DMA to 403 * invalid address), we ignore the capability for the device so 404 * it'll be forced to go into translation mode. 405 */ 406 if ((iommu_default_passthrough() || !amd_iommu_force_isolation) && 407 dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) { 408 dev_data->iommu_v2 = iommu->is_iommu_v2; 409 } 410 411 dev_iommu_priv_set(dev, dev_data); 412 413 return 0; 414 } 415 416 static void iommu_ignore_device(struct amd_iommu *iommu, struct device *dev) 417 { 418 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; 419 struct dev_table_entry *dev_table = get_dev_table(iommu); 420 int devid, sbdf; 421 422 sbdf = get_device_sbdf_id(dev); 423 if (sbdf < 0) 424 return; 425 426 devid = PCI_SBDF_TO_DEVID(sbdf); 427 pci_seg->rlookup_table[devid] = NULL; 428 memset(&dev_table[devid], 0, sizeof(struct dev_table_entry)); 429 430 setup_aliases(iommu, dev); 431 } 432 433 static void amd_iommu_uninit_device(struct device *dev) 434 { 435 struct iommu_dev_data *dev_data; 436 437 dev_data = dev_iommu_priv_get(dev); 438 if (!dev_data) 439 return; 440 441 if (dev_data->domain) 442 detach_device(dev); 443 444 dev_iommu_priv_set(dev, NULL); 445 446 /* 447 * We keep dev_data around for unplugged devices and reuse it when the 448 * device is re-plugged - not doing so would introduce a ton of races. 449 */ 450 } 451 452 /**************************************************************************** 453 * 454 * Interrupt handling functions 455 * 456 ****************************************************************************/ 457 458 static void dump_dte_entry(struct amd_iommu *iommu, u16 devid) 459 { 460 int i; 461 struct dev_table_entry *dev_table = get_dev_table(iommu); 462 463 for (i = 0; i < 4; ++i) 464 pr_err("DTE[%d]: %016llx\n", i, dev_table[devid].data[i]); 465 } 466 467 static void dump_command(unsigned long phys_addr) 468 { 469 struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr); 470 int i; 471 472 for (i = 0; i < 4; ++i) 473 pr_err("CMD[%d]: %08x\n", i, cmd->data[i]); 474 } 475 476 static void amd_iommu_report_rmp_hw_error(struct amd_iommu *iommu, volatile u32 *event) 477 { 478 struct iommu_dev_data *dev_data = NULL; 479 int devid, vmg_tag, flags; 480 struct pci_dev *pdev; 481 u64 spa; 482 483 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK; 484 vmg_tag = (event[1]) & 0xFFFF; 485 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK; 486 spa = ((u64)event[3] << 32) | (event[2] & 0xFFFFFFF8); 487 488 pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid), 489 devid & 0xff); 490 if (pdev) 491 dev_data = dev_iommu_priv_get(&pdev->dev); 492 493 if (dev_data) { 494 if (__ratelimit(&dev_data->rs)) { 495 pci_err(pdev, "Event logged [RMP_HW_ERROR vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n", 496 vmg_tag, spa, flags); 497 } 498 } else { 499 pr_err_ratelimited("Event logged [RMP_HW_ERROR device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n", 500 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 501 vmg_tag, spa, flags); 502 } 503 504 if (pdev) 505 pci_dev_put(pdev); 506 } 507 508 static void amd_iommu_report_rmp_fault(struct amd_iommu *iommu, volatile u32 *event) 509 { 510 struct iommu_dev_data *dev_data = NULL; 511 int devid, flags_rmp, vmg_tag, flags; 512 struct pci_dev *pdev; 513 u64 gpa; 514 515 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK; 516 flags_rmp = (event[0] >> EVENT_FLAGS_SHIFT) & 0xFF; 517 vmg_tag = (event[1]) & 0xFFFF; 518 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK; 519 gpa = ((u64)event[3] << 32) | event[2]; 520 521 pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid), 522 devid & 0xff); 523 if (pdev) 524 dev_data = dev_iommu_priv_get(&pdev->dev); 525 526 if (dev_data) { 527 if (__ratelimit(&dev_data->rs)) { 528 pci_err(pdev, "Event logged [RMP_PAGE_FAULT vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n", 529 vmg_tag, gpa, flags_rmp, flags); 530 } 531 } else { 532 pr_err_ratelimited("Event logged [RMP_PAGE_FAULT device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n", 533 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 534 vmg_tag, gpa, flags_rmp, flags); 535 } 536 537 if (pdev) 538 pci_dev_put(pdev); 539 } 540 541 #define IS_IOMMU_MEM_TRANSACTION(flags) \ 542 (((flags) & EVENT_FLAG_I) == 0) 543 544 #define IS_WRITE_REQUEST(flags) \ 545 ((flags) & EVENT_FLAG_RW) 546 547 static void amd_iommu_report_page_fault(struct amd_iommu *iommu, 548 u16 devid, u16 domain_id, 549 u64 address, int flags) 550 { 551 struct iommu_dev_data *dev_data = NULL; 552 struct pci_dev *pdev; 553 554 pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid), 555 devid & 0xff); 556 if (pdev) 557 dev_data = dev_iommu_priv_get(&pdev->dev); 558 559 if (dev_data) { 560 /* 561 * If this is a DMA fault (for which the I(nterrupt) 562 * bit will be unset), allow report_iommu_fault() to 563 * prevent logging it. 564 */ 565 if (IS_IOMMU_MEM_TRANSACTION(flags)) { 566 if (!report_iommu_fault(&dev_data->domain->domain, 567 &pdev->dev, address, 568 IS_WRITE_REQUEST(flags) ? 569 IOMMU_FAULT_WRITE : 570 IOMMU_FAULT_READ)) 571 goto out; 572 } 573 574 if (__ratelimit(&dev_data->rs)) { 575 pci_err(pdev, "Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%llx flags=0x%04x]\n", 576 domain_id, address, flags); 577 } 578 } else { 579 pr_err_ratelimited("Event logged [IO_PAGE_FAULT device=%04x:%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n", 580 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 581 domain_id, address, flags); 582 } 583 584 out: 585 if (pdev) 586 pci_dev_put(pdev); 587 } 588 589 static void iommu_print_event(struct amd_iommu *iommu, void *__evt) 590 { 591 struct device *dev = iommu->iommu.dev; 592 int type, devid, flags, tag; 593 volatile u32 *event = __evt; 594 int count = 0; 595 u64 address; 596 u32 pasid; 597 598 retry: 599 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK; 600 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK; 601 pasid = (event[0] & EVENT_DOMID_MASK_HI) | 602 (event[1] & EVENT_DOMID_MASK_LO); 603 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK; 604 address = (u64)(((u64)event[3]) << 32) | event[2]; 605 606 if (type == 0) { 607 /* Did we hit the erratum? */ 608 if (++count == LOOP_TIMEOUT) { 609 pr_err("No event written to event log\n"); 610 return; 611 } 612 udelay(1); 613 goto retry; 614 } 615 616 if (type == EVENT_TYPE_IO_FAULT) { 617 amd_iommu_report_page_fault(iommu, devid, pasid, address, flags); 618 return; 619 } 620 621 switch (type) { 622 case EVENT_TYPE_ILL_DEV: 623 dev_err(dev, "Event logged [ILLEGAL_DEV_TABLE_ENTRY device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n", 624 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 625 pasid, address, flags); 626 dump_dte_entry(iommu, devid); 627 break; 628 case EVENT_TYPE_DEV_TAB_ERR: 629 dev_err(dev, "Event logged [DEV_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x " 630 "address=0x%llx flags=0x%04x]\n", 631 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 632 address, flags); 633 break; 634 case EVENT_TYPE_PAGE_TAB_ERR: 635 dev_err(dev, "Event logged [PAGE_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x pasid=0x%04x address=0x%llx flags=0x%04x]\n", 636 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 637 pasid, address, flags); 638 break; 639 case EVENT_TYPE_ILL_CMD: 640 dev_err(dev, "Event logged [ILLEGAL_COMMAND_ERROR address=0x%llx]\n", address); 641 dump_command(address); 642 break; 643 case EVENT_TYPE_CMD_HARD_ERR: 644 dev_err(dev, "Event logged [COMMAND_HARDWARE_ERROR address=0x%llx flags=0x%04x]\n", 645 address, flags); 646 break; 647 case EVENT_TYPE_IOTLB_INV_TO: 648 dev_err(dev, "Event logged [IOTLB_INV_TIMEOUT device=%04x:%02x:%02x.%x address=0x%llx]\n", 649 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 650 address); 651 break; 652 case EVENT_TYPE_INV_DEV_REQ: 653 dev_err(dev, "Event logged [INVALID_DEVICE_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n", 654 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 655 pasid, address, flags); 656 break; 657 case EVENT_TYPE_RMP_FAULT: 658 amd_iommu_report_rmp_fault(iommu, event); 659 break; 660 case EVENT_TYPE_RMP_HW_ERR: 661 amd_iommu_report_rmp_hw_error(iommu, event); 662 break; 663 case EVENT_TYPE_INV_PPR_REQ: 664 pasid = PPR_PASID(*((u64 *)__evt)); 665 tag = event[1] & 0x03FF; 666 dev_err(dev, "Event logged [INVALID_PPR_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x tag=0x%03x]\n", 667 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 668 pasid, address, flags, tag); 669 break; 670 default: 671 dev_err(dev, "Event logged [UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n", 672 event[0], event[1], event[2], event[3]); 673 } 674 675 memset(__evt, 0, 4 * sizeof(u32)); 676 } 677 678 static void iommu_poll_events(struct amd_iommu *iommu) 679 { 680 u32 head, tail; 681 682 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET); 683 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET); 684 685 while (head != tail) { 686 iommu_print_event(iommu, iommu->evt_buf + head); 687 head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE; 688 } 689 690 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET); 691 } 692 693 static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw) 694 { 695 struct amd_iommu_fault fault; 696 697 if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) { 698 pr_err_ratelimited("Unknown PPR request received\n"); 699 return; 700 } 701 702 fault.address = raw[1]; 703 fault.pasid = PPR_PASID(raw[0]); 704 fault.sbdf = PCI_SEG_DEVID_TO_SBDF(iommu->pci_seg->id, PPR_DEVID(raw[0])); 705 fault.tag = PPR_TAG(raw[0]); 706 fault.flags = PPR_FLAGS(raw[0]); 707 708 atomic_notifier_call_chain(&ppr_notifier, 0, &fault); 709 } 710 711 static void iommu_poll_ppr_log(struct amd_iommu *iommu) 712 { 713 u32 head, tail; 714 715 if (iommu->ppr_log == NULL) 716 return; 717 718 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET); 719 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET); 720 721 while (head != tail) { 722 volatile u64 *raw; 723 u64 entry[2]; 724 int i; 725 726 raw = (u64 *)(iommu->ppr_log + head); 727 728 /* 729 * Hardware bug: Interrupt may arrive before the entry is 730 * written to memory. If this happens we need to wait for the 731 * entry to arrive. 732 */ 733 for (i = 0; i < LOOP_TIMEOUT; ++i) { 734 if (PPR_REQ_TYPE(raw[0]) != 0) 735 break; 736 udelay(1); 737 } 738 739 /* Avoid memcpy function-call overhead */ 740 entry[0] = raw[0]; 741 entry[1] = raw[1]; 742 743 /* 744 * To detect the hardware bug we need to clear the entry 745 * back to zero. 746 */ 747 raw[0] = raw[1] = 0UL; 748 749 /* Update head pointer of hardware ring-buffer */ 750 head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE; 751 writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET); 752 753 /* Handle PPR entry */ 754 iommu_handle_ppr_entry(iommu, entry); 755 756 /* Refresh ring-buffer information */ 757 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET); 758 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET); 759 } 760 } 761 762 #ifdef CONFIG_IRQ_REMAP 763 static int (*iommu_ga_log_notifier)(u32); 764 765 int amd_iommu_register_ga_log_notifier(int (*notifier)(u32)) 766 { 767 iommu_ga_log_notifier = notifier; 768 769 return 0; 770 } 771 EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier); 772 773 static void iommu_poll_ga_log(struct amd_iommu *iommu) 774 { 775 u32 head, tail, cnt = 0; 776 777 if (iommu->ga_log == NULL) 778 return; 779 780 head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET); 781 tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET); 782 783 while (head != tail) { 784 volatile u64 *raw; 785 u64 log_entry; 786 787 raw = (u64 *)(iommu->ga_log + head); 788 cnt++; 789 790 /* Avoid memcpy function-call overhead */ 791 log_entry = *raw; 792 793 /* Update head pointer of hardware ring-buffer */ 794 head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE; 795 writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET); 796 797 /* Handle GA entry */ 798 switch (GA_REQ_TYPE(log_entry)) { 799 case GA_GUEST_NR: 800 if (!iommu_ga_log_notifier) 801 break; 802 803 pr_debug("%s: devid=%#x, ga_tag=%#x\n", 804 __func__, GA_DEVID(log_entry), 805 GA_TAG(log_entry)); 806 807 if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0) 808 pr_err("GA log notifier failed.\n"); 809 break; 810 default: 811 break; 812 } 813 } 814 } 815 816 static void 817 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu) 818 { 819 if (!irq_remapping_enabled || !dev_is_pci(dev) || 820 pci_dev_has_special_msi_domain(to_pci_dev(dev))) 821 return; 822 823 dev_set_msi_domain(dev, iommu->msi_domain); 824 } 825 826 #else /* CONFIG_IRQ_REMAP */ 827 static inline void 828 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu) { } 829 #endif /* !CONFIG_IRQ_REMAP */ 830 831 #define AMD_IOMMU_INT_MASK \ 832 (MMIO_STATUS_EVT_OVERFLOW_INT_MASK | \ 833 MMIO_STATUS_EVT_INT_MASK | \ 834 MMIO_STATUS_PPR_INT_MASK | \ 835 MMIO_STATUS_GALOG_INT_MASK) 836 837 irqreturn_t amd_iommu_int_thread(int irq, void *data) 838 { 839 struct amd_iommu *iommu = (struct amd_iommu *) data; 840 u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET); 841 842 while (status & AMD_IOMMU_INT_MASK) { 843 /* Enable interrupt sources again */ 844 writel(AMD_IOMMU_INT_MASK, 845 iommu->mmio_base + MMIO_STATUS_OFFSET); 846 847 if (status & MMIO_STATUS_EVT_INT_MASK) { 848 pr_devel("Processing IOMMU Event Log\n"); 849 iommu_poll_events(iommu); 850 } 851 852 if (status & MMIO_STATUS_PPR_INT_MASK) { 853 pr_devel("Processing IOMMU PPR Log\n"); 854 iommu_poll_ppr_log(iommu); 855 } 856 857 #ifdef CONFIG_IRQ_REMAP 858 if (status & MMIO_STATUS_GALOG_INT_MASK) { 859 pr_devel("Processing IOMMU GA Log\n"); 860 iommu_poll_ga_log(iommu); 861 } 862 #endif 863 864 if (status & MMIO_STATUS_EVT_OVERFLOW_INT_MASK) { 865 pr_info_ratelimited("IOMMU event log overflow\n"); 866 amd_iommu_restart_event_logging(iommu); 867 } 868 869 /* 870 * Hardware bug: ERBT1312 871 * When re-enabling interrupt (by writing 1 872 * to clear the bit), the hardware might also try to set 873 * the interrupt bit in the event status register. 874 * In this scenario, the bit will be set, and disable 875 * subsequent interrupts. 876 * 877 * Workaround: The IOMMU driver should read back the 878 * status register and check if the interrupt bits are cleared. 879 * If not, driver will need to go through the interrupt handler 880 * again and re-clear the bits 881 */ 882 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET); 883 } 884 return IRQ_HANDLED; 885 } 886 887 irqreturn_t amd_iommu_int_handler(int irq, void *data) 888 { 889 return IRQ_WAKE_THREAD; 890 } 891 892 /**************************************************************************** 893 * 894 * IOMMU command queuing functions 895 * 896 ****************************************************************************/ 897 898 static int wait_on_sem(struct amd_iommu *iommu, u64 data) 899 { 900 int i = 0; 901 902 while (*iommu->cmd_sem != data && i < LOOP_TIMEOUT) { 903 udelay(1); 904 i += 1; 905 } 906 907 if (i == LOOP_TIMEOUT) { 908 pr_alert("Completion-Wait loop timed out\n"); 909 return -EIO; 910 } 911 912 return 0; 913 } 914 915 static void copy_cmd_to_buffer(struct amd_iommu *iommu, 916 struct iommu_cmd *cmd) 917 { 918 u8 *target; 919 u32 tail; 920 921 /* Copy command to buffer */ 922 tail = iommu->cmd_buf_tail; 923 target = iommu->cmd_buf + tail; 924 memcpy(target, cmd, sizeof(*cmd)); 925 926 tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE; 927 iommu->cmd_buf_tail = tail; 928 929 /* Tell the IOMMU about it */ 930 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET); 931 } 932 933 static void build_completion_wait(struct iommu_cmd *cmd, 934 struct amd_iommu *iommu, 935 u64 data) 936 { 937 u64 paddr = iommu_virt_to_phys((void *)iommu->cmd_sem); 938 939 memset(cmd, 0, sizeof(*cmd)); 940 cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK; 941 cmd->data[1] = upper_32_bits(paddr); 942 cmd->data[2] = data; 943 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT); 944 } 945 946 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid) 947 { 948 memset(cmd, 0, sizeof(*cmd)); 949 cmd->data[0] = devid; 950 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY); 951 } 952 953 /* 954 * Builds an invalidation address which is suitable for one page or multiple 955 * pages. Sets the size bit (S) as needed is more than one page is flushed. 956 */ 957 static inline u64 build_inv_address(u64 address, size_t size) 958 { 959 u64 pages, end, msb_diff; 960 961 pages = iommu_num_pages(address, size, PAGE_SIZE); 962 963 if (pages == 1) 964 return address & PAGE_MASK; 965 966 end = address + size - 1; 967 968 /* 969 * msb_diff would hold the index of the most significant bit that 970 * flipped between the start and end. 971 */ 972 msb_diff = fls64(end ^ address) - 1; 973 974 /* 975 * Bits 63:52 are sign extended. If for some reason bit 51 is different 976 * between the start and the end, invalidate everything. 977 */ 978 if (unlikely(msb_diff > 51)) { 979 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS; 980 } else { 981 /* 982 * The msb-bit must be clear on the address. Just set all the 983 * lower bits. 984 */ 985 address |= (1ull << msb_diff) - 1; 986 } 987 988 /* Clear bits 11:0 */ 989 address &= PAGE_MASK; 990 991 /* Set the size bit - we flush more than one 4kb page */ 992 return address | CMD_INV_IOMMU_PAGES_SIZE_MASK; 993 } 994 995 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address, 996 size_t size, u16 domid, int pde) 997 { 998 u64 inv_address = build_inv_address(address, size); 999 1000 memset(cmd, 0, sizeof(*cmd)); 1001 cmd->data[1] |= domid; 1002 cmd->data[2] = lower_32_bits(inv_address); 1003 cmd->data[3] = upper_32_bits(inv_address); 1004 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES); 1005 if (pde) /* PDE bit - we want to flush everything, not only the PTEs */ 1006 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK; 1007 } 1008 1009 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep, 1010 u64 address, size_t size) 1011 { 1012 u64 inv_address = build_inv_address(address, size); 1013 1014 memset(cmd, 0, sizeof(*cmd)); 1015 cmd->data[0] = devid; 1016 cmd->data[0] |= (qdep & 0xff) << 24; 1017 cmd->data[1] = devid; 1018 cmd->data[2] = lower_32_bits(inv_address); 1019 cmd->data[3] = upper_32_bits(inv_address); 1020 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES); 1021 } 1022 1023 static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, u32 pasid, 1024 u64 address, bool size) 1025 { 1026 memset(cmd, 0, sizeof(*cmd)); 1027 1028 address &= ~(0xfffULL); 1029 1030 cmd->data[0] = pasid; 1031 cmd->data[1] = domid; 1032 cmd->data[2] = lower_32_bits(address); 1033 cmd->data[3] = upper_32_bits(address); 1034 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK; 1035 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK; 1036 if (size) 1037 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK; 1038 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES); 1039 } 1040 1041 static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, u32 pasid, 1042 int qdep, u64 address, bool size) 1043 { 1044 memset(cmd, 0, sizeof(*cmd)); 1045 1046 address &= ~(0xfffULL); 1047 1048 cmd->data[0] = devid; 1049 cmd->data[0] |= ((pasid >> 8) & 0xff) << 16; 1050 cmd->data[0] |= (qdep & 0xff) << 24; 1051 cmd->data[1] = devid; 1052 cmd->data[1] |= (pasid & 0xff) << 16; 1053 cmd->data[2] = lower_32_bits(address); 1054 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK; 1055 cmd->data[3] = upper_32_bits(address); 1056 if (size) 1057 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK; 1058 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES); 1059 } 1060 1061 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, u32 pasid, 1062 int status, int tag, bool gn) 1063 { 1064 memset(cmd, 0, sizeof(*cmd)); 1065 1066 cmd->data[0] = devid; 1067 if (gn) { 1068 cmd->data[1] = pasid; 1069 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK; 1070 } 1071 cmd->data[3] = tag & 0x1ff; 1072 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT; 1073 1074 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR); 1075 } 1076 1077 static void build_inv_all(struct iommu_cmd *cmd) 1078 { 1079 memset(cmd, 0, sizeof(*cmd)); 1080 CMD_SET_TYPE(cmd, CMD_INV_ALL); 1081 } 1082 1083 static void build_inv_irt(struct iommu_cmd *cmd, u16 devid) 1084 { 1085 memset(cmd, 0, sizeof(*cmd)); 1086 cmd->data[0] = devid; 1087 CMD_SET_TYPE(cmd, CMD_INV_IRT); 1088 } 1089 1090 /* 1091 * Writes the command to the IOMMUs command buffer and informs the 1092 * hardware about the new command. 1093 */ 1094 static int __iommu_queue_command_sync(struct amd_iommu *iommu, 1095 struct iommu_cmd *cmd, 1096 bool sync) 1097 { 1098 unsigned int count = 0; 1099 u32 left, next_tail; 1100 1101 next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE; 1102 again: 1103 left = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE; 1104 1105 if (left <= 0x20) { 1106 /* Skip udelay() the first time around */ 1107 if (count++) { 1108 if (count == LOOP_TIMEOUT) { 1109 pr_err("Command buffer timeout\n"); 1110 return -EIO; 1111 } 1112 1113 udelay(1); 1114 } 1115 1116 /* Update head and recheck remaining space */ 1117 iommu->cmd_buf_head = readl(iommu->mmio_base + 1118 MMIO_CMD_HEAD_OFFSET); 1119 1120 goto again; 1121 } 1122 1123 copy_cmd_to_buffer(iommu, cmd); 1124 1125 /* Do we need to make sure all commands are processed? */ 1126 iommu->need_sync = sync; 1127 1128 return 0; 1129 } 1130 1131 static int iommu_queue_command_sync(struct amd_iommu *iommu, 1132 struct iommu_cmd *cmd, 1133 bool sync) 1134 { 1135 unsigned long flags; 1136 int ret; 1137 1138 raw_spin_lock_irqsave(&iommu->lock, flags); 1139 ret = __iommu_queue_command_sync(iommu, cmd, sync); 1140 raw_spin_unlock_irqrestore(&iommu->lock, flags); 1141 1142 return ret; 1143 } 1144 1145 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd) 1146 { 1147 return iommu_queue_command_sync(iommu, cmd, true); 1148 } 1149 1150 /* 1151 * This function queues a completion wait command into the command 1152 * buffer of an IOMMU 1153 */ 1154 static int iommu_completion_wait(struct amd_iommu *iommu) 1155 { 1156 struct iommu_cmd cmd; 1157 unsigned long flags; 1158 int ret; 1159 u64 data; 1160 1161 if (!iommu->need_sync) 1162 return 0; 1163 1164 raw_spin_lock_irqsave(&iommu->lock, flags); 1165 1166 data = ++iommu->cmd_sem_val; 1167 build_completion_wait(&cmd, iommu, data); 1168 1169 ret = __iommu_queue_command_sync(iommu, &cmd, false); 1170 if (ret) 1171 goto out_unlock; 1172 1173 ret = wait_on_sem(iommu, data); 1174 1175 out_unlock: 1176 raw_spin_unlock_irqrestore(&iommu->lock, flags); 1177 1178 return ret; 1179 } 1180 1181 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid) 1182 { 1183 struct iommu_cmd cmd; 1184 1185 build_inv_dte(&cmd, devid); 1186 1187 return iommu_queue_command(iommu, &cmd); 1188 } 1189 1190 static void amd_iommu_flush_dte_all(struct amd_iommu *iommu) 1191 { 1192 u32 devid; 1193 u16 last_bdf = iommu->pci_seg->last_bdf; 1194 1195 for (devid = 0; devid <= last_bdf; ++devid) 1196 iommu_flush_dte(iommu, devid); 1197 1198 iommu_completion_wait(iommu); 1199 } 1200 1201 /* 1202 * This function uses heavy locking and may disable irqs for some time. But 1203 * this is no issue because it is only called during resume. 1204 */ 1205 static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu) 1206 { 1207 u32 dom_id; 1208 u16 last_bdf = iommu->pci_seg->last_bdf; 1209 1210 for (dom_id = 0; dom_id <= last_bdf; ++dom_id) { 1211 struct iommu_cmd cmd; 1212 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1213 dom_id, 1); 1214 iommu_queue_command(iommu, &cmd); 1215 } 1216 1217 iommu_completion_wait(iommu); 1218 } 1219 1220 static void amd_iommu_flush_tlb_domid(struct amd_iommu *iommu, u32 dom_id) 1221 { 1222 struct iommu_cmd cmd; 1223 1224 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1225 dom_id, 1); 1226 iommu_queue_command(iommu, &cmd); 1227 1228 iommu_completion_wait(iommu); 1229 } 1230 1231 static void amd_iommu_flush_all(struct amd_iommu *iommu) 1232 { 1233 struct iommu_cmd cmd; 1234 1235 build_inv_all(&cmd); 1236 1237 iommu_queue_command(iommu, &cmd); 1238 iommu_completion_wait(iommu); 1239 } 1240 1241 static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid) 1242 { 1243 struct iommu_cmd cmd; 1244 1245 build_inv_irt(&cmd, devid); 1246 1247 iommu_queue_command(iommu, &cmd); 1248 } 1249 1250 static void amd_iommu_flush_irt_all(struct amd_iommu *iommu) 1251 { 1252 u32 devid; 1253 u16 last_bdf = iommu->pci_seg->last_bdf; 1254 1255 for (devid = 0; devid <= last_bdf; devid++) 1256 iommu_flush_irt(iommu, devid); 1257 1258 iommu_completion_wait(iommu); 1259 } 1260 1261 void iommu_flush_all_caches(struct amd_iommu *iommu) 1262 { 1263 if (iommu_feature(iommu, FEATURE_IA)) { 1264 amd_iommu_flush_all(iommu); 1265 } else { 1266 amd_iommu_flush_dte_all(iommu); 1267 amd_iommu_flush_irt_all(iommu); 1268 amd_iommu_flush_tlb_all(iommu); 1269 } 1270 } 1271 1272 /* 1273 * Command send function for flushing on-device TLB 1274 */ 1275 static int device_flush_iotlb(struct iommu_dev_data *dev_data, 1276 u64 address, size_t size) 1277 { 1278 struct amd_iommu *iommu; 1279 struct iommu_cmd cmd; 1280 int qdep; 1281 1282 qdep = dev_data->ats.qdep; 1283 iommu = rlookup_amd_iommu(dev_data->dev); 1284 if (!iommu) 1285 return -EINVAL; 1286 1287 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size); 1288 1289 return iommu_queue_command(iommu, &cmd); 1290 } 1291 1292 static int device_flush_dte_alias(struct pci_dev *pdev, u16 alias, void *data) 1293 { 1294 struct amd_iommu *iommu = data; 1295 1296 return iommu_flush_dte(iommu, alias); 1297 } 1298 1299 /* 1300 * Command send function for invalidating a device table entry 1301 */ 1302 static int device_flush_dte(struct iommu_dev_data *dev_data) 1303 { 1304 struct amd_iommu *iommu; 1305 struct pci_dev *pdev = NULL; 1306 struct amd_iommu_pci_seg *pci_seg; 1307 u16 alias; 1308 int ret; 1309 1310 iommu = rlookup_amd_iommu(dev_data->dev); 1311 if (!iommu) 1312 return -EINVAL; 1313 1314 if (dev_is_pci(dev_data->dev)) 1315 pdev = to_pci_dev(dev_data->dev); 1316 1317 if (pdev) 1318 ret = pci_for_each_dma_alias(pdev, 1319 device_flush_dte_alias, iommu); 1320 else 1321 ret = iommu_flush_dte(iommu, dev_data->devid); 1322 if (ret) 1323 return ret; 1324 1325 pci_seg = iommu->pci_seg; 1326 alias = pci_seg->alias_table[dev_data->devid]; 1327 if (alias != dev_data->devid) { 1328 ret = iommu_flush_dte(iommu, alias); 1329 if (ret) 1330 return ret; 1331 } 1332 1333 if (dev_data->ats.enabled) 1334 ret = device_flush_iotlb(dev_data, 0, ~0UL); 1335 1336 return ret; 1337 } 1338 1339 /* 1340 * TLB invalidation function which is called from the mapping functions. 1341 * It invalidates a single PTE if the range to flush is within a single 1342 * page. Otherwise it flushes the whole TLB of the IOMMU. 1343 */ 1344 static void __domain_flush_pages(struct protection_domain *domain, 1345 u64 address, size_t size, int pde) 1346 { 1347 struct iommu_dev_data *dev_data; 1348 struct iommu_cmd cmd; 1349 int ret = 0, i; 1350 1351 build_inv_iommu_pages(&cmd, address, size, domain->id, pde); 1352 1353 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) { 1354 if (!domain->dev_iommu[i]) 1355 continue; 1356 1357 /* 1358 * Devices of this domain are behind this IOMMU 1359 * We need a TLB flush 1360 */ 1361 ret |= iommu_queue_command(amd_iommus[i], &cmd); 1362 } 1363 1364 list_for_each_entry(dev_data, &domain->dev_list, list) { 1365 1366 if (!dev_data->ats.enabled) 1367 continue; 1368 1369 ret |= device_flush_iotlb(dev_data, address, size); 1370 } 1371 1372 WARN_ON(ret); 1373 } 1374 1375 static void domain_flush_pages(struct protection_domain *domain, 1376 u64 address, size_t size, int pde) 1377 { 1378 if (likely(!amd_iommu_np_cache)) { 1379 __domain_flush_pages(domain, address, size, pde); 1380 return; 1381 } 1382 1383 /* 1384 * When NpCache is on, we infer that we run in a VM and use a vIOMMU. 1385 * In such setups it is best to avoid flushes of ranges which are not 1386 * naturally aligned, since it would lead to flushes of unmodified 1387 * PTEs. Such flushes would require the hypervisor to do more work than 1388 * necessary. Therefore, perform repeated flushes of aligned ranges 1389 * until you cover the range. Each iteration flushes the smaller 1390 * between the natural alignment of the address that we flush and the 1391 * greatest naturally aligned region that fits in the range. 1392 */ 1393 while (size != 0) { 1394 int addr_alignment = __ffs(address); 1395 int size_alignment = __fls(size); 1396 int min_alignment; 1397 size_t flush_size; 1398 1399 /* 1400 * size is always non-zero, but address might be zero, causing 1401 * addr_alignment to be negative. As the casting of the 1402 * argument in __ffs(address) to long might trim the high bits 1403 * of the address on x86-32, cast to long when doing the check. 1404 */ 1405 if (likely((unsigned long)address != 0)) 1406 min_alignment = min(addr_alignment, size_alignment); 1407 else 1408 min_alignment = size_alignment; 1409 1410 flush_size = 1ul << min_alignment; 1411 1412 __domain_flush_pages(domain, address, flush_size, pde); 1413 address += flush_size; 1414 size -= flush_size; 1415 } 1416 } 1417 1418 /* Flush the whole IO/TLB for a given protection domain - including PDE */ 1419 void amd_iommu_domain_flush_tlb_pde(struct protection_domain *domain) 1420 { 1421 domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1); 1422 } 1423 1424 void amd_iommu_domain_flush_complete(struct protection_domain *domain) 1425 { 1426 int i; 1427 1428 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) { 1429 if (domain && !domain->dev_iommu[i]) 1430 continue; 1431 1432 /* 1433 * Devices of this domain are behind this IOMMU 1434 * We need to wait for completion of all commands. 1435 */ 1436 iommu_completion_wait(amd_iommus[i]); 1437 } 1438 } 1439 1440 /* Flush the not present cache if it exists */ 1441 static void domain_flush_np_cache(struct protection_domain *domain, 1442 dma_addr_t iova, size_t size) 1443 { 1444 if (unlikely(amd_iommu_np_cache)) { 1445 unsigned long flags; 1446 1447 spin_lock_irqsave(&domain->lock, flags); 1448 domain_flush_pages(domain, iova, size, 1); 1449 amd_iommu_domain_flush_complete(domain); 1450 spin_unlock_irqrestore(&domain->lock, flags); 1451 } 1452 } 1453 1454 1455 /* 1456 * This function flushes the DTEs for all devices in domain 1457 */ 1458 static void domain_flush_devices(struct protection_domain *domain) 1459 { 1460 struct iommu_dev_data *dev_data; 1461 1462 list_for_each_entry(dev_data, &domain->dev_list, list) 1463 device_flush_dte(dev_data); 1464 } 1465 1466 /**************************************************************************** 1467 * 1468 * The next functions belong to the domain allocation. A domain is 1469 * allocated for every IOMMU as the default domain. If device isolation 1470 * is enabled, every device get its own domain. The most important thing 1471 * about domains is the page table mapping the DMA address space they 1472 * contain. 1473 * 1474 ****************************************************************************/ 1475 1476 static u16 domain_id_alloc(void) 1477 { 1478 int id; 1479 1480 spin_lock(&pd_bitmap_lock); 1481 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID); 1482 BUG_ON(id == 0); 1483 if (id > 0 && id < MAX_DOMAIN_ID) 1484 __set_bit(id, amd_iommu_pd_alloc_bitmap); 1485 else 1486 id = 0; 1487 spin_unlock(&pd_bitmap_lock); 1488 1489 return id; 1490 } 1491 1492 static void domain_id_free(int id) 1493 { 1494 spin_lock(&pd_bitmap_lock); 1495 if (id > 0 && id < MAX_DOMAIN_ID) 1496 __clear_bit(id, amd_iommu_pd_alloc_bitmap); 1497 spin_unlock(&pd_bitmap_lock); 1498 } 1499 1500 static void free_gcr3_tbl_level1(u64 *tbl) 1501 { 1502 u64 *ptr; 1503 int i; 1504 1505 for (i = 0; i < 512; ++i) { 1506 if (!(tbl[i] & GCR3_VALID)) 1507 continue; 1508 1509 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK); 1510 1511 free_page((unsigned long)ptr); 1512 } 1513 } 1514 1515 static void free_gcr3_tbl_level2(u64 *tbl) 1516 { 1517 u64 *ptr; 1518 int i; 1519 1520 for (i = 0; i < 512; ++i) { 1521 if (!(tbl[i] & GCR3_VALID)) 1522 continue; 1523 1524 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK); 1525 1526 free_gcr3_tbl_level1(ptr); 1527 } 1528 } 1529 1530 static void free_gcr3_table(struct protection_domain *domain) 1531 { 1532 if (domain->glx == 2) 1533 free_gcr3_tbl_level2(domain->gcr3_tbl); 1534 else if (domain->glx == 1) 1535 free_gcr3_tbl_level1(domain->gcr3_tbl); 1536 else 1537 BUG_ON(domain->glx != 0); 1538 1539 free_page((unsigned long)domain->gcr3_tbl); 1540 } 1541 1542 static void set_dte_entry(struct amd_iommu *iommu, u16 devid, 1543 struct protection_domain *domain, bool ats, bool ppr) 1544 { 1545 u64 pte_root = 0; 1546 u64 flags = 0; 1547 u32 old_domid; 1548 struct dev_table_entry *dev_table = get_dev_table(iommu); 1549 1550 if (domain->iop.mode != PAGE_MODE_NONE) 1551 pte_root = iommu_virt_to_phys(domain->iop.root); 1552 1553 pte_root |= (domain->iop.mode & DEV_ENTRY_MODE_MASK) 1554 << DEV_ENTRY_MODE_SHIFT; 1555 1556 pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V; 1557 1558 /* 1559 * When SNP is enabled, Only set TV bit when IOMMU 1560 * page translation is in use. 1561 */ 1562 if (!amd_iommu_snp_en || (domain->id != 0)) 1563 pte_root |= DTE_FLAG_TV; 1564 1565 flags = dev_table[devid].data[1]; 1566 1567 if (ats) 1568 flags |= DTE_FLAG_IOTLB; 1569 1570 if (ppr) { 1571 if (iommu_feature(iommu, FEATURE_EPHSUP)) 1572 pte_root |= 1ULL << DEV_ENTRY_PPR; 1573 } 1574 1575 if (domain->flags & PD_IOMMUV2_MASK) { 1576 u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl); 1577 u64 glx = domain->glx; 1578 u64 tmp; 1579 1580 pte_root |= DTE_FLAG_GV; 1581 pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT; 1582 1583 /* First mask out possible old values for GCR3 table */ 1584 tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B; 1585 flags &= ~tmp; 1586 1587 tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C; 1588 flags &= ~tmp; 1589 1590 /* Encode GCR3 table into DTE */ 1591 tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A; 1592 pte_root |= tmp; 1593 1594 tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B; 1595 flags |= tmp; 1596 1597 tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C; 1598 flags |= tmp; 1599 } 1600 1601 flags &= ~DEV_DOMID_MASK; 1602 flags |= domain->id; 1603 1604 old_domid = dev_table[devid].data[1] & DEV_DOMID_MASK; 1605 dev_table[devid].data[1] = flags; 1606 dev_table[devid].data[0] = pte_root; 1607 1608 /* 1609 * A kdump kernel might be replacing a domain ID that was copied from 1610 * the previous kernel--if so, it needs to flush the translation cache 1611 * entries for the old domain ID that is being overwritten 1612 */ 1613 if (old_domid) { 1614 amd_iommu_flush_tlb_domid(iommu, old_domid); 1615 } 1616 } 1617 1618 static void clear_dte_entry(struct amd_iommu *iommu, u16 devid) 1619 { 1620 struct dev_table_entry *dev_table = get_dev_table(iommu); 1621 1622 /* remove entry from the device table seen by the hardware */ 1623 dev_table[devid].data[0] = DTE_FLAG_V; 1624 1625 if (!amd_iommu_snp_en) 1626 dev_table[devid].data[0] |= DTE_FLAG_TV; 1627 1628 dev_table[devid].data[1] &= DTE_FLAG_MASK; 1629 1630 amd_iommu_apply_erratum_63(iommu, devid); 1631 } 1632 1633 static void do_attach(struct iommu_dev_data *dev_data, 1634 struct protection_domain *domain) 1635 { 1636 struct amd_iommu *iommu; 1637 bool ats; 1638 1639 iommu = rlookup_amd_iommu(dev_data->dev); 1640 if (!iommu) 1641 return; 1642 ats = dev_data->ats.enabled; 1643 1644 /* Update data structures */ 1645 dev_data->domain = domain; 1646 list_add(&dev_data->list, &domain->dev_list); 1647 1648 /* Do reference counting */ 1649 domain->dev_iommu[iommu->index] += 1; 1650 domain->dev_cnt += 1; 1651 1652 /* Update device table */ 1653 set_dte_entry(iommu, dev_data->devid, domain, 1654 ats, dev_data->iommu_v2); 1655 clone_aliases(iommu, dev_data->dev); 1656 1657 device_flush_dte(dev_data); 1658 } 1659 1660 static void do_detach(struct iommu_dev_data *dev_data) 1661 { 1662 struct protection_domain *domain = dev_data->domain; 1663 struct amd_iommu *iommu; 1664 1665 iommu = rlookup_amd_iommu(dev_data->dev); 1666 if (!iommu) 1667 return; 1668 1669 /* Update data structures */ 1670 dev_data->domain = NULL; 1671 list_del(&dev_data->list); 1672 clear_dte_entry(iommu, dev_data->devid); 1673 clone_aliases(iommu, dev_data->dev); 1674 1675 /* Flush the DTE entry */ 1676 device_flush_dte(dev_data); 1677 1678 /* Flush IOTLB */ 1679 amd_iommu_domain_flush_tlb_pde(domain); 1680 1681 /* Wait for the flushes to finish */ 1682 amd_iommu_domain_flush_complete(domain); 1683 1684 /* decrease reference counters - needs to happen after the flushes */ 1685 domain->dev_iommu[iommu->index] -= 1; 1686 domain->dev_cnt -= 1; 1687 } 1688 1689 static void pdev_iommuv2_disable(struct pci_dev *pdev) 1690 { 1691 pci_disable_ats(pdev); 1692 pci_disable_pri(pdev); 1693 pci_disable_pasid(pdev); 1694 } 1695 1696 static int pdev_iommuv2_enable(struct pci_dev *pdev) 1697 { 1698 int ret; 1699 1700 /* Only allow access to user-accessible pages */ 1701 ret = pci_enable_pasid(pdev, 0); 1702 if (ret) 1703 goto out_err; 1704 1705 /* First reset the PRI state of the device */ 1706 ret = pci_reset_pri(pdev); 1707 if (ret) 1708 goto out_err; 1709 1710 /* Enable PRI */ 1711 /* FIXME: Hardcode number of outstanding requests for now */ 1712 ret = pci_enable_pri(pdev, 32); 1713 if (ret) 1714 goto out_err; 1715 1716 ret = pci_enable_ats(pdev, PAGE_SHIFT); 1717 if (ret) 1718 goto out_err; 1719 1720 return 0; 1721 1722 out_err: 1723 pci_disable_pri(pdev); 1724 pci_disable_pasid(pdev); 1725 1726 return ret; 1727 } 1728 1729 /* 1730 * If a device is not yet associated with a domain, this function makes the 1731 * device visible in the domain 1732 */ 1733 static int attach_device(struct device *dev, 1734 struct protection_domain *domain) 1735 { 1736 struct iommu_dev_data *dev_data; 1737 struct pci_dev *pdev; 1738 unsigned long flags; 1739 int ret; 1740 1741 spin_lock_irqsave(&domain->lock, flags); 1742 1743 dev_data = dev_iommu_priv_get(dev); 1744 1745 spin_lock(&dev_data->lock); 1746 1747 ret = -EBUSY; 1748 if (dev_data->domain != NULL) 1749 goto out; 1750 1751 if (!dev_is_pci(dev)) 1752 goto skip_ats_check; 1753 1754 pdev = to_pci_dev(dev); 1755 if (domain->flags & PD_IOMMUV2_MASK) { 1756 struct iommu_domain *def_domain = iommu_get_dma_domain(dev); 1757 1758 ret = -EINVAL; 1759 if (def_domain->type != IOMMU_DOMAIN_IDENTITY) 1760 goto out; 1761 1762 if (dev_data->iommu_v2) { 1763 if (pdev_iommuv2_enable(pdev) != 0) 1764 goto out; 1765 1766 dev_data->ats.enabled = true; 1767 dev_data->ats.qdep = pci_ats_queue_depth(pdev); 1768 dev_data->pri_tlp = pci_prg_resp_pasid_required(pdev); 1769 } 1770 } else if (amd_iommu_iotlb_sup && 1771 pci_enable_ats(pdev, PAGE_SHIFT) == 0) { 1772 dev_data->ats.enabled = true; 1773 dev_data->ats.qdep = pci_ats_queue_depth(pdev); 1774 } 1775 1776 skip_ats_check: 1777 ret = 0; 1778 1779 do_attach(dev_data, domain); 1780 1781 /* 1782 * We might boot into a crash-kernel here. The crashed kernel 1783 * left the caches in the IOMMU dirty. So we have to flush 1784 * here to evict all dirty stuff. 1785 */ 1786 amd_iommu_domain_flush_tlb_pde(domain); 1787 1788 amd_iommu_domain_flush_complete(domain); 1789 1790 out: 1791 spin_unlock(&dev_data->lock); 1792 1793 spin_unlock_irqrestore(&domain->lock, flags); 1794 1795 return ret; 1796 } 1797 1798 /* 1799 * Removes a device from a protection domain (with devtable_lock held) 1800 */ 1801 static void detach_device(struct device *dev) 1802 { 1803 struct protection_domain *domain; 1804 struct iommu_dev_data *dev_data; 1805 unsigned long flags; 1806 1807 dev_data = dev_iommu_priv_get(dev); 1808 domain = dev_data->domain; 1809 1810 spin_lock_irqsave(&domain->lock, flags); 1811 1812 spin_lock(&dev_data->lock); 1813 1814 /* 1815 * First check if the device is still attached. It might already 1816 * be detached from its domain because the generic 1817 * iommu_detach_group code detached it and we try again here in 1818 * our alias handling. 1819 */ 1820 if (WARN_ON(!dev_data->domain)) 1821 goto out; 1822 1823 do_detach(dev_data); 1824 1825 if (!dev_is_pci(dev)) 1826 goto out; 1827 1828 if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2) 1829 pdev_iommuv2_disable(to_pci_dev(dev)); 1830 else if (dev_data->ats.enabled) 1831 pci_disable_ats(to_pci_dev(dev)); 1832 1833 dev_data->ats.enabled = false; 1834 1835 out: 1836 spin_unlock(&dev_data->lock); 1837 1838 spin_unlock_irqrestore(&domain->lock, flags); 1839 } 1840 1841 static struct iommu_device *amd_iommu_probe_device(struct device *dev) 1842 { 1843 struct iommu_device *iommu_dev; 1844 struct amd_iommu *iommu; 1845 int ret; 1846 1847 if (!check_device(dev)) 1848 return ERR_PTR(-ENODEV); 1849 1850 iommu = rlookup_amd_iommu(dev); 1851 if (!iommu) 1852 return ERR_PTR(-ENODEV); 1853 1854 if (dev_iommu_priv_get(dev)) 1855 return &iommu->iommu; 1856 1857 ret = iommu_init_device(iommu, dev); 1858 if (ret) { 1859 if (ret != -ENOTSUPP) 1860 dev_err(dev, "Failed to initialize - trying to proceed anyway\n"); 1861 iommu_dev = ERR_PTR(ret); 1862 iommu_ignore_device(iommu, dev); 1863 } else { 1864 amd_iommu_set_pci_msi_domain(dev, iommu); 1865 iommu_dev = &iommu->iommu; 1866 } 1867 1868 iommu_completion_wait(iommu); 1869 1870 return iommu_dev; 1871 } 1872 1873 static void amd_iommu_probe_finalize(struct device *dev) 1874 { 1875 /* Domains are initialized for this device - have a look what we ended up with */ 1876 set_dma_ops(dev, NULL); 1877 iommu_setup_dma_ops(dev, 0, U64_MAX); 1878 } 1879 1880 static void amd_iommu_release_device(struct device *dev) 1881 { 1882 struct amd_iommu *iommu; 1883 1884 if (!check_device(dev)) 1885 return; 1886 1887 iommu = rlookup_amd_iommu(dev); 1888 if (!iommu) 1889 return; 1890 1891 amd_iommu_uninit_device(dev); 1892 iommu_completion_wait(iommu); 1893 } 1894 1895 static struct iommu_group *amd_iommu_device_group(struct device *dev) 1896 { 1897 if (dev_is_pci(dev)) 1898 return pci_device_group(dev); 1899 1900 return acpihid_device_group(dev); 1901 } 1902 1903 /***************************************************************************** 1904 * 1905 * The next functions belong to the dma_ops mapping/unmapping code. 1906 * 1907 *****************************************************************************/ 1908 1909 static void update_device_table(struct protection_domain *domain) 1910 { 1911 struct iommu_dev_data *dev_data; 1912 1913 list_for_each_entry(dev_data, &domain->dev_list, list) { 1914 struct amd_iommu *iommu = rlookup_amd_iommu(dev_data->dev); 1915 1916 if (!iommu) 1917 continue; 1918 set_dte_entry(iommu, dev_data->devid, domain, 1919 dev_data->ats.enabled, dev_data->iommu_v2); 1920 clone_aliases(iommu, dev_data->dev); 1921 } 1922 } 1923 1924 void amd_iommu_update_and_flush_device_table(struct protection_domain *domain) 1925 { 1926 update_device_table(domain); 1927 domain_flush_devices(domain); 1928 } 1929 1930 void amd_iommu_domain_update(struct protection_domain *domain) 1931 { 1932 /* Update device table */ 1933 amd_iommu_update_and_flush_device_table(domain); 1934 1935 /* Flush domain TLB(s) and wait for completion */ 1936 amd_iommu_domain_flush_tlb_pde(domain); 1937 amd_iommu_domain_flush_complete(domain); 1938 } 1939 1940 int __init amd_iommu_init_api(void) 1941 { 1942 int err; 1943 1944 err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops); 1945 if (err) 1946 return err; 1947 #ifdef CONFIG_ARM_AMBA 1948 err = bus_set_iommu(&amba_bustype, &amd_iommu_ops); 1949 if (err) 1950 return err; 1951 #endif 1952 err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops); 1953 if (err) 1954 return err; 1955 1956 return 0; 1957 } 1958 1959 /***************************************************************************** 1960 * 1961 * The following functions belong to the exported interface of AMD IOMMU 1962 * 1963 * This interface allows access to lower level functions of the IOMMU 1964 * like protection domain handling and assignement of devices to domains 1965 * which is not possible with the dma_ops interface. 1966 * 1967 *****************************************************************************/ 1968 1969 static void cleanup_domain(struct protection_domain *domain) 1970 { 1971 struct iommu_dev_data *entry; 1972 unsigned long flags; 1973 1974 spin_lock_irqsave(&domain->lock, flags); 1975 1976 while (!list_empty(&domain->dev_list)) { 1977 entry = list_first_entry(&domain->dev_list, 1978 struct iommu_dev_data, list); 1979 BUG_ON(!entry->domain); 1980 do_detach(entry); 1981 } 1982 1983 spin_unlock_irqrestore(&domain->lock, flags); 1984 } 1985 1986 static void protection_domain_free(struct protection_domain *domain) 1987 { 1988 if (!domain) 1989 return; 1990 1991 if (domain->id) 1992 domain_id_free(domain->id); 1993 1994 if (domain->iop.pgtbl_cfg.tlb) 1995 free_io_pgtable_ops(&domain->iop.iop.ops); 1996 1997 kfree(domain); 1998 } 1999 2000 static int protection_domain_init_v1(struct protection_domain *domain, int mode) 2001 { 2002 u64 *pt_root = NULL; 2003 2004 BUG_ON(mode < PAGE_MODE_NONE || mode > PAGE_MODE_6_LEVEL); 2005 2006 spin_lock_init(&domain->lock); 2007 domain->id = domain_id_alloc(); 2008 if (!domain->id) 2009 return -ENOMEM; 2010 INIT_LIST_HEAD(&domain->dev_list); 2011 2012 if (mode != PAGE_MODE_NONE) { 2013 pt_root = (void *)get_zeroed_page(GFP_KERNEL); 2014 if (!pt_root) 2015 return -ENOMEM; 2016 } 2017 2018 amd_iommu_domain_set_pgtable(domain, pt_root, mode); 2019 2020 return 0; 2021 } 2022 2023 static struct protection_domain *protection_domain_alloc(unsigned int type) 2024 { 2025 struct io_pgtable_ops *pgtbl_ops; 2026 struct protection_domain *domain; 2027 int pgtable = amd_iommu_pgtable; 2028 int mode = DEFAULT_PGTABLE_LEVEL; 2029 int ret; 2030 2031 domain = kzalloc(sizeof(*domain), GFP_KERNEL); 2032 if (!domain) 2033 return NULL; 2034 2035 /* 2036 * Force IOMMU v1 page table when iommu=pt and 2037 * when allocating domain for pass-through devices. 2038 */ 2039 if (type == IOMMU_DOMAIN_IDENTITY) { 2040 pgtable = AMD_IOMMU_V1; 2041 mode = PAGE_MODE_NONE; 2042 } else if (type == IOMMU_DOMAIN_UNMANAGED) { 2043 pgtable = AMD_IOMMU_V1; 2044 } 2045 2046 switch (pgtable) { 2047 case AMD_IOMMU_V1: 2048 ret = protection_domain_init_v1(domain, mode); 2049 break; 2050 default: 2051 ret = -EINVAL; 2052 } 2053 2054 if (ret) 2055 goto out_err; 2056 2057 pgtbl_ops = alloc_io_pgtable_ops(pgtable, &domain->iop.pgtbl_cfg, domain); 2058 if (!pgtbl_ops) 2059 goto out_err; 2060 2061 return domain; 2062 out_err: 2063 kfree(domain); 2064 return NULL; 2065 } 2066 2067 static struct iommu_domain *amd_iommu_domain_alloc(unsigned type) 2068 { 2069 struct protection_domain *domain; 2070 2071 /* 2072 * Since DTE[Mode]=0 is prohibited on SNP-enabled system, 2073 * default to use IOMMU_DOMAIN_DMA[_FQ]. 2074 */ 2075 if (amd_iommu_snp_en && (type == IOMMU_DOMAIN_IDENTITY)) 2076 return NULL; 2077 2078 domain = protection_domain_alloc(type); 2079 if (!domain) 2080 return NULL; 2081 2082 domain->domain.geometry.aperture_start = 0; 2083 domain->domain.geometry.aperture_end = ~0ULL; 2084 domain->domain.geometry.force_aperture = true; 2085 2086 return &domain->domain; 2087 } 2088 2089 static void amd_iommu_domain_free(struct iommu_domain *dom) 2090 { 2091 struct protection_domain *domain; 2092 2093 domain = to_pdomain(dom); 2094 2095 if (domain->dev_cnt > 0) 2096 cleanup_domain(domain); 2097 2098 BUG_ON(domain->dev_cnt != 0); 2099 2100 if (!dom) 2101 return; 2102 2103 if (domain->flags & PD_IOMMUV2_MASK) 2104 free_gcr3_table(domain); 2105 2106 protection_domain_free(domain); 2107 } 2108 2109 static void amd_iommu_detach_device(struct iommu_domain *dom, 2110 struct device *dev) 2111 { 2112 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev); 2113 struct amd_iommu *iommu; 2114 2115 if (!check_device(dev)) 2116 return; 2117 2118 if (dev_data->domain != NULL) 2119 detach_device(dev); 2120 2121 iommu = rlookup_amd_iommu(dev); 2122 if (!iommu) 2123 return; 2124 2125 #ifdef CONFIG_IRQ_REMAP 2126 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) && 2127 (dom->type == IOMMU_DOMAIN_UNMANAGED)) 2128 dev_data->use_vapic = 0; 2129 #endif 2130 2131 iommu_completion_wait(iommu); 2132 } 2133 2134 static int amd_iommu_attach_device(struct iommu_domain *dom, 2135 struct device *dev) 2136 { 2137 struct protection_domain *domain = to_pdomain(dom); 2138 struct iommu_dev_data *dev_data; 2139 struct amd_iommu *iommu; 2140 int ret; 2141 2142 if (!check_device(dev)) 2143 return -EINVAL; 2144 2145 dev_data = dev_iommu_priv_get(dev); 2146 dev_data->defer_attach = false; 2147 2148 iommu = rlookup_amd_iommu(dev); 2149 if (!iommu) 2150 return -EINVAL; 2151 2152 if (dev_data->domain) 2153 detach_device(dev); 2154 2155 ret = attach_device(dev, domain); 2156 2157 #ifdef CONFIG_IRQ_REMAP 2158 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) { 2159 if (dom->type == IOMMU_DOMAIN_UNMANAGED) 2160 dev_data->use_vapic = 1; 2161 else 2162 dev_data->use_vapic = 0; 2163 } 2164 #endif 2165 2166 iommu_completion_wait(iommu); 2167 2168 return ret; 2169 } 2170 2171 static void amd_iommu_iotlb_sync_map(struct iommu_domain *dom, 2172 unsigned long iova, size_t size) 2173 { 2174 struct protection_domain *domain = to_pdomain(dom); 2175 struct io_pgtable_ops *ops = &domain->iop.iop.ops; 2176 2177 if (ops->map) 2178 domain_flush_np_cache(domain, iova, size); 2179 } 2180 2181 static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova, 2182 phys_addr_t paddr, size_t page_size, int iommu_prot, 2183 gfp_t gfp) 2184 { 2185 struct protection_domain *domain = to_pdomain(dom); 2186 struct io_pgtable_ops *ops = &domain->iop.iop.ops; 2187 int prot = 0; 2188 int ret = -EINVAL; 2189 2190 if ((amd_iommu_pgtable == AMD_IOMMU_V1) && 2191 (domain->iop.mode == PAGE_MODE_NONE)) 2192 return -EINVAL; 2193 2194 if (iommu_prot & IOMMU_READ) 2195 prot |= IOMMU_PROT_IR; 2196 if (iommu_prot & IOMMU_WRITE) 2197 prot |= IOMMU_PROT_IW; 2198 2199 if (ops->map) 2200 ret = ops->map(ops, iova, paddr, page_size, prot, gfp); 2201 2202 return ret; 2203 } 2204 2205 static void amd_iommu_iotlb_gather_add_page(struct iommu_domain *domain, 2206 struct iommu_iotlb_gather *gather, 2207 unsigned long iova, size_t size) 2208 { 2209 /* 2210 * AMD's IOMMU can flush as many pages as necessary in a single flush. 2211 * Unless we run in a virtual machine, which can be inferred according 2212 * to whether "non-present cache" is on, it is probably best to prefer 2213 * (potentially) too extensive TLB flushing (i.e., more misses) over 2214 * mutliple TLB flushes (i.e., more flushes). For virtual machines the 2215 * hypervisor needs to synchronize the host IOMMU PTEs with those of 2216 * the guest, and the trade-off is different: unnecessary TLB flushes 2217 * should be avoided. 2218 */ 2219 if (amd_iommu_np_cache && 2220 iommu_iotlb_gather_is_disjoint(gather, iova, size)) 2221 iommu_iotlb_sync(domain, gather); 2222 2223 iommu_iotlb_gather_add_range(gather, iova, size); 2224 } 2225 2226 static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova, 2227 size_t page_size, 2228 struct iommu_iotlb_gather *gather) 2229 { 2230 struct protection_domain *domain = to_pdomain(dom); 2231 struct io_pgtable_ops *ops = &domain->iop.iop.ops; 2232 size_t r; 2233 2234 if ((amd_iommu_pgtable == AMD_IOMMU_V1) && 2235 (domain->iop.mode == PAGE_MODE_NONE)) 2236 return 0; 2237 2238 r = (ops->unmap) ? ops->unmap(ops, iova, page_size, gather) : 0; 2239 2240 amd_iommu_iotlb_gather_add_page(dom, gather, iova, page_size); 2241 2242 return r; 2243 } 2244 2245 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom, 2246 dma_addr_t iova) 2247 { 2248 struct protection_domain *domain = to_pdomain(dom); 2249 struct io_pgtable_ops *ops = &domain->iop.iop.ops; 2250 2251 return ops->iova_to_phys(ops, iova); 2252 } 2253 2254 static bool amd_iommu_capable(enum iommu_cap cap) 2255 { 2256 switch (cap) { 2257 case IOMMU_CAP_CACHE_COHERENCY: 2258 return true; 2259 case IOMMU_CAP_INTR_REMAP: 2260 return (irq_remapping_enabled == 1); 2261 case IOMMU_CAP_NOEXEC: 2262 return false; 2263 case IOMMU_CAP_PRE_BOOT_PROTECTION: 2264 return amdr_ivrs_remap_support; 2265 default: 2266 break; 2267 } 2268 2269 return false; 2270 } 2271 2272 static void amd_iommu_get_resv_regions(struct device *dev, 2273 struct list_head *head) 2274 { 2275 struct iommu_resv_region *region; 2276 struct unity_map_entry *entry; 2277 struct amd_iommu *iommu; 2278 struct amd_iommu_pci_seg *pci_seg; 2279 int devid, sbdf; 2280 2281 sbdf = get_device_sbdf_id(dev); 2282 if (sbdf < 0) 2283 return; 2284 2285 devid = PCI_SBDF_TO_DEVID(sbdf); 2286 iommu = rlookup_amd_iommu(dev); 2287 if (!iommu) 2288 return; 2289 pci_seg = iommu->pci_seg; 2290 2291 list_for_each_entry(entry, &pci_seg->unity_map, list) { 2292 int type, prot = 0; 2293 size_t length; 2294 2295 if (devid < entry->devid_start || devid > entry->devid_end) 2296 continue; 2297 2298 type = IOMMU_RESV_DIRECT; 2299 length = entry->address_end - entry->address_start; 2300 if (entry->prot & IOMMU_PROT_IR) 2301 prot |= IOMMU_READ; 2302 if (entry->prot & IOMMU_PROT_IW) 2303 prot |= IOMMU_WRITE; 2304 if (entry->prot & IOMMU_UNITY_MAP_FLAG_EXCL_RANGE) 2305 /* Exclusion range */ 2306 type = IOMMU_RESV_RESERVED; 2307 2308 region = iommu_alloc_resv_region(entry->address_start, 2309 length, prot, type); 2310 if (!region) { 2311 dev_err(dev, "Out of memory allocating dm-regions\n"); 2312 return; 2313 } 2314 list_add_tail(®ion->list, head); 2315 } 2316 2317 region = iommu_alloc_resv_region(MSI_RANGE_START, 2318 MSI_RANGE_END - MSI_RANGE_START + 1, 2319 0, IOMMU_RESV_MSI); 2320 if (!region) 2321 return; 2322 list_add_tail(®ion->list, head); 2323 2324 region = iommu_alloc_resv_region(HT_RANGE_START, 2325 HT_RANGE_END - HT_RANGE_START + 1, 2326 0, IOMMU_RESV_RESERVED); 2327 if (!region) 2328 return; 2329 list_add_tail(®ion->list, head); 2330 } 2331 2332 bool amd_iommu_is_attach_deferred(struct device *dev) 2333 { 2334 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev); 2335 2336 return dev_data->defer_attach; 2337 } 2338 EXPORT_SYMBOL_GPL(amd_iommu_is_attach_deferred); 2339 2340 static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain) 2341 { 2342 struct protection_domain *dom = to_pdomain(domain); 2343 unsigned long flags; 2344 2345 spin_lock_irqsave(&dom->lock, flags); 2346 amd_iommu_domain_flush_tlb_pde(dom); 2347 amd_iommu_domain_flush_complete(dom); 2348 spin_unlock_irqrestore(&dom->lock, flags); 2349 } 2350 2351 static void amd_iommu_iotlb_sync(struct iommu_domain *domain, 2352 struct iommu_iotlb_gather *gather) 2353 { 2354 struct protection_domain *dom = to_pdomain(domain); 2355 unsigned long flags; 2356 2357 spin_lock_irqsave(&dom->lock, flags); 2358 domain_flush_pages(dom, gather->start, gather->end - gather->start, 1); 2359 amd_iommu_domain_flush_complete(dom); 2360 spin_unlock_irqrestore(&dom->lock, flags); 2361 } 2362 2363 static int amd_iommu_def_domain_type(struct device *dev) 2364 { 2365 struct iommu_dev_data *dev_data; 2366 2367 dev_data = dev_iommu_priv_get(dev); 2368 if (!dev_data) 2369 return 0; 2370 2371 /* 2372 * Do not identity map IOMMUv2 capable devices when memory encryption is 2373 * active, because some of those devices (AMD GPUs) don't have the 2374 * encryption bit in their DMA-mask and require remapping. 2375 */ 2376 if (!cc_platform_has(CC_ATTR_MEM_ENCRYPT) && dev_data->iommu_v2) 2377 return IOMMU_DOMAIN_IDENTITY; 2378 2379 return 0; 2380 } 2381 2382 static bool amd_iommu_enforce_cache_coherency(struct iommu_domain *domain) 2383 { 2384 /* IOMMU_PTE_FC is always set */ 2385 return true; 2386 } 2387 2388 const struct iommu_ops amd_iommu_ops = { 2389 .capable = amd_iommu_capable, 2390 .domain_alloc = amd_iommu_domain_alloc, 2391 .probe_device = amd_iommu_probe_device, 2392 .release_device = amd_iommu_release_device, 2393 .probe_finalize = amd_iommu_probe_finalize, 2394 .device_group = amd_iommu_device_group, 2395 .get_resv_regions = amd_iommu_get_resv_regions, 2396 .is_attach_deferred = amd_iommu_is_attach_deferred, 2397 .pgsize_bitmap = AMD_IOMMU_PGSIZES, 2398 .def_domain_type = amd_iommu_def_domain_type, 2399 .default_domain_ops = &(const struct iommu_domain_ops) { 2400 .attach_dev = amd_iommu_attach_device, 2401 .detach_dev = amd_iommu_detach_device, 2402 .map = amd_iommu_map, 2403 .unmap = amd_iommu_unmap, 2404 .iotlb_sync_map = amd_iommu_iotlb_sync_map, 2405 .iova_to_phys = amd_iommu_iova_to_phys, 2406 .flush_iotlb_all = amd_iommu_flush_iotlb_all, 2407 .iotlb_sync = amd_iommu_iotlb_sync, 2408 .free = amd_iommu_domain_free, 2409 .enforce_cache_coherency = amd_iommu_enforce_cache_coherency, 2410 } 2411 }; 2412 2413 /***************************************************************************** 2414 * 2415 * The next functions do a basic initialization of IOMMU for pass through 2416 * mode 2417 * 2418 * In passthrough mode the IOMMU is initialized and enabled but not used for 2419 * DMA-API translation. 2420 * 2421 *****************************************************************************/ 2422 2423 /* IOMMUv2 specific functions */ 2424 int amd_iommu_register_ppr_notifier(struct notifier_block *nb) 2425 { 2426 return atomic_notifier_chain_register(&ppr_notifier, nb); 2427 } 2428 EXPORT_SYMBOL(amd_iommu_register_ppr_notifier); 2429 2430 int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb) 2431 { 2432 return atomic_notifier_chain_unregister(&ppr_notifier, nb); 2433 } 2434 EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier); 2435 2436 void amd_iommu_domain_direct_map(struct iommu_domain *dom) 2437 { 2438 struct protection_domain *domain = to_pdomain(dom); 2439 unsigned long flags; 2440 2441 spin_lock_irqsave(&domain->lock, flags); 2442 2443 if (domain->iop.pgtbl_cfg.tlb) 2444 free_io_pgtable_ops(&domain->iop.iop.ops); 2445 2446 spin_unlock_irqrestore(&domain->lock, flags); 2447 } 2448 EXPORT_SYMBOL(amd_iommu_domain_direct_map); 2449 2450 int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids) 2451 { 2452 struct protection_domain *domain = to_pdomain(dom); 2453 unsigned long flags; 2454 int levels, ret; 2455 2456 /* Number of GCR3 table levels required */ 2457 for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9) 2458 levels += 1; 2459 2460 if (levels > amd_iommu_max_glx_val) 2461 return -EINVAL; 2462 2463 spin_lock_irqsave(&domain->lock, flags); 2464 2465 /* 2466 * Save us all sanity checks whether devices already in the 2467 * domain support IOMMUv2. Just force that the domain has no 2468 * devices attached when it is switched into IOMMUv2 mode. 2469 */ 2470 ret = -EBUSY; 2471 if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK) 2472 goto out; 2473 2474 ret = -ENOMEM; 2475 domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC); 2476 if (domain->gcr3_tbl == NULL) 2477 goto out; 2478 2479 domain->glx = levels; 2480 domain->flags |= PD_IOMMUV2_MASK; 2481 2482 amd_iommu_domain_update(domain); 2483 2484 ret = 0; 2485 2486 out: 2487 spin_unlock_irqrestore(&domain->lock, flags); 2488 2489 return ret; 2490 } 2491 EXPORT_SYMBOL(amd_iommu_domain_enable_v2); 2492 2493 static int __flush_pasid(struct protection_domain *domain, u32 pasid, 2494 u64 address, bool size) 2495 { 2496 struct iommu_dev_data *dev_data; 2497 struct iommu_cmd cmd; 2498 int i, ret; 2499 2500 if (!(domain->flags & PD_IOMMUV2_MASK)) 2501 return -EINVAL; 2502 2503 build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size); 2504 2505 /* 2506 * IOMMU TLB needs to be flushed before Device TLB to 2507 * prevent device TLB refill from IOMMU TLB 2508 */ 2509 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) { 2510 if (domain->dev_iommu[i] == 0) 2511 continue; 2512 2513 ret = iommu_queue_command(amd_iommus[i], &cmd); 2514 if (ret != 0) 2515 goto out; 2516 } 2517 2518 /* Wait until IOMMU TLB flushes are complete */ 2519 amd_iommu_domain_flush_complete(domain); 2520 2521 /* Now flush device TLBs */ 2522 list_for_each_entry(dev_data, &domain->dev_list, list) { 2523 struct amd_iommu *iommu; 2524 int qdep; 2525 2526 /* 2527 There might be non-IOMMUv2 capable devices in an IOMMUv2 2528 * domain. 2529 */ 2530 if (!dev_data->ats.enabled) 2531 continue; 2532 2533 qdep = dev_data->ats.qdep; 2534 iommu = rlookup_amd_iommu(dev_data->dev); 2535 if (!iommu) 2536 continue; 2537 build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid, 2538 qdep, address, size); 2539 2540 ret = iommu_queue_command(iommu, &cmd); 2541 if (ret != 0) 2542 goto out; 2543 } 2544 2545 /* Wait until all device TLBs are flushed */ 2546 amd_iommu_domain_flush_complete(domain); 2547 2548 ret = 0; 2549 2550 out: 2551 2552 return ret; 2553 } 2554 2555 static int __amd_iommu_flush_page(struct protection_domain *domain, u32 pasid, 2556 u64 address) 2557 { 2558 return __flush_pasid(domain, pasid, address, false); 2559 } 2560 2561 int amd_iommu_flush_page(struct iommu_domain *dom, u32 pasid, 2562 u64 address) 2563 { 2564 struct protection_domain *domain = to_pdomain(dom); 2565 unsigned long flags; 2566 int ret; 2567 2568 spin_lock_irqsave(&domain->lock, flags); 2569 ret = __amd_iommu_flush_page(domain, pasid, address); 2570 spin_unlock_irqrestore(&domain->lock, flags); 2571 2572 return ret; 2573 } 2574 EXPORT_SYMBOL(amd_iommu_flush_page); 2575 2576 static int __amd_iommu_flush_tlb(struct protection_domain *domain, u32 pasid) 2577 { 2578 return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 2579 true); 2580 } 2581 2582 int amd_iommu_flush_tlb(struct iommu_domain *dom, u32 pasid) 2583 { 2584 struct protection_domain *domain = to_pdomain(dom); 2585 unsigned long flags; 2586 int ret; 2587 2588 spin_lock_irqsave(&domain->lock, flags); 2589 ret = __amd_iommu_flush_tlb(domain, pasid); 2590 spin_unlock_irqrestore(&domain->lock, flags); 2591 2592 return ret; 2593 } 2594 EXPORT_SYMBOL(amd_iommu_flush_tlb); 2595 2596 static u64 *__get_gcr3_pte(u64 *root, int level, u32 pasid, bool alloc) 2597 { 2598 int index; 2599 u64 *pte; 2600 2601 while (true) { 2602 2603 index = (pasid >> (9 * level)) & 0x1ff; 2604 pte = &root[index]; 2605 2606 if (level == 0) 2607 break; 2608 2609 if (!(*pte & GCR3_VALID)) { 2610 if (!alloc) 2611 return NULL; 2612 2613 root = (void *)get_zeroed_page(GFP_ATOMIC); 2614 if (root == NULL) 2615 return NULL; 2616 2617 *pte = iommu_virt_to_phys(root) | GCR3_VALID; 2618 } 2619 2620 root = iommu_phys_to_virt(*pte & PAGE_MASK); 2621 2622 level -= 1; 2623 } 2624 2625 return pte; 2626 } 2627 2628 static int __set_gcr3(struct protection_domain *domain, u32 pasid, 2629 unsigned long cr3) 2630 { 2631 u64 *pte; 2632 2633 if (domain->iop.mode != PAGE_MODE_NONE) 2634 return -EINVAL; 2635 2636 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true); 2637 if (pte == NULL) 2638 return -ENOMEM; 2639 2640 *pte = (cr3 & PAGE_MASK) | GCR3_VALID; 2641 2642 return __amd_iommu_flush_tlb(domain, pasid); 2643 } 2644 2645 static int __clear_gcr3(struct protection_domain *domain, u32 pasid) 2646 { 2647 u64 *pte; 2648 2649 if (domain->iop.mode != PAGE_MODE_NONE) 2650 return -EINVAL; 2651 2652 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false); 2653 if (pte == NULL) 2654 return 0; 2655 2656 *pte = 0; 2657 2658 return __amd_iommu_flush_tlb(domain, pasid); 2659 } 2660 2661 int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, u32 pasid, 2662 unsigned long cr3) 2663 { 2664 struct protection_domain *domain = to_pdomain(dom); 2665 unsigned long flags; 2666 int ret; 2667 2668 spin_lock_irqsave(&domain->lock, flags); 2669 ret = __set_gcr3(domain, pasid, cr3); 2670 spin_unlock_irqrestore(&domain->lock, flags); 2671 2672 return ret; 2673 } 2674 EXPORT_SYMBOL(amd_iommu_domain_set_gcr3); 2675 2676 int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, u32 pasid) 2677 { 2678 struct protection_domain *domain = to_pdomain(dom); 2679 unsigned long flags; 2680 int ret; 2681 2682 spin_lock_irqsave(&domain->lock, flags); 2683 ret = __clear_gcr3(domain, pasid); 2684 spin_unlock_irqrestore(&domain->lock, flags); 2685 2686 return ret; 2687 } 2688 EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3); 2689 2690 int amd_iommu_complete_ppr(struct pci_dev *pdev, u32 pasid, 2691 int status, int tag) 2692 { 2693 struct iommu_dev_data *dev_data; 2694 struct amd_iommu *iommu; 2695 struct iommu_cmd cmd; 2696 2697 dev_data = dev_iommu_priv_get(&pdev->dev); 2698 iommu = rlookup_amd_iommu(&pdev->dev); 2699 if (!iommu) 2700 return -ENODEV; 2701 2702 build_complete_ppr(&cmd, dev_data->devid, pasid, status, 2703 tag, dev_data->pri_tlp); 2704 2705 return iommu_queue_command(iommu, &cmd); 2706 } 2707 EXPORT_SYMBOL(amd_iommu_complete_ppr); 2708 2709 int amd_iommu_device_info(struct pci_dev *pdev, 2710 struct amd_iommu_device_info *info) 2711 { 2712 int max_pasids; 2713 int pos; 2714 2715 if (pdev == NULL || info == NULL) 2716 return -EINVAL; 2717 2718 if (!amd_iommu_v2_supported()) 2719 return -EINVAL; 2720 2721 memset(info, 0, sizeof(*info)); 2722 2723 if (pci_ats_supported(pdev)) 2724 info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP; 2725 2726 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI); 2727 if (pos) 2728 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP; 2729 2730 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID); 2731 if (pos) { 2732 int features; 2733 2734 max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1)); 2735 max_pasids = min(max_pasids, (1 << 20)); 2736 2737 info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP; 2738 info->max_pasids = min(pci_max_pasids(pdev), max_pasids); 2739 2740 features = pci_pasid_features(pdev); 2741 if (features & PCI_PASID_CAP_EXEC) 2742 info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP; 2743 if (features & PCI_PASID_CAP_PRIV) 2744 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP; 2745 } 2746 2747 return 0; 2748 } 2749 EXPORT_SYMBOL(amd_iommu_device_info); 2750 2751 #ifdef CONFIG_IRQ_REMAP 2752 2753 /***************************************************************************** 2754 * 2755 * Interrupt Remapping Implementation 2756 * 2757 *****************************************************************************/ 2758 2759 static struct irq_chip amd_ir_chip; 2760 static DEFINE_SPINLOCK(iommu_table_lock); 2761 2762 static void set_dte_irq_entry(struct amd_iommu *iommu, u16 devid, 2763 struct irq_remap_table *table) 2764 { 2765 u64 dte; 2766 struct dev_table_entry *dev_table = get_dev_table(iommu); 2767 2768 dte = dev_table[devid].data[2]; 2769 dte &= ~DTE_IRQ_PHYS_ADDR_MASK; 2770 dte |= iommu_virt_to_phys(table->table); 2771 dte |= DTE_IRQ_REMAP_INTCTL; 2772 dte |= DTE_INTTABLEN; 2773 dte |= DTE_IRQ_REMAP_ENABLE; 2774 2775 dev_table[devid].data[2] = dte; 2776 } 2777 2778 static struct irq_remap_table *get_irq_table(struct amd_iommu *iommu, u16 devid) 2779 { 2780 struct irq_remap_table *table; 2781 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; 2782 2783 if (WARN_ONCE(!pci_seg->rlookup_table[devid], 2784 "%s: no iommu for devid %x:%x\n", 2785 __func__, pci_seg->id, devid)) 2786 return NULL; 2787 2788 table = pci_seg->irq_lookup_table[devid]; 2789 if (WARN_ONCE(!table, "%s: no table for devid %x:%x\n", 2790 __func__, pci_seg->id, devid)) 2791 return NULL; 2792 2793 return table; 2794 } 2795 2796 static struct irq_remap_table *__alloc_irq_table(void) 2797 { 2798 struct irq_remap_table *table; 2799 2800 table = kzalloc(sizeof(*table), GFP_KERNEL); 2801 if (!table) 2802 return NULL; 2803 2804 table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL); 2805 if (!table->table) { 2806 kfree(table); 2807 return NULL; 2808 } 2809 raw_spin_lock_init(&table->lock); 2810 2811 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir)) 2812 memset(table->table, 0, 2813 MAX_IRQS_PER_TABLE * sizeof(u32)); 2814 else 2815 memset(table->table, 0, 2816 (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2))); 2817 return table; 2818 } 2819 2820 static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid, 2821 struct irq_remap_table *table) 2822 { 2823 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg; 2824 2825 pci_seg->irq_lookup_table[devid] = table; 2826 set_dte_irq_entry(iommu, devid, table); 2827 iommu_flush_dte(iommu, devid); 2828 } 2829 2830 static int set_remap_table_entry_alias(struct pci_dev *pdev, u16 alias, 2831 void *data) 2832 { 2833 struct irq_remap_table *table = data; 2834 struct amd_iommu_pci_seg *pci_seg; 2835 struct amd_iommu *iommu = rlookup_amd_iommu(&pdev->dev); 2836 2837 if (!iommu) 2838 return -EINVAL; 2839 2840 pci_seg = iommu->pci_seg; 2841 pci_seg->irq_lookup_table[alias] = table; 2842 set_dte_irq_entry(iommu, alias, table); 2843 iommu_flush_dte(pci_seg->rlookup_table[alias], alias); 2844 2845 return 0; 2846 } 2847 2848 static struct irq_remap_table *alloc_irq_table(struct amd_iommu *iommu, 2849 u16 devid, struct pci_dev *pdev) 2850 { 2851 struct irq_remap_table *table = NULL; 2852 struct irq_remap_table *new_table = NULL; 2853 struct amd_iommu_pci_seg *pci_seg; 2854 unsigned long flags; 2855 u16 alias; 2856 2857 spin_lock_irqsave(&iommu_table_lock, flags); 2858 2859 pci_seg = iommu->pci_seg; 2860 table = pci_seg->irq_lookup_table[devid]; 2861 if (table) 2862 goto out_unlock; 2863 2864 alias = pci_seg->alias_table[devid]; 2865 table = pci_seg->irq_lookup_table[alias]; 2866 if (table) { 2867 set_remap_table_entry(iommu, devid, table); 2868 goto out_wait; 2869 } 2870 spin_unlock_irqrestore(&iommu_table_lock, flags); 2871 2872 /* Nothing there yet, allocate new irq remapping table */ 2873 new_table = __alloc_irq_table(); 2874 if (!new_table) 2875 return NULL; 2876 2877 spin_lock_irqsave(&iommu_table_lock, flags); 2878 2879 table = pci_seg->irq_lookup_table[devid]; 2880 if (table) 2881 goto out_unlock; 2882 2883 table = pci_seg->irq_lookup_table[alias]; 2884 if (table) { 2885 set_remap_table_entry(iommu, devid, table); 2886 goto out_wait; 2887 } 2888 2889 table = new_table; 2890 new_table = NULL; 2891 2892 if (pdev) 2893 pci_for_each_dma_alias(pdev, set_remap_table_entry_alias, 2894 table); 2895 else 2896 set_remap_table_entry(iommu, devid, table); 2897 2898 if (devid != alias) 2899 set_remap_table_entry(iommu, alias, table); 2900 2901 out_wait: 2902 iommu_completion_wait(iommu); 2903 2904 out_unlock: 2905 spin_unlock_irqrestore(&iommu_table_lock, flags); 2906 2907 if (new_table) { 2908 kmem_cache_free(amd_iommu_irq_cache, new_table->table); 2909 kfree(new_table); 2910 } 2911 return table; 2912 } 2913 2914 static int alloc_irq_index(struct amd_iommu *iommu, u16 devid, int count, 2915 bool align, struct pci_dev *pdev) 2916 { 2917 struct irq_remap_table *table; 2918 int index, c, alignment = 1; 2919 unsigned long flags; 2920 2921 table = alloc_irq_table(iommu, devid, pdev); 2922 if (!table) 2923 return -ENODEV; 2924 2925 if (align) 2926 alignment = roundup_pow_of_two(count); 2927 2928 raw_spin_lock_irqsave(&table->lock, flags); 2929 2930 /* Scan table for free entries */ 2931 for (index = ALIGN(table->min_index, alignment), c = 0; 2932 index < MAX_IRQS_PER_TABLE;) { 2933 if (!iommu->irte_ops->is_allocated(table, index)) { 2934 c += 1; 2935 } else { 2936 c = 0; 2937 index = ALIGN(index + 1, alignment); 2938 continue; 2939 } 2940 2941 if (c == count) { 2942 for (; c != 0; --c) 2943 iommu->irte_ops->set_allocated(table, index - c + 1); 2944 2945 index -= count - 1; 2946 goto out; 2947 } 2948 2949 index++; 2950 } 2951 2952 index = -ENOSPC; 2953 2954 out: 2955 raw_spin_unlock_irqrestore(&table->lock, flags); 2956 2957 return index; 2958 } 2959 2960 static int modify_irte_ga(struct amd_iommu *iommu, u16 devid, int index, 2961 struct irte_ga *irte, struct amd_ir_data *data) 2962 { 2963 bool ret; 2964 struct irq_remap_table *table; 2965 unsigned long flags; 2966 struct irte_ga *entry; 2967 2968 table = get_irq_table(iommu, devid); 2969 if (!table) 2970 return -ENOMEM; 2971 2972 raw_spin_lock_irqsave(&table->lock, flags); 2973 2974 entry = (struct irte_ga *)table->table; 2975 entry = &entry[index]; 2976 2977 ret = cmpxchg_double(&entry->lo.val, &entry->hi.val, 2978 entry->lo.val, entry->hi.val, 2979 irte->lo.val, irte->hi.val); 2980 /* 2981 * We use cmpxchg16 to atomically update the 128-bit IRTE, 2982 * and it cannot be updated by the hardware or other processors 2983 * behind us, so the return value of cmpxchg16 should be the 2984 * same as the old value. 2985 */ 2986 WARN_ON(!ret); 2987 2988 if (data) 2989 data->ref = entry; 2990 2991 raw_spin_unlock_irqrestore(&table->lock, flags); 2992 2993 iommu_flush_irt(iommu, devid); 2994 iommu_completion_wait(iommu); 2995 2996 return 0; 2997 } 2998 2999 static int modify_irte(struct amd_iommu *iommu, 3000 u16 devid, int index, union irte *irte) 3001 { 3002 struct irq_remap_table *table; 3003 unsigned long flags; 3004 3005 table = get_irq_table(iommu, devid); 3006 if (!table) 3007 return -ENOMEM; 3008 3009 raw_spin_lock_irqsave(&table->lock, flags); 3010 table->table[index] = irte->val; 3011 raw_spin_unlock_irqrestore(&table->lock, flags); 3012 3013 iommu_flush_irt(iommu, devid); 3014 iommu_completion_wait(iommu); 3015 3016 return 0; 3017 } 3018 3019 static void free_irte(struct amd_iommu *iommu, u16 devid, int index) 3020 { 3021 struct irq_remap_table *table; 3022 unsigned long flags; 3023 3024 table = get_irq_table(iommu, devid); 3025 if (!table) 3026 return; 3027 3028 raw_spin_lock_irqsave(&table->lock, flags); 3029 iommu->irte_ops->clear_allocated(table, index); 3030 raw_spin_unlock_irqrestore(&table->lock, flags); 3031 3032 iommu_flush_irt(iommu, devid); 3033 iommu_completion_wait(iommu); 3034 } 3035 3036 static void irte_prepare(void *entry, 3037 u32 delivery_mode, bool dest_mode, 3038 u8 vector, u32 dest_apicid, int devid) 3039 { 3040 union irte *irte = (union irte *) entry; 3041 3042 irte->val = 0; 3043 irte->fields.vector = vector; 3044 irte->fields.int_type = delivery_mode; 3045 irte->fields.destination = dest_apicid; 3046 irte->fields.dm = dest_mode; 3047 irte->fields.valid = 1; 3048 } 3049 3050 static void irte_ga_prepare(void *entry, 3051 u32 delivery_mode, bool dest_mode, 3052 u8 vector, u32 dest_apicid, int devid) 3053 { 3054 struct irte_ga *irte = (struct irte_ga *) entry; 3055 3056 irte->lo.val = 0; 3057 irte->hi.val = 0; 3058 irte->lo.fields_remap.int_type = delivery_mode; 3059 irte->lo.fields_remap.dm = dest_mode; 3060 irte->hi.fields.vector = vector; 3061 irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid); 3062 irte->hi.fields.destination = APICID_TO_IRTE_DEST_HI(dest_apicid); 3063 irte->lo.fields_remap.valid = 1; 3064 } 3065 3066 static void irte_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index) 3067 { 3068 union irte *irte = (union irte *) entry; 3069 3070 irte->fields.valid = 1; 3071 modify_irte(iommu, devid, index, irte); 3072 } 3073 3074 static void irte_ga_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index) 3075 { 3076 struct irte_ga *irte = (struct irte_ga *) entry; 3077 3078 irte->lo.fields_remap.valid = 1; 3079 modify_irte_ga(iommu, devid, index, irte, NULL); 3080 } 3081 3082 static void irte_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index) 3083 { 3084 union irte *irte = (union irte *) entry; 3085 3086 irte->fields.valid = 0; 3087 modify_irte(iommu, devid, index, irte); 3088 } 3089 3090 static void irte_ga_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index) 3091 { 3092 struct irte_ga *irte = (struct irte_ga *) entry; 3093 3094 irte->lo.fields_remap.valid = 0; 3095 modify_irte_ga(iommu, devid, index, irte, NULL); 3096 } 3097 3098 static void irte_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index, 3099 u8 vector, u32 dest_apicid) 3100 { 3101 union irte *irte = (union irte *) entry; 3102 3103 irte->fields.vector = vector; 3104 irte->fields.destination = dest_apicid; 3105 modify_irte(iommu, devid, index, irte); 3106 } 3107 3108 static void irte_ga_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index, 3109 u8 vector, u32 dest_apicid) 3110 { 3111 struct irte_ga *irte = (struct irte_ga *) entry; 3112 3113 if (!irte->lo.fields_remap.guest_mode) { 3114 irte->hi.fields.vector = vector; 3115 irte->lo.fields_remap.destination = 3116 APICID_TO_IRTE_DEST_LO(dest_apicid); 3117 irte->hi.fields.destination = 3118 APICID_TO_IRTE_DEST_HI(dest_apicid); 3119 modify_irte_ga(iommu, devid, index, irte, NULL); 3120 } 3121 } 3122 3123 #define IRTE_ALLOCATED (~1U) 3124 static void irte_set_allocated(struct irq_remap_table *table, int index) 3125 { 3126 table->table[index] = IRTE_ALLOCATED; 3127 } 3128 3129 static void irte_ga_set_allocated(struct irq_remap_table *table, int index) 3130 { 3131 struct irte_ga *ptr = (struct irte_ga *)table->table; 3132 struct irte_ga *irte = &ptr[index]; 3133 3134 memset(&irte->lo.val, 0, sizeof(u64)); 3135 memset(&irte->hi.val, 0, sizeof(u64)); 3136 irte->hi.fields.vector = 0xff; 3137 } 3138 3139 static bool irte_is_allocated(struct irq_remap_table *table, int index) 3140 { 3141 union irte *ptr = (union irte *)table->table; 3142 union irte *irte = &ptr[index]; 3143 3144 return irte->val != 0; 3145 } 3146 3147 static bool irte_ga_is_allocated(struct irq_remap_table *table, int index) 3148 { 3149 struct irte_ga *ptr = (struct irte_ga *)table->table; 3150 struct irte_ga *irte = &ptr[index]; 3151 3152 return irte->hi.fields.vector != 0; 3153 } 3154 3155 static void irte_clear_allocated(struct irq_remap_table *table, int index) 3156 { 3157 table->table[index] = 0; 3158 } 3159 3160 static void irte_ga_clear_allocated(struct irq_remap_table *table, int index) 3161 { 3162 struct irte_ga *ptr = (struct irte_ga *)table->table; 3163 struct irte_ga *irte = &ptr[index]; 3164 3165 memset(&irte->lo.val, 0, sizeof(u64)); 3166 memset(&irte->hi.val, 0, sizeof(u64)); 3167 } 3168 3169 static int get_devid(struct irq_alloc_info *info) 3170 { 3171 switch (info->type) { 3172 case X86_IRQ_ALLOC_TYPE_IOAPIC: 3173 return get_ioapic_devid(info->devid); 3174 case X86_IRQ_ALLOC_TYPE_HPET: 3175 return get_hpet_devid(info->devid); 3176 case X86_IRQ_ALLOC_TYPE_PCI_MSI: 3177 case X86_IRQ_ALLOC_TYPE_PCI_MSIX: 3178 return get_device_sbdf_id(msi_desc_to_dev(info->desc)); 3179 default: 3180 WARN_ON_ONCE(1); 3181 return -1; 3182 } 3183 } 3184 3185 struct irq_remap_ops amd_iommu_irq_ops = { 3186 .prepare = amd_iommu_prepare, 3187 .enable = amd_iommu_enable, 3188 .disable = amd_iommu_disable, 3189 .reenable = amd_iommu_reenable, 3190 .enable_faulting = amd_iommu_enable_faulting, 3191 }; 3192 3193 static void fill_msi_msg(struct msi_msg *msg, u32 index) 3194 { 3195 msg->data = index; 3196 msg->address_lo = 0; 3197 msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW; 3198 msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH; 3199 } 3200 3201 static void irq_remapping_prepare_irte(struct amd_ir_data *data, 3202 struct irq_cfg *irq_cfg, 3203 struct irq_alloc_info *info, 3204 int devid, int index, int sub_handle) 3205 { 3206 struct irq_2_irte *irte_info = &data->irq_2_irte; 3207 struct amd_iommu *iommu = data->iommu; 3208 3209 if (!iommu) 3210 return; 3211 3212 data->irq_2_irte.devid = devid; 3213 data->irq_2_irte.index = index + sub_handle; 3214 iommu->irte_ops->prepare(data->entry, apic->delivery_mode, 3215 apic->dest_mode_logical, irq_cfg->vector, 3216 irq_cfg->dest_apicid, devid); 3217 3218 switch (info->type) { 3219 case X86_IRQ_ALLOC_TYPE_IOAPIC: 3220 case X86_IRQ_ALLOC_TYPE_HPET: 3221 case X86_IRQ_ALLOC_TYPE_PCI_MSI: 3222 case X86_IRQ_ALLOC_TYPE_PCI_MSIX: 3223 fill_msi_msg(&data->msi_entry, irte_info->index); 3224 break; 3225 3226 default: 3227 BUG_ON(1); 3228 break; 3229 } 3230 } 3231 3232 struct amd_irte_ops irte_32_ops = { 3233 .prepare = irte_prepare, 3234 .activate = irte_activate, 3235 .deactivate = irte_deactivate, 3236 .set_affinity = irte_set_affinity, 3237 .set_allocated = irte_set_allocated, 3238 .is_allocated = irte_is_allocated, 3239 .clear_allocated = irte_clear_allocated, 3240 }; 3241 3242 struct amd_irte_ops irte_128_ops = { 3243 .prepare = irte_ga_prepare, 3244 .activate = irte_ga_activate, 3245 .deactivate = irte_ga_deactivate, 3246 .set_affinity = irte_ga_set_affinity, 3247 .set_allocated = irte_ga_set_allocated, 3248 .is_allocated = irte_ga_is_allocated, 3249 .clear_allocated = irte_ga_clear_allocated, 3250 }; 3251 3252 static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq, 3253 unsigned int nr_irqs, void *arg) 3254 { 3255 struct irq_alloc_info *info = arg; 3256 struct irq_data *irq_data; 3257 struct amd_ir_data *data = NULL; 3258 struct amd_iommu *iommu; 3259 struct irq_cfg *cfg; 3260 int i, ret, devid, seg, sbdf; 3261 int index; 3262 3263 if (!info) 3264 return -EINVAL; 3265 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI && 3266 info->type != X86_IRQ_ALLOC_TYPE_PCI_MSIX) 3267 return -EINVAL; 3268 3269 /* 3270 * With IRQ remapping enabled, don't need contiguous CPU vectors 3271 * to support multiple MSI interrupts. 3272 */ 3273 if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI) 3274 info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS; 3275 3276 sbdf = get_devid(info); 3277 if (sbdf < 0) 3278 return -EINVAL; 3279 3280 seg = PCI_SBDF_TO_SEGID(sbdf); 3281 devid = PCI_SBDF_TO_DEVID(sbdf); 3282 iommu = __rlookup_amd_iommu(seg, devid); 3283 if (!iommu) 3284 return -EINVAL; 3285 3286 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg); 3287 if (ret < 0) 3288 return ret; 3289 3290 if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) { 3291 struct irq_remap_table *table; 3292 3293 table = alloc_irq_table(iommu, devid, NULL); 3294 if (table) { 3295 if (!table->min_index) { 3296 /* 3297 * Keep the first 32 indexes free for IOAPIC 3298 * interrupts. 3299 */ 3300 table->min_index = 32; 3301 for (i = 0; i < 32; ++i) 3302 iommu->irte_ops->set_allocated(table, i); 3303 } 3304 WARN_ON(table->min_index != 32); 3305 index = info->ioapic.pin; 3306 } else { 3307 index = -ENOMEM; 3308 } 3309 } else if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI || 3310 info->type == X86_IRQ_ALLOC_TYPE_PCI_MSIX) { 3311 bool align = (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI); 3312 3313 index = alloc_irq_index(iommu, devid, nr_irqs, align, 3314 msi_desc_to_pci_dev(info->desc)); 3315 } else { 3316 index = alloc_irq_index(iommu, devid, nr_irqs, false, NULL); 3317 } 3318 3319 if (index < 0) { 3320 pr_warn("Failed to allocate IRTE\n"); 3321 ret = index; 3322 goto out_free_parent; 3323 } 3324 3325 for (i = 0; i < nr_irqs; i++) { 3326 irq_data = irq_domain_get_irq_data(domain, virq + i); 3327 cfg = irq_data ? irqd_cfg(irq_data) : NULL; 3328 if (!cfg) { 3329 ret = -EINVAL; 3330 goto out_free_data; 3331 } 3332 3333 ret = -ENOMEM; 3334 data = kzalloc(sizeof(*data), GFP_KERNEL); 3335 if (!data) 3336 goto out_free_data; 3337 3338 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir)) 3339 data->entry = kzalloc(sizeof(union irte), GFP_KERNEL); 3340 else 3341 data->entry = kzalloc(sizeof(struct irte_ga), 3342 GFP_KERNEL); 3343 if (!data->entry) { 3344 kfree(data); 3345 goto out_free_data; 3346 } 3347 3348 data->iommu = iommu; 3349 irq_data->hwirq = (devid << 16) + i; 3350 irq_data->chip_data = data; 3351 irq_data->chip = &amd_ir_chip; 3352 irq_remapping_prepare_irte(data, cfg, info, devid, index, i); 3353 irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT); 3354 } 3355 3356 return 0; 3357 3358 out_free_data: 3359 for (i--; i >= 0; i--) { 3360 irq_data = irq_domain_get_irq_data(domain, virq + i); 3361 if (irq_data) 3362 kfree(irq_data->chip_data); 3363 } 3364 for (i = 0; i < nr_irqs; i++) 3365 free_irte(iommu, devid, index + i); 3366 out_free_parent: 3367 irq_domain_free_irqs_common(domain, virq, nr_irqs); 3368 return ret; 3369 } 3370 3371 static void irq_remapping_free(struct irq_domain *domain, unsigned int virq, 3372 unsigned int nr_irqs) 3373 { 3374 struct irq_2_irte *irte_info; 3375 struct irq_data *irq_data; 3376 struct amd_ir_data *data; 3377 int i; 3378 3379 for (i = 0; i < nr_irqs; i++) { 3380 irq_data = irq_domain_get_irq_data(domain, virq + i); 3381 if (irq_data && irq_data->chip_data) { 3382 data = irq_data->chip_data; 3383 irte_info = &data->irq_2_irte; 3384 free_irte(data->iommu, irte_info->devid, irte_info->index); 3385 kfree(data->entry); 3386 kfree(data); 3387 } 3388 } 3389 irq_domain_free_irqs_common(domain, virq, nr_irqs); 3390 } 3391 3392 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu, 3393 struct amd_ir_data *ir_data, 3394 struct irq_2_irte *irte_info, 3395 struct irq_cfg *cfg); 3396 3397 static int irq_remapping_activate(struct irq_domain *domain, 3398 struct irq_data *irq_data, bool reserve) 3399 { 3400 struct amd_ir_data *data = irq_data->chip_data; 3401 struct irq_2_irte *irte_info = &data->irq_2_irte; 3402 struct amd_iommu *iommu = data->iommu; 3403 struct irq_cfg *cfg = irqd_cfg(irq_data); 3404 3405 if (!iommu) 3406 return 0; 3407 3408 iommu->irte_ops->activate(iommu, data->entry, irte_info->devid, 3409 irte_info->index); 3410 amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg); 3411 return 0; 3412 } 3413 3414 static void irq_remapping_deactivate(struct irq_domain *domain, 3415 struct irq_data *irq_data) 3416 { 3417 struct amd_ir_data *data = irq_data->chip_data; 3418 struct irq_2_irte *irte_info = &data->irq_2_irte; 3419 struct amd_iommu *iommu = data->iommu; 3420 3421 if (iommu) 3422 iommu->irte_ops->deactivate(iommu, data->entry, irte_info->devid, 3423 irte_info->index); 3424 } 3425 3426 static int irq_remapping_select(struct irq_domain *d, struct irq_fwspec *fwspec, 3427 enum irq_domain_bus_token bus_token) 3428 { 3429 struct amd_iommu *iommu; 3430 int devid = -1; 3431 3432 if (!amd_iommu_irq_remap) 3433 return 0; 3434 3435 if (x86_fwspec_is_ioapic(fwspec)) 3436 devid = get_ioapic_devid(fwspec->param[0]); 3437 else if (x86_fwspec_is_hpet(fwspec)) 3438 devid = get_hpet_devid(fwspec->param[0]); 3439 3440 if (devid < 0) 3441 return 0; 3442 iommu = __rlookup_amd_iommu((devid >> 16), (devid & 0xffff)); 3443 3444 return iommu && iommu->ir_domain == d; 3445 } 3446 3447 static const struct irq_domain_ops amd_ir_domain_ops = { 3448 .select = irq_remapping_select, 3449 .alloc = irq_remapping_alloc, 3450 .free = irq_remapping_free, 3451 .activate = irq_remapping_activate, 3452 .deactivate = irq_remapping_deactivate, 3453 }; 3454 3455 int amd_iommu_activate_guest_mode(void *data) 3456 { 3457 struct amd_ir_data *ir_data = (struct amd_ir_data *)data; 3458 struct irte_ga *entry = (struct irte_ga *) ir_data->entry; 3459 u64 valid; 3460 3461 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) || 3462 !entry || entry->lo.fields_vapic.guest_mode) 3463 return 0; 3464 3465 valid = entry->lo.fields_vapic.valid; 3466 3467 entry->lo.val = 0; 3468 entry->hi.val = 0; 3469 3470 entry->lo.fields_vapic.valid = valid; 3471 entry->lo.fields_vapic.guest_mode = 1; 3472 entry->lo.fields_vapic.ga_log_intr = 1; 3473 entry->hi.fields.ga_root_ptr = ir_data->ga_root_ptr; 3474 entry->hi.fields.vector = ir_data->ga_vector; 3475 entry->lo.fields_vapic.ga_tag = ir_data->ga_tag; 3476 3477 return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid, 3478 ir_data->irq_2_irte.index, entry, ir_data); 3479 } 3480 EXPORT_SYMBOL(amd_iommu_activate_guest_mode); 3481 3482 int amd_iommu_deactivate_guest_mode(void *data) 3483 { 3484 struct amd_ir_data *ir_data = (struct amd_ir_data *)data; 3485 struct irte_ga *entry = (struct irte_ga *) ir_data->entry; 3486 struct irq_cfg *cfg = ir_data->cfg; 3487 u64 valid; 3488 3489 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) || 3490 !entry || !entry->lo.fields_vapic.guest_mode) 3491 return 0; 3492 3493 valid = entry->lo.fields_remap.valid; 3494 3495 entry->lo.val = 0; 3496 entry->hi.val = 0; 3497 3498 entry->lo.fields_remap.valid = valid; 3499 entry->lo.fields_remap.dm = apic->dest_mode_logical; 3500 entry->lo.fields_remap.int_type = apic->delivery_mode; 3501 entry->hi.fields.vector = cfg->vector; 3502 entry->lo.fields_remap.destination = 3503 APICID_TO_IRTE_DEST_LO(cfg->dest_apicid); 3504 entry->hi.fields.destination = 3505 APICID_TO_IRTE_DEST_HI(cfg->dest_apicid); 3506 3507 return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid, 3508 ir_data->irq_2_irte.index, entry, ir_data); 3509 } 3510 EXPORT_SYMBOL(amd_iommu_deactivate_guest_mode); 3511 3512 static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info) 3513 { 3514 int ret; 3515 struct amd_iommu_pi_data *pi_data = vcpu_info; 3516 struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data; 3517 struct amd_ir_data *ir_data = data->chip_data; 3518 struct irq_2_irte *irte_info = &ir_data->irq_2_irte; 3519 struct iommu_dev_data *dev_data; 3520 3521 if (ir_data->iommu == NULL) 3522 return -EINVAL; 3523 3524 dev_data = search_dev_data(ir_data->iommu, irte_info->devid); 3525 3526 /* Note: 3527 * This device has never been set up for guest mode. 3528 * we should not modify the IRTE 3529 */ 3530 if (!dev_data || !dev_data->use_vapic) 3531 return 0; 3532 3533 ir_data->cfg = irqd_cfg(data); 3534 pi_data->ir_data = ir_data; 3535 3536 /* Note: 3537 * SVM tries to set up for VAPIC mode, but we are in 3538 * legacy mode. So, we force legacy mode instead. 3539 */ 3540 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) { 3541 pr_debug("%s: Fall back to using intr legacy remap\n", 3542 __func__); 3543 pi_data->is_guest_mode = false; 3544 } 3545 3546 pi_data->prev_ga_tag = ir_data->cached_ga_tag; 3547 if (pi_data->is_guest_mode) { 3548 ir_data->ga_root_ptr = (pi_data->base >> 12); 3549 ir_data->ga_vector = vcpu_pi_info->vector; 3550 ir_data->ga_tag = pi_data->ga_tag; 3551 ret = amd_iommu_activate_guest_mode(ir_data); 3552 if (!ret) 3553 ir_data->cached_ga_tag = pi_data->ga_tag; 3554 } else { 3555 ret = amd_iommu_deactivate_guest_mode(ir_data); 3556 3557 /* 3558 * This communicates the ga_tag back to the caller 3559 * so that it can do all the necessary clean up. 3560 */ 3561 if (!ret) 3562 ir_data->cached_ga_tag = 0; 3563 } 3564 3565 return ret; 3566 } 3567 3568 3569 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu, 3570 struct amd_ir_data *ir_data, 3571 struct irq_2_irte *irte_info, 3572 struct irq_cfg *cfg) 3573 { 3574 3575 /* 3576 * Atomically updates the IRTE with the new destination, vector 3577 * and flushes the interrupt entry cache. 3578 */ 3579 iommu->irte_ops->set_affinity(iommu, ir_data->entry, irte_info->devid, 3580 irte_info->index, cfg->vector, 3581 cfg->dest_apicid); 3582 } 3583 3584 static int amd_ir_set_affinity(struct irq_data *data, 3585 const struct cpumask *mask, bool force) 3586 { 3587 struct amd_ir_data *ir_data = data->chip_data; 3588 struct irq_2_irte *irte_info = &ir_data->irq_2_irte; 3589 struct irq_cfg *cfg = irqd_cfg(data); 3590 struct irq_data *parent = data->parent_data; 3591 struct amd_iommu *iommu = ir_data->iommu; 3592 int ret; 3593 3594 if (!iommu) 3595 return -ENODEV; 3596 3597 ret = parent->chip->irq_set_affinity(parent, mask, force); 3598 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE) 3599 return ret; 3600 3601 amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg); 3602 /* 3603 * After this point, all the interrupts will start arriving 3604 * at the new destination. So, time to cleanup the previous 3605 * vector allocation. 3606 */ 3607 send_cleanup_vector(cfg); 3608 3609 return IRQ_SET_MASK_OK_DONE; 3610 } 3611 3612 static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg) 3613 { 3614 struct amd_ir_data *ir_data = irq_data->chip_data; 3615 3616 *msg = ir_data->msi_entry; 3617 } 3618 3619 static struct irq_chip amd_ir_chip = { 3620 .name = "AMD-IR", 3621 .irq_ack = apic_ack_irq, 3622 .irq_set_affinity = amd_ir_set_affinity, 3623 .irq_set_vcpu_affinity = amd_ir_set_vcpu_affinity, 3624 .irq_compose_msi_msg = ir_compose_msi_msg, 3625 }; 3626 3627 int amd_iommu_create_irq_domain(struct amd_iommu *iommu) 3628 { 3629 struct fwnode_handle *fn; 3630 3631 fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index); 3632 if (!fn) 3633 return -ENOMEM; 3634 iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu); 3635 if (!iommu->ir_domain) { 3636 irq_domain_free_fwnode(fn); 3637 return -ENOMEM; 3638 } 3639 3640 iommu->ir_domain->parent = arch_get_ir_parent_domain(); 3641 iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain, 3642 "AMD-IR-MSI", 3643 iommu->index); 3644 return 0; 3645 } 3646 3647 int amd_iommu_update_ga(int cpu, bool is_run, void *data) 3648 { 3649 unsigned long flags; 3650 struct amd_iommu *iommu; 3651 struct irq_remap_table *table; 3652 struct amd_ir_data *ir_data = (struct amd_ir_data *)data; 3653 int devid = ir_data->irq_2_irte.devid; 3654 struct irte_ga *entry = (struct irte_ga *) ir_data->entry; 3655 struct irte_ga *ref = (struct irte_ga *) ir_data->ref; 3656 3657 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) || 3658 !ref || !entry || !entry->lo.fields_vapic.guest_mode) 3659 return 0; 3660 3661 iommu = ir_data->iommu; 3662 if (!iommu) 3663 return -ENODEV; 3664 3665 table = get_irq_table(iommu, devid); 3666 if (!table) 3667 return -ENODEV; 3668 3669 raw_spin_lock_irqsave(&table->lock, flags); 3670 3671 if (ref->lo.fields_vapic.guest_mode) { 3672 if (cpu >= 0) { 3673 ref->lo.fields_vapic.destination = 3674 APICID_TO_IRTE_DEST_LO(cpu); 3675 ref->hi.fields.destination = 3676 APICID_TO_IRTE_DEST_HI(cpu); 3677 } 3678 ref->lo.fields_vapic.is_run = is_run; 3679 barrier(); 3680 } 3681 3682 raw_spin_unlock_irqrestore(&table->lock, flags); 3683 3684 iommu_flush_irt(iommu, devid); 3685 iommu_completion_wait(iommu); 3686 return 0; 3687 } 3688 EXPORT_SYMBOL(amd_iommu_update_ga); 3689 #endif 3690