1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc. 4 * Author: Joerg Roedel <jroedel@suse.de> 5 * Leo Duran <leo.duran@amd.com> 6 */ 7 8 #define pr_fmt(fmt) "AMD-Vi: " fmt 9 #define dev_fmt(fmt) pr_fmt(fmt) 10 11 #include <linux/ratelimit.h> 12 #include <linux/pci.h> 13 #include <linux/acpi.h> 14 #include <linux/amba/bus.h> 15 #include <linux/platform_device.h> 16 #include <linux/pci-ats.h> 17 #include <linux/bitmap.h> 18 #include <linux/slab.h> 19 #include <linux/debugfs.h> 20 #include <linux/scatterlist.h> 21 #include <linux/dma-mapping.h> 22 #include <linux/dma-direct.h> 23 #include <linux/dma-iommu.h> 24 #include <linux/iommu-helper.h> 25 #include <linux/delay.h> 26 #include <linux/amd-iommu.h> 27 #include <linux/notifier.h> 28 #include <linux/export.h> 29 #include <linux/irq.h> 30 #include <linux/msi.h> 31 #include <linux/dma-contiguous.h> 32 #include <linux/irqdomain.h> 33 #include <linux/percpu.h> 34 #include <linux/iova.h> 35 #include <asm/irq_remapping.h> 36 #include <asm/io_apic.h> 37 #include <asm/apic.h> 38 #include <asm/hw_irq.h> 39 #include <asm/msidef.h> 40 #include <asm/proto.h> 41 #include <asm/iommu.h> 42 #include <asm/gart.h> 43 #include <asm/dma.h> 44 45 #include "amd_iommu.h" 46 #include "../irq_remapping.h" 47 48 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28)) 49 50 #define LOOP_TIMEOUT 100000 51 52 /* IO virtual address start page frame number */ 53 #define IOVA_START_PFN (1) 54 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT) 55 56 /* Reserved IOVA ranges */ 57 #define MSI_RANGE_START (0xfee00000) 58 #define MSI_RANGE_END (0xfeefffff) 59 #define HT_RANGE_START (0xfd00000000ULL) 60 #define HT_RANGE_END (0xffffffffffULL) 61 62 /* 63 * This bitmap is used to advertise the page sizes our hardware support 64 * to the IOMMU core, which will then use this information to split 65 * physically contiguous memory regions it is mapping into page sizes 66 * that we support. 67 * 68 * 512GB Pages are not supported due to a hardware bug 69 */ 70 #define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38)) 71 72 #define DEFAULT_PGTABLE_LEVEL PAGE_MODE_3_LEVEL 73 74 static DEFINE_SPINLOCK(pd_bitmap_lock); 75 76 /* List of all available dev_data structures */ 77 static LLIST_HEAD(dev_data_list); 78 79 LIST_HEAD(ioapic_map); 80 LIST_HEAD(hpet_map); 81 LIST_HEAD(acpihid_map); 82 83 /* 84 * Domain for untranslated devices - only allocated 85 * if iommu=pt passed on kernel cmd line. 86 */ 87 const struct iommu_ops amd_iommu_ops; 88 89 static ATOMIC_NOTIFIER_HEAD(ppr_notifier); 90 int amd_iommu_max_glx_val = -1; 91 92 /* 93 * general struct to manage commands send to an IOMMU 94 */ 95 struct iommu_cmd { 96 u32 data[4]; 97 }; 98 99 struct kmem_cache *amd_iommu_irq_cache; 100 101 static void update_domain(struct protection_domain *domain); 102 static void detach_device(struct device *dev); 103 static void update_and_flush_device_table(struct protection_domain *domain, 104 struct domain_pgtable *pgtable); 105 106 /**************************************************************************** 107 * 108 * Helper functions 109 * 110 ****************************************************************************/ 111 112 static inline u16 get_pci_device_id(struct device *dev) 113 { 114 struct pci_dev *pdev = to_pci_dev(dev); 115 116 return pci_dev_id(pdev); 117 } 118 119 static inline int get_acpihid_device_id(struct device *dev, 120 struct acpihid_map_entry **entry) 121 { 122 struct acpi_device *adev = ACPI_COMPANION(dev); 123 struct acpihid_map_entry *p; 124 125 if (!adev) 126 return -ENODEV; 127 128 list_for_each_entry(p, &acpihid_map, list) { 129 if (acpi_dev_hid_uid_match(adev, p->hid, 130 p->uid[0] ? p->uid : NULL)) { 131 if (entry) 132 *entry = p; 133 return p->devid; 134 } 135 } 136 return -EINVAL; 137 } 138 139 static inline int get_device_id(struct device *dev) 140 { 141 int devid; 142 143 if (dev_is_pci(dev)) 144 devid = get_pci_device_id(dev); 145 else 146 devid = get_acpihid_device_id(dev, NULL); 147 148 return devid; 149 } 150 151 static struct protection_domain *to_pdomain(struct iommu_domain *dom) 152 { 153 return container_of(dom, struct protection_domain, domain); 154 } 155 156 static void amd_iommu_domain_get_pgtable(struct protection_domain *domain, 157 struct domain_pgtable *pgtable) 158 { 159 u64 pt_root = atomic64_read(&domain->pt_root); 160 161 pgtable->root = (u64 *)(pt_root & PAGE_MASK); 162 pgtable->mode = pt_root & 7; /* lowest 3 bits encode pgtable mode */ 163 } 164 165 static void amd_iommu_domain_set_pt_root(struct protection_domain *domain, u64 root) 166 { 167 atomic64_set(&domain->pt_root, root); 168 } 169 170 static void amd_iommu_domain_clr_pt_root(struct protection_domain *domain) 171 { 172 amd_iommu_domain_set_pt_root(domain, 0); 173 } 174 175 static void amd_iommu_domain_set_pgtable(struct protection_domain *domain, 176 u64 *root, int mode) 177 { 178 u64 pt_root; 179 180 /* lowest 3 bits encode pgtable mode */ 181 pt_root = mode & 7; 182 pt_root |= (u64)root; 183 184 amd_iommu_domain_set_pt_root(domain, pt_root); 185 } 186 187 static struct iommu_dev_data *alloc_dev_data(u16 devid) 188 { 189 struct iommu_dev_data *dev_data; 190 191 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL); 192 if (!dev_data) 193 return NULL; 194 195 spin_lock_init(&dev_data->lock); 196 dev_data->devid = devid; 197 ratelimit_default_init(&dev_data->rs); 198 199 llist_add(&dev_data->dev_data_list, &dev_data_list); 200 return dev_data; 201 } 202 203 static struct iommu_dev_data *search_dev_data(u16 devid) 204 { 205 struct iommu_dev_data *dev_data; 206 struct llist_node *node; 207 208 if (llist_empty(&dev_data_list)) 209 return NULL; 210 211 node = dev_data_list.first; 212 llist_for_each_entry(dev_data, node, dev_data_list) { 213 if (dev_data->devid == devid) 214 return dev_data; 215 } 216 217 return NULL; 218 } 219 220 static int clone_alias(struct pci_dev *pdev, u16 alias, void *data) 221 { 222 u16 devid = pci_dev_id(pdev); 223 224 if (devid == alias) 225 return 0; 226 227 amd_iommu_rlookup_table[alias] = 228 amd_iommu_rlookup_table[devid]; 229 memcpy(amd_iommu_dev_table[alias].data, 230 amd_iommu_dev_table[devid].data, 231 sizeof(amd_iommu_dev_table[alias].data)); 232 233 return 0; 234 } 235 236 static void clone_aliases(struct pci_dev *pdev) 237 { 238 if (!pdev) 239 return; 240 241 /* 242 * The IVRS alias stored in the alias table may not be 243 * part of the PCI DMA aliases if it's bus differs 244 * from the original device. 245 */ 246 clone_alias(pdev, amd_iommu_alias_table[pci_dev_id(pdev)], NULL); 247 248 pci_for_each_dma_alias(pdev, clone_alias, NULL); 249 } 250 251 static struct pci_dev *setup_aliases(struct device *dev) 252 { 253 struct pci_dev *pdev = to_pci_dev(dev); 254 u16 ivrs_alias; 255 256 /* For ACPI HID devices, there are no aliases */ 257 if (!dev_is_pci(dev)) 258 return NULL; 259 260 /* 261 * Add the IVRS alias to the pci aliases if it is on the same 262 * bus. The IVRS table may know about a quirk that we don't. 263 */ 264 ivrs_alias = amd_iommu_alias_table[pci_dev_id(pdev)]; 265 if (ivrs_alias != pci_dev_id(pdev) && 266 PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) 267 pci_add_dma_alias(pdev, ivrs_alias & 0xff, 1); 268 269 clone_aliases(pdev); 270 271 return pdev; 272 } 273 274 static struct iommu_dev_data *find_dev_data(u16 devid) 275 { 276 struct iommu_dev_data *dev_data; 277 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid]; 278 279 dev_data = search_dev_data(devid); 280 281 if (dev_data == NULL) { 282 dev_data = alloc_dev_data(devid); 283 if (!dev_data) 284 return NULL; 285 286 if (translation_pre_enabled(iommu)) 287 dev_data->defer_attach = true; 288 } 289 290 return dev_data; 291 } 292 293 /* 294 * Find or create an IOMMU group for a acpihid device. 295 */ 296 static struct iommu_group *acpihid_device_group(struct device *dev) 297 { 298 struct acpihid_map_entry *p, *entry = NULL; 299 int devid; 300 301 devid = get_acpihid_device_id(dev, &entry); 302 if (devid < 0) 303 return ERR_PTR(devid); 304 305 list_for_each_entry(p, &acpihid_map, list) { 306 if ((devid == p->devid) && p->group) 307 entry->group = p->group; 308 } 309 310 if (!entry->group) 311 entry->group = generic_device_group(dev); 312 else 313 iommu_group_ref_get(entry->group); 314 315 return entry->group; 316 } 317 318 static bool pci_iommuv2_capable(struct pci_dev *pdev) 319 { 320 static const int caps[] = { 321 PCI_EXT_CAP_ID_PRI, 322 PCI_EXT_CAP_ID_PASID, 323 }; 324 int i, pos; 325 326 if (!pci_ats_supported(pdev)) 327 return false; 328 329 for (i = 0; i < 2; ++i) { 330 pos = pci_find_ext_capability(pdev, caps[i]); 331 if (pos == 0) 332 return false; 333 } 334 335 return true; 336 } 337 338 static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum) 339 { 340 struct iommu_dev_data *dev_data; 341 342 dev_data = dev_iommu_priv_get(&pdev->dev); 343 344 return dev_data->errata & (1 << erratum) ? true : false; 345 } 346 347 /* 348 * This function checks if the driver got a valid device from the caller to 349 * avoid dereferencing invalid pointers. 350 */ 351 static bool check_device(struct device *dev) 352 { 353 int devid; 354 355 if (!dev) 356 return false; 357 358 devid = get_device_id(dev); 359 if (devid < 0) 360 return false; 361 362 /* Out of our scope? */ 363 if (devid > amd_iommu_last_bdf) 364 return false; 365 366 if (amd_iommu_rlookup_table[devid] == NULL) 367 return false; 368 369 return true; 370 } 371 372 static int iommu_init_device(struct device *dev) 373 { 374 struct iommu_dev_data *dev_data; 375 int devid; 376 377 if (dev_iommu_priv_get(dev)) 378 return 0; 379 380 devid = get_device_id(dev); 381 if (devid < 0) 382 return devid; 383 384 dev_data = find_dev_data(devid); 385 if (!dev_data) 386 return -ENOMEM; 387 388 dev_data->pdev = setup_aliases(dev); 389 390 /* 391 * By default we use passthrough mode for IOMMUv2 capable device. 392 * But if amd_iommu=force_isolation is set (e.g. to debug DMA to 393 * invalid address), we ignore the capability for the device so 394 * it'll be forced to go into translation mode. 395 */ 396 if ((iommu_default_passthrough() || !amd_iommu_force_isolation) && 397 dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) { 398 struct amd_iommu *iommu; 399 400 iommu = amd_iommu_rlookup_table[dev_data->devid]; 401 dev_data->iommu_v2 = iommu->is_iommu_v2; 402 } 403 404 dev_iommu_priv_set(dev, dev_data); 405 406 return 0; 407 } 408 409 static void iommu_ignore_device(struct device *dev) 410 { 411 int devid; 412 413 devid = get_device_id(dev); 414 if (devid < 0) 415 return; 416 417 amd_iommu_rlookup_table[devid] = NULL; 418 memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry)); 419 420 setup_aliases(dev); 421 } 422 423 static void amd_iommu_uninit_device(struct device *dev) 424 { 425 struct iommu_dev_data *dev_data; 426 427 dev_data = dev_iommu_priv_get(dev); 428 if (!dev_data) 429 return; 430 431 if (dev_data->domain) 432 detach_device(dev); 433 434 dev_iommu_priv_set(dev, NULL); 435 436 /* 437 * We keep dev_data around for unplugged devices and reuse it when the 438 * device is re-plugged - not doing so would introduce a ton of races. 439 */ 440 } 441 442 /* 443 * Helper function to get the first pte of a large mapping 444 */ 445 static u64 *first_pte_l7(u64 *pte, unsigned long *page_size, 446 unsigned long *count) 447 { 448 unsigned long pte_mask, pg_size, cnt; 449 u64 *fpte; 450 451 pg_size = PTE_PAGE_SIZE(*pte); 452 cnt = PAGE_SIZE_PTE_COUNT(pg_size); 453 pte_mask = ~((cnt << 3) - 1); 454 fpte = (u64 *)(((unsigned long)pte) & pte_mask); 455 456 if (page_size) 457 *page_size = pg_size; 458 459 if (count) 460 *count = cnt; 461 462 return fpte; 463 } 464 465 /**************************************************************************** 466 * 467 * Interrupt handling functions 468 * 469 ****************************************************************************/ 470 471 static void dump_dte_entry(u16 devid) 472 { 473 int i; 474 475 for (i = 0; i < 4; ++i) 476 pr_err("DTE[%d]: %016llx\n", i, 477 amd_iommu_dev_table[devid].data[i]); 478 } 479 480 static void dump_command(unsigned long phys_addr) 481 { 482 struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr); 483 int i; 484 485 for (i = 0; i < 4; ++i) 486 pr_err("CMD[%d]: %08x\n", i, cmd->data[i]); 487 } 488 489 static void amd_iommu_report_page_fault(u16 devid, u16 domain_id, 490 u64 address, int flags) 491 { 492 struct iommu_dev_data *dev_data = NULL; 493 struct pci_dev *pdev; 494 495 pdev = pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid), 496 devid & 0xff); 497 if (pdev) 498 dev_data = dev_iommu_priv_get(&pdev->dev); 499 500 if (dev_data && __ratelimit(&dev_data->rs)) { 501 pci_err(pdev, "Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%llx flags=0x%04x]\n", 502 domain_id, address, flags); 503 } else if (printk_ratelimit()) { 504 pr_err("Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n", 505 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 506 domain_id, address, flags); 507 } 508 509 if (pdev) 510 pci_dev_put(pdev); 511 } 512 513 static void iommu_print_event(struct amd_iommu *iommu, void *__evt) 514 { 515 struct device *dev = iommu->iommu.dev; 516 int type, devid, pasid, flags, tag; 517 volatile u32 *event = __evt; 518 int count = 0; 519 u64 address; 520 521 retry: 522 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK; 523 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK; 524 pasid = (event[0] & EVENT_DOMID_MASK_HI) | 525 (event[1] & EVENT_DOMID_MASK_LO); 526 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK; 527 address = (u64)(((u64)event[3]) << 32) | event[2]; 528 529 if (type == 0) { 530 /* Did we hit the erratum? */ 531 if (++count == LOOP_TIMEOUT) { 532 pr_err("No event written to event log\n"); 533 return; 534 } 535 udelay(1); 536 goto retry; 537 } 538 539 if (type == EVENT_TYPE_IO_FAULT) { 540 amd_iommu_report_page_fault(devid, pasid, address, flags); 541 return; 542 } 543 544 switch (type) { 545 case EVENT_TYPE_ILL_DEV: 546 dev_err(dev, "Event logged [ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n", 547 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 548 pasid, address, flags); 549 dump_dte_entry(devid); 550 break; 551 case EVENT_TYPE_DEV_TAB_ERR: 552 dev_err(dev, "Event logged [DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x " 553 "address=0x%llx flags=0x%04x]\n", 554 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 555 address, flags); 556 break; 557 case EVENT_TYPE_PAGE_TAB_ERR: 558 dev_err(dev, "Event logged [PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x pasid=0x%04x address=0x%llx flags=0x%04x]\n", 559 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 560 pasid, address, flags); 561 break; 562 case EVENT_TYPE_ILL_CMD: 563 dev_err(dev, "Event logged [ILLEGAL_COMMAND_ERROR address=0x%llx]\n", address); 564 dump_command(address); 565 break; 566 case EVENT_TYPE_CMD_HARD_ERR: 567 dev_err(dev, "Event logged [COMMAND_HARDWARE_ERROR address=0x%llx flags=0x%04x]\n", 568 address, flags); 569 break; 570 case EVENT_TYPE_IOTLB_INV_TO: 571 dev_err(dev, "Event logged [IOTLB_INV_TIMEOUT device=%02x:%02x.%x address=0x%llx]\n", 572 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 573 address); 574 break; 575 case EVENT_TYPE_INV_DEV_REQ: 576 dev_err(dev, "Event logged [INVALID_DEVICE_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n", 577 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 578 pasid, address, flags); 579 break; 580 case EVENT_TYPE_INV_PPR_REQ: 581 pasid = PPR_PASID(*((u64 *)__evt)); 582 tag = event[1] & 0x03FF; 583 dev_err(dev, "Event logged [INVALID_PPR_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x tag=0x%03x]\n", 584 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 585 pasid, address, flags, tag); 586 break; 587 default: 588 dev_err(dev, "Event logged [UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n", 589 event[0], event[1], event[2], event[3]); 590 } 591 592 memset(__evt, 0, 4 * sizeof(u32)); 593 } 594 595 static void iommu_poll_events(struct amd_iommu *iommu) 596 { 597 u32 head, tail; 598 599 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET); 600 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET); 601 602 while (head != tail) { 603 iommu_print_event(iommu, iommu->evt_buf + head); 604 head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE; 605 } 606 607 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET); 608 } 609 610 static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw) 611 { 612 struct amd_iommu_fault fault; 613 614 if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) { 615 pr_err_ratelimited("Unknown PPR request received\n"); 616 return; 617 } 618 619 fault.address = raw[1]; 620 fault.pasid = PPR_PASID(raw[0]); 621 fault.device_id = PPR_DEVID(raw[0]); 622 fault.tag = PPR_TAG(raw[0]); 623 fault.flags = PPR_FLAGS(raw[0]); 624 625 atomic_notifier_call_chain(&ppr_notifier, 0, &fault); 626 } 627 628 static void iommu_poll_ppr_log(struct amd_iommu *iommu) 629 { 630 u32 head, tail; 631 632 if (iommu->ppr_log == NULL) 633 return; 634 635 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET); 636 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET); 637 638 while (head != tail) { 639 volatile u64 *raw; 640 u64 entry[2]; 641 int i; 642 643 raw = (u64 *)(iommu->ppr_log + head); 644 645 /* 646 * Hardware bug: Interrupt may arrive before the entry is 647 * written to memory. If this happens we need to wait for the 648 * entry to arrive. 649 */ 650 for (i = 0; i < LOOP_TIMEOUT; ++i) { 651 if (PPR_REQ_TYPE(raw[0]) != 0) 652 break; 653 udelay(1); 654 } 655 656 /* Avoid memcpy function-call overhead */ 657 entry[0] = raw[0]; 658 entry[1] = raw[1]; 659 660 /* 661 * To detect the hardware bug we need to clear the entry 662 * back to zero. 663 */ 664 raw[0] = raw[1] = 0UL; 665 666 /* Update head pointer of hardware ring-buffer */ 667 head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE; 668 writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET); 669 670 /* Handle PPR entry */ 671 iommu_handle_ppr_entry(iommu, entry); 672 673 /* Refresh ring-buffer information */ 674 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET); 675 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET); 676 } 677 } 678 679 #ifdef CONFIG_IRQ_REMAP 680 static int (*iommu_ga_log_notifier)(u32); 681 682 int amd_iommu_register_ga_log_notifier(int (*notifier)(u32)) 683 { 684 iommu_ga_log_notifier = notifier; 685 686 return 0; 687 } 688 EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier); 689 690 static void iommu_poll_ga_log(struct amd_iommu *iommu) 691 { 692 u32 head, tail, cnt = 0; 693 694 if (iommu->ga_log == NULL) 695 return; 696 697 head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET); 698 tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET); 699 700 while (head != tail) { 701 volatile u64 *raw; 702 u64 log_entry; 703 704 raw = (u64 *)(iommu->ga_log + head); 705 cnt++; 706 707 /* Avoid memcpy function-call overhead */ 708 log_entry = *raw; 709 710 /* Update head pointer of hardware ring-buffer */ 711 head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE; 712 writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET); 713 714 /* Handle GA entry */ 715 switch (GA_REQ_TYPE(log_entry)) { 716 case GA_GUEST_NR: 717 if (!iommu_ga_log_notifier) 718 break; 719 720 pr_debug("%s: devid=%#x, ga_tag=%#x\n", 721 __func__, GA_DEVID(log_entry), 722 GA_TAG(log_entry)); 723 724 if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0) 725 pr_err("GA log notifier failed.\n"); 726 break; 727 default: 728 break; 729 } 730 } 731 } 732 #endif /* CONFIG_IRQ_REMAP */ 733 734 #define AMD_IOMMU_INT_MASK \ 735 (MMIO_STATUS_EVT_INT_MASK | \ 736 MMIO_STATUS_PPR_INT_MASK | \ 737 MMIO_STATUS_GALOG_INT_MASK) 738 739 irqreturn_t amd_iommu_int_thread(int irq, void *data) 740 { 741 struct amd_iommu *iommu = (struct amd_iommu *) data; 742 u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET); 743 744 while (status & AMD_IOMMU_INT_MASK) { 745 /* Enable EVT and PPR and GA interrupts again */ 746 writel(AMD_IOMMU_INT_MASK, 747 iommu->mmio_base + MMIO_STATUS_OFFSET); 748 749 if (status & MMIO_STATUS_EVT_INT_MASK) { 750 pr_devel("Processing IOMMU Event Log\n"); 751 iommu_poll_events(iommu); 752 } 753 754 if (status & MMIO_STATUS_PPR_INT_MASK) { 755 pr_devel("Processing IOMMU PPR Log\n"); 756 iommu_poll_ppr_log(iommu); 757 } 758 759 #ifdef CONFIG_IRQ_REMAP 760 if (status & MMIO_STATUS_GALOG_INT_MASK) { 761 pr_devel("Processing IOMMU GA Log\n"); 762 iommu_poll_ga_log(iommu); 763 } 764 #endif 765 766 /* 767 * Hardware bug: ERBT1312 768 * When re-enabling interrupt (by writing 1 769 * to clear the bit), the hardware might also try to set 770 * the interrupt bit in the event status register. 771 * In this scenario, the bit will be set, and disable 772 * subsequent interrupts. 773 * 774 * Workaround: The IOMMU driver should read back the 775 * status register and check if the interrupt bits are cleared. 776 * If not, driver will need to go through the interrupt handler 777 * again and re-clear the bits 778 */ 779 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET); 780 } 781 return IRQ_HANDLED; 782 } 783 784 irqreturn_t amd_iommu_int_handler(int irq, void *data) 785 { 786 return IRQ_WAKE_THREAD; 787 } 788 789 /**************************************************************************** 790 * 791 * IOMMU command queuing functions 792 * 793 ****************************************************************************/ 794 795 static int wait_on_sem(volatile u64 *sem) 796 { 797 int i = 0; 798 799 while (*sem == 0 && i < LOOP_TIMEOUT) { 800 udelay(1); 801 i += 1; 802 } 803 804 if (i == LOOP_TIMEOUT) { 805 pr_alert("Completion-Wait loop timed out\n"); 806 return -EIO; 807 } 808 809 return 0; 810 } 811 812 static void copy_cmd_to_buffer(struct amd_iommu *iommu, 813 struct iommu_cmd *cmd) 814 { 815 u8 *target; 816 u32 tail; 817 818 /* Copy command to buffer */ 819 tail = iommu->cmd_buf_tail; 820 target = iommu->cmd_buf + tail; 821 memcpy(target, cmd, sizeof(*cmd)); 822 823 tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE; 824 iommu->cmd_buf_tail = tail; 825 826 /* Tell the IOMMU about it */ 827 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET); 828 } 829 830 static void build_completion_wait(struct iommu_cmd *cmd, u64 address) 831 { 832 u64 paddr = iommu_virt_to_phys((void *)address); 833 834 WARN_ON(address & 0x7ULL); 835 836 memset(cmd, 0, sizeof(*cmd)); 837 cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK; 838 cmd->data[1] = upper_32_bits(paddr); 839 cmd->data[2] = 1; 840 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT); 841 } 842 843 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid) 844 { 845 memset(cmd, 0, sizeof(*cmd)); 846 cmd->data[0] = devid; 847 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY); 848 } 849 850 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address, 851 size_t size, u16 domid, int pde) 852 { 853 u64 pages; 854 bool s; 855 856 pages = iommu_num_pages(address, size, PAGE_SIZE); 857 s = false; 858 859 if (pages > 1) { 860 /* 861 * If we have to flush more than one page, flush all 862 * TLB entries for this domain 863 */ 864 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS; 865 s = true; 866 } 867 868 address &= PAGE_MASK; 869 870 memset(cmd, 0, sizeof(*cmd)); 871 cmd->data[1] |= domid; 872 cmd->data[2] = lower_32_bits(address); 873 cmd->data[3] = upper_32_bits(address); 874 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES); 875 if (s) /* size bit - we flush more than one 4kb page */ 876 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK; 877 if (pde) /* PDE bit - we want to flush everything, not only the PTEs */ 878 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK; 879 } 880 881 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep, 882 u64 address, size_t size) 883 { 884 u64 pages; 885 bool s; 886 887 pages = iommu_num_pages(address, size, PAGE_SIZE); 888 s = false; 889 890 if (pages > 1) { 891 /* 892 * If we have to flush more than one page, flush all 893 * TLB entries for this domain 894 */ 895 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS; 896 s = true; 897 } 898 899 address &= PAGE_MASK; 900 901 memset(cmd, 0, sizeof(*cmd)); 902 cmd->data[0] = devid; 903 cmd->data[0] |= (qdep & 0xff) << 24; 904 cmd->data[1] = devid; 905 cmd->data[2] = lower_32_bits(address); 906 cmd->data[3] = upper_32_bits(address); 907 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES); 908 if (s) 909 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK; 910 } 911 912 static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid, 913 u64 address, bool size) 914 { 915 memset(cmd, 0, sizeof(*cmd)); 916 917 address &= ~(0xfffULL); 918 919 cmd->data[0] = pasid; 920 cmd->data[1] = domid; 921 cmd->data[2] = lower_32_bits(address); 922 cmd->data[3] = upper_32_bits(address); 923 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK; 924 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK; 925 if (size) 926 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK; 927 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES); 928 } 929 930 static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid, 931 int qdep, u64 address, bool size) 932 { 933 memset(cmd, 0, sizeof(*cmd)); 934 935 address &= ~(0xfffULL); 936 937 cmd->data[0] = devid; 938 cmd->data[0] |= ((pasid >> 8) & 0xff) << 16; 939 cmd->data[0] |= (qdep & 0xff) << 24; 940 cmd->data[1] = devid; 941 cmd->data[1] |= (pasid & 0xff) << 16; 942 cmd->data[2] = lower_32_bits(address); 943 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK; 944 cmd->data[3] = upper_32_bits(address); 945 if (size) 946 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK; 947 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES); 948 } 949 950 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid, 951 int status, int tag, bool gn) 952 { 953 memset(cmd, 0, sizeof(*cmd)); 954 955 cmd->data[0] = devid; 956 if (gn) { 957 cmd->data[1] = pasid; 958 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK; 959 } 960 cmd->data[3] = tag & 0x1ff; 961 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT; 962 963 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR); 964 } 965 966 static void build_inv_all(struct iommu_cmd *cmd) 967 { 968 memset(cmd, 0, sizeof(*cmd)); 969 CMD_SET_TYPE(cmd, CMD_INV_ALL); 970 } 971 972 static void build_inv_irt(struct iommu_cmd *cmd, u16 devid) 973 { 974 memset(cmd, 0, sizeof(*cmd)); 975 cmd->data[0] = devid; 976 CMD_SET_TYPE(cmd, CMD_INV_IRT); 977 } 978 979 /* 980 * Writes the command to the IOMMUs command buffer and informs the 981 * hardware about the new command. 982 */ 983 static int __iommu_queue_command_sync(struct amd_iommu *iommu, 984 struct iommu_cmd *cmd, 985 bool sync) 986 { 987 unsigned int count = 0; 988 u32 left, next_tail; 989 990 next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE; 991 again: 992 left = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE; 993 994 if (left <= 0x20) { 995 /* Skip udelay() the first time around */ 996 if (count++) { 997 if (count == LOOP_TIMEOUT) { 998 pr_err("Command buffer timeout\n"); 999 return -EIO; 1000 } 1001 1002 udelay(1); 1003 } 1004 1005 /* Update head and recheck remaining space */ 1006 iommu->cmd_buf_head = readl(iommu->mmio_base + 1007 MMIO_CMD_HEAD_OFFSET); 1008 1009 goto again; 1010 } 1011 1012 copy_cmd_to_buffer(iommu, cmd); 1013 1014 /* Do we need to make sure all commands are processed? */ 1015 iommu->need_sync = sync; 1016 1017 return 0; 1018 } 1019 1020 static int iommu_queue_command_sync(struct amd_iommu *iommu, 1021 struct iommu_cmd *cmd, 1022 bool sync) 1023 { 1024 unsigned long flags; 1025 int ret; 1026 1027 raw_spin_lock_irqsave(&iommu->lock, flags); 1028 ret = __iommu_queue_command_sync(iommu, cmd, sync); 1029 raw_spin_unlock_irqrestore(&iommu->lock, flags); 1030 1031 return ret; 1032 } 1033 1034 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd) 1035 { 1036 return iommu_queue_command_sync(iommu, cmd, true); 1037 } 1038 1039 /* 1040 * This function queues a completion wait command into the command 1041 * buffer of an IOMMU 1042 */ 1043 static int iommu_completion_wait(struct amd_iommu *iommu) 1044 { 1045 struct iommu_cmd cmd; 1046 unsigned long flags; 1047 int ret; 1048 1049 if (!iommu->need_sync) 1050 return 0; 1051 1052 1053 build_completion_wait(&cmd, (u64)&iommu->cmd_sem); 1054 1055 raw_spin_lock_irqsave(&iommu->lock, flags); 1056 1057 iommu->cmd_sem = 0; 1058 1059 ret = __iommu_queue_command_sync(iommu, &cmd, false); 1060 if (ret) 1061 goto out_unlock; 1062 1063 ret = wait_on_sem(&iommu->cmd_sem); 1064 1065 out_unlock: 1066 raw_spin_unlock_irqrestore(&iommu->lock, flags); 1067 1068 return ret; 1069 } 1070 1071 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid) 1072 { 1073 struct iommu_cmd cmd; 1074 1075 build_inv_dte(&cmd, devid); 1076 1077 return iommu_queue_command(iommu, &cmd); 1078 } 1079 1080 static void amd_iommu_flush_dte_all(struct amd_iommu *iommu) 1081 { 1082 u32 devid; 1083 1084 for (devid = 0; devid <= 0xffff; ++devid) 1085 iommu_flush_dte(iommu, devid); 1086 1087 iommu_completion_wait(iommu); 1088 } 1089 1090 /* 1091 * This function uses heavy locking and may disable irqs for some time. But 1092 * this is no issue because it is only called during resume. 1093 */ 1094 static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu) 1095 { 1096 u32 dom_id; 1097 1098 for (dom_id = 0; dom_id <= 0xffff; ++dom_id) { 1099 struct iommu_cmd cmd; 1100 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1101 dom_id, 1); 1102 iommu_queue_command(iommu, &cmd); 1103 } 1104 1105 iommu_completion_wait(iommu); 1106 } 1107 1108 static void amd_iommu_flush_tlb_domid(struct amd_iommu *iommu, u32 dom_id) 1109 { 1110 struct iommu_cmd cmd; 1111 1112 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1113 dom_id, 1); 1114 iommu_queue_command(iommu, &cmd); 1115 1116 iommu_completion_wait(iommu); 1117 } 1118 1119 static void amd_iommu_flush_all(struct amd_iommu *iommu) 1120 { 1121 struct iommu_cmd cmd; 1122 1123 build_inv_all(&cmd); 1124 1125 iommu_queue_command(iommu, &cmd); 1126 iommu_completion_wait(iommu); 1127 } 1128 1129 static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid) 1130 { 1131 struct iommu_cmd cmd; 1132 1133 build_inv_irt(&cmd, devid); 1134 1135 iommu_queue_command(iommu, &cmd); 1136 } 1137 1138 static void amd_iommu_flush_irt_all(struct amd_iommu *iommu) 1139 { 1140 u32 devid; 1141 1142 for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++) 1143 iommu_flush_irt(iommu, devid); 1144 1145 iommu_completion_wait(iommu); 1146 } 1147 1148 void iommu_flush_all_caches(struct amd_iommu *iommu) 1149 { 1150 if (iommu_feature(iommu, FEATURE_IA)) { 1151 amd_iommu_flush_all(iommu); 1152 } else { 1153 amd_iommu_flush_dte_all(iommu); 1154 amd_iommu_flush_irt_all(iommu); 1155 amd_iommu_flush_tlb_all(iommu); 1156 } 1157 } 1158 1159 /* 1160 * Command send function for flushing on-device TLB 1161 */ 1162 static int device_flush_iotlb(struct iommu_dev_data *dev_data, 1163 u64 address, size_t size) 1164 { 1165 struct amd_iommu *iommu; 1166 struct iommu_cmd cmd; 1167 int qdep; 1168 1169 qdep = dev_data->ats.qdep; 1170 iommu = amd_iommu_rlookup_table[dev_data->devid]; 1171 1172 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size); 1173 1174 return iommu_queue_command(iommu, &cmd); 1175 } 1176 1177 static int device_flush_dte_alias(struct pci_dev *pdev, u16 alias, void *data) 1178 { 1179 struct amd_iommu *iommu = data; 1180 1181 return iommu_flush_dte(iommu, alias); 1182 } 1183 1184 /* 1185 * Command send function for invalidating a device table entry 1186 */ 1187 static int device_flush_dte(struct iommu_dev_data *dev_data) 1188 { 1189 struct amd_iommu *iommu; 1190 u16 alias; 1191 int ret; 1192 1193 iommu = amd_iommu_rlookup_table[dev_data->devid]; 1194 1195 if (dev_data->pdev) 1196 ret = pci_for_each_dma_alias(dev_data->pdev, 1197 device_flush_dte_alias, iommu); 1198 else 1199 ret = iommu_flush_dte(iommu, dev_data->devid); 1200 if (ret) 1201 return ret; 1202 1203 alias = amd_iommu_alias_table[dev_data->devid]; 1204 if (alias != dev_data->devid) { 1205 ret = iommu_flush_dte(iommu, alias); 1206 if (ret) 1207 return ret; 1208 } 1209 1210 if (dev_data->ats.enabled) 1211 ret = device_flush_iotlb(dev_data, 0, ~0UL); 1212 1213 return ret; 1214 } 1215 1216 /* 1217 * TLB invalidation function which is called from the mapping functions. 1218 * It invalidates a single PTE if the range to flush is within a single 1219 * page. Otherwise it flushes the whole TLB of the IOMMU. 1220 */ 1221 static void __domain_flush_pages(struct protection_domain *domain, 1222 u64 address, size_t size, int pde) 1223 { 1224 struct iommu_dev_data *dev_data; 1225 struct iommu_cmd cmd; 1226 int ret = 0, i; 1227 1228 build_inv_iommu_pages(&cmd, address, size, domain->id, pde); 1229 1230 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) { 1231 if (!domain->dev_iommu[i]) 1232 continue; 1233 1234 /* 1235 * Devices of this domain are behind this IOMMU 1236 * We need a TLB flush 1237 */ 1238 ret |= iommu_queue_command(amd_iommus[i], &cmd); 1239 } 1240 1241 list_for_each_entry(dev_data, &domain->dev_list, list) { 1242 1243 if (!dev_data->ats.enabled) 1244 continue; 1245 1246 ret |= device_flush_iotlb(dev_data, address, size); 1247 } 1248 1249 WARN_ON(ret); 1250 } 1251 1252 static void domain_flush_pages(struct protection_domain *domain, 1253 u64 address, size_t size) 1254 { 1255 __domain_flush_pages(domain, address, size, 0); 1256 } 1257 1258 /* Flush the whole IO/TLB for a given protection domain - including PDE */ 1259 static void domain_flush_tlb_pde(struct protection_domain *domain) 1260 { 1261 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1); 1262 } 1263 1264 static void domain_flush_complete(struct protection_domain *domain) 1265 { 1266 int i; 1267 1268 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) { 1269 if (domain && !domain->dev_iommu[i]) 1270 continue; 1271 1272 /* 1273 * Devices of this domain are behind this IOMMU 1274 * We need to wait for completion of all commands. 1275 */ 1276 iommu_completion_wait(amd_iommus[i]); 1277 } 1278 } 1279 1280 /* Flush the not present cache if it exists */ 1281 static void domain_flush_np_cache(struct protection_domain *domain, 1282 dma_addr_t iova, size_t size) 1283 { 1284 if (unlikely(amd_iommu_np_cache)) { 1285 unsigned long flags; 1286 1287 spin_lock_irqsave(&domain->lock, flags); 1288 domain_flush_pages(domain, iova, size); 1289 domain_flush_complete(domain); 1290 spin_unlock_irqrestore(&domain->lock, flags); 1291 } 1292 } 1293 1294 1295 /* 1296 * This function flushes the DTEs for all devices in domain 1297 */ 1298 static void domain_flush_devices(struct protection_domain *domain) 1299 { 1300 struct iommu_dev_data *dev_data; 1301 1302 list_for_each_entry(dev_data, &domain->dev_list, list) 1303 device_flush_dte(dev_data); 1304 } 1305 1306 /**************************************************************************** 1307 * 1308 * The functions below are used the create the page table mappings for 1309 * unity mapped regions. 1310 * 1311 ****************************************************************************/ 1312 1313 static void free_page_list(struct page *freelist) 1314 { 1315 while (freelist != NULL) { 1316 unsigned long p = (unsigned long)page_address(freelist); 1317 freelist = freelist->freelist; 1318 free_page(p); 1319 } 1320 } 1321 1322 static struct page *free_pt_page(unsigned long pt, struct page *freelist) 1323 { 1324 struct page *p = virt_to_page((void *)pt); 1325 1326 p->freelist = freelist; 1327 1328 return p; 1329 } 1330 1331 #define DEFINE_FREE_PT_FN(LVL, FN) \ 1332 static struct page *free_pt_##LVL (unsigned long __pt, struct page *freelist) \ 1333 { \ 1334 unsigned long p; \ 1335 u64 *pt; \ 1336 int i; \ 1337 \ 1338 pt = (u64 *)__pt; \ 1339 \ 1340 for (i = 0; i < 512; ++i) { \ 1341 /* PTE present? */ \ 1342 if (!IOMMU_PTE_PRESENT(pt[i])) \ 1343 continue; \ 1344 \ 1345 /* Large PTE? */ \ 1346 if (PM_PTE_LEVEL(pt[i]) == 0 || \ 1347 PM_PTE_LEVEL(pt[i]) == 7) \ 1348 continue; \ 1349 \ 1350 p = (unsigned long)IOMMU_PTE_PAGE(pt[i]); \ 1351 freelist = FN(p, freelist); \ 1352 } \ 1353 \ 1354 return free_pt_page((unsigned long)pt, freelist); \ 1355 } 1356 1357 DEFINE_FREE_PT_FN(l2, free_pt_page) 1358 DEFINE_FREE_PT_FN(l3, free_pt_l2) 1359 DEFINE_FREE_PT_FN(l4, free_pt_l3) 1360 DEFINE_FREE_PT_FN(l5, free_pt_l4) 1361 DEFINE_FREE_PT_FN(l6, free_pt_l5) 1362 1363 static struct page *free_sub_pt(unsigned long root, int mode, 1364 struct page *freelist) 1365 { 1366 switch (mode) { 1367 case PAGE_MODE_NONE: 1368 case PAGE_MODE_7_LEVEL: 1369 break; 1370 case PAGE_MODE_1_LEVEL: 1371 freelist = free_pt_page(root, freelist); 1372 break; 1373 case PAGE_MODE_2_LEVEL: 1374 freelist = free_pt_l2(root, freelist); 1375 break; 1376 case PAGE_MODE_3_LEVEL: 1377 freelist = free_pt_l3(root, freelist); 1378 break; 1379 case PAGE_MODE_4_LEVEL: 1380 freelist = free_pt_l4(root, freelist); 1381 break; 1382 case PAGE_MODE_5_LEVEL: 1383 freelist = free_pt_l5(root, freelist); 1384 break; 1385 case PAGE_MODE_6_LEVEL: 1386 freelist = free_pt_l6(root, freelist); 1387 break; 1388 default: 1389 BUG(); 1390 } 1391 1392 return freelist; 1393 } 1394 1395 static void free_pagetable(struct domain_pgtable *pgtable) 1396 { 1397 struct page *freelist = NULL; 1398 unsigned long root; 1399 1400 if (pgtable->mode == PAGE_MODE_NONE) 1401 return; 1402 1403 BUG_ON(pgtable->mode < PAGE_MODE_NONE || 1404 pgtable->mode > PAGE_MODE_6_LEVEL); 1405 1406 root = (unsigned long)pgtable->root; 1407 freelist = free_sub_pt(root, pgtable->mode, freelist); 1408 1409 free_page_list(freelist); 1410 } 1411 1412 /* 1413 * This function is used to add another level to an IO page table. Adding 1414 * another level increases the size of the address space by 9 bits to a size up 1415 * to 64 bits. 1416 */ 1417 static bool increase_address_space(struct protection_domain *domain, 1418 unsigned long address, 1419 gfp_t gfp) 1420 { 1421 struct domain_pgtable pgtable; 1422 unsigned long flags; 1423 bool ret = true; 1424 u64 *pte; 1425 1426 spin_lock_irqsave(&domain->lock, flags); 1427 1428 amd_iommu_domain_get_pgtable(domain, &pgtable); 1429 1430 if (address <= PM_LEVEL_SIZE(pgtable.mode)) 1431 goto out; 1432 1433 ret = false; 1434 if (WARN_ON_ONCE(pgtable.mode == PAGE_MODE_6_LEVEL)) 1435 goto out; 1436 1437 pte = (void *)get_zeroed_page(gfp); 1438 if (!pte) 1439 goto out; 1440 1441 *pte = PM_LEVEL_PDE(pgtable.mode, iommu_virt_to_phys(pgtable.root)); 1442 1443 pgtable.root = pte; 1444 pgtable.mode += 1; 1445 update_and_flush_device_table(domain, &pgtable); 1446 domain_flush_complete(domain); 1447 1448 /* 1449 * Device Table needs to be updated and flushed before the new root can 1450 * be published. 1451 */ 1452 amd_iommu_domain_set_pgtable(domain, pte, pgtable.mode); 1453 1454 ret = true; 1455 1456 out: 1457 spin_unlock_irqrestore(&domain->lock, flags); 1458 1459 return ret; 1460 } 1461 1462 static u64 *alloc_pte(struct protection_domain *domain, 1463 unsigned long address, 1464 unsigned long page_size, 1465 u64 **pte_page, 1466 gfp_t gfp, 1467 bool *updated) 1468 { 1469 struct domain_pgtable pgtable; 1470 int level, end_lvl; 1471 u64 *pte, *page; 1472 1473 BUG_ON(!is_power_of_2(page_size)); 1474 1475 amd_iommu_domain_get_pgtable(domain, &pgtable); 1476 1477 while (address > PM_LEVEL_SIZE(pgtable.mode)) { 1478 /* 1479 * Return an error if there is no memory to update the 1480 * page-table. 1481 */ 1482 if (!increase_address_space(domain, address, gfp)) 1483 return NULL; 1484 1485 /* Read new values to check if update was successful */ 1486 amd_iommu_domain_get_pgtable(domain, &pgtable); 1487 } 1488 1489 1490 level = pgtable.mode - 1; 1491 pte = &pgtable.root[PM_LEVEL_INDEX(level, address)]; 1492 address = PAGE_SIZE_ALIGN(address, page_size); 1493 end_lvl = PAGE_SIZE_LEVEL(page_size); 1494 1495 while (level > end_lvl) { 1496 u64 __pte, __npte; 1497 int pte_level; 1498 1499 __pte = *pte; 1500 pte_level = PM_PTE_LEVEL(__pte); 1501 1502 /* 1503 * If we replace a series of large PTEs, we need 1504 * to tear down all of them. 1505 */ 1506 if (IOMMU_PTE_PRESENT(__pte) && 1507 pte_level == PAGE_MODE_7_LEVEL) { 1508 unsigned long count, i; 1509 u64 *lpte; 1510 1511 lpte = first_pte_l7(pte, NULL, &count); 1512 1513 /* 1514 * Unmap the replicated PTEs that still match the 1515 * original large mapping 1516 */ 1517 for (i = 0; i < count; ++i) 1518 cmpxchg64(&lpte[i], __pte, 0ULL); 1519 1520 *updated = true; 1521 continue; 1522 } 1523 1524 if (!IOMMU_PTE_PRESENT(__pte) || 1525 pte_level == PAGE_MODE_NONE) { 1526 page = (u64 *)get_zeroed_page(gfp); 1527 1528 if (!page) 1529 return NULL; 1530 1531 __npte = PM_LEVEL_PDE(level, iommu_virt_to_phys(page)); 1532 1533 /* pte could have been changed somewhere. */ 1534 if (cmpxchg64(pte, __pte, __npte) != __pte) 1535 free_page((unsigned long)page); 1536 else if (IOMMU_PTE_PRESENT(__pte)) 1537 *updated = true; 1538 1539 continue; 1540 } 1541 1542 /* No level skipping support yet */ 1543 if (pte_level != level) 1544 return NULL; 1545 1546 level -= 1; 1547 1548 pte = IOMMU_PTE_PAGE(__pte); 1549 1550 if (pte_page && level == end_lvl) 1551 *pte_page = pte; 1552 1553 pte = &pte[PM_LEVEL_INDEX(level, address)]; 1554 } 1555 1556 return pte; 1557 } 1558 1559 /* 1560 * This function checks if there is a PTE for a given dma address. If 1561 * there is one, it returns the pointer to it. 1562 */ 1563 static u64 *fetch_pte(struct protection_domain *domain, 1564 unsigned long address, 1565 unsigned long *page_size) 1566 { 1567 struct domain_pgtable pgtable; 1568 int level; 1569 u64 *pte; 1570 1571 *page_size = 0; 1572 1573 amd_iommu_domain_get_pgtable(domain, &pgtable); 1574 1575 if (address > PM_LEVEL_SIZE(pgtable.mode)) 1576 return NULL; 1577 1578 level = pgtable.mode - 1; 1579 pte = &pgtable.root[PM_LEVEL_INDEX(level, address)]; 1580 *page_size = PTE_LEVEL_PAGE_SIZE(level); 1581 1582 while (level > 0) { 1583 1584 /* Not Present */ 1585 if (!IOMMU_PTE_PRESENT(*pte)) 1586 return NULL; 1587 1588 /* Large PTE */ 1589 if (PM_PTE_LEVEL(*pte) == 7 || 1590 PM_PTE_LEVEL(*pte) == 0) 1591 break; 1592 1593 /* No level skipping support yet */ 1594 if (PM_PTE_LEVEL(*pte) != level) 1595 return NULL; 1596 1597 level -= 1; 1598 1599 /* Walk to the next level */ 1600 pte = IOMMU_PTE_PAGE(*pte); 1601 pte = &pte[PM_LEVEL_INDEX(level, address)]; 1602 *page_size = PTE_LEVEL_PAGE_SIZE(level); 1603 } 1604 1605 /* 1606 * If we have a series of large PTEs, make 1607 * sure to return a pointer to the first one. 1608 */ 1609 if (PM_PTE_LEVEL(*pte) == PAGE_MODE_7_LEVEL) 1610 pte = first_pte_l7(pte, page_size, NULL); 1611 1612 return pte; 1613 } 1614 1615 static struct page *free_clear_pte(u64 *pte, u64 pteval, struct page *freelist) 1616 { 1617 unsigned long pt; 1618 int mode; 1619 1620 while (cmpxchg64(pte, pteval, 0) != pteval) { 1621 pr_warn("AMD-Vi: IOMMU pte changed since we read it\n"); 1622 pteval = *pte; 1623 } 1624 1625 if (!IOMMU_PTE_PRESENT(pteval)) 1626 return freelist; 1627 1628 pt = (unsigned long)IOMMU_PTE_PAGE(pteval); 1629 mode = IOMMU_PTE_MODE(pteval); 1630 1631 return free_sub_pt(pt, mode, freelist); 1632 } 1633 1634 /* 1635 * Generic mapping functions. It maps a physical address into a DMA 1636 * address space. It allocates the page table pages if necessary. 1637 * In the future it can be extended to a generic mapping function 1638 * supporting all features of AMD IOMMU page tables like level skipping 1639 * and full 64 bit address spaces. 1640 */ 1641 static int iommu_map_page(struct protection_domain *dom, 1642 unsigned long bus_addr, 1643 unsigned long phys_addr, 1644 unsigned long page_size, 1645 int prot, 1646 gfp_t gfp) 1647 { 1648 struct page *freelist = NULL; 1649 bool updated = false; 1650 u64 __pte, *pte; 1651 int ret, i, count; 1652 1653 BUG_ON(!IS_ALIGNED(bus_addr, page_size)); 1654 BUG_ON(!IS_ALIGNED(phys_addr, page_size)); 1655 1656 ret = -EINVAL; 1657 if (!(prot & IOMMU_PROT_MASK)) 1658 goto out; 1659 1660 count = PAGE_SIZE_PTE_COUNT(page_size); 1661 pte = alloc_pte(dom, bus_addr, page_size, NULL, gfp, &updated); 1662 1663 ret = -ENOMEM; 1664 if (!pte) 1665 goto out; 1666 1667 for (i = 0; i < count; ++i) 1668 freelist = free_clear_pte(&pte[i], pte[i], freelist); 1669 1670 if (freelist != NULL) 1671 updated = true; 1672 1673 if (count > 1) { 1674 __pte = PAGE_SIZE_PTE(__sme_set(phys_addr), page_size); 1675 __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_PR | IOMMU_PTE_FC; 1676 } else 1677 __pte = __sme_set(phys_addr) | IOMMU_PTE_PR | IOMMU_PTE_FC; 1678 1679 if (prot & IOMMU_PROT_IR) 1680 __pte |= IOMMU_PTE_IR; 1681 if (prot & IOMMU_PROT_IW) 1682 __pte |= IOMMU_PTE_IW; 1683 1684 for (i = 0; i < count; ++i) 1685 pte[i] = __pte; 1686 1687 ret = 0; 1688 1689 out: 1690 if (updated) { 1691 unsigned long flags; 1692 1693 spin_lock_irqsave(&dom->lock, flags); 1694 /* 1695 * Flush domain TLB(s) and wait for completion. Any Device-Table 1696 * Updates and flushing already happened in 1697 * increase_address_space(). 1698 */ 1699 domain_flush_tlb_pde(dom); 1700 domain_flush_complete(dom); 1701 spin_unlock_irqrestore(&dom->lock, flags); 1702 } 1703 1704 /* Everything flushed out, free pages now */ 1705 free_page_list(freelist); 1706 1707 return ret; 1708 } 1709 1710 static unsigned long iommu_unmap_page(struct protection_domain *dom, 1711 unsigned long bus_addr, 1712 unsigned long page_size) 1713 { 1714 unsigned long long unmapped; 1715 unsigned long unmap_size; 1716 u64 *pte; 1717 1718 BUG_ON(!is_power_of_2(page_size)); 1719 1720 unmapped = 0; 1721 1722 while (unmapped < page_size) { 1723 1724 pte = fetch_pte(dom, bus_addr, &unmap_size); 1725 1726 if (pte) { 1727 int i, count; 1728 1729 count = PAGE_SIZE_PTE_COUNT(unmap_size); 1730 for (i = 0; i < count; i++) 1731 pte[i] = 0ULL; 1732 } 1733 1734 bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size; 1735 unmapped += unmap_size; 1736 } 1737 1738 BUG_ON(unmapped && !is_power_of_2(unmapped)); 1739 1740 return unmapped; 1741 } 1742 1743 /**************************************************************************** 1744 * 1745 * The next functions belong to the domain allocation. A domain is 1746 * allocated for every IOMMU as the default domain. If device isolation 1747 * is enabled, every device get its own domain. The most important thing 1748 * about domains is the page table mapping the DMA address space they 1749 * contain. 1750 * 1751 ****************************************************************************/ 1752 1753 static u16 domain_id_alloc(void) 1754 { 1755 int id; 1756 1757 spin_lock(&pd_bitmap_lock); 1758 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID); 1759 BUG_ON(id == 0); 1760 if (id > 0 && id < MAX_DOMAIN_ID) 1761 __set_bit(id, amd_iommu_pd_alloc_bitmap); 1762 else 1763 id = 0; 1764 spin_unlock(&pd_bitmap_lock); 1765 1766 return id; 1767 } 1768 1769 static void domain_id_free(int id) 1770 { 1771 spin_lock(&pd_bitmap_lock); 1772 if (id > 0 && id < MAX_DOMAIN_ID) 1773 __clear_bit(id, amd_iommu_pd_alloc_bitmap); 1774 spin_unlock(&pd_bitmap_lock); 1775 } 1776 1777 static void free_gcr3_tbl_level1(u64 *tbl) 1778 { 1779 u64 *ptr; 1780 int i; 1781 1782 for (i = 0; i < 512; ++i) { 1783 if (!(tbl[i] & GCR3_VALID)) 1784 continue; 1785 1786 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK); 1787 1788 free_page((unsigned long)ptr); 1789 } 1790 } 1791 1792 static void free_gcr3_tbl_level2(u64 *tbl) 1793 { 1794 u64 *ptr; 1795 int i; 1796 1797 for (i = 0; i < 512; ++i) { 1798 if (!(tbl[i] & GCR3_VALID)) 1799 continue; 1800 1801 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK); 1802 1803 free_gcr3_tbl_level1(ptr); 1804 } 1805 } 1806 1807 static void free_gcr3_table(struct protection_domain *domain) 1808 { 1809 if (domain->glx == 2) 1810 free_gcr3_tbl_level2(domain->gcr3_tbl); 1811 else if (domain->glx == 1) 1812 free_gcr3_tbl_level1(domain->gcr3_tbl); 1813 else 1814 BUG_ON(domain->glx != 0); 1815 1816 free_page((unsigned long)domain->gcr3_tbl); 1817 } 1818 1819 static void set_dte_entry(u16 devid, struct protection_domain *domain, 1820 struct domain_pgtable *pgtable, 1821 bool ats, bool ppr) 1822 { 1823 u64 pte_root = 0; 1824 u64 flags = 0; 1825 u32 old_domid; 1826 1827 if (pgtable->mode != PAGE_MODE_NONE) 1828 pte_root = iommu_virt_to_phys(pgtable->root); 1829 1830 pte_root |= (pgtable->mode & DEV_ENTRY_MODE_MASK) 1831 << DEV_ENTRY_MODE_SHIFT; 1832 pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V | DTE_FLAG_TV; 1833 1834 flags = amd_iommu_dev_table[devid].data[1]; 1835 1836 if (ats) 1837 flags |= DTE_FLAG_IOTLB; 1838 1839 if (ppr) { 1840 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid]; 1841 1842 if (iommu_feature(iommu, FEATURE_EPHSUP)) 1843 pte_root |= 1ULL << DEV_ENTRY_PPR; 1844 } 1845 1846 if (domain->flags & PD_IOMMUV2_MASK) { 1847 u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl); 1848 u64 glx = domain->glx; 1849 u64 tmp; 1850 1851 pte_root |= DTE_FLAG_GV; 1852 pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT; 1853 1854 /* First mask out possible old values for GCR3 table */ 1855 tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B; 1856 flags &= ~tmp; 1857 1858 tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C; 1859 flags &= ~tmp; 1860 1861 /* Encode GCR3 table into DTE */ 1862 tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A; 1863 pte_root |= tmp; 1864 1865 tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B; 1866 flags |= tmp; 1867 1868 tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C; 1869 flags |= tmp; 1870 } 1871 1872 flags &= ~DEV_DOMID_MASK; 1873 flags |= domain->id; 1874 1875 old_domid = amd_iommu_dev_table[devid].data[1] & DEV_DOMID_MASK; 1876 amd_iommu_dev_table[devid].data[1] = flags; 1877 amd_iommu_dev_table[devid].data[0] = pte_root; 1878 1879 /* 1880 * A kdump kernel might be replacing a domain ID that was copied from 1881 * the previous kernel--if so, it needs to flush the translation cache 1882 * entries for the old domain ID that is being overwritten 1883 */ 1884 if (old_domid) { 1885 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid]; 1886 1887 amd_iommu_flush_tlb_domid(iommu, old_domid); 1888 } 1889 } 1890 1891 static void clear_dte_entry(u16 devid) 1892 { 1893 /* remove entry from the device table seen by the hardware */ 1894 amd_iommu_dev_table[devid].data[0] = DTE_FLAG_V | DTE_FLAG_TV; 1895 amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK; 1896 1897 amd_iommu_apply_erratum_63(devid); 1898 } 1899 1900 static void do_attach(struct iommu_dev_data *dev_data, 1901 struct protection_domain *domain) 1902 { 1903 struct domain_pgtable pgtable; 1904 struct amd_iommu *iommu; 1905 bool ats; 1906 1907 iommu = amd_iommu_rlookup_table[dev_data->devid]; 1908 ats = dev_data->ats.enabled; 1909 1910 /* Update data structures */ 1911 dev_data->domain = domain; 1912 list_add(&dev_data->list, &domain->dev_list); 1913 1914 /* Do reference counting */ 1915 domain->dev_iommu[iommu->index] += 1; 1916 domain->dev_cnt += 1; 1917 1918 /* Update device table */ 1919 amd_iommu_domain_get_pgtable(domain, &pgtable); 1920 set_dte_entry(dev_data->devid, domain, &pgtable, 1921 ats, dev_data->iommu_v2); 1922 clone_aliases(dev_data->pdev); 1923 1924 device_flush_dte(dev_data); 1925 } 1926 1927 static void do_detach(struct iommu_dev_data *dev_data) 1928 { 1929 struct protection_domain *domain = dev_data->domain; 1930 struct amd_iommu *iommu; 1931 1932 iommu = amd_iommu_rlookup_table[dev_data->devid]; 1933 1934 /* Update data structures */ 1935 dev_data->domain = NULL; 1936 list_del(&dev_data->list); 1937 clear_dte_entry(dev_data->devid); 1938 clone_aliases(dev_data->pdev); 1939 1940 /* Flush the DTE entry */ 1941 device_flush_dte(dev_data); 1942 1943 /* Flush IOTLB */ 1944 domain_flush_tlb_pde(domain); 1945 1946 /* Wait for the flushes to finish */ 1947 domain_flush_complete(domain); 1948 1949 /* decrease reference counters - needs to happen after the flushes */ 1950 domain->dev_iommu[iommu->index] -= 1; 1951 domain->dev_cnt -= 1; 1952 } 1953 1954 static void pdev_iommuv2_disable(struct pci_dev *pdev) 1955 { 1956 pci_disable_ats(pdev); 1957 pci_disable_pri(pdev); 1958 pci_disable_pasid(pdev); 1959 } 1960 1961 /* FIXME: Change generic reset-function to do the same */ 1962 static int pri_reset_while_enabled(struct pci_dev *pdev) 1963 { 1964 u16 control; 1965 int pos; 1966 1967 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI); 1968 if (!pos) 1969 return -EINVAL; 1970 1971 pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control); 1972 control |= PCI_PRI_CTRL_RESET; 1973 pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control); 1974 1975 return 0; 1976 } 1977 1978 static int pdev_iommuv2_enable(struct pci_dev *pdev) 1979 { 1980 bool reset_enable; 1981 int reqs, ret; 1982 1983 /* FIXME: Hardcode number of outstanding requests for now */ 1984 reqs = 32; 1985 if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE)) 1986 reqs = 1; 1987 reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET); 1988 1989 /* Only allow access to user-accessible pages */ 1990 ret = pci_enable_pasid(pdev, 0); 1991 if (ret) 1992 goto out_err; 1993 1994 /* First reset the PRI state of the device */ 1995 ret = pci_reset_pri(pdev); 1996 if (ret) 1997 goto out_err; 1998 1999 /* Enable PRI */ 2000 ret = pci_enable_pri(pdev, reqs); 2001 if (ret) 2002 goto out_err; 2003 2004 if (reset_enable) { 2005 ret = pri_reset_while_enabled(pdev); 2006 if (ret) 2007 goto out_err; 2008 } 2009 2010 ret = pci_enable_ats(pdev, PAGE_SHIFT); 2011 if (ret) 2012 goto out_err; 2013 2014 return 0; 2015 2016 out_err: 2017 pci_disable_pri(pdev); 2018 pci_disable_pasid(pdev); 2019 2020 return ret; 2021 } 2022 2023 /* 2024 * If a device is not yet associated with a domain, this function makes the 2025 * device visible in the domain 2026 */ 2027 static int attach_device(struct device *dev, 2028 struct protection_domain *domain) 2029 { 2030 struct iommu_dev_data *dev_data; 2031 struct pci_dev *pdev; 2032 unsigned long flags; 2033 int ret; 2034 2035 spin_lock_irqsave(&domain->lock, flags); 2036 2037 dev_data = dev_iommu_priv_get(dev); 2038 2039 spin_lock(&dev_data->lock); 2040 2041 ret = -EBUSY; 2042 if (dev_data->domain != NULL) 2043 goto out; 2044 2045 if (!dev_is_pci(dev)) 2046 goto skip_ats_check; 2047 2048 pdev = to_pci_dev(dev); 2049 if (domain->flags & PD_IOMMUV2_MASK) { 2050 struct iommu_domain *def_domain = iommu_get_dma_domain(dev); 2051 2052 ret = -EINVAL; 2053 if (def_domain->type != IOMMU_DOMAIN_IDENTITY) 2054 goto out; 2055 2056 if (dev_data->iommu_v2) { 2057 if (pdev_iommuv2_enable(pdev) != 0) 2058 goto out; 2059 2060 dev_data->ats.enabled = true; 2061 dev_data->ats.qdep = pci_ats_queue_depth(pdev); 2062 dev_data->pri_tlp = pci_prg_resp_pasid_required(pdev); 2063 } 2064 } else if (amd_iommu_iotlb_sup && 2065 pci_enable_ats(pdev, PAGE_SHIFT) == 0) { 2066 dev_data->ats.enabled = true; 2067 dev_data->ats.qdep = pci_ats_queue_depth(pdev); 2068 } 2069 2070 skip_ats_check: 2071 ret = 0; 2072 2073 do_attach(dev_data, domain); 2074 2075 /* 2076 * We might boot into a crash-kernel here. The crashed kernel 2077 * left the caches in the IOMMU dirty. So we have to flush 2078 * here to evict all dirty stuff. 2079 */ 2080 domain_flush_tlb_pde(domain); 2081 2082 domain_flush_complete(domain); 2083 2084 out: 2085 spin_unlock(&dev_data->lock); 2086 2087 spin_unlock_irqrestore(&domain->lock, flags); 2088 2089 return ret; 2090 } 2091 2092 /* 2093 * Removes a device from a protection domain (with devtable_lock held) 2094 */ 2095 static void detach_device(struct device *dev) 2096 { 2097 struct protection_domain *domain; 2098 struct iommu_dev_data *dev_data; 2099 unsigned long flags; 2100 2101 dev_data = dev_iommu_priv_get(dev); 2102 domain = dev_data->domain; 2103 2104 spin_lock_irqsave(&domain->lock, flags); 2105 2106 spin_lock(&dev_data->lock); 2107 2108 /* 2109 * First check if the device is still attached. It might already 2110 * be detached from its domain because the generic 2111 * iommu_detach_group code detached it and we try again here in 2112 * our alias handling. 2113 */ 2114 if (WARN_ON(!dev_data->domain)) 2115 goto out; 2116 2117 do_detach(dev_data); 2118 2119 if (!dev_is_pci(dev)) 2120 goto out; 2121 2122 if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2) 2123 pdev_iommuv2_disable(to_pci_dev(dev)); 2124 else if (dev_data->ats.enabled) 2125 pci_disable_ats(to_pci_dev(dev)); 2126 2127 dev_data->ats.enabled = false; 2128 2129 out: 2130 spin_unlock(&dev_data->lock); 2131 2132 spin_unlock_irqrestore(&domain->lock, flags); 2133 } 2134 2135 static struct iommu_device *amd_iommu_probe_device(struct device *dev) 2136 { 2137 struct iommu_device *iommu_dev; 2138 struct amd_iommu *iommu; 2139 int ret, devid; 2140 2141 if (!check_device(dev)) 2142 return ERR_PTR(-ENODEV); 2143 2144 devid = get_device_id(dev); 2145 if (devid < 0) 2146 return ERR_PTR(devid); 2147 2148 iommu = amd_iommu_rlookup_table[devid]; 2149 2150 if (dev_iommu_priv_get(dev)) 2151 return &iommu->iommu; 2152 2153 ret = iommu_init_device(dev); 2154 if (ret) { 2155 if (ret != -ENOTSUPP) 2156 dev_err(dev, "Failed to initialize - trying to proceed anyway\n"); 2157 iommu_dev = ERR_PTR(ret); 2158 iommu_ignore_device(dev); 2159 } else { 2160 iommu_dev = &iommu->iommu; 2161 } 2162 2163 iommu_completion_wait(iommu); 2164 2165 return iommu_dev; 2166 } 2167 2168 static void amd_iommu_probe_finalize(struct device *dev) 2169 { 2170 struct iommu_domain *domain; 2171 2172 /* Domains are initialized for this device - have a look what we ended up with */ 2173 domain = iommu_get_domain_for_dev(dev); 2174 if (domain->type == IOMMU_DOMAIN_DMA) 2175 iommu_setup_dma_ops(dev, IOVA_START_PFN << PAGE_SHIFT, 0); 2176 } 2177 2178 static void amd_iommu_release_device(struct device *dev) 2179 { 2180 int devid = get_device_id(dev); 2181 struct amd_iommu *iommu; 2182 2183 if (!check_device(dev)) 2184 return; 2185 2186 iommu = amd_iommu_rlookup_table[devid]; 2187 2188 amd_iommu_uninit_device(dev); 2189 iommu_completion_wait(iommu); 2190 } 2191 2192 static struct iommu_group *amd_iommu_device_group(struct device *dev) 2193 { 2194 if (dev_is_pci(dev)) 2195 return pci_device_group(dev); 2196 2197 return acpihid_device_group(dev); 2198 } 2199 2200 static int amd_iommu_domain_get_attr(struct iommu_domain *domain, 2201 enum iommu_attr attr, void *data) 2202 { 2203 switch (domain->type) { 2204 case IOMMU_DOMAIN_UNMANAGED: 2205 return -ENODEV; 2206 case IOMMU_DOMAIN_DMA: 2207 switch (attr) { 2208 case DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE: 2209 *(int *)data = !amd_iommu_unmap_flush; 2210 return 0; 2211 default: 2212 return -ENODEV; 2213 } 2214 break; 2215 default: 2216 return -EINVAL; 2217 } 2218 } 2219 2220 /***************************************************************************** 2221 * 2222 * The next functions belong to the dma_ops mapping/unmapping code. 2223 * 2224 *****************************************************************************/ 2225 2226 static void update_device_table(struct protection_domain *domain, 2227 struct domain_pgtable *pgtable) 2228 { 2229 struct iommu_dev_data *dev_data; 2230 2231 list_for_each_entry(dev_data, &domain->dev_list, list) { 2232 set_dte_entry(dev_data->devid, domain, pgtable, 2233 dev_data->ats.enabled, dev_data->iommu_v2); 2234 clone_aliases(dev_data->pdev); 2235 } 2236 } 2237 2238 static void update_and_flush_device_table(struct protection_domain *domain, 2239 struct domain_pgtable *pgtable) 2240 { 2241 update_device_table(domain, pgtable); 2242 domain_flush_devices(domain); 2243 } 2244 2245 static void update_domain(struct protection_domain *domain) 2246 { 2247 struct domain_pgtable pgtable; 2248 2249 /* Update device table */ 2250 amd_iommu_domain_get_pgtable(domain, &pgtable); 2251 update_and_flush_device_table(domain, &pgtable); 2252 2253 /* Flush domain TLB(s) and wait for completion */ 2254 domain_flush_tlb_pde(domain); 2255 domain_flush_complete(domain); 2256 } 2257 2258 int __init amd_iommu_init_api(void) 2259 { 2260 int ret, err = 0; 2261 2262 ret = iova_cache_get(); 2263 if (ret) 2264 return ret; 2265 2266 err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops); 2267 if (err) 2268 return err; 2269 #ifdef CONFIG_ARM_AMBA 2270 err = bus_set_iommu(&amba_bustype, &amd_iommu_ops); 2271 if (err) 2272 return err; 2273 #endif 2274 err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops); 2275 if (err) 2276 return err; 2277 2278 return 0; 2279 } 2280 2281 int __init amd_iommu_init_dma_ops(void) 2282 { 2283 swiotlb = (iommu_default_passthrough() || sme_me_mask) ? 1 : 0; 2284 2285 if (amd_iommu_unmap_flush) 2286 pr_info("IO/TLB flush on unmap enabled\n"); 2287 else 2288 pr_info("Lazy IO/TLB flushing enabled\n"); 2289 2290 return 0; 2291 2292 } 2293 2294 /***************************************************************************** 2295 * 2296 * The following functions belong to the exported interface of AMD IOMMU 2297 * 2298 * This interface allows access to lower level functions of the IOMMU 2299 * like protection domain handling and assignement of devices to domains 2300 * which is not possible with the dma_ops interface. 2301 * 2302 *****************************************************************************/ 2303 2304 static void cleanup_domain(struct protection_domain *domain) 2305 { 2306 struct iommu_dev_data *entry; 2307 unsigned long flags; 2308 2309 spin_lock_irqsave(&domain->lock, flags); 2310 2311 while (!list_empty(&domain->dev_list)) { 2312 entry = list_first_entry(&domain->dev_list, 2313 struct iommu_dev_data, list); 2314 BUG_ON(!entry->domain); 2315 do_detach(entry); 2316 } 2317 2318 spin_unlock_irqrestore(&domain->lock, flags); 2319 } 2320 2321 static void protection_domain_free(struct protection_domain *domain) 2322 { 2323 struct domain_pgtable pgtable; 2324 2325 if (!domain) 2326 return; 2327 2328 if (domain->id) 2329 domain_id_free(domain->id); 2330 2331 amd_iommu_domain_get_pgtable(domain, &pgtable); 2332 amd_iommu_domain_clr_pt_root(domain); 2333 free_pagetable(&pgtable); 2334 2335 kfree(domain); 2336 } 2337 2338 static int protection_domain_init(struct protection_domain *domain, int mode) 2339 { 2340 u64 *pt_root = NULL; 2341 2342 BUG_ON(mode < PAGE_MODE_NONE || mode > PAGE_MODE_6_LEVEL); 2343 2344 spin_lock_init(&domain->lock); 2345 domain->id = domain_id_alloc(); 2346 if (!domain->id) 2347 return -ENOMEM; 2348 INIT_LIST_HEAD(&domain->dev_list); 2349 2350 if (mode != PAGE_MODE_NONE) { 2351 pt_root = (void *)get_zeroed_page(GFP_KERNEL); 2352 if (!pt_root) 2353 return -ENOMEM; 2354 } 2355 2356 amd_iommu_domain_set_pgtable(domain, pt_root, mode); 2357 2358 return 0; 2359 } 2360 2361 static struct protection_domain *protection_domain_alloc(int mode) 2362 { 2363 struct protection_domain *domain; 2364 2365 domain = kzalloc(sizeof(*domain), GFP_KERNEL); 2366 if (!domain) 2367 return NULL; 2368 2369 if (protection_domain_init(domain, mode)) 2370 goto out_err; 2371 2372 return domain; 2373 2374 out_err: 2375 kfree(domain); 2376 2377 return NULL; 2378 } 2379 2380 static struct iommu_domain *amd_iommu_domain_alloc(unsigned type) 2381 { 2382 struct protection_domain *domain; 2383 int mode = DEFAULT_PGTABLE_LEVEL; 2384 2385 if (type == IOMMU_DOMAIN_IDENTITY) 2386 mode = PAGE_MODE_NONE; 2387 2388 domain = protection_domain_alloc(mode); 2389 if (!domain) 2390 return NULL; 2391 2392 domain->domain.geometry.aperture_start = 0; 2393 domain->domain.geometry.aperture_end = ~0ULL; 2394 domain->domain.geometry.force_aperture = true; 2395 2396 if (type == IOMMU_DOMAIN_DMA && 2397 iommu_get_dma_cookie(&domain->domain) == -ENOMEM) 2398 goto free_domain; 2399 2400 return &domain->domain; 2401 2402 free_domain: 2403 protection_domain_free(domain); 2404 2405 return NULL; 2406 } 2407 2408 static void amd_iommu_domain_free(struct iommu_domain *dom) 2409 { 2410 struct protection_domain *domain; 2411 2412 domain = to_pdomain(dom); 2413 2414 if (domain->dev_cnt > 0) 2415 cleanup_domain(domain); 2416 2417 BUG_ON(domain->dev_cnt != 0); 2418 2419 if (!dom) 2420 return; 2421 2422 if (dom->type == IOMMU_DOMAIN_DMA) 2423 iommu_put_dma_cookie(&domain->domain); 2424 2425 if (domain->flags & PD_IOMMUV2_MASK) 2426 free_gcr3_table(domain); 2427 2428 protection_domain_free(domain); 2429 } 2430 2431 static void amd_iommu_detach_device(struct iommu_domain *dom, 2432 struct device *dev) 2433 { 2434 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev); 2435 struct amd_iommu *iommu; 2436 int devid; 2437 2438 if (!check_device(dev)) 2439 return; 2440 2441 devid = get_device_id(dev); 2442 if (devid < 0) 2443 return; 2444 2445 if (dev_data->domain != NULL) 2446 detach_device(dev); 2447 2448 iommu = amd_iommu_rlookup_table[devid]; 2449 if (!iommu) 2450 return; 2451 2452 #ifdef CONFIG_IRQ_REMAP 2453 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) && 2454 (dom->type == IOMMU_DOMAIN_UNMANAGED)) 2455 dev_data->use_vapic = 0; 2456 #endif 2457 2458 iommu_completion_wait(iommu); 2459 } 2460 2461 static int amd_iommu_attach_device(struct iommu_domain *dom, 2462 struct device *dev) 2463 { 2464 struct protection_domain *domain = to_pdomain(dom); 2465 struct iommu_dev_data *dev_data; 2466 struct amd_iommu *iommu; 2467 int ret; 2468 2469 if (!check_device(dev)) 2470 return -EINVAL; 2471 2472 dev_data = dev_iommu_priv_get(dev); 2473 dev_data->defer_attach = false; 2474 2475 iommu = amd_iommu_rlookup_table[dev_data->devid]; 2476 if (!iommu) 2477 return -EINVAL; 2478 2479 if (dev_data->domain) 2480 detach_device(dev); 2481 2482 ret = attach_device(dev, domain); 2483 2484 #ifdef CONFIG_IRQ_REMAP 2485 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) { 2486 if (dom->type == IOMMU_DOMAIN_UNMANAGED) 2487 dev_data->use_vapic = 1; 2488 else 2489 dev_data->use_vapic = 0; 2490 } 2491 #endif 2492 2493 iommu_completion_wait(iommu); 2494 2495 return ret; 2496 } 2497 2498 static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova, 2499 phys_addr_t paddr, size_t page_size, int iommu_prot, 2500 gfp_t gfp) 2501 { 2502 struct protection_domain *domain = to_pdomain(dom); 2503 struct domain_pgtable pgtable; 2504 int prot = 0; 2505 int ret; 2506 2507 amd_iommu_domain_get_pgtable(domain, &pgtable); 2508 if (pgtable.mode == PAGE_MODE_NONE) 2509 return -EINVAL; 2510 2511 if (iommu_prot & IOMMU_READ) 2512 prot |= IOMMU_PROT_IR; 2513 if (iommu_prot & IOMMU_WRITE) 2514 prot |= IOMMU_PROT_IW; 2515 2516 ret = iommu_map_page(domain, iova, paddr, page_size, prot, gfp); 2517 2518 domain_flush_np_cache(domain, iova, page_size); 2519 2520 return ret; 2521 } 2522 2523 static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova, 2524 size_t page_size, 2525 struct iommu_iotlb_gather *gather) 2526 { 2527 struct protection_domain *domain = to_pdomain(dom); 2528 struct domain_pgtable pgtable; 2529 2530 amd_iommu_domain_get_pgtable(domain, &pgtable); 2531 if (pgtable.mode == PAGE_MODE_NONE) 2532 return 0; 2533 2534 return iommu_unmap_page(domain, iova, page_size); 2535 } 2536 2537 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom, 2538 dma_addr_t iova) 2539 { 2540 struct protection_domain *domain = to_pdomain(dom); 2541 unsigned long offset_mask, pte_pgsize; 2542 struct domain_pgtable pgtable; 2543 u64 *pte, __pte; 2544 2545 amd_iommu_domain_get_pgtable(domain, &pgtable); 2546 if (pgtable.mode == PAGE_MODE_NONE) 2547 return iova; 2548 2549 pte = fetch_pte(domain, iova, &pte_pgsize); 2550 2551 if (!pte || !IOMMU_PTE_PRESENT(*pte)) 2552 return 0; 2553 2554 offset_mask = pte_pgsize - 1; 2555 __pte = __sme_clr(*pte & PM_ADDR_MASK); 2556 2557 return (__pte & ~offset_mask) | (iova & offset_mask); 2558 } 2559 2560 static bool amd_iommu_capable(enum iommu_cap cap) 2561 { 2562 switch (cap) { 2563 case IOMMU_CAP_CACHE_COHERENCY: 2564 return true; 2565 case IOMMU_CAP_INTR_REMAP: 2566 return (irq_remapping_enabled == 1); 2567 case IOMMU_CAP_NOEXEC: 2568 return false; 2569 default: 2570 break; 2571 } 2572 2573 return false; 2574 } 2575 2576 static void amd_iommu_get_resv_regions(struct device *dev, 2577 struct list_head *head) 2578 { 2579 struct iommu_resv_region *region; 2580 struct unity_map_entry *entry; 2581 int devid; 2582 2583 devid = get_device_id(dev); 2584 if (devid < 0) 2585 return; 2586 2587 list_for_each_entry(entry, &amd_iommu_unity_map, list) { 2588 int type, prot = 0; 2589 size_t length; 2590 2591 if (devid < entry->devid_start || devid > entry->devid_end) 2592 continue; 2593 2594 type = IOMMU_RESV_DIRECT; 2595 length = entry->address_end - entry->address_start; 2596 if (entry->prot & IOMMU_PROT_IR) 2597 prot |= IOMMU_READ; 2598 if (entry->prot & IOMMU_PROT_IW) 2599 prot |= IOMMU_WRITE; 2600 if (entry->prot & IOMMU_UNITY_MAP_FLAG_EXCL_RANGE) 2601 /* Exclusion range */ 2602 type = IOMMU_RESV_RESERVED; 2603 2604 region = iommu_alloc_resv_region(entry->address_start, 2605 length, prot, type); 2606 if (!region) { 2607 dev_err(dev, "Out of memory allocating dm-regions\n"); 2608 return; 2609 } 2610 list_add_tail(®ion->list, head); 2611 } 2612 2613 region = iommu_alloc_resv_region(MSI_RANGE_START, 2614 MSI_RANGE_END - MSI_RANGE_START + 1, 2615 0, IOMMU_RESV_MSI); 2616 if (!region) 2617 return; 2618 list_add_tail(®ion->list, head); 2619 2620 region = iommu_alloc_resv_region(HT_RANGE_START, 2621 HT_RANGE_END - HT_RANGE_START + 1, 2622 0, IOMMU_RESV_RESERVED); 2623 if (!region) 2624 return; 2625 list_add_tail(®ion->list, head); 2626 } 2627 2628 bool amd_iommu_is_attach_deferred(struct iommu_domain *domain, 2629 struct device *dev) 2630 { 2631 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev); 2632 2633 return dev_data->defer_attach; 2634 } 2635 EXPORT_SYMBOL_GPL(amd_iommu_is_attach_deferred); 2636 2637 static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain) 2638 { 2639 struct protection_domain *dom = to_pdomain(domain); 2640 unsigned long flags; 2641 2642 spin_lock_irqsave(&dom->lock, flags); 2643 domain_flush_tlb_pde(dom); 2644 domain_flush_complete(dom); 2645 spin_unlock_irqrestore(&dom->lock, flags); 2646 } 2647 2648 static void amd_iommu_iotlb_sync(struct iommu_domain *domain, 2649 struct iommu_iotlb_gather *gather) 2650 { 2651 amd_iommu_flush_iotlb_all(domain); 2652 } 2653 2654 static int amd_iommu_def_domain_type(struct device *dev) 2655 { 2656 struct iommu_dev_data *dev_data; 2657 2658 dev_data = dev_iommu_priv_get(dev); 2659 if (!dev_data) 2660 return 0; 2661 2662 if (dev_data->iommu_v2) 2663 return IOMMU_DOMAIN_IDENTITY; 2664 2665 return 0; 2666 } 2667 2668 const struct iommu_ops amd_iommu_ops = { 2669 .capable = amd_iommu_capable, 2670 .domain_alloc = amd_iommu_domain_alloc, 2671 .domain_free = amd_iommu_domain_free, 2672 .attach_dev = amd_iommu_attach_device, 2673 .detach_dev = amd_iommu_detach_device, 2674 .map = amd_iommu_map, 2675 .unmap = amd_iommu_unmap, 2676 .iova_to_phys = amd_iommu_iova_to_phys, 2677 .probe_device = amd_iommu_probe_device, 2678 .release_device = amd_iommu_release_device, 2679 .probe_finalize = amd_iommu_probe_finalize, 2680 .device_group = amd_iommu_device_group, 2681 .domain_get_attr = amd_iommu_domain_get_attr, 2682 .get_resv_regions = amd_iommu_get_resv_regions, 2683 .put_resv_regions = generic_iommu_put_resv_regions, 2684 .is_attach_deferred = amd_iommu_is_attach_deferred, 2685 .pgsize_bitmap = AMD_IOMMU_PGSIZES, 2686 .flush_iotlb_all = amd_iommu_flush_iotlb_all, 2687 .iotlb_sync = amd_iommu_iotlb_sync, 2688 .def_domain_type = amd_iommu_def_domain_type, 2689 }; 2690 2691 /***************************************************************************** 2692 * 2693 * The next functions do a basic initialization of IOMMU for pass through 2694 * mode 2695 * 2696 * In passthrough mode the IOMMU is initialized and enabled but not used for 2697 * DMA-API translation. 2698 * 2699 *****************************************************************************/ 2700 2701 /* IOMMUv2 specific functions */ 2702 int amd_iommu_register_ppr_notifier(struct notifier_block *nb) 2703 { 2704 return atomic_notifier_chain_register(&ppr_notifier, nb); 2705 } 2706 EXPORT_SYMBOL(amd_iommu_register_ppr_notifier); 2707 2708 int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb) 2709 { 2710 return atomic_notifier_chain_unregister(&ppr_notifier, nb); 2711 } 2712 EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier); 2713 2714 void amd_iommu_domain_direct_map(struct iommu_domain *dom) 2715 { 2716 struct protection_domain *domain = to_pdomain(dom); 2717 struct domain_pgtable pgtable; 2718 unsigned long flags; 2719 2720 spin_lock_irqsave(&domain->lock, flags); 2721 2722 /* First save pgtable configuration*/ 2723 amd_iommu_domain_get_pgtable(domain, &pgtable); 2724 2725 /* Remove page-table from domain */ 2726 amd_iommu_domain_clr_pt_root(domain); 2727 2728 /* Make changes visible to IOMMUs */ 2729 update_domain(domain); 2730 2731 /* Page-table is not visible to IOMMU anymore, so free it */ 2732 free_pagetable(&pgtable); 2733 2734 spin_unlock_irqrestore(&domain->lock, flags); 2735 } 2736 EXPORT_SYMBOL(amd_iommu_domain_direct_map); 2737 2738 int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids) 2739 { 2740 struct protection_domain *domain = to_pdomain(dom); 2741 unsigned long flags; 2742 int levels, ret; 2743 2744 if (pasids <= 0 || pasids > (PASID_MASK + 1)) 2745 return -EINVAL; 2746 2747 /* Number of GCR3 table levels required */ 2748 for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9) 2749 levels += 1; 2750 2751 if (levels > amd_iommu_max_glx_val) 2752 return -EINVAL; 2753 2754 spin_lock_irqsave(&domain->lock, flags); 2755 2756 /* 2757 * Save us all sanity checks whether devices already in the 2758 * domain support IOMMUv2. Just force that the domain has no 2759 * devices attached when it is switched into IOMMUv2 mode. 2760 */ 2761 ret = -EBUSY; 2762 if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK) 2763 goto out; 2764 2765 ret = -ENOMEM; 2766 domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC); 2767 if (domain->gcr3_tbl == NULL) 2768 goto out; 2769 2770 domain->glx = levels; 2771 domain->flags |= PD_IOMMUV2_MASK; 2772 2773 update_domain(domain); 2774 2775 ret = 0; 2776 2777 out: 2778 spin_unlock_irqrestore(&domain->lock, flags); 2779 2780 return ret; 2781 } 2782 EXPORT_SYMBOL(amd_iommu_domain_enable_v2); 2783 2784 static int __flush_pasid(struct protection_domain *domain, int pasid, 2785 u64 address, bool size) 2786 { 2787 struct iommu_dev_data *dev_data; 2788 struct iommu_cmd cmd; 2789 int i, ret; 2790 2791 if (!(domain->flags & PD_IOMMUV2_MASK)) 2792 return -EINVAL; 2793 2794 build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size); 2795 2796 /* 2797 * IOMMU TLB needs to be flushed before Device TLB to 2798 * prevent device TLB refill from IOMMU TLB 2799 */ 2800 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) { 2801 if (domain->dev_iommu[i] == 0) 2802 continue; 2803 2804 ret = iommu_queue_command(amd_iommus[i], &cmd); 2805 if (ret != 0) 2806 goto out; 2807 } 2808 2809 /* Wait until IOMMU TLB flushes are complete */ 2810 domain_flush_complete(domain); 2811 2812 /* Now flush device TLBs */ 2813 list_for_each_entry(dev_data, &domain->dev_list, list) { 2814 struct amd_iommu *iommu; 2815 int qdep; 2816 2817 /* 2818 There might be non-IOMMUv2 capable devices in an IOMMUv2 2819 * domain. 2820 */ 2821 if (!dev_data->ats.enabled) 2822 continue; 2823 2824 qdep = dev_data->ats.qdep; 2825 iommu = amd_iommu_rlookup_table[dev_data->devid]; 2826 2827 build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid, 2828 qdep, address, size); 2829 2830 ret = iommu_queue_command(iommu, &cmd); 2831 if (ret != 0) 2832 goto out; 2833 } 2834 2835 /* Wait until all device TLBs are flushed */ 2836 domain_flush_complete(domain); 2837 2838 ret = 0; 2839 2840 out: 2841 2842 return ret; 2843 } 2844 2845 static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid, 2846 u64 address) 2847 { 2848 return __flush_pasid(domain, pasid, address, false); 2849 } 2850 2851 int amd_iommu_flush_page(struct iommu_domain *dom, int pasid, 2852 u64 address) 2853 { 2854 struct protection_domain *domain = to_pdomain(dom); 2855 unsigned long flags; 2856 int ret; 2857 2858 spin_lock_irqsave(&domain->lock, flags); 2859 ret = __amd_iommu_flush_page(domain, pasid, address); 2860 spin_unlock_irqrestore(&domain->lock, flags); 2861 2862 return ret; 2863 } 2864 EXPORT_SYMBOL(amd_iommu_flush_page); 2865 2866 static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid) 2867 { 2868 return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 2869 true); 2870 } 2871 2872 int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid) 2873 { 2874 struct protection_domain *domain = to_pdomain(dom); 2875 unsigned long flags; 2876 int ret; 2877 2878 spin_lock_irqsave(&domain->lock, flags); 2879 ret = __amd_iommu_flush_tlb(domain, pasid); 2880 spin_unlock_irqrestore(&domain->lock, flags); 2881 2882 return ret; 2883 } 2884 EXPORT_SYMBOL(amd_iommu_flush_tlb); 2885 2886 static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc) 2887 { 2888 int index; 2889 u64 *pte; 2890 2891 while (true) { 2892 2893 index = (pasid >> (9 * level)) & 0x1ff; 2894 pte = &root[index]; 2895 2896 if (level == 0) 2897 break; 2898 2899 if (!(*pte & GCR3_VALID)) { 2900 if (!alloc) 2901 return NULL; 2902 2903 root = (void *)get_zeroed_page(GFP_ATOMIC); 2904 if (root == NULL) 2905 return NULL; 2906 2907 *pte = iommu_virt_to_phys(root) | GCR3_VALID; 2908 } 2909 2910 root = iommu_phys_to_virt(*pte & PAGE_MASK); 2911 2912 level -= 1; 2913 } 2914 2915 return pte; 2916 } 2917 2918 static int __set_gcr3(struct protection_domain *domain, int pasid, 2919 unsigned long cr3) 2920 { 2921 struct domain_pgtable pgtable; 2922 u64 *pte; 2923 2924 amd_iommu_domain_get_pgtable(domain, &pgtable); 2925 if (pgtable.mode != PAGE_MODE_NONE) 2926 return -EINVAL; 2927 2928 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true); 2929 if (pte == NULL) 2930 return -ENOMEM; 2931 2932 *pte = (cr3 & PAGE_MASK) | GCR3_VALID; 2933 2934 return __amd_iommu_flush_tlb(domain, pasid); 2935 } 2936 2937 static int __clear_gcr3(struct protection_domain *domain, int pasid) 2938 { 2939 struct domain_pgtable pgtable; 2940 u64 *pte; 2941 2942 amd_iommu_domain_get_pgtable(domain, &pgtable); 2943 if (pgtable.mode != PAGE_MODE_NONE) 2944 return -EINVAL; 2945 2946 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false); 2947 if (pte == NULL) 2948 return 0; 2949 2950 *pte = 0; 2951 2952 return __amd_iommu_flush_tlb(domain, pasid); 2953 } 2954 2955 int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid, 2956 unsigned long cr3) 2957 { 2958 struct protection_domain *domain = to_pdomain(dom); 2959 unsigned long flags; 2960 int ret; 2961 2962 spin_lock_irqsave(&domain->lock, flags); 2963 ret = __set_gcr3(domain, pasid, cr3); 2964 spin_unlock_irqrestore(&domain->lock, flags); 2965 2966 return ret; 2967 } 2968 EXPORT_SYMBOL(amd_iommu_domain_set_gcr3); 2969 2970 int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid) 2971 { 2972 struct protection_domain *domain = to_pdomain(dom); 2973 unsigned long flags; 2974 int ret; 2975 2976 spin_lock_irqsave(&domain->lock, flags); 2977 ret = __clear_gcr3(domain, pasid); 2978 spin_unlock_irqrestore(&domain->lock, flags); 2979 2980 return ret; 2981 } 2982 EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3); 2983 2984 int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid, 2985 int status, int tag) 2986 { 2987 struct iommu_dev_data *dev_data; 2988 struct amd_iommu *iommu; 2989 struct iommu_cmd cmd; 2990 2991 dev_data = dev_iommu_priv_get(&pdev->dev); 2992 iommu = amd_iommu_rlookup_table[dev_data->devid]; 2993 2994 build_complete_ppr(&cmd, dev_data->devid, pasid, status, 2995 tag, dev_data->pri_tlp); 2996 2997 return iommu_queue_command(iommu, &cmd); 2998 } 2999 EXPORT_SYMBOL(amd_iommu_complete_ppr); 3000 3001 struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev) 3002 { 3003 struct protection_domain *pdomain; 3004 struct iommu_dev_data *dev_data; 3005 struct device *dev = &pdev->dev; 3006 struct iommu_domain *io_domain; 3007 3008 if (!check_device(dev)) 3009 return NULL; 3010 3011 dev_data = dev_iommu_priv_get(&pdev->dev); 3012 pdomain = dev_data->domain; 3013 io_domain = iommu_get_domain_for_dev(dev); 3014 3015 if (pdomain == NULL && dev_data->defer_attach) { 3016 dev_data->defer_attach = false; 3017 pdomain = to_pdomain(io_domain); 3018 attach_device(dev, pdomain); 3019 } 3020 3021 if (pdomain == NULL) 3022 return NULL; 3023 3024 if (io_domain->type != IOMMU_DOMAIN_DMA) 3025 return NULL; 3026 3027 /* Only return IOMMUv2 domains */ 3028 if (!(pdomain->flags & PD_IOMMUV2_MASK)) 3029 return NULL; 3030 3031 return &pdomain->domain; 3032 } 3033 EXPORT_SYMBOL(amd_iommu_get_v2_domain); 3034 3035 void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum) 3036 { 3037 struct iommu_dev_data *dev_data; 3038 3039 if (!amd_iommu_v2_supported()) 3040 return; 3041 3042 dev_data = dev_iommu_priv_get(&pdev->dev); 3043 dev_data->errata |= (1 << erratum); 3044 } 3045 EXPORT_SYMBOL(amd_iommu_enable_device_erratum); 3046 3047 int amd_iommu_device_info(struct pci_dev *pdev, 3048 struct amd_iommu_device_info *info) 3049 { 3050 int max_pasids; 3051 int pos; 3052 3053 if (pdev == NULL || info == NULL) 3054 return -EINVAL; 3055 3056 if (!amd_iommu_v2_supported()) 3057 return -EINVAL; 3058 3059 memset(info, 0, sizeof(*info)); 3060 3061 if (pci_ats_supported(pdev)) 3062 info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP; 3063 3064 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI); 3065 if (pos) 3066 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP; 3067 3068 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID); 3069 if (pos) { 3070 int features; 3071 3072 max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1)); 3073 max_pasids = min(max_pasids, (1 << 20)); 3074 3075 info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP; 3076 info->max_pasids = min(pci_max_pasids(pdev), max_pasids); 3077 3078 features = pci_pasid_features(pdev); 3079 if (features & PCI_PASID_CAP_EXEC) 3080 info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP; 3081 if (features & PCI_PASID_CAP_PRIV) 3082 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP; 3083 } 3084 3085 return 0; 3086 } 3087 EXPORT_SYMBOL(amd_iommu_device_info); 3088 3089 #ifdef CONFIG_IRQ_REMAP 3090 3091 /***************************************************************************** 3092 * 3093 * Interrupt Remapping Implementation 3094 * 3095 *****************************************************************************/ 3096 3097 static struct irq_chip amd_ir_chip; 3098 static DEFINE_SPINLOCK(iommu_table_lock); 3099 3100 static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table) 3101 { 3102 u64 dte; 3103 3104 dte = amd_iommu_dev_table[devid].data[2]; 3105 dte &= ~DTE_IRQ_PHYS_ADDR_MASK; 3106 dte |= iommu_virt_to_phys(table->table); 3107 dte |= DTE_IRQ_REMAP_INTCTL; 3108 dte |= DTE_IRQ_TABLE_LEN; 3109 dte |= DTE_IRQ_REMAP_ENABLE; 3110 3111 amd_iommu_dev_table[devid].data[2] = dte; 3112 } 3113 3114 static struct irq_remap_table *get_irq_table(u16 devid) 3115 { 3116 struct irq_remap_table *table; 3117 3118 if (WARN_ONCE(!amd_iommu_rlookup_table[devid], 3119 "%s: no iommu for devid %x\n", __func__, devid)) 3120 return NULL; 3121 3122 table = irq_lookup_table[devid]; 3123 if (WARN_ONCE(!table, "%s: no table for devid %x\n", __func__, devid)) 3124 return NULL; 3125 3126 return table; 3127 } 3128 3129 static struct irq_remap_table *__alloc_irq_table(void) 3130 { 3131 struct irq_remap_table *table; 3132 3133 table = kzalloc(sizeof(*table), GFP_KERNEL); 3134 if (!table) 3135 return NULL; 3136 3137 table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL); 3138 if (!table->table) { 3139 kfree(table); 3140 return NULL; 3141 } 3142 raw_spin_lock_init(&table->lock); 3143 3144 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir)) 3145 memset(table->table, 0, 3146 MAX_IRQS_PER_TABLE * sizeof(u32)); 3147 else 3148 memset(table->table, 0, 3149 (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2))); 3150 return table; 3151 } 3152 3153 static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid, 3154 struct irq_remap_table *table) 3155 { 3156 irq_lookup_table[devid] = table; 3157 set_dte_irq_entry(devid, table); 3158 iommu_flush_dte(iommu, devid); 3159 } 3160 3161 static int set_remap_table_entry_alias(struct pci_dev *pdev, u16 alias, 3162 void *data) 3163 { 3164 struct irq_remap_table *table = data; 3165 3166 irq_lookup_table[alias] = table; 3167 set_dte_irq_entry(alias, table); 3168 3169 iommu_flush_dte(amd_iommu_rlookup_table[alias], alias); 3170 3171 return 0; 3172 } 3173 3174 static struct irq_remap_table *alloc_irq_table(u16 devid, struct pci_dev *pdev) 3175 { 3176 struct irq_remap_table *table = NULL; 3177 struct irq_remap_table *new_table = NULL; 3178 struct amd_iommu *iommu; 3179 unsigned long flags; 3180 u16 alias; 3181 3182 spin_lock_irqsave(&iommu_table_lock, flags); 3183 3184 iommu = amd_iommu_rlookup_table[devid]; 3185 if (!iommu) 3186 goto out_unlock; 3187 3188 table = irq_lookup_table[devid]; 3189 if (table) 3190 goto out_unlock; 3191 3192 alias = amd_iommu_alias_table[devid]; 3193 table = irq_lookup_table[alias]; 3194 if (table) { 3195 set_remap_table_entry(iommu, devid, table); 3196 goto out_wait; 3197 } 3198 spin_unlock_irqrestore(&iommu_table_lock, flags); 3199 3200 /* Nothing there yet, allocate new irq remapping table */ 3201 new_table = __alloc_irq_table(); 3202 if (!new_table) 3203 return NULL; 3204 3205 spin_lock_irqsave(&iommu_table_lock, flags); 3206 3207 table = irq_lookup_table[devid]; 3208 if (table) 3209 goto out_unlock; 3210 3211 table = irq_lookup_table[alias]; 3212 if (table) { 3213 set_remap_table_entry(iommu, devid, table); 3214 goto out_wait; 3215 } 3216 3217 table = new_table; 3218 new_table = NULL; 3219 3220 if (pdev) 3221 pci_for_each_dma_alias(pdev, set_remap_table_entry_alias, 3222 table); 3223 else 3224 set_remap_table_entry(iommu, devid, table); 3225 3226 if (devid != alias) 3227 set_remap_table_entry(iommu, alias, table); 3228 3229 out_wait: 3230 iommu_completion_wait(iommu); 3231 3232 out_unlock: 3233 spin_unlock_irqrestore(&iommu_table_lock, flags); 3234 3235 if (new_table) { 3236 kmem_cache_free(amd_iommu_irq_cache, new_table->table); 3237 kfree(new_table); 3238 } 3239 return table; 3240 } 3241 3242 static int alloc_irq_index(u16 devid, int count, bool align, 3243 struct pci_dev *pdev) 3244 { 3245 struct irq_remap_table *table; 3246 int index, c, alignment = 1; 3247 unsigned long flags; 3248 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid]; 3249 3250 if (!iommu) 3251 return -ENODEV; 3252 3253 table = alloc_irq_table(devid, pdev); 3254 if (!table) 3255 return -ENODEV; 3256 3257 if (align) 3258 alignment = roundup_pow_of_two(count); 3259 3260 raw_spin_lock_irqsave(&table->lock, flags); 3261 3262 /* Scan table for free entries */ 3263 for (index = ALIGN(table->min_index, alignment), c = 0; 3264 index < MAX_IRQS_PER_TABLE;) { 3265 if (!iommu->irte_ops->is_allocated(table, index)) { 3266 c += 1; 3267 } else { 3268 c = 0; 3269 index = ALIGN(index + 1, alignment); 3270 continue; 3271 } 3272 3273 if (c == count) { 3274 for (; c != 0; --c) 3275 iommu->irte_ops->set_allocated(table, index - c + 1); 3276 3277 index -= count - 1; 3278 goto out; 3279 } 3280 3281 index++; 3282 } 3283 3284 index = -ENOSPC; 3285 3286 out: 3287 raw_spin_unlock_irqrestore(&table->lock, flags); 3288 3289 return index; 3290 } 3291 3292 static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte, 3293 struct amd_ir_data *data) 3294 { 3295 struct irq_remap_table *table; 3296 struct amd_iommu *iommu; 3297 unsigned long flags; 3298 struct irte_ga *entry; 3299 3300 iommu = amd_iommu_rlookup_table[devid]; 3301 if (iommu == NULL) 3302 return -EINVAL; 3303 3304 table = get_irq_table(devid); 3305 if (!table) 3306 return -ENOMEM; 3307 3308 raw_spin_lock_irqsave(&table->lock, flags); 3309 3310 entry = (struct irte_ga *)table->table; 3311 entry = &entry[index]; 3312 entry->lo.fields_remap.valid = 0; 3313 entry->hi.val = irte->hi.val; 3314 entry->lo.val = irte->lo.val; 3315 entry->lo.fields_remap.valid = 1; 3316 if (data) 3317 data->ref = entry; 3318 3319 raw_spin_unlock_irqrestore(&table->lock, flags); 3320 3321 iommu_flush_irt(iommu, devid); 3322 iommu_completion_wait(iommu); 3323 3324 return 0; 3325 } 3326 3327 static int modify_irte(u16 devid, int index, union irte *irte) 3328 { 3329 struct irq_remap_table *table; 3330 struct amd_iommu *iommu; 3331 unsigned long flags; 3332 3333 iommu = amd_iommu_rlookup_table[devid]; 3334 if (iommu == NULL) 3335 return -EINVAL; 3336 3337 table = get_irq_table(devid); 3338 if (!table) 3339 return -ENOMEM; 3340 3341 raw_spin_lock_irqsave(&table->lock, flags); 3342 table->table[index] = irte->val; 3343 raw_spin_unlock_irqrestore(&table->lock, flags); 3344 3345 iommu_flush_irt(iommu, devid); 3346 iommu_completion_wait(iommu); 3347 3348 return 0; 3349 } 3350 3351 static void free_irte(u16 devid, int index) 3352 { 3353 struct irq_remap_table *table; 3354 struct amd_iommu *iommu; 3355 unsigned long flags; 3356 3357 iommu = amd_iommu_rlookup_table[devid]; 3358 if (iommu == NULL) 3359 return; 3360 3361 table = get_irq_table(devid); 3362 if (!table) 3363 return; 3364 3365 raw_spin_lock_irqsave(&table->lock, flags); 3366 iommu->irte_ops->clear_allocated(table, index); 3367 raw_spin_unlock_irqrestore(&table->lock, flags); 3368 3369 iommu_flush_irt(iommu, devid); 3370 iommu_completion_wait(iommu); 3371 } 3372 3373 static void irte_prepare(void *entry, 3374 u32 delivery_mode, u32 dest_mode, 3375 u8 vector, u32 dest_apicid, int devid) 3376 { 3377 union irte *irte = (union irte *) entry; 3378 3379 irte->val = 0; 3380 irte->fields.vector = vector; 3381 irte->fields.int_type = delivery_mode; 3382 irte->fields.destination = dest_apicid; 3383 irte->fields.dm = dest_mode; 3384 irte->fields.valid = 1; 3385 } 3386 3387 static void irte_ga_prepare(void *entry, 3388 u32 delivery_mode, u32 dest_mode, 3389 u8 vector, u32 dest_apicid, int devid) 3390 { 3391 struct irte_ga *irte = (struct irte_ga *) entry; 3392 3393 irte->lo.val = 0; 3394 irte->hi.val = 0; 3395 irte->lo.fields_remap.int_type = delivery_mode; 3396 irte->lo.fields_remap.dm = dest_mode; 3397 irte->hi.fields.vector = vector; 3398 irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid); 3399 irte->hi.fields.destination = APICID_TO_IRTE_DEST_HI(dest_apicid); 3400 irte->lo.fields_remap.valid = 1; 3401 } 3402 3403 static void irte_activate(void *entry, u16 devid, u16 index) 3404 { 3405 union irte *irte = (union irte *) entry; 3406 3407 irte->fields.valid = 1; 3408 modify_irte(devid, index, irte); 3409 } 3410 3411 static void irte_ga_activate(void *entry, u16 devid, u16 index) 3412 { 3413 struct irte_ga *irte = (struct irte_ga *) entry; 3414 3415 irte->lo.fields_remap.valid = 1; 3416 modify_irte_ga(devid, index, irte, NULL); 3417 } 3418 3419 static void irte_deactivate(void *entry, u16 devid, u16 index) 3420 { 3421 union irte *irte = (union irte *) entry; 3422 3423 irte->fields.valid = 0; 3424 modify_irte(devid, index, irte); 3425 } 3426 3427 static void irte_ga_deactivate(void *entry, u16 devid, u16 index) 3428 { 3429 struct irte_ga *irte = (struct irte_ga *) entry; 3430 3431 irte->lo.fields_remap.valid = 0; 3432 modify_irte_ga(devid, index, irte, NULL); 3433 } 3434 3435 static void irte_set_affinity(void *entry, u16 devid, u16 index, 3436 u8 vector, u32 dest_apicid) 3437 { 3438 union irte *irte = (union irte *) entry; 3439 3440 irte->fields.vector = vector; 3441 irte->fields.destination = dest_apicid; 3442 modify_irte(devid, index, irte); 3443 } 3444 3445 static void irte_ga_set_affinity(void *entry, u16 devid, u16 index, 3446 u8 vector, u32 dest_apicid) 3447 { 3448 struct irte_ga *irte = (struct irte_ga *) entry; 3449 3450 if (!irte->lo.fields_remap.guest_mode) { 3451 irte->hi.fields.vector = vector; 3452 irte->lo.fields_remap.destination = 3453 APICID_TO_IRTE_DEST_LO(dest_apicid); 3454 irte->hi.fields.destination = 3455 APICID_TO_IRTE_DEST_HI(dest_apicid); 3456 modify_irte_ga(devid, index, irte, NULL); 3457 } 3458 } 3459 3460 #define IRTE_ALLOCATED (~1U) 3461 static void irte_set_allocated(struct irq_remap_table *table, int index) 3462 { 3463 table->table[index] = IRTE_ALLOCATED; 3464 } 3465 3466 static void irte_ga_set_allocated(struct irq_remap_table *table, int index) 3467 { 3468 struct irte_ga *ptr = (struct irte_ga *)table->table; 3469 struct irte_ga *irte = &ptr[index]; 3470 3471 memset(&irte->lo.val, 0, sizeof(u64)); 3472 memset(&irte->hi.val, 0, sizeof(u64)); 3473 irte->hi.fields.vector = 0xff; 3474 } 3475 3476 static bool irte_is_allocated(struct irq_remap_table *table, int index) 3477 { 3478 union irte *ptr = (union irte *)table->table; 3479 union irte *irte = &ptr[index]; 3480 3481 return irte->val != 0; 3482 } 3483 3484 static bool irte_ga_is_allocated(struct irq_remap_table *table, int index) 3485 { 3486 struct irte_ga *ptr = (struct irte_ga *)table->table; 3487 struct irte_ga *irte = &ptr[index]; 3488 3489 return irte->hi.fields.vector != 0; 3490 } 3491 3492 static void irte_clear_allocated(struct irq_remap_table *table, int index) 3493 { 3494 table->table[index] = 0; 3495 } 3496 3497 static void irte_ga_clear_allocated(struct irq_remap_table *table, int index) 3498 { 3499 struct irte_ga *ptr = (struct irte_ga *)table->table; 3500 struct irte_ga *irte = &ptr[index]; 3501 3502 memset(&irte->lo.val, 0, sizeof(u64)); 3503 memset(&irte->hi.val, 0, sizeof(u64)); 3504 } 3505 3506 static int get_devid(struct irq_alloc_info *info) 3507 { 3508 int devid = -1; 3509 3510 switch (info->type) { 3511 case X86_IRQ_ALLOC_TYPE_IOAPIC: 3512 devid = get_ioapic_devid(info->ioapic_id); 3513 break; 3514 case X86_IRQ_ALLOC_TYPE_HPET: 3515 devid = get_hpet_devid(info->hpet_id); 3516 break; 3517 case X86_IRQ_ALLOC_TYPE_MSI: 3518 case X86_IRQ_ALLOC_TYPE_MSIX: 3519 devid = get_device_id(&info->msi_dev->dev); 3520 break; 3521 default: 3522 BUG_ON(1); 3523 break; 3524 } 3525 3526 return devid; 3527 } 3528 3529 static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info) 3530 { 3531 struct amd_iommu *iommu; 3532 int devid; 3533 3534 if (!info) 3535 return NULL; 3536 3537 devid = get_devid(info); 3538 if (devid >= 0) { 3539 iommu = amd_iommu_rlookup_table[devid]; 3540 if (iommu) 3541 return iommu->ir_domain; 3542 } 3543 3544 return NULL; 3545 } 3546 3547 static struct irq_domain *get_irq_domain(struct irq_alloc_info *info) 3548 { 3549 struct amd_iommu *iommu; 3550 int devid; 3551 3552 if (!info) 3553 return NULL; 3554 3555 switch (info->type) { 3556 case X86_IRQ_ALLOC_TYPE_MSI: 3557 case X86_IRQ_ALLOC_TYPE_MSIX: 3558 devid = get_device_id(&info->msi_dev->dev); 3559 if (devid < 0) 3560 return NULL; 3561 3562 iommu = amd_iommu_rlookup_table[devid]; 3563 if (iommu) 3564 return iommu->msi_domain; 3565 break; 3566 default: 3567 break; 3568 } 3569 3570 return NULL; 3571 } 3572 3573 struct irq_remap_ops amd_iommu_irq_ops = { 3574 .prepare = amd_iommu_prepare, 3575 .enable = amd_iommu_enable, 3576 .disable = amd_iommu_disable, 3577 .reenable = amd_iommu_reenable, 3578 .enable_faulting = amd_iommu_enable_faulting, 3579 .get_ir_irq_domain = get_ir_irq_domain, 3580 .get_irq_domain = get_irq_domain, 3581 }; 3582 3583 static void irq_remapping_prepare_irte(struct amd_ir_data *data, 3584 struct irq_cfg *irq_cfg, 3585 struct irq_alloc_info *info, 3586 int devid, int index, int sub_handle) 3587 { 3588 struct irq_2_irte *irte_info = &data->irq_2_irte; 3589 struct msi_msg *msg = &data->msi_entry; 3590 struct IO_APIC_route_entry *entry; 3591 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid]; 3592 3593 if (!iommu) 3594 return; 3595 3596 data->irq_2_irte.devid = devid; 3597 data->irq_2_irte.index = index + sub_handle; 3598 iommu->irte_ops->prepare(data->entry, apic->irq_delivery_mode, 3599 apic->irq_dest_mode, irq_cfg->vector, 3600 irq_cfg->dest_apicid, devid); 3601 3602 switch (info->type) { 3603 case X86_IRQ_ALLOC_TYPE_IOAPIC: 3604 /* Setup IOAPIC entry */ 3605 entry = info->ioapic_entry; 3606 info->ioapic_entry = NULL; 3607 memset(entry, 0, sizeof(*entry)); 3608 entry->vector = index; 3609 entry->mask = 0; 3610 entry->trigger = info->ioapic_trigger; 3611 entry->polarity = info->ioapic_polarity; 3612 /* Mask level triggered irqs. */ 3613 if (info->ioapic_trigger) 3614 entry->mask = 1; 3615 break; 3616 3617 case X86_IRQ_ALLOC_TYPE_HPET: 3618 case X86_IRQ_ALLOC_TYPE_MSI: 3619 case X86_IRQ_ALLOC_TYPE_MSIX: 3620 msg->address_hi = MSI_ADDR_BASE_HI; 3621 msg->address_lo = MSI_ADDR_BASE_LO; 3622 msg->data = irte_info->index; 3623 break; 3624 3625 default: 3626 BUG_ON(1); 3627 break; 3628 } 3629 } 3630 3631 struct amd_irte_ops irte_32_ops = { 3632 .prepare = irte_prepare, 3633 .activate = irte_activate, 3634 .deactivate = irte_deactivate, 3635 .set_affinity = irte_set_affinity, 3636 .set_allocated = irte_set_allocated, 3637 .is_allocated = irte_is_allocated, 3638 .clear_allocated = irte_clear_allocated, 3639 }; 3640 3641 struct amd_irte_ops irte_128_ops = { 3642 .prepare = irte_ga_prepare, 3643 .activate = irte_ga_activate, 3644 .deactivate = irte_ga_deactivate, 3645 .set_affinity = irte_ga_set_affinity, 3646 .set_allocated = irte_ga_set_allocated, 3647 .is_allocated = irte_ga_is_allocated, 3648 .clear_allocated = irte_ga_clear_allocated, 3649 }; 3650 3651 static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq, 3652 unsigned int nr_irqs, void *arg) 3653 { 3654 struct irq_alloc_info *info = arg; 3655 struct irq_data *irq_data; 3656 struct amd_ir_data *data = NULL; 3657 struct irq_cfg *cfg; 3658 int i, ret, devid; 3659 int index; 3660 3661 if (!info) 3662 return -EINVAL; 3663 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI && 3664 info->type != X86_IRQ_ALLOC_TYPE_MSIX) 3665 return -EINVAL; 3666 3667 /* 3668 * With IRQ remapping enabled, don't need contiguous CPU vectors 3669 * to support multiple MSI interrupts. 3670 */ 3671 if (info->type == X86_IRQ_ALLOC_TYPE_MSI) 3672 info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS; 3673 3674 devid = get_devid(info); 3675 if (devid < 0) 3676 return -EINVAL; 3677 3678 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg); 3679 if (ret < 0) 3680 return ret; 3681 3682 if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) { 3683 struct irq_remap_table *table; 3684 struct amd_iommu *iommu; 3685 3686 table = alloc_irq_table(devid, NULL); 3687 if (table) { 3688 if (!table->min_index) { 3689 /* 3690 * Keep the first 32 indexes free for IOAPIC 3691 * interrupts. 3692 */ 3693 table->min_index = 32; 3694 iommu = amd_iommu_rlookup_table[devid]; 3695 for (i = 0; i < 32; ++i) 3696 iommu->irte_ops->set_allocated(table, i); 3697 } 3698 WARN_ON(table->min_index != 32); 3699 index = info->ioapic_pin; 3700 } else { 3701 index = -ENOMEM; 3702 } 3703 } else if (info->type == X86_IRQ_ALLOC_TYPE_MSI || 3704 info->type == X86_IRQ_ALLOC_TYPE_MSIX) { 3705 bool align = (info->type == X86_IRQ_ALLOC_TYPE_MSI); 3706 3707 index = alloc_irq_index(devid, nr_irqs, align, info->msi_dev); 3708 } else { 3709 index = alloc_irq_index(devid, nr_irqs, false, NULL); 3710 } 3711 3712 if (index < 0) { 3713 pr_warn("Failed to allocate IRTE\n"); 3714 ret = index; 3715 goto out_free_parent; 3716 } 3717 3718 for (i = 0; i < nr_irqs; i++) { 3719 irq_data = irq_domain_get_irq_data(domain, virq + i); 3720 cfg = irqd_cfg(irq_data); 3721 if (!irq_data || !cfg) { 3722 ret = -EINVAL; 3723 goto out_free_data; 3724 } 3725 3726 ret = -ENOMEM; 3727 data = kzalloc(sizeof(*data), GFP_KERNEL); 3728 if (!data) 3729 goto out_free_data; 3730 3731 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir)) 3732 data->entry = kzalloc(sizeof(union irte), GFP_KERNEL); 3733 else 3734 data->entry = kzalloc(sizeof(struct irte_ga), 3735 GFP_KERNEL); 3736 if (!data->entry) { 3737 kfree(data); 3738 goto out_free_data; 3739 } 3740 3741 irq_data->hwirq = (devid << 16) + i; 3742 irq_data->chip_data = data; 3743 irq_data->chip = &amd_ir_chip; 3744 irq_remapping_prepare_irte(data, cfg, info, devid, index, i); 3745 irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT); 3746 } 3747 3748 return 0; 3749 3750 out_free_data: 3751 for (i--; i >= 0; i--) { 3752 irq_data = irq_domain_get_irq_data(domain, virq + i); 3753 if (irq_data) 3754 kfree(irq_data->chip_data); 3755 } 3756 for (i = 0; i < nr_irqs; i++) 3757 free_irte(devid, index + i); 3758 out_free_parent: 3759 irq_domain_free_irqs_common(domain, virq, nr_irqs); 3760 return ret; 3761 } 3762 3763 static void irq_remapping_free(struct irq_domain *domain, unsigned int virq, 3764 unsigned int nr_irqs) 3765 { 3766 struct irq_2_irte *irte_info; 3767 struct irq_data *irq_data; 3768 struct amd_ir_data *data; 3769 int i; 3770 3771 for (i = 0; i < nr_irqs; i++) { 3772 irq_data = irq_domain_get_irq_data(domain, virq + i); 3773 if (irq_data && irq_data->chip_data) { 3774 data = irq_data->chip_data; 3775 irte_info = &data->irq_2_irte; 3776 free_irte(irte_info->devid, irte_info->index); 3777 kfree(data->entry); 3778 kfree(data); 3779 } 3780 } 3781 irq_domain_free_irqs_common(domain, virq, nr_irqs); 3782 } 3783 3784 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu, 3785 struct amd_ir_data *ir_data, 3786 struct irq_2_irte *irte_info, 3787 struct irq_cfg *cfg); 3788 3789 static int irq_remapping_activate(struct irq_domain *domain, 3790 struct irq_data *irq_data, bool reserve) 3791 { 3792 struct amd_ir_data *data = irq_data->chip_data; 3793 struct irq_2_irte *irte_info = &data->irq_2_irte; 3794 struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid]; 3795 struct irq_cfg *cfg = irqd_cfg(irq_data); 3796 3797 if (!iommu) 3798 return 0; 3799 3800 iommu->irte_ops->activate(data->entry, irte_info->devid, 3801 irte_info->index); 3802 amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg); 3803 return 0; 3804 } 3805 3806 static void irq_remapping_deactivate(struct irq_domain *domain, 3807 struct irq_data *irq_data) 3808 { 3809 struct amd_ir_data *data = irq_data->chip_data; 3810 struct irq_2_irte *irte_info = &data->irq_2_irte; 3811 struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid]; 3812 3813 if (iommu) 3814 iommu->irte_ops->deactivate(data->entry, irte_info->devid, 3815 irte_info->index); 3816 } 3817 3818 static const struct irq_domain_ops amd_ir_domain_ops = { 3819 .alloc = irq_remapping_alloc, 3820 .free = irq_remapping_free, 3821 .activate = irq_remapping_activate, 3822 .deactivate = irq_remapping_deactivate, 3823 }; 3824 3825 int amd_iommu_activate_guest_mode(void *data) 3826 { 3827 struct amd_ir_data *ir_data = (struct amd_ir_data *)data; 3828 struct irte_ga *entry = (struct irte_ga *) ir_data->entry; 3829 3830 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) || 3831 !entry || entry->lo.fields_vapic.guest_mode) 3832 return 0; 3833 3834 entry->lo.val = 0; 3835 entry->hi.val = 0; 3836 3837 entry->lo.fields_vapic.guest_mode = 1; 3838 entry->lo.fields_vapic.ga_log_intr = 1; 3839 entry->hi.fields.ga_root_ptr = ir_data->ga_root_ptr; 3840 entry->hi.fields.vector = ir_data->ga_vector; 3841 entry->lo.fields_vapic.ga_tag = ir_data->ga_tag; 3842 3843 return modify_irte_ga(ir_data->irq_2_irte.devid, 3844 ir_data->irq_2_irte.index, entry, ir_data); 3845 } 3846 EXPORT_SYMBOL(amd_iommu_activate_guest_mode); 3847 3848 int amd_iommu_deactivate_guest_mode(void *data) 3849 { 3850 struct amd_ir_data *ir_data = (struct amd_ir_data *)data; 3851 struct irte_ga *entry = (struct irte_ga *) ir_data->entry; 3852 struct irq_cfg *cfg = ir_data->cfg; 3853 3854 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) || 3855 !entry || !entry->lo.fields_vapic.guest_mode) 3856 return 0; 3857 3858 entry->lo.val = 0; 3859 entry->hi.val = 0; 3860 3861 entry->lo.fields_remap.dm = apic->irq_dest_mode; 3862 entry->lo.fields_remap.int_type = apic->irq_delivery_mode; 3863 entry->hi.fields.vector = cfg->vector; 3864 entry->lo.fields_remap.destination = 3865 APICID_TO_IRTE_DEST_LO(cfg->dest_apicid); 3866 entry->hi.fields.destination = 3867 APICID_TO_IRTE_DEST_HI(cfg->dest_apicid); 3868 3869 return modify_irte_ga(ir_data->irq_2_irte.devid, 3870 ir_data->irq_2_irte.index, entry, ir_data); 3871 } 3872 EXPORT_SYMBOL(amd_iommu_deactivate_guest_mode); 3873 3874 static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info) 3875 { 3876 int ret; 3877 struct amd_iommu *iommu; 3878 struct amd_iommu_pi_data *pi_data = vcpu_info; 3879 struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data; 3880 struct amd_ir_data *ir_data = data->chip_data; 3881 struct irq_2_irte *irte_info = &ir_data->irq_2_irte; 3882 struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid); 3883 3884 /* Note: 3885 * This device has never been set up for guest mode. 3886 * we should not modify the IRTE 3887 */ 3888 if (!dev_data || !dev_data->use_vapic) 3889 return 0; 3890 3891 ir_data->cfg = irqd_cfg(data); 3892 pi_data->ir_data = ir_data; 3893 3894 /* Note: 3895 * SVM tries to set up for VAPIC mode, but we are in 3896 * legacy mode. So, we force legacy mode instead. 3897 */ 3898 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) { 3899 pr_debug("%s: Fall back to using intr legacy remap\n", 3900 __func__); 3901 pi_data->is_guest_mode = false; 3902 } 3903 3904 iommu = amd_iommu_rlookup_table[irte_info->devid]; 3905 if (iommu == NULL) 3906 return -EINVAL; 3907 3908 pi_data->prev_ga_tag = ir_data->cached_ga_tag; 3909 if (pi_data->is_guest_mode) { 3910 ir_data->ga_root_ptr = (pi_data->base >> 12); 3911 ir_data->ga_vector = vcpu_pi_info->vector; 3912 ir_data->ga_tag = pi_data->ga_tag; 3913 ret = amd_iommu_activate_guest_mode(ir_data); 3914 if (!ret) 3915 ir_data->cached_ga_tag = pi_data->ga_tag; 3916 } else { 3917 ret = amd_iommu_deactivate_guest_mode(ir_data); 3918 3919 /* 3920 * This communicates the ga_tag back to the caller 3921 * so that it can do all the necessary clean up. 3922 */ 3923 if (!ret) 3924 ir_data->cached_ga_tag = 0; 3925 } 3926 3927 return ret; 3928 } 3929 3930 3931 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu, 3932 struct amd_ir_data *ir_data, 3933 struct irq_2_irte *irte_info, 3934 struct irq_cfg *cfg) 3935 { 3936 3937 /* 3938 * Atomically updates the IRTE with the new destination, vector 3939 * and flushes the interrupt entry cache. 3940 */ 3941 iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid, 3942 irte_info->index, cfg->vector, 3943 cfg->dest_apicid); 3944 } 3945 3946 static int amd_ir_set_affinity(struct irq_data *data, 3947 const struct cpumask *mask, bool force) 3948 { 3949 struct amd_ir_data *ir_data = data->chip_data; 3950 struct irq_2_irte *irte_info = &ir_data->irq_2_irte; 3951 struct irq_cfg *cfg = irqd_cfg(data); 3952 struct irq_data *parent = data->parent_data; 3953 struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid]; 3954 int ret; 3955 3956 if (!iommu) 3957 return -ENODEV; 3958 3959 ret = parent->chip->irq_set_affinity(parent, mask, force); 3960 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE) 3961 return ret; 3962 3963 amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg); 3964 /* 3965 * After this point, all the interrupts will start arriving 3966 * at the new destination. So, time to cleanup the previous 3967 * vector allocation. 3968 */ 3969 send_cleanup_vector(cfg); 3970 3971 return IRQ_SET_MASK_OK_DONE; 3972 } 3973 3974 static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg) 3975 { 3976 struct amd_ir_data *ir_data = irq_data->chip_data; 3977 3978 *msg = ir_data->msi_entry; 3979 } 3980 3981 static struct irq_chip amd_ir_chip = { 3982 .name = "AMD-IR", 3983 .irq_ack = apic_ack_irq, 3984 .irq_set_affinity = amd_ir_set_affinity, 3985 .irq_set_vcpu_affinity = amd_ir_set_vcpu_affinity, 3986 .irq_compose_msi_msg = ir_compose_msi_msg, 3987 }; 3988 3989 int amd_iommu_create_irq_domain(struct amd_iommu *iommu) 3990 { 3991 struct fwnode_handle *fn; 3992 3993 fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index); 3994 if (!fn) 3995 return -ENOMEM; 3996 iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu); 3997 if (!iommu->ir_domain) { 3998 irq_domain_free_fwnode(fn); 3999 return -ENOMEM; 4000 } 4001 4002 iommu->ir_domain->parent = arch_get_ir_parent_domain(); 4003 iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain, 4004 "AMD-IR-MSI", 4005 iommu->index); 4006 return 0; 4007 } 4008 4009 int amd_iommu_update_ga(int cpu, bool is_run, void *data) 4010 { 4011 unsigned long flags; 4012 struct amd_iommu *iommu; 4013 struct irq_remap_table *table; 4014 struct amd_ir_data *ir_data = (struct amd_ir_data *)data; 4015 int devid = ir_data->irq_2_irte.devid; 4016 struct irte_ga *entry = (struct irte_ga *) ir_data->entry; 4017 struct irte_ga *ref = (struct irte_ga *) ir_data->ref; 4018 4019 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) || 4020 !ref || !entry || !entry->lo.fields_vapic.guest_mode) 4021 return 0; 4022 4023 iommu = amd_iommu_rlookup_table[devid]; 4024 if (!iommu) 4025 return -ENODEV; 4026 4027 table = get_irq_table(devid); 4028 if (!table) 4029 return -ENODEV; 4030 4031 raw_spin_lock_irqsave(&table->lock, flags); 4032 4033 if (ref->lo.fields_vapic.guest_mode) { 4034 if (cpu >= 0) { 4035 ref->lo.fields_vapic.destination = 4036 APICID_TO_IRTE_DEST_LO(cpu); 4037 ref->hi.fields.destination = 4038 APICID_TO_IRTE_DEST_HI(cpu); 4039 } 4040 ref->lo.fields_vapic.is_run = is_run; 4041 barrier(); 4042 } 4043 4044 raw_spin_unlock_irqrestore(&table->lock, flags); 4045 4046 iommu_flush_irt(iommu, devid); 4047 iommu_completion_wait(iommu); 4048 return 0; 4049 } 4050 EXPORT_SYMBOL(amd_iommu_update_ga); 4051 #endif 4052