1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc. 4 * Author: Joerg Roedel <jroedel@suse.de> 5 * Leo Duran <leo.duran@amd.com> 6 */ 7 8 #define pr_fmt(fmt) "AMD-Vi: " fmt 9 #define dev_fmt(fmt) pr_fmt(fmt) 10 11 #include <linux/ratelimit.h> 12 #include <linux/pci.h> 13 #include <linux/acpi.h> 14 #include <linux/amba/bus.h> 15 #include <linux/platform_device.h> 16 #include <linux/pci-ats.h> 17 #include <linux/bitmap.h> 18 #include <linux/slab.h> 19 #include <linux/debugfs.h> 20 #include <linux/scatterlist.h> 21 #include <linux/dma-map-ops.h> 22 #include <linux/dma-direct.h> 23 #include <linux/dma-iommu.h> 24 #include <linux/iommu-helper.h> 25 #include <linux/delay.h> 26 #include <linux/amd-iommu.h> 27 #include <linux/notifier.h> 28 #include <linux/export.h> 29 #include <linux/irq.h> 30 #include <linux/msi.h> 31 #include <linux/irqdomain.h> 32 #include <linux/percpu.h> 33 #include <linux/iova.h> 34 #include <linux/io-pgtable.h> 35 #include <asm/irq_remapping.h> 36 #include <asm/io_apic.h> 37 #include <asm/apic.h> 38 #include <asm/hw_irq.h> 39 #include <asm/proto.h> 40 #include <asm/iommu.h> 41 #include <asm/gart.h> 42 #include <asm/dma.h> 43 44 #include "amd_iommu.h" 45 #include "../irq_remapping.h" 46 47 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28)) 48 49 #define LOOP_TIMEOUT 100000 50 51 /* IO virtual address start page frame number */ 52 #define IOVA_START_PFN (1) 53 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT) 54 55 /* Reserved IOVA ranges */ 56 #define MSI_RANGE_START (0xfee00000) 57 #define MSI_RANGE_END (0xfeefffff) 58 #define HT_RANGE_START (0xfd00000000ULL) 59 #define HT_RANGE_END (0xffffffffffULL) 60 61 #define DEFAULT_PGTABLE_LEVEL PAGE_MODE_3_LEVEL 62 63 static DEFINE_SPINLOCK(pd_bitmap_lock); 64 65 /* List of all available dev_data structures */ 66 static LLIST_HEAD(dev_data_list); 67 68 LIST_HEAD(ioapic_map); 69 LIST_HEAD(hpet_map); 70 LIST_HEAD(acpihid_map); 71 72 /* 73 * Domain for untranslated devices - only allocated 74 * if iommu=pt passed on kernel cmd line. 75 */ 76 const struct iommu_ops amd_iommu_ops; 77 78 static ATOMIC_NOTIFIER_HEAD(ppr_notifier); 79 int amd_iommu_max_glx_val = -1; 80 81 /* 82 * general struct to manage commands send to an IOMMU 83 */ 84 struct iommu_cmd { 85 u32 data[4]; 86 }; 87 88 struct kmem_cache *amd_iommu_irq_cache; 89 90 static void detach_device(struct device *dev); 91 92 /**************************************************************************** 93 * 94 * Helper functions 95 * 96 ****************************************************************************/ 97 98 static inline u16 get_pci_device_id(struct device *dev) 99 { 100 struct pci_dev *pdev = to_pci_dev(dev); 101 102 return pci_dev_id(pdev); 103 } 104 105 static inline int get_acpihid_device_id(struct device *dev, 106 struct acpihid_map_entry **entry) 107 { 108 struct acpi_device *adev = ACPI_COMPANION(dev); 109 struct acpihid_map_entry *p; 110 111 if (!adev) 112 return -ENODEV; 113 114 list_for_each_entry(p, &acpihid_map, list) { 115 if (acpi_dev_hid_uid_match(adev, p->hid, 116 p->uid[0] ? p->uid : NULL)) { 117 if (entry) 118 *entry = p; 119 return p->devid; 120 } 121 } 122 return -EINVAL; 123 } 124 125 static inline int get_device_id(struct device *dev) 126 { 127 int devid; 128 129 if (dev_is_pci(dev)) 130 devid = get_pci_device_id(dev); 131 else 132 devid = get_acpihid_device_id(dev, NULL); 133 134 return devid; 135 } 136 137 static struct protection_domain *to_pdomain(struct iommu_domain *dom) 138 { 139 return container_of(dom, struct protection_domain, domain); 140 } 141 142 static struct iommu_dev_data *alloc_dev_data(u16 devid) 143 { 144 struct iommu_dev_data *dev_data; 145 146 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL); 147 if (!dev_data) 148 return NULL; 149 150 spin_lock_init(&dev_data->lock); 151 dev_data->devid = devid; 152 ratelimit_default_init(&dev_data->rs); 153 154 llist_add(&dev_data->dev_data_list, &dev_data_list); 155 return dev_data; 156 } 157 158 static struct iommu_dev_data *search_dev_data(u16 devid) 159 { 160 struct iommu_dev_data *dev_data; 161 struct llist_node *node; 162 163 if (llist_empty(&dev_data_list)) 164 return NULL; 165 166 node = dev_data_list.first; 167 llist_for_each_entry(dev_data, node, dev_data_list) { 168 if (dev_data->devid == devid) 169 return dev_data; 170 } 171 172 return NULL; 173 } 174 175 static int clone_alias(struct pci_dev *pdev, u16 alias, void *data) 176 { 177 u16 devid = pci_dev_id(pdev); 178 179 if (devid == alias) 180 return 0; 181 182 amd_iommu_rlookup_table[alias] = 183 amd_iommu_rlookup_table[devid]; 184 memcpy(amd_iommu_dev_table[alias].data, 185 amd_iommu_dev_table[devid].data, 186 sizeof(amd_iommu_dev_table[alias].data)); 187 188 return 0; 189 } 190 191 static void clone_aliases(struct pci_dev *pdev) 192 { 193 if (!pdev) 194 return; 195 196 /* 197 * The IVRS alias stored in the alias table may not be 198 * part of the PCI DMA aliases if it's bus differs 199 * from the original device. 200 */ 201 clone_alias(pdev, amd_iommu_alias_table[pci_dev_id(pdev)], NULL); 202 203 pci_for_each_dma_alias(pdev, clone_alias, NULL); 204 } 205 206 static struct pci_dev *setup_aliases(struct device *dev) 207 { 208 struct pci_dev *pdev = to_pci_dev(dev); 209 u16 ivrs_alias; 210 211 /* For ACPI HID devices, there are no aliases */ 212 if (!dev_is_pci(dev)) 213 return NULL; 214 215 /* 216 * Add the IVRS alias to the pci aliases if it is on the same 217 * bus. The IVRS table may know about a quirk that we don't. 218 */ 219 ivrs_alias = amd_iommu_alias_table[pci_dev_id(pdev)]; 220 if (ivrs_alias != pci_dev_id(pdev) && 221 PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) 222 pci_add_dma_alias(pdev, ivrs_alias & 0xff, 1); 223 224 clone_aliases(pdev); 225 226 return pdev; 227 } 228 229 static struct iommu_dev_data *find_dev_data(u16 devid) 230 { 231 struct iommu_dev_data *dev_data; 232 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid]; 233 234 dev_data = search_dev_data(devid); 235 236 if (dev_data == NULL) { 237 dev_data = alloc_dev_data(devid); 238 if (!dev_data) 239 return NULL; 240 241 if (translation_pre_enabled(iommu)) 242 dev_data->defer_attach = true; 243 } 244 245 return dev_data; 246 } 247 248 /* 249 * Find or create an IOMMU group for a acpihid device. 250 */ 251 static struct iommu_group *acpihid_device_group(struct device *dev) 252 { 253 struct acpihid_map_entry *p, *entry = NULL; 254 int devid; 255 256 devid = get_acpihid_device_id(dev, &entry); 257 if (devid < 0) 258 return ERR_PTR(devid); 259 260 list_for_each_entry(p, &acpihid_map, list) { 261 if ((devid == p->devid) && p->group) 262 entry->group = p->group; 263 } 264 265 if (!entry->group) 266 entry->group = generic_device_group(dev); 267 else 268 iommu_group_ref_get(entry->group); 269 270 return entry->group; 271 } 272 273 static bool pci_iommuv2_capable(struct pci_dev *pdev) 274 { 275 static const int caps[] = { 276 PCI_EXT_CAP_ID_PRI, 277 PCI_EXT_CAP_ID_PASID, 278 }; 279 int i, pos; 280 281 if (!pci_ats_supported(pdev)) 282 return false; 283 284 for (i = 0; i < 2; ++i) { 285 pos = pci_find_ext_capability(pdev, caps[i]); 286 if (pos == 0) 287 return false; 288 } 289 290 return true; 291 } 292 293 /* 294 * This function checks if the driver got a valid device from the caller to 295 * avoid dereferencing invalid pointers. 296 */ 297 static bool check_device(struct device *dev) 298 { 299 int devid; 300 301 if (!dev) 302 return false; 303 304 devid = get_device_id(dev); 305 if (devid < 0) 306 return false; 307 308 /* Out of our scope? */ 309 if (devid > amd_iommu_last_bdf) 310 return false; 311 312 if (amd_iommu_rlookup_table[devid] == NULL) 313 return false; 314 315 return true; 316 } 317 318 static int iommu_init_device(struct device *dev) 319 { 320 struct iommu_dev_data *dev_data; 321 int devid; 322 323 if (dev_iommu_priv_get(dev)) 324 return 0; 325 326 devid = get_device_id(dev); 327 if (devid < 0) 328 return devid; 329 330 dev_data = find_dev_data(devid); 331 if (!dev_data) 332 return -ENOMEM; 333 334 dev_data->pdev = setup_aliases(dev); 335 336 /* 337 * By default we use passthrough mode for IOMMUv2 capable device. 338 * But if amd_iommu=force_isolation is set (e.g. to debug DMA to 339 * invalid address), we ignore the capability for the device so 340 * it'll be forced to go into translation mode. 341 */ 342 if ((iommu_default_passthrough() || !amd_iommu_force_isolation) && 343 dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) { 344 struct amd_iommu *iommu; 345 346 iommu = amd_iommu_rlookup_table[dev_data->devid]; 347 dev_data->iommu_v2 = iommu->is_iommu_v2; 348 } 349 350 dev_iommu_priv_set(dev, dev_data); 351 352 return 0; 353 } 354 355 static void iommu_ignore_device(struct device *dev) 356 { 357 int devid; 358 359 devid = get_device_id(dev); 360 if (devid < 0) 361 return; 362 363 amd_iommu_rlookup_table[devid] = NULL; 364 memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry)); 365 366 setup_aliases(dev); 367 } 368 369 static void amd_iommu_uninit_device(struct device *dev) 370 { 371 struct iommu_dev_data *dev_data; 372 373 dev_data = dev_iommu_priv_get(dev); 374 if (!dev_data) 375 return; 376 377 if (dev_data->domain) 378 detach_device(dev); 379 380 dev_iommu_priv_set(dev, NULL); 381 382 /* 383 * We keep dev_data around for unplugged devices and reuse it when the 384 * device is re-plugged - not doing so would introduce a ton of races. 385 */ 386 } 387 388 /**************************************************************************** 389 * 390 * Interrupt handling functions 391 * 392 ****************************************************************************/ 393 394 static void dump_dte_entry(u16 devid) 395 { 396 int i; 397 398 for (i = 0; i < 4; ++i) 399 pr_err("DTE[%d]: %016llx\n", i, 400 amd_iommu_dev_table[devid].data[i]); 401 } 402 403 static void dump_command(unsigned long phys_addr) 404 { 405 struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr); 406 int i; 407 408 for (i = 0; i < 4; ++i) 409 pr_err("CMD[%d]: %08x\n", i, cmd->data[i]); 410 } 411 412 static void amd_iommu_report_rmp_hw_error(volatile u32 *event) 413 { 414 struct iommu_dev_data *dev_data = NULL; 415 int devid, vmg_tag, flags; 416 struct pci_dev *pdev; 417 u64 spa; 418 419 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK; 420 vmg_tag = (event[1]) & 0xFFFF; 421 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK; 422 spa = ((u64)event[3] << 32) | (event[2] & 0xFFFFFFF8); 423 424 pdev = pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid), 425 devid & 0xff); 426 if (pdev) 427 dev_data = dev_iommu_priv_get(&pdev->dev); 428 429 if (dev_data && __ratelimit(&dev_data->rs)) { 430 pci_err(pdev, "Event logged [RMP_HW_ERROR vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n", 431 vmg_tag, spa, flags); 432 } else { 433 pr_err_ratelimited("Event logged [RMP_HW_ERROR device=%02x:%02x.%x, vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n", 434 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 435 vmg_tag, spa, flags); 436 } 437 438 if (pdev) 439 pci_dev_put(pdev); 440 } 441 442 static void amd_iommu_report_rmp_fault(volatile u32 *event) 443 { 444 struct iommu_dev_data *dev_data = NULL; 445 int devid, flags_rmp, vmg_tag, flags; 446 struct pci_dev *pdev; 447 u64 gpa; 448 449 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK; 450 flags_rmp = (event[0] >> EVENT_FLAGS_SHIFT) & 0xFF; 451 vmg_tag = (event[1]) & 0xFFFF; 452 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK; 453 gpa = ((u64)event[3] << 32) | event[2]; 454 455 pdev = pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid), 456 devid & 0xff); 457 if (pdev) 458 dev_data = dev_iommu_priv_get(&pdev->dev); 459 460 if (dev_data && __ratelimit(&dev_data->rs)) { 461 pci_err(pdev, "Event logged [RMP_PAGE_FAULT vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n", 462 vmg_tag, gpa, flags_rmp, flags); 463 } else { 464 pr_err_ratelimited("Event logged [RMP_PAGE_FAULT device=%02x:%02x.%x, vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n", 465 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 466 vmg_tag, gpa, flags_rmp, flags); 467 } 468 469 if (pdev) 470 pci_dev_put(pdev); 471 } 472 473 static void amd_iommu_report_page_fault(u16 devid, u16 domain_id, 474 u64 address, int flags) 475 { 476 struct iommu_dev_data *dev_data = NULL; 477 struct pci_dev *pdev; 478 479 pdev = pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid), 480 devid & 0xff); 481 if (pdev) 482 dev_data = dev_iommu_priv_get(&pdev->dev); 483 484 if (dev_data && __ratelimit(&dev_data->rs)) { 485 pci_err(pdev, "Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%llx flags=0x%04x]\n", 486 domain_id, address, flags); 487 } else if (printk_ratelimit()) { 488 pr_err("Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n", 489 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 490 domain_id, address, flags); 491 } 492 493 if (pdev) 494 pci_dev_put(pdev); 495 } 496 497 static void iommu_print_event(struct amd_iommu *iommu, void *__evt) 498 { 499 struct device *dev = iommu->iommu.dev; 500 int type, devid, flags, tag; 501 volatile u32 *event = __evt; 502 int count = 0; 503 u64 address; 504 u32 pasid; 505 506 retry: 507 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK; 508 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK; 509 pasid = (event[0] & EVENT_DOMID_MASK_HI) | 510 (event[1] & EVENT_DOMID_MASK_LO); 511 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK; 512 address = (u64)(((u64)event[3]) << 32) | event[2]; 513 514 if (type == 0) { 515 /* Did we hit the erratum? */ 516 if (++count == LOOP_TIMEOUT) { 517 pr_err("No event written to event log\n"); 518 return; 519 } 520 udelay(1); 521 goto retry; 522 } 523 524 if (type == EVENT_TYPE_IO_FAULT) { 525 amd_iommu_report_page_fault(devid, pasid, address, flags); 526 return; 527 } 528 529 switch (type) { 530 case EVENT_TYPE_ILL_DEV: 531 dev_err(dev, "Event logged [ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n", 532 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 533 pasid, address, flags); 534 dump_dte_entry(devid); 535 break; 536 case EVENT_TYPE_DEV_TAB_ERR: 537 dev_err(dev, "Event logged [DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x " 538 "address=0x%llx flags=0x%04x]\n", 539 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 540 address, flags); 541 break; 542 case EVENT_TYPE_PAGE_TAB_ERR: 543 dev_err(dev, "Event logged [PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x pasid=0x%04x address=0x%llx flags=0x%04x]\n", 544 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 545 pasid, address, flags); 546 break; 547 case EVENT_TYPE_ILL_CMD: 548 dev_err(dev, "Event logged [ILLEGAL_COMMAND_ERROR address=0x%llx]\n", address); 549 dump_command(address); 550 break; 551 case EVENT_TYPE_CMD_HARD_ERR: 552 dev_err(dev, "Event logged [COMMAND_HARDWARE_ERROR address=0x%llx flags=0x%04x]\n", 553 address, flags); 554 break; 555 case EVENT_TYPE_IOTLB_INV_TO: 556 dev_err(dev, "Event logged [IOTLB_INV_TIMEOUT device=%02x:%02x.%x address=0x%llx]\n", 557 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 558 address); 559 break; 560 case EVENT_TYPE_INV_DEV_REQ: 561 dev_err(dev, "Event logged [INVALID_DEVICE_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n", 562 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 563 pasid, address, flags); 564 break; 565 case EVENT_TYPE_RMP_FAULT: 566 amd_iommu_report_rmp_fault(event); 567 break; 568 case EVENT_TYPE_RMP_HW_ERR: 569 amd_iommu_report_rmp_hw_error(event); 570 break; 571 case EVENT_TYPE_INV_PPR_REQ: 572 pasid = PPR_PASID(*((u64 *)__evt)); 573 tag = event[1] & 0x03FF; 574 dev_err(dev, "Event logged [INVALID_PPR_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x tag=0x%03x]\n", 575 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 576 pasid, address, flags, tag); 577 break; 578 default: 579 dev_err(dev, "Event logged [UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n", 580 event[0], event[1], event[2], event[3]); 581 } 582 583 memset(__evt, 0, 4 * sizeof(u32)); 584 } 585 586 static void iommu_poll_events(struct amd_iommu *iommu) 587 { 588 u32 head, tail; 589 590 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET); 591 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET); 592 593 while (head != tail) { 594 iommu_print_event(iommu, iommu->evt_buf + head); 595 head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE; 596 } 597 598 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET); 599 } 600 601 static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw) 602 { 603 struct amd_iommu_fault fault; 604 605 if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) { 606 pr_err_ratelimited("Unknown PPR request received\n"); 607 return; 608 } 609 610 fault.address = raw[1]; 611 fault.pasid = PPR_PASID(raw[0]); 612 fault.device_id = PPR_DEVID(raw[0]); 613 fault.tag = PPR_TAG(raw[0]); 614 fault.flags = PPR_FLAGS(raw[0]); 615 616 atomic_notifier_call_chain(&ppr_notifier, 0, &fault); 617 } 618 619 static void iommu_poll_ppr_log(struct amd_iommu *iommu) 620 { 621 u32 head, tail; 622 623 if (iommu->ppr_log == NULL) 624 return; 625 626 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET); 627 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET); 628 629 while (head != tail) { 630 volatile u64 *raw; 631 u64 entry[2]; 632 int i; 633 634 raw = (u64 *)(iommu->ppr_log + head); 635 636 /* 637 * Hardware bug: Interrupt may arrive before the entry is 638 * written to memory. If this happens we need to wait for the 639 * entry to arrive. 640 */ 641 for (i = 0; i < LOOP_TIMEOUT; ++i) { 642 if (PPR_REQ_TYPE(raw[0]) != 0) 643 break; 644 udelay(1); 645 } 646 647 /* Avoid memcpy function-call overhead */ 648 entry[0] = raw[0]; 649 entry[1] = raw[1]; 650 651 /* 652 * To detect the hardware bug we need to clear the entry 653 * back to zero. 654 */ 655 raw[0] = raw[1] = 0UL; 656 657 /* Update head pointer of hardware ring-buffer */ 658 head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE; 659 writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET); 660 661 /* Handle PPR entry */ 662 iommu_handle_ppr_entry(iommu, entry); 663 664 /* Refresh ring-buffer information */ 665 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET); 666 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET); 667 } 668 } 669 670 #ifdef CONFIG_IRQ_REMAP 671 static int (*iommu_ga_log_notifier)(u32); 672 673 int amd_iommu_register_ga_log_notifier(int (*notifier)(u32)) 674 { 675 iommu_ga_log_notifier = notifier; 676 677 return 0; 678 } 679 EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier); 680 681 static void iommu_poll_ga_log(struct amd_iommu *iommu) 682 { 683 u32 head, tail, cnt = 0; 684 685 if (iommu->ga_log == NULL) 686 return; 687 688 head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET); 689 tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET); 690 691 while (head != tail) { 692 volatile u64 *raw; 693 u64 log_entry; 694 695 raw = (u64 *)(iommu->ga_log + head); 696 cnt++; 697 698 /* Avoid memcpy function-call overhead */ 699 log_entry = *raw; 700 701 /* Update head pointer of hardware ring-buffer */ 702 head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE; 703 writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET); 704 705 /* Handle GA entry */ 706 switch (GA_REQ_TYPE(log_entry)) { 707 case GA_GUEST_NR: 708 if (!iommu_ga_log_notifier) 709 break; 710 711 pr_debug("%s: devid=%#x, ga_tag=%#x\n", 712 __func__, GA_DEVID(log_entry), 713 GA_TAG(log_entry)); 714 715 if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0) 716 pr_err("GA log notifier failed.\n"); 717 break; 718 default: 719 break; 720 } 721 } 722 } 723 724 static void 725 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu) 726 { 727 if (!irq_remapping_enabled || !dev_is_pci(dev) || 728 pci_dev_has_special_msi_domain(to_pci_dev(dev))) 729 return; 730 731 dev_set_msi_domain(dev, iommu->msi_domain); 732 } 733 734 #else /* CONFIG_IRQ_REMAP */ 735 static inline void 736 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu) { } 737 #endif /* !CONFIG_IRQ_REMAP */ 738 739 #define AMD_IOMMU_INT_MASK \ 740 (MMIO_STATUS_EVT_INT_MASK | \ 741 MMIO_STATUS_PPR_INT_MASK | \ 742 MMIO_STATUS_GALOG_INT_MASK) 743 744 irqreturn_t amd_iommu_int_thread(int irq, void *data) 745 { 746 struct amd_iommu *iommu = (struct amd_iommu *) data; 747 u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET); 748 749 while (status & AMD_IOMMU_INT_MASK) { 750 /* Enable EVT and PPR and GA interrupts again */ 751 writel(AMD_IOMMU_INT_MASK, 752 iommu->mmio_base + MMIO_STATUS_OFFSET); 753 754 if (status & MMIO_STATUS_EVT_INT_MASK) { 755 pr_devel("Processing IOMMU Event Log\n"); 756 iommu_poll_events(iommu); 757 } 758 759 if (status & MMIO_STATUS_PPR_INT_MASK) { 760 pr_devel("Processing IOMMU PPR Log\n"); 761 iommu_poll_ppr_log(iommu); 762 } 763 764 #ifdef CONFIG_IRQ_REMAP 765 if (status & MMIO_STATUS_GALOG_INT_MASK) { 766 pr_devel("Processing IOMMU GA Log\n"); 767 iommu_poll_ga_log(iommu); 768 } 769 #endif 770 771 /* 772 * Hardware bug: ERBT1312 773 * When re-enabling interrupt (by writing 1 774 * to clear the bit), the hardware might also try to set 775 * the interrupt bit in the event status register. 776 * In this scenario, the bit will be set, and disable 777 * subsequent interrupts. 778 * 779 * Workaround: The IOMMU driver should read back the 780 * status register and check if the interrupt bits are cleared. 781 * If not, driver will need to go through the interrupt handler 782 * again and re-clear the bits 783 */ 784 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET); 785 } 786 return IRQ_HANDLED; 787 } 788 789 irqreturn_t amd_iommu_int_handler(int irq, void *data) 790 { 791 return IRQ_WAKE_THREAD; 792 } 793 794 /**************************************************************************** 795 * 796 * IOMMU command queuing functions 797 * 798 ****************************************************************************/ 799 800 static int wait_on_sem(struct amd_iommu *iommu, u64 data) 801 { 802 int i = 0; 803 804 while (*iommu->cmd_sem != data && i < LOOP_TIMEOUT) { 805 udelay(1); 806 i += 1; 807 } 808 809 if (i == LOOP_TIMEOUT) { 810 pr_alert("Completion-Wait loop timed out\n"); 811 return -EIO; 812 } 813 814 return 0; 815 } 816 817 static void copy_cmd_to_buffer(struct amd_iommu *iommu, 818 struct iommu_cmd *cmd) 819 { 820 u8 *target; 821 u32 tail; 822 823 /* Copy command to buffer */ 824 tail = iommu->cmd_buf_tail; 825 target = iommu->cmd_buf + tail; 826 memcpy(target, cmd, sizeof(*cmd)); 827 828 tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE; 829 iommu->cmd_buf_tail = tail; 830 831 /* Tell the IOMMU about it */ 832 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET); 833 } 834 835 static void build_completion_wait(struct iommu_cmd *cmd, 836 struct amd_iommu *iommu, 837 u64 data) 838 { 839 u64 paddr = iommu_virt_to_phys((void *)iommu->cmd_sem); 840 841 memset(cmd, 0, sizeof(*cmd)); 842 cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK; 843 cmd->data[1] = upper_32_bits(paddr); 844 cmd->data[2] = data; 845 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT); 846 } 847 848 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid) 849 { 850 memset(cmd, 0, sizeof(*cmd)); 851 cmd->data[0] = devid; 852 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY); 853 } 854 855 /* 856 * Builds an invalidation address which is suitable for one page or multiple 857 * pages. Sets the size bit (S) as needed is more than one page is flushed. 858 */ 859 static inline u64 build_inv_address(u64 address, size_t size) 860 { 861 u64 pages, end, msb_diff; 862 863 pages = iommu_num_pages(address, size, PAGE_SIZE); 864 865 if (pages == 1) 866 return address & PAGE_MASK; 867 868 end = address + size - 1; 869 870 /* 871 * msb_diff would hold the index of the most significant bit that 872 * flipped between the start and end. 873 */ 874 msb_diff = fls64(end ^ address) - 1; 875 876 /* 877 * Bits 63:52 are sign extended. If for some reason bit 51 is different 878 * between the start and the end, invalidate everything. 879 */ 880 if (unlikely(msb_diff > 51)) { 881 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS; 882 } else { 883 /* 884 * The msb-bit must be clear on the address. Just set all the 885 * lower bits. 886 */ 887 address |= 1ull << (msb_diff - 1); 888 } 889 890 /* Clear bits 11:0 */ 891 address &= PAGE_MASK; 892 893 /* Set the size bit - we flush more than one 4kb page */ 894 return address | CMD_INV_IOMMU_PAGES_SIZE_MASK; 895 } 896 897 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address, 898 size_t size, u16 domid, int pde) 899 { 900 u64 inv_address = build_inv_address(address, size); 901 902 memset(cmd, 0, sizeof(*cmd)); 903 cmd->data[1] |= domid; 904 cmd->data[2] = lower_32_bits(inv_address); 905 cmd->data[3] = upper_32_bits(inv_address); 906 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES); 907 if (pde) /* PDE bit - we want to flush everything, not only the PTEs */ 908 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK; 909 } 910 911 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep, 912 u64 address, size_t size) 913 { 914 u64 inv_address = build_inv_address(address, size); 915 916 memset(cmd, 0, sizeof(*cmd)); 917 cmd->data[0] = devid; 918 cmd->data[0] |= (qdep & 0xff) << 24; 919 cmd->data[1] = devid; 920 cmd->data[2] = lower_32_bits(inv_address); 921 cmd->data[3] = upper_32_bits(inv_address); 922 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES); 923 } 924 925 static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, u32 pasid, 926 u64 address, bool size) 927 { 928 memset(cmd, 0, sizeof(*cmd)); 929 930 address &= ~(0xfffULL); 931 932 cmd->data[0] = pasid; 933 cmd->data[1] = domid; 934 cmd->data[2] = lower_32_bits(address); 935 cmd->data[3] = upper_32_bits(address); 936 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK; 937 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK; 938 if (size) 939 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK; 940 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES); 941 } 942 943 static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, u32 pasid, 944 int qdep, u64 address, bool size) 945 { 946 memset(cmd, 0, sizeof(*cmd)); 947 948 address &= ~(0xfffULL); 949 950 cmd->data[0] = devid; 951 cmd->data[0] |= ((pasid >> 8) & 0xff) << 16; 952 cmd->data[0] |= (qdep & 0xff) << 24; 953 cmd->data[1] = devid; 954 cmd->data[1] |= (pasid & 0xff) << 16; 955 cmd->data[2] = lower_32_bits(address); 956 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK; 957 cmd->data[3] = upper_32_bits(address); 958 if (size) 959 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK; 960 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES); 961 } 962 963 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, u32 pasid, 964 int status, int tag, bool gn) 965 { 966 memset(cmd, 0, sizeof(*cmd)); 967 968 cmd->data[0] = devid; 969 if (gn) { 970 cmd->data[1] = pasid; 971 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK; 972 } 973 cmd->data[3] = tag & 0x1ff; 974 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT; 975 976 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR); 977 } 978 979 static void build_inv_all(struct iommu_cmd *cmd) 980 { 981 memset(cmd, 0, sizeof(*cmd)); 982 CMD_SET_TYPE(cmd, CMD_INV_ALL); 983 } 984 985 static void build_inv_irt(struct iommu_cmd *cmd, u16 devid) 986 { 987 memset(cmd, 0, sizeof(*cmd)); 988 cmd->data[0] = devid; 989 CMD_SET_TYPE(cmd, CMD_INV_IRT); 990 } 991 992 /* 993 * Writes the command to the IOMMUs command buffer and informs the 994 * hardware about the new command. 995 */ 996 static int __iommu_queue_command_sync(struct amd_iommu *iommu, 997 struct iommu_cmd *cmd, 998 bool sync) 999 { 1000 unsigned int count = 0; 1001 u32 left, next_tail; 1002 1003 next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE; 1004 again: 1005 left = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE; 1006 1007 if (left <= 0x20) { 1008 /* Skip udelay() the first time around */ 1009 if (count++) { 1010 if (count == LOOP_TIMEOUT) { 1011 pr_err("Command buffer timeout\n"); 1012 return -EIO; 1013 } 1014 1015 udelay(1); 1016 } 1017 1018 /* Update head and recheck remaining space */ 1019 iommu->cmd_buf_head = readl(iommu->mmio_base + 1020 MMIO_CMD_HEAD_OFFSET); 1021 1022 goto again; 1023 } 1024 1025 copy_cmd_to_buffer(iommu, cmd); 1026 1027 /* Do we need to make sure all commands are processed? */ 1028 iommu->need_sync = sync; 1029 1030 return 0; 1031 } 1032 1033 static int iommu_queue_command_sync(struct amd_iommu *iommu, 1034 struct iommu_cmd *cmd, 1035 bool sync) 1036 { 1037 unsigned long flags; 1038 int ret; 1039 1040 raw_spin_lock_irqsave(&iommu->lock, flags); 1041 ret = __iommu_queue_command_sync(iommu, cmd, sync); 1042 raw_spin_unlock_irqrestore(&iommu->lock, flags); 1043 1044 return ret; 1045 } 1046 1047 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd) 1048 { 1049 return iommu_queue_command_sync(iommu, cmd, true); 1050 } 1051 1052 /* 1053 * This function queues a completion wait command into the command 1054 * buffer of an IOMMU 1055 */ 1056 static int iommu_completion_wait(struct amd_iommu *iommu) 1057 { 1058 struct iommu_cmd cmd; 1059 unsigned long flags; 1060 int ret; 1061 u64 data; 1062 1063 if (!iommu->need_sync) 1064 return 0; 1065 1066 raw_spin_lock_irqsave(&iommu->lock, flags); 1067 1068 data = ++iommu->cmd_sem_val; 1069 build_completion_wait(&cmd, iommu, data); 1070 1071 ret = __iommu_queue_command_sync(iommu, &cmd, false); 1072 if (ret) 1073 goto out_unlock; 1074 1075 ret = wait_on_sem(iommu, data); 1076 1077 out_unlock: 1078 raw_spin_unlock_irqrestore(&iommu->lock, flags); 1079 1080 return ret; 1081 } 1082 1083 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid) 1084 { 1085 struct iommu_cmd cmd; 1086 1087 build_inv_dte(&cmd, devid); 1088 1089 return iommu_queue_command(iommu, &cmd); 1090 } 1091 1092 static void amd_iommu_flush_dte_all(struct amd_iommu *iommu) 1093 { 1094 u32 devid; 1095 1096 for (devid = 0; devid <= 0xffff; ++devid) 1097 iommu_flush_dte(iommu, devid); 1098 1099 iommu_completion_wait(iommu); 1100 } 1101 1102 /* 1103 * This function uses heavy locking and may disable irqs for some time. But 1104 * this is no issue because it is only called during resume. 1105 */ 1106 static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu) 1107 { 1108 u32 dom_id; 1109 1110 for (dom_id = 0; dom_id <= 0xffff; ++dom_id) { 1111 struct iommu_cmd cmd; 1112 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1113 dom_id, 1); 1114 iommu_queue_command(iommu, &cmd); 1115 } 1116 1117 iommu_completion_wait(iommu); 1118 } 1119 1120 static void amd_iommu_flush_tlb_domid(struct amd_iommu *iommu, u32 dom_id) 1121 { 1122 struct iommu_cmd cmd; 1123 1124 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1125 dom_id, 1); 1126 iommu_queue_command(iommu, &cmd); 1127 1128 iommu_completion_wait(iommu); 1129 } 1130 1131 static void amd_iommu_flush_all(struct amd_iommu *iommu) 1132 { 1133 struct iommu_cmd cmd; 1134 1135 build_inv_all(&cmd); 1136 1137 iommu_queue_command(iommu, &cmd); 1138 iommu_completion_wait(iommu); 1139 } 1140 1141 static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid) 1142 { 1143 struct iommu_cmd cmd; 1144 1145 build_inv_irt(&cmd, devid); 1146 1147 iommu_queue_command(iommu, &cmd); 1148 } 1149 1150 static void amd_iommu_flush_irt_all(struct amd_iommu *iommu) 1151 { 1152 u32 devid; 1153 1154 for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++) 1155 iommu_flush_irt(iommu, devid); 1156 1157 iommu_completion_wait(iommu); 1158 } 1159 1160 void iommu_flush_all_caches(struct amd_iommu *iommu) 1161 { 1162 if (iommu_feature(iommu, FEATURE_IA)) { 1163 amd_iommu_flush_all(iommu); 1164 } else { 1165 amd_iommu_flush_dte_all(iommu); 1166 amd_iommu_flush_irt_all(iommu); 1167 amd_iommu_flush_tlb_all(iommu); 1168 } 1169 } 1170 1171 /* 1172 * Command send function for flushing on-device TLB 1173 */ 1174 static int device_flush_iotlb(struct iommu_dev_data *dev_data, 1175 u64 address, size_t size) 1176 { 1177 struct amd_iommu *iommu; 1178 struct iommu_cmd cmd; 1179 int qdep; 1180 1181 qdep = dev_data->ats.qdep; 1182 iommu = amd_iommu_rlookup_table[dev_data->devid]; 1183 1184 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size); 1185 1186 return iommu_queue_command(iommu, &cmd); 1187 } 1188 1189 static int device_flush_dte_alias(struct pci_dev *pdev, u16 alias, void *data) 1190 { 1191 struct amd_iommu *iommu = data; 1192 1193 return iommu_flush_dte(iommu, alias); 1194 } 1195 1196 /* 1197 * Command send function for invalidating a device table entry 1198 */ 1199 static int device_flush_dte(struct iommu_dev_data *dev_data) 1200 { 1201 struct amd_iommu *iommu; 1202 u16 alias; 1203 int ret; 1204 1205 iommu = amd_iommu_rlookup_table[dev_data->devid]; 1206 1207 if (dev_data->pdev) 1208 ret = pci_for_each_dma_alias(dev_data->pdev, 1209 device_flush_dte_alias, iommu); 1210 else 1211 ret = iommu_flush_dte(iommu, dev_data->devid); 1212 if (ret) 1213 return ret; 1214 1215 alias = amd_iommu_alias_table[dev_data->devid]; 1216 if (alias != dev_data->devid) { 1217 ret = iommu_flush_dte(iommu, alias); 1218 if (ret) 1219 return ret; 1220 } 1221 1222 if (dev_data->ats.enabled) 1223 ret = device_flush_iotlb(dev_data, 0, ~0UL); 1224 1225 return ret; 1226 } 1227 1228 /* 1229 * TLB invalidation function which is called from the mapping functions. 1230 * It invalidates a single PTE if the range to flush is within a single 1231 * page. Otherwise it flushes the whole TLB of the IOMMU. 1232 */ 1233 static void __domain_flush_pages(struct protection_domain *domain, 1234 u64 address, size_t size, int pde) 1235 { 1236 struct iommu_dev_data *dev_data; 1237 struct iommu_cmd cmd; 1238 int ret = 0, i; 1239 1240 build_inv_iommu_pages(&cmd, address, size, domain->id, pde); 1241 1242 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) { 1243 if (!domain->dev_iommu[i]) 1244 continue; 1245 1246 /* 1247 * Devices of this domain are behind this IOMMU 1248 * We need a TLB flush 1249 */ 1250 ret |= iommu_queue_command(amd_iommus[i], &cmd); 1251 } 1252 1253 list_for_each_entry(dev_data, &domain->dev_list, list) { 1254 1255 if (!dev_data->ats.enabled) 1256 continue; 1257 1258 ret |= device_flush_iotlb(dev_data, address, size); 1259 } 1260 1261 WARN_ON(ret); 1262 } 1263 1264 static void domain_flush_pages(struct protection_domain *domain, 1265 u64 address, size_t size) 1266 { 1267 __domain_flush_pages(domain, address, size, 0); 1268 } 1269 1270 /* Flush the whole IO/TLB for a given protection domain - including PDE */ 1271 void amd_iommu_domain_flush_tlb_pde(struct protection_domain *domain) 1272 { 1273 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1); 1274 } 1275 1276 void amd_iommu_domain_flush_complete(struct protection_domain *domain) 1277 { 1278 int i; 1279 1280 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) { 1281 if (domain && !domain->dev_iommu[i]) 1282 continue; 1283 1284 /* 1285 * Devices of this domain are behind this IOMMU 1286 * We need to wait for completion of all commands. 1287 */ 1288 iommu_completion_wait(amd_iommus[i]); 1289 } 1290 } 1291 1292 /* Flush the not present cache if it exists */ 1293 static void domain_flush_np_cache(struct protection_domain *domain, 1294 dma_addr_t iova, size_t size) 1295 { 1296 if (unlikely(amd_iommu_np_cache)) { 1297 unsigned long flags; 1298 1299 spin_lock_irqsave(&domain->lock, flags); 1300 domain_flush_pages(domain, iova, size); 1301 amd_iommu_domain_flush_complete(domain); 1302 spin_unlock_irqrestore(&domain->lock, flags); 1303 } 1304 } 1305 1306 1307 /* 1308 * This function flushes the DTEs for all devices in domain 1309 */ 1310 static void domain_flush_devices(struct protection_domain *domain) 1311 { 1312 struct iommu_dev_data *dev_data; 1313 1314 list_for_each_entry(dev_data, &domain->dev_list, list) 1315 device_flush_dte(dev_data); 1316 } 1317 1318 /**************************************************************************** 1319 * 1320 * The next functions belong to the domain allocation. A domain is 1321 * allocated for every IOMMU as the default domain. If device isolation 1322 * is enabled, every device get its own domain. The most important thing 1323 * about domains is the page table mapping the DMA address space they 1324 * contain. 1325 * 1326 ****************************************************************************/ 1327 1328 static u16 domain_id_alloc(void) 1329 { 1330 int id; 1331 1332 spin_lock(&pd_bitmap_lock); 1333 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID); 1334 BUG_ON(id == 0); 1335 if (id > 0 && id < MAX_DOMAIN_ID) 1336 __set_bit(id, amd_iommu_pd_alloc_bitmap); 1337 else 1338 id = 0; 1339 spin_unlock(&pd_bitmap_lock); 1340 1341 return id; 1342 } 1343 1344 static void domain_id_free(int id) 1345 { 1346 spin_lock(&pd_bitmap_lock); 1347 if (id > 0 && id < MAX_DOMAIN_ID) 1348 __clear_bit(id, amd_iommu_pd_alloc_bitmap); 1349 spin_unlock(&pd_bitmap_lock); 1350 } 1351 1352 static void free_gcr3_tbl_level1(u64 *tbl) 1353 { 1354 u64 *ptr; 1355 int i; 1356 1357 for (i = 0; i < 512; ++i) { 1358 if (!(tbl[i] & GCR3_VALID)) 1359 continue; 1360 1361 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK); 1362 1363 free_page((unsigned long)ptr); 1364 } 1365 } 1366 1367 static void free_gcr3_tbl_level2(u64 *tbl) 1368 { 1369 u64 *ptr; 1370 int i; 1371 1372 for (i = 0; i < 512; ++i) { 1373 if (!(tbl[i] & GCR3_VALID)) 1374 continue; 1375 1376 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK); 1377 1378 free_gcr3_tbl_level1(ptr); 1379 } 1380 } 1381 1382 static void free_gcr3_table(struct protection_domain *domain) 1383 { 1384 if (domain->glx == 2) 1385 free_gcr3_tbl_level2(domain->gcr3_tbl); 1386 else if (domain->glx == 1) 1387 free_gcr3_tbl_level1(domain->gcr3_tbl); 1388 else 1389 BUG_ON(domain->glx != 0); 1390 1391 free_page((unsigned long)domain->gcr3_tbl); 1392 } 1393 1394 static void set_dte_entry(u16 devid, struct protection_domain *domain, 1395 bool ats, bool ppr) 1396 { 1397 u64 pte_root = 0; 1398 u64 flags = 0; 1399 u32 old_domid; 1400 1401 if (domain->iop.mode != PAGE_MODE_NONE) 1402 pte_root = iommu_virt_to_phys(domain->iop.root); 1403 1404 pte_root |= (domain->iop.mode & DEV_ENTRY_MODE_MASK) 1405 << DEV_ENTRY_MODE_SHIFT; 1406 pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V | DTE_FLAG_TV; 1407 1408 flags = amd_iommu_dev_table[devid].data[1]; 1409 1410 if (ats) 1411 flags |= DTE_FLAG_IOTLB; 1412 1413 if (ppr) { 1414 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid]; 1415 1416 if (iommu_feature(iommu, FEATURE_EPHSUP)) 1417 pte_root |= 1ULL << DEV_ENTRY_PPR; 1418 } 1419 1420 if (domain->flags & PD_IOMMUV2_MASK) { 1421 u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl); 1422 u64 glx = domain->glx; 1423 u64 tmp; 1424 1425 pte_root |= DTE_FLAG_GV; 1426 pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT; 1427 1428 /* First mask out possible old values for GCR3 table */ 1429 tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B; 1430 flags &= ~tmp; 1431 1432 tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C; 1433 flags &= ~tmp; 1434 1435 /* Encode GCR3 table into DTE */ 1436 tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A; 1437 pte_root |= tmp; 1438 1439 tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B; 1440 flags |= tmp; 1441 1442 tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C; 1443 flags |= tmp; 1444 } 1445 1446 flags &= ~DEV_DOMID_MASK; 1447 flags |= domain->id; 1448 1449 old_domid = amd_iommu_dev_table[devid].data[1] & DEV_DOMID_MASK; 1450 amd_iommu_dev_table[devid].data[1] = flags; 1451 amd_iommu_dev_table[devid].data[0] = pte_root; 1452 1453 /* 1454 * A kdump kernel might be replacing a domain ID that was copied from 1455 * the previous kernel--if so, it needs to flush the translation cache 1456 * entries for the old domain ID that is being overwritten 1457 */ 1458 if (old_domid) { 1459 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid]; 1460 1461 amd_iommu_flush_tlb_domid(iommu, old_domid); 1462 } 1463 } 1464 1465 static void clear_dte_entry(u16 devid) 1466 { 1467 /* remove entry from the device table seen by the hardware */ 1468 amd_iommu_dev_table[devid].data[0] = DTE_FLAG_V | DTE_FLAG_TV; 1469 amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK; 1470 1471 amd_iommu_apply_erratum_63(devid); 1472 } 1473 1474 static void do_attach(struct iommu_dev_data *dev_data, 1475 struct protection_domain *domain) 1476 { 1477 struct amd_iommu *iommu; 1478 bool ats; 1479 1480 iommu = amd_iommu_rlookup_table[dev_data->devid]; 1481 ats = dev_data->ats.enabled; 1482 1483 /* Update data structures */ 1484 dev_data->domain = domain; 1485 list_add(&dev_data->list, &domain->dev_list); 1486 1487 /* Do reference counting */ 1488 domain->dev_iommu[iommu->index] += 1; 1489 domain->dev_cnt += 1; 1490 1491 /* Update device table */ 1492 set_dte_entry(dev_data->devid, domain, 1493 ats, dev_data->iommu_v2); 1494 clone_aliases(dev_data->pdev); 1495 1496 device_flush_dte(dev_data); 1497 } 1498 1499 static void do_detach(struct iommu_dev_data *dev_data) 1500 { 1501 struct protection_domain *domain = dev_data->domain; 1502 struct amd_iommu *iommu; 1503 1504 iommu = amd_iommu_rlookup_table[dev_data->devid]; 1505 1506 /* Update data structures */ 1507 dev_data->domain = NULL; 1508 list_del(&dev_data->list); 1509 clear_dte_entry(dev_data->devid); 1510 clone_aliases(dev_data->pdev); 1511 1512 /* Flush the DTE entry */ 1513 device_flush_dte(dev_data); 1514 1515 /* Flush IOTLB */ 1516 amd_iommu_domain_flush_tlb_pde(domain); 1517 1518 /* Wait for the flushes to finish */ 1519 amd_iommu_domain_flush_complete(domain); 1520 1521 /* decrease reference counters - needs to happen after the flushes */ 1522 domain->dev_iommu[iommu->index] -= 1; 1523 domain->dev_cnt -= 1; 1524 } 1525 1526 static void pdev_iommuv2_disable(struct pci_dev *pdev) 1527 { 1528 pci_disable_ats(pdev); 1529 pci_disable_pri(pdev); 1530 pci_disable_pasid(pdev); 1531 } 1532 1533 static int pdev_iommuv2_enable(struct pci_dev *pdev) 1534 { 1535 int ret; 1536 1537 /* Only allow access to user-accessible pages */ 1538 ret = pci_enable_pasid(pdev, 0); 1539 if (ret) 1540 goto out_err; 1541 1542 /* First reset the PRI state of the device */ 1543 ret = pci_reset_pri(pdev); 1544 if (ret) 1545 goto out_err; 1546 1547 /* Enable PRI */ 1548 /* FIXME: Hardcode number of outstanding requests for now */ 1549 ret = pci_enable_pri(pdev, 32); 1550 if (ret) 1551 goto out_err; 1552 1553 ret = pci_enable_ats(pdev, PAGE_SHIFT); 1554 if (ret) 1555 goto out_err; 1556 1557 return 0; 1558 1559 out_err: 1560 pci_disable_pri(pdev); 1561 pci_disable_pasid(pdev); 1562 1563 return ret; 1564 } 1565 1566 /* 1567 * If a device is not yet associated with a domain, this function makes the 1568 * device visible in the domain 1569 */ 1570 static int attach_device(struct device *dev, 1571 struct protection_domain *domain) 1572 { 1573 struct iommu_dev_data *dev_data; 1574 struct pci_dev *pdev; 1575 unsigned long flags; 1576 int ret; 1577 1578 spin_lock_irqsave(&domain->lock, flags); 1579 1580 dev_data = dev_iommu_priv_get(dev); 1581 1582 spin_lock(&dev_data->lock); 1583 1584 ret = -EBUSY; 1585 if (dev_data->domain != NULL) 1586 goto out; 1587 1588 if (!dev_is_pci(dev)) 1589 goto skip_ats_check; 1590 1591 pdev = to_pci_dev(dev); 1592 if (domain->flags & PD_IOMMUV2_MASK) { 1593 struct iommu_domain *def_domain = iommu_get_dma_domain(dev); 1594 1595 ret = -EINVAL; 1596 if (def_domain->type != IOMMU_DOMAIN_IDENTITY) 1597 goto out; 1598 1599 if (dev_data->iommu_v2) { 1600 if (pdev_iommuv2_enable(pdev) != 0) 1601 goto out; 1602 1603 dev_data->ats.enabled = true; 1604 dev_data->ats.qdep = pci_ats_queue_depth(pdev); 1605 dev_data->pri_tlp = pci_prg_resp_pasid_required(pdev); 1606 } 1607 } else if (amd_iommu_iotlb_sup && 1608 pci_enable_ats(pdev, PAGE_SHIFT) == 0) { 1609 dev_data->ats.enabled = true; 1610 dev_data->ats.qdep = pci_ats_queue_depth(pdev); 1611 } 1612 1613 skip_ats_check: 1614 ret = 0; 1615 1616 do_attach(dev_data, domain); 1617 1618 /* 1619 * We might boot into a crash-kernel here. The crashed kernel 1620 * left the caches in the IOMMU dirty. So we have to flush 1621 * here to evict all dirty stuff. 1622 */ 1623 amd_iommu_domain_flush_tlb_pde(domain); 1624 1625 amd_iommu_domain_flush_complete(domain); 1626 1627 out: 1628 spin_unlock(&dev_data->lock); 1629 1630 spin_unlock_irqrestore(&domain->lock, flags); 1631 1632 return ret; 1633 } 1634 1635 /* 1636 * Removes a device from a protection domain (with devtable_lock held) 1637 */ 1638 static void detach_device(struct device *dev) 1639 { 1640 struct protection_domain *domain; 1641 struct iommu_dev_data *dev_data; 1642 unsigned long flags; 1643 1644 dev_data = dev_iommu_priv_get(dev); 1645 domain = dev_data->domain; 1646 1647 spin_lock_irqsave(&domain->lock, flags); 1648 1649 spin_lock(&dev_data->lock); 1650 1651 /* 1652 * First check if the device is still attached. It might already 1653 * be detached from its domain because the generic 1654 * iommu_detach_group code detached it and we try again here in 1655 * our alias handling. 1656 */ 1657 if (WARN_ON(!dev_data->domain)) 1658 goto out; 1659 1660 do_detach(dev_data); 1661 1662 if (!dev_is_pci(dev)) 1663 goto out; 1664 1665 if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2) 1666 pdev_iommuv2_disable(to_pci_dev(dev)); 1667 else if (dev_data->ats.enabled) 1668 pci_disable_ats(to_pci_dev(dev)); 1669 1670 dev_data->ats.enabled = false; 1671 1672 out: 1673 spin_unlock(&dev_data->lock); 1674 1675 spin_unlock_irqrestore(&domain->lock, flags); 1676 } 1677 1678 static struct iommu_device *amd_iommu_probe_device(struct device *dev) 1679 { 1680 struct iommu_device *iommu_dev; 1681 struct amd_iommu *iommu; 1682 int ret, devid; 1683 1684 if (!check_device(dev)) 1685 return ERR_PTR(-ENODEV); 1686 1687 devid = get_device_id(dev); 1688 iommu = amd_iommu_rlookup_table[devid]; 1689 1690 if (dev_iommu_priv_get(dev)) 1691 return &iommu->iommu; 1692 1693 ret = iommu_init_device(dev); 1694 if (ret) { 1695 if (ret != -ENOTSUPP) 1696 dev_err(dev, "Failed to initialize - trying to proceed anyway\n"); 1697 iommu_dev = ERR_PTR(ret); 1698 iommu_ignore_device(dev); 1699 } else { 1700 amd_iommu_set_pci_msi_domain(dev, iommu); 1701 iommu_dev = &iommu->iommu; 1702 } 1703 1704 iommu_completion_wait(iommu); 1705 1706 return iommu_dev; 1707 } 1708 1709 static void amd_iommu_probe_finalize(struct device *dev) 1710 { 1711 struct iommu_domain *domain; 1712 1713 /* Domains are initialized for this device - have a look what we ended up with */ 1714 domain = iommu_get_domain_for_dev(dev); 1715 if (domain->type == IOMMU_DOMAIN_DMA) 1716 iommu_setup_dma_ops(dev, IOVA_START_PFN << PAGE_SHIFT, 0); 1717 } 1718 1719 static void amd_iommu_release_device(struct device *dev) 1720 { 1721 int devid = get_device_id(dev); 1722 struct amd_iommu *iommu; 1723 1724 if (!check_device(dev)) 1725 return; 1726 1727 iommu = amd_iommu_rlookup_table[devid]; 1728 1729 amd_iommu_uninit_device(dev); 1730 iommu_completion_wait(iommu); 1731 } 1732 1733 static struct iommu_group *amd_iommu_device_group(struct device *dev) 1734 { 1735 if (dev_is_pci(dev)) 1736 return pci_device_group(dev); 1737 1738 return acpihid_device_group(dev); 1739 } 1740 1741 /***************************************************************************** 1742 * 1743 * The next functions belong to the dma_ops mapping/unmapping code. 1744 * 1745 *****************************************************************************/ 1746 1747 static void update_device_table(struct protection_domain *domain) 1748 { 1749 struct iommu_dev_data *dev_data; 1750 1751 list_for_each_entry(dev_data, &domain->dev_list, list) { 1752 set_dte_entry(dev_data->devid, domain, 1753 dev_data->ats.enabled, dev_data->iommu_v2); 1754 clone_aliases(dev_data->pdev); 1755 } 1756 } 1757 1758 void amd_iommu_update_and_flush_device_table(struct protection_domain *domain) 1759 { 1760 update_device_table(domain); 1761 domain_flush_devices(domain); 1762 } 1763 1764 void amd_iommu_domain_update(struct protection_domain *domain) 1765 { 1766 /* Update device table */ 1767 amd_iommu_update_and_flush_device_table(domain); 1768 1769 /* Flush domain TLB(s) and wait for completion */ 1770 amd_iommu_domain_flush_tlb_pde(domain); 1771 amd_iommu_domain_flush_complete(domain); 1772 } 1773 1774 int __init amd_iommu_init_api(void) 1775 { 1776 int ret, err = 0; 1777 1778 ret = iova_cache_get(); 1779 if (ret) 1780 return ret; 1781 1782 err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops); 1783 if (err) 1784 return err; 1785 #ifdef CONFIG_ARM_AMBA 1786 err = bus_set_iommu(&amba_bustype, &amd_iommu_ops); 1787 if (err) 1788 return err; 1789 #endif 1790 err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops); 1791 if (err) 1792 return err; 1793 1794 return 0; 1795 } 1796 1797 int __init amd_iommu_init_dma_ops(void) 1798 { 1799 swiotlb = (iommu_default_passthrough() || sme_me_mask) ? 1 : 0; 1800 1801 if (amd_iommu_unmap_flush) 1802 pr_info("IO/TLB flush on unmap enabled\n"); 1803 else 1804 pr_info("Lazy IO/TLB flushing enabled\n"); 1805 iommu_set_dma_strict(amd_iommu_unmap_flush); 1806 return 0; 1807 1808 } 1809 1810 /***************************************************************************** 1811 * 1812 * The following functions belong to the exported interface of AMD IOMMU 1813 * 1814 * This interface allows access to lower level functions of the IOMMU 1815 * like protection domain handling and assignement of devices to domains 1816 * which is not possible with the dma_ops interface. 1817 * 1818 *****************************************************************************/ 1819 1820 static void cleanup_domain(struct protection_domain *domain) 1821 { 1822 struct iommu_dev_data *entry; 1823 unsigned long flags; 1824 1825 spin_lock_irqsave(&domain->lock, flags); 1826 1827 while (!list_empty(&domain->dev_list)) { 1828 entry = list_first_entry(&domain->dev_list, 1829 struct iommu_dev_data, list); 1830 BUG_ON(!entry->domain); 1831 do_detach(entry); 1832 } 1833 1834 spin_unlock_irqrestore(&domain->lock, flags); 1835 } 1836 1837 static void protection_domain_free(struct protection_domain *domain) 1838 { 1839 if (!domain) 1840 return; 1841 1842 if (domain->id) 1843 domain_id_free(domain->id); 1844 1845 if (domain->iop.pgtbl_cfg.tlb) 1846 free_io_pgtable_ops(&domain->iop.iop.ops); 1847 1848 kfree(domain); 1849 } 1850 1851 static int protection_domain_init_v1(struct protection_domain *domain, int mode) 1852 { 1853 u64 *pt_root = NULL; 1854 1855 BUG_ON(mode < PAGE_MODE_NONE || mode > PAGE_MODE_6_LEVEL); 1856 1857 spin_lock_init(&domain->lock); 1858 domain->id = domain_id_alloc(); 1859 if (!domain->id) 1860 return -ENOMEM; 1861 INIT_LIST_HEAD(&domain->dev_list); 1862 1863 if (mode != PAGE_MODE_NONE) { 1864 pt_root = (void *)get_zeroed_page(GFP_KERNEL); 1865 if (!pt_root) 1866 return -ENOMEM; 1867 } 1868 1869 amd_iommu_domain_set_pgtable(domain, pt_root, mode); 1870 1871 return 0; 1872 } 1873 1874 static struct protection_domain *protection_domain_alloc(unsigned int type) 1875 { 1876 struct io_pgtable_ops *pgtbl_ops; 1877 struct protection_domain *domain; 1878 int pgtable = amd_iommu_pgtable; 1879 int mode = DEFAULT_PGTABLE_LEVEL; 1880 int ret; 1881 1882 domain = kzalloc(sizeof(*domain), GFP_KERNEL); 1883 if (!domain) 1884 return NULL; 1885 1886 /* 1887 * Force IOMMU v1 page table when iommu=pt and 1888 * when allocating domain for pass-through devices. 1889 */ 1890 if (type == IOMMU_DOMAIN_IDENTITY) { 1891 pgtable = AMD_IOMMU_V1; 1892 mode = PAGE_MODE_NONE; 1893 } else if (type == IOMMU_DOMAIN_UNMANAGED) { 1894 pgtable = AMD_IOMMU_V1; 1895 } 1896 1897 switch (pgtable) { 1898 case AMD_IOMMU_V1: 1899 ret = protection_domain_init_v1(domain, mode); 1900 break; 1901 default: 1902 ret = -EINVAL; 1903 } 1904 1905 if (ret) 1906 goto out_err; 1907 1908 pgtbl_ops = alloc_io_pgtable_ops(pgtable, &domain->iop.pgtbl_cfg, domain); 1909 if (!pgtbl_ops) 1910 goto out_err; 1911 1912 return domain; 1913 out_err: 1914 kfree(domain); 1915 return NULL; 1916 } 1917 1918 static struct iommu_domain *amd_iommu_domain_alloc(unsigned type) 1919 { 1920 struct protection_domain *domain; 1921 1922 domain = protection_domain_alloc(type); 1923 if (!domain) 1924 return NULL; 1925 1926 domain->domain.geometry.aperture_start = 0; 1927 domain->domain.geometry.aperture_end = ~0ULL; 1928 domain->domain.geometry.force_aperture = true; 1929 1930 if (type == IOMMU_DOMAIN_DMA && 1931 iommu_get_dma_cookie(&domain->domain) == -ENOMEM) 1932 goto free_domain; 1933 1934 return &domain->domain; 1935 1936 free_domain: 1937 protection_domain_free(domain); 1938 1939 return NULL; 1940 } 1941 1942 static void amd_iommu_domain_free(struct iommu_domain *dom) 1943 { 1944 struct protection_domain *domain; 1945 1946 domain = to_pdomain(dom); 1947 1948 if (domain->dev_cnt > 0) 1949 cleanup_domain(domain); 1950 1951 BUG_ON(domain->dev_cnt != 0); 1952 1953 if (!dom) 1954 return; 1955 1956 if (dom->type == IOMMU_DOMAIN_DMA) 1957 iommu_put_dma_cookie(&domain->domain); 1958 1959 if (domain->flags & PD_IOMMUV2_MASK) 1960 free_gcr3_table(domain); 1961 1962 protection_domain_free(domain); 1963 } 1964 1965 static void amd_iommu_detach_device(struct iommu_domain *dom, 1966 struct device *dev) 1967 { 1968 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev); 1969 int devid = get_device_id(dev); 1970 struct amd_iommu *iommu; 1971 1972 if (!check_device(dev)) 1973 return; 1974 1975 if (dev_data->domain != NULL) 1976 detach_device(dev); 1977 1978 iommu = amd_iommu_rlookup_table[devid]; 1979 if (!iommu) 1980 return; 1981 1982 #ifdef CONFIG_IRQ_REMAP 1983 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) && 1984 (dom->type == IOMMU_DOMAIN_UNMANAGED)) 1985 dev_data->use_vapic = 0; 1986 #endif 1987 1988 iommu_completion_wait(iommu); 1989 } 1990 1991 static int amd_iommu_attach_device(struct iommu_domain *dom, 1992 struct device *dev) 1993 { 1994 struct protection_domain *domain = to_pdomain(dom); 1995 struct iommu_dev_data *dev_data; 1996 struct amd_iommu *iommu; 1997 int ret; 1998 1999 if (!check_device(dev)) 2000 return -EINVAL; 2001 2002 dev_data = dev_iommu_priv_get(dev); 2003 dev_data->defer_attach = false; 2004 2005 iommu = amd_iommu_rlookup_table[dev_data->devid]; 2006 if (!iommu) 2007 return -EINVAL; 2008 2009 if (dev_data->domain) 2010 detach_device(dev); 2011 2012 ret = attach_device(dev, domain); 2013 2014 #ifdef CONFIG_IRQ_REMAP 2015 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) { 2016 if (dom->type == IOMMU_DOMAIN_UNMANAGED) 2017 dev_data->use_vapic = 1; 2018 else 2019 dev_data->use_vapic = 0; 2020 } 2021 #endif 2022 2023 iommu_completion_wait(iommu); 2024 2025 return ret; 2026 } 2027 2028 static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova, 2029 phys_addr_t paddr, size_t page_size, int iommu_prot, 2030 gfp_t gfp) 2031 { 2032 struct protection_domain *domain = to_pdomain(dom); 2033 struct io_pgtable_ops *ops = &domain->iop.iop.ops; 2034 int prot = 0; 2035 int ret = -EINVAL; 2036 2037 if ((amd_iommu_pgtable == AMD_IOMMU_V1) && 2038 (domain->iop.mode == PAGE_MODE_NONE)) 2039 return -EINVAL; 2040 2041 if (iommu_prot & IOMMU_READ) 2042 prot |= IOMMU_PROT_IR; 2043 if (iommu_prot & IOMMU_WRITE) 2044 prot |= IOMMU_PROT_IW; 2045 2046 if (ops->map) { 2047 ret = ops->map(ops, iova, paddr, page_size, prot, gfp); 2048 domain_flush_np_cache(domain, iova, page_size); 2049 } 2050 2051 return ret; 2052 } 2053 2054 static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova, 2055 size_t page_size, 2056 struct iommu_iotlb_gather *gather) 2057 { 2058 struct protection_domain *domain = to_pdomain(dom); 2059 struct io_pgtable_ops *ops = &domain->iop.iop.ops; 2060 2061 if ((amd_iommu_pgtable == AMD_IOMMU_V1) && 2062 (domain->iop.mode == PAGE_MODE_NONE)) 2063 return 0; 2064 2065 return (ops->unmap) ? ops->unmap(ops, iova, page_size, gather) : 0; 2066 } 2067 2068 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom, 2069 dma_addr_t iova) 2070 { 2071 struct protection_domain *domain = to_pdomain(dom); 2072 struct io_pgtable_ops *ops = &domain->iop.iop.ops; 2073 2074 return ops->iova_to_phys(ops, iova); 2075 } 2076 2077 static bool amd_iommu_capable(enum iommu_cap cap) 2078 { 2079 switch (cap) { 2080 case IOMMU_CAP_CACHE_COHERENCY: 2081 return true; 2082 case IOMMU_CAP_INTR_REMAP: 2083 return (irq_remapping_enabled == 1); 2084 case IOMMU_CAP_NOEXEC: 2085 return false; 2086 default: 2087 break; 2088 } 2089 2090 return false; 2091 } 2092 2093 static void amd_iommu_get_resv_regions(struct device *dev, 2094 struct list_head *head) 2095 { 2096 struct iommu_resv_region *region; 2097 struct unity_map_entry *entry; 2098 int devid; 2099 2100 devid = get_device_id(dev); 2101 if (devid < 0) 2102 return; 2103 2104 list_for_each_entry(entry, &amd_iommu_unity_map, list) { 2105 int type, prot = 0; 2106 size_t length; 2107 2108 if (devid < entry->devid_start || devid > entry->devid_end) 2109 continue; 2110 2111 type = IOMMU_RESV_DIRECT; 2112 length = entry->address_end - entry->address_start; 2113 if (entry->prot & IOMMU_PROT_IR) 2114 prot |= IOMMU_READ; 2115 if (entry->prot & IOMMU_PROT_IW) 2116 prot |= IOMMU_WRITE; 2117 if (entry->prot & IOMMU_UNITY_MAP_FLAG_EXCL_RANGE) 2118 /* Exclusion range */ 2119 type = IOMMU_RESV_RESERVED; 2120 2121 region = iommu_alloc_resv_region(entry->address_start, 2122 length, prot, type); 2123 if (!region) { 2124 dev_err(dev, "Out of memory allocating dm-regions\n"); 2125 return; 2126 } 2127 list_add_tail(®ion->list, head); 2128 } 2129 2130 region = iommu_alloc_resv_region(MSI_RANGE_START, 2131 MSI_RANGE_END - MSI_RANGE_START + 1, 2132 0, IOMMU_RESV_MSI); 2133 if (!region) 2134 return; 2135 list_add_tail(®ion->list, head); 2136 2137 region = iommu_alloc_resv_region(HT_RANGE_START, 2138 HT_RANGE_END - HT_RANGE_START + 1, 2139 0, IOMMU_RESV_RESERVED); 2140 if (!region) 2141 return; 2142 list_add_tail(®ion->list, head); 2143 } 2144 2145 bool amd_iommu_is_attach_deferred(struct iommu_domain *domain, 2146 struct device *dev) 2147 { 2148 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev); 2149 2150 return dev_data->defer_attach; 2151 } 2152 EXPORT_SYMBOL_GPL(amd_iommu_is_attach_deferred); 2153 2154 static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain) 2155 { 2156 struct protection_domain *dom = to_pdomain(domain); 2157 unsigned long flags; 2158 2159 spin_lock_irqsave(&dom->lock, flags); 2160 amd_iommu_domain_flush_tlb_pde(dom); 2161 amd_iommu_domain_flush_complete(dom); 2162 spin_unlock_irqrestore(&dom->lock, flags); 2163 } 2164 2165 static void amd_iommu_iotlb_sync(struct iommu_domain *domain, 2166 struct iommu_iotlb_gather *gather) 2167 { 2168 amd_iommu_flush_iotlb_all(domain); 2169 } 2170 2171 static int amd_iommu_def_domain_type(struct device *dev) 2172 { 2173 struct iommu_dev_data *dev_data; 2174 2175 dev_data = dev_iommu_priv_get(dev); 2176 if (!dev_data) 2177 return 0; 2178 2179 /* 2180 * Do not identity map IOMMUv2 capable devices when memory encryption is 2181 * active, because some of those devices (AMD GPUs) don't have the 2182 * encryption bit in their DMA-mask and require remapping. 2183 */ 2184 if (!mem_encrypt_active() && dev_data->iommu_v2) 2185 return IOMMU_DOMAIN_IDENTITY; 2186 2187 return 0; 2188 } 2189 2190 const struct iommu_ops amd_iommu_ops = { 2191 .capable = amd_iommu_capable, 2192 .domain_alloc = amd_iommu_domain_alloc, 2193 .domain_free = amd_iommu_domain_free, 2194 .attach_dev = amd_iommu_attach_device, 2195 .detach_dev = amd_iommu_detach_device, 2196 .map = amd_iommu_map, 2197 .unmap = amd_iommu_unmap, 2198 .iova_to_phys = amd_iommu_iova_to_phys, 2199 .probe_device = amd_iommu_probe_device, 2200 .release_device = amd_iommu_release_device, 2201 .probe_finalize = amd_iommu_probe_finalize, 2202 .device_group = amd_iommu_device_group, 2203 .get_resv_regions = amd_iommu_get_resv_regions, 2204 .put_resv_regions = generic_iommu_put_resv_regions, 2205 .is_attach_deferred = amd_iommu_is_attach_deferred, 2206 .pgsize_bitmap = AMD_IOMMU_PGSIZES, 2207 .flush_iotlb_all = amd_iommu_flush_iotlb_all, 2208 .iotlb_sync = amd_iommu_iotlb_sync, 2209 .def_domain_type = amd_iommu_def_domain_type, 2210 }; 2211 2212 /***************************************************************************** 2213 * 2214 * The next functions do a basic initialization of IOMMU for pass through 2215 * mode 2216 * 2217 * In passthrough mode the IOMMU is initialized and enabled but not used for 2218 * DMA-API translation. 2219 * 2220 *****************************************************************************/ 2221 2222 /* IOMMUv2 specific functions */ 2223 int amd_iommu_register_ppr_notifier(struct notifier_block *nb) 2224 { 2225 return atomic_notifier_chain_register(&ppr_notifier, nb); 2226 } 2227 EXPORT_SYMBOL(amd_iommu_register_ppr_notifier); 2228 2229 int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb) 2230 { 2231 return atomic_notifier_chain_unregister(&ppr_notifier, nb); 2232 } 2233 EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier); 2234 2235 void amd_iommu_domain_direct_map(struct iommu_domain *dom) 2236 { 2237 struct protection_domain *domain = to_pdomain(dom); 2238 unsigned long flags; 2239 2240 spin_lock_irqsave(&domain->lock, flags); 2241 2242 if (domain->iop.pgtbl_cfg.tlb) 2243 free_io_pgtable_ops(&domain->iop.iop.ops); 2244 2245 spin_unlock_irqrestore(&domain->lock, flags); 2246 } 2247 EXPORT_SYMBOL(amd_iommu_domain_direct_map); 2248 2249 int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids) 2250 { 2251 struct protection_domain *domain = to_pdomain(dom); 2252 unsigned long flags; 2253 int levels, ret; 2254 2255 /* Number of GCR3 table levels required */ 2256 for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9) 2257 levels += 1; 2258 2259 if (levels > amd_iommu_max_glx_val) 2260 return -EINVAL; 2261 2262 spin_lock_irqsave(&domain->lock, flags); 2263 2264 /* 2265 * Save us all sanity checks whether devices already in the 2266 * domain support IOMMUv2. Just force that the domain has no 2267 * devices attached when it is switched into IOMMUv2 mode. 2268 */ 2269 ret = -EBUSY; 2270 if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK) 2271 goto out; 2272 2273 ret = -ENOMEM; 2274 domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC); 2275 if (domain->gcr3_tbl == NULL) 2276 goto out; 2277 2278 domain->glx = levels; 2279 domain->flags |= PD_IOMMUV2_MASK; 2280 2281 amd_iommu_domain_update(domain); 2282 2283 ret = 0; 2284 2285 out: 2286 spin_unlock_irqrestore(&domain->lock, flags); 2287 2288 return ret; 2289 } 2290 EXPORT_SYMBOL(amd_iommu_domain_enable_v2); 2291 2292 static int __flush_pasid(struct protection_domain *domain, u32 pasid, 2293 u64 address, bool size) 2294 { 2295 struct iommu_dev_data *dev_data; 2296 struct iommu_cmd cmd; 2297 int i, ret; 2298 2299 if (!(domain->flags & PD_IOMMUV2_MASK)) 2300 return -EINVAL; 2301 2302 build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size); 2303 2304 /* 2305 * IOMMU TLB needs to be flushed before Device TLB to 2306 * prevent device TLB refill from IOMMU TLB 2307 */ 2308 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) { 2309 if (domain->dev_iommu[i] == 0) 2310 continue; 2311 2312 ret = iommu_queue_command(amd_iommus[i], &cmd); 2313 if (ret != 0) 2314 goto out; 2315 } 2316 2317 /* Wait until IOMMU TLB flushes are complete */ 2318 amd_iommu_domain_flush_complete(domain); 2319 2320 /* Now flush device TLBs */ 2321 list_for_each_entry(dev_data, &domain->dev_list, list) { 2322 struct amd_iommu *iommu; 2323 int qdep; 2324 2325 /* 2326 There might be non-IOMMUv2 capable devices in an IOMMUv2 2327 * domain. 2328 */ 2329 if (!dev_data->ats.enabled) 2330 continue; 2331 2332 qdep = dev_data->ats.qdep; 2333 iommu = amd_iommu_rlookup_table[dev_data->devid]; 2334 2335 build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid, 2336 qdep, address, size); 2337 2338 ret = iommu_queue_command(iommu, &cmd); 2339 if (ret != 0) 2340 goto out; 2341 } 2342 2343 /* Wait until all device TLBs are flushed */ 2344 amd_iommu_domain_flush_complete(domain); 2345 2346 ret = 0; 2347 2348 out: 2349 2350 return ret; 2351 } 2352 2353 static int __amd_iommu_flush_page(struct protection_domain *domain, u32 pasid, 2354 u64 address) 2355 { 2356 return __flush_pasid(domain, pasid, address, false); 2357 } 2358 2359 int amd_iommu_flush_page(struct iommu_domain *dom, u32 pasid, 2360 u64 address) 2361 { 2362 struct protection_domain *domain = to_pdomain(dom); 2363 unsigned long flags; 2364 int ret; 2365 2366 spin_lock_irqsave(&domain->lock, flags); 2367 ret = __amd_iommu_flush_page(domain, pasid, address); 2368 spin_unlock_irqrestore(&domain->lock, flags); 2369 2370 return ret; 2371 } 2372 EXPORT_SYMBOL(amd_iommu_flush_page); 2373 2374 static int __amd_iommu_flush_tlb(struct protection_domain *domain, u32 pasid) 2375 { 2376 return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 2377 true); 2378 } 2379 2380 int amd_iommu_flush_tlb(struct iommu_domain *dom, u32 pasid) 2381 { 2382 struct protection_domain *domain = to_pdomain(dom); 2383 unsigned long flags; 2384 int ret; 2385 2386 spin_lock_irqsave(&domain->lock, flags); 2387 ret = __amd_iommu_flush_tlb(domain, pasid); 2388 spin_unlock_irqrestore(&domain->lock, flags); 2389 2390 return ret; 2391 } 2392 EXPORT_SYMBOL(amd_iommu_flush_tlb); 2393 2394 static u64 *__get_gcr3_pte(u64 *root, int level, u32 pasid, bool alloc) 2395 { 2396 int index; 2397 u64 *pte; 2398 2399 while (true) { 2400 2401 index = (pasid >> (9 * level)) & 0x1ff; 2402 pte = &root[index]; 2403 2404 if (level == 0) 2405 break; 2406 2407 if (!(*pte & GCR3_VALID)) { 2408 if (!alloc) 2409 return NULL; 2410 2411 root = (void *)get_zeroed_page(GFP_ATOMIC); 2412 if (root == NULL) 2413 return NULL; 2414 2415 *pte = iommu_virt_to_phys(root) | GCR3_VALID; 2416 } 2417 2418 root = iommu_phys_to_virt(*pte & PAGE_MASK); 2419 2420 level -= 1; 2421 } 2422 2423 return pte; 2424 } 2425 2426 static int __set_gcr3(struct protection_domain *domain, u32 pasid, 2427 unsigned long cr3) 2428 { 2429 u64 *pte; 2430 2431 if (domain->iop.mode != PAGE_MODE_NONE) 2432 return -EINVAL; 2433 2434 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true); 2435 if (pte == NULL) 2436 return -ENOMEM; 2437 2438 *pte = (cr3 & PAGE_MASK) | GCR3_VALID; 2439 2440 return __amd_iommu_flush_tlb(domain, pasid); 2441 } 2442 2443 static int __clear_gcr3(struct protection_domain *domain, u32 pasid) 2444 { 2445 u64 *pte; 2446 2447 if (domain->iop.mode != PAGE_MODE_NONE) 2448 return -EINVAL; 2449 2450 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false); 2451 if (pte == NULL) 2452 return 0; 2453 2454 *pte = 0; 2455 2456 return __amd_iommu_flush_tlb(domain, pasid); 2457 } 2458 2459 int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, u32 pasid, 2460 unsigned long cr3) 2461 { 2462 struct protection_domain *domain = to_pdomain(dom); 2463 unsigned long flags; 2464 int ret; 2465 2466 spin_lock_irqsave(&domain->lock, flags); 2467 ret = __set_gcr3(domain, pasid, cr3); 2468 spin_unlock_irqrestore(&domain->lock, flags); 2469 2470 return ret; 2471 } 2472 EXPORT_SYMBOL(amd_iommu_domain_set_gcr3); 2473 2474 int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, u32 pasid) 2475 { 2476 struct protection_domain *domain = to_pdomain(dom); 2477 unsigned long flags; 2478 int ret; 2479 2480 spin_lock_irqsave(&domain->lock, flags); 2481 ret = __clear_gcr3(domain, pasid); 2482 spin_unlock_irqrestore(&domain->lock, flags); 2483 2484 return ret; 2485 } 2486 EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3); 2487 2488 int amd_iommu_complete_ppr(struct pci_dev *pdev, u32 pasid, 2489 int status, int tag) 2490 { 2491 struct iommu_dev_data *dev_data; 2492 struct amd_iommu *iommu; 2493 struct iommu_cmd cmd; 2494 2495 dev_data = dev_iommu_priv_get(&pdev->dev); 2496 iommu = amd_iommu_rlookup_table[dev_data->devid]; 2497 2498 build_complete_ppr(&cmd, dev_data->devid, pasid, status, 2499 tag, dev_data->pri_tlp); 2500 2501 return iommu_queue_command(iommu, &cmd); 2502 } 2503 EXPORT_SYMBOL(amd_iommu_complete_ppr); 2504 2505 int amd_iommu_device_info(struct pci_dev *pdev, 2506 struct amd_iommu_device_info *info) 2507 { 2508 int max_pasids; 2509 int pos; 2510 2511 if (pdev == NULL || info == NULL) 2512 return -EINVAL; 2513 2514 if (!amd_iommu_v2_supported()) 2515 return -EINVAL; 2516 2517 memset(info, 0, sizeof(*info)); 2518 2519 if (pci_ats_supported(pdev)) 2520 info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP; 2521 2522 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI); 2523 if (pos) 2524 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP; 2525 2526 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID); 2527 if (pos) { 2528 int features; 2529 2530 max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1)); 2531 max_pasids = min(max_pasids, (1 << 20)); 2532 2533 info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP; 2534 info->max_pasids = min(pci_max_pasids(pdev), max_pasids); 2535 2536 features = pci_pasid_features(pdev); 2537 if (features & PCI_PASID_CAP_EXEC) 2538 info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP; 2539 if (features & PCI_PASID_CAP_PRIV) 2540 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP; 2541 } 2542 2543 return 0; 2544 } 2545 EXPORT_SYMBOL(amd_iommu_device_info); 2546 2547 #ifdef CONFIG_IRQ_REMAP 2548 2549 /***************************************************************************** 2550 * 2551 * Interrupt Remapping Implementation 2552 * 2553 *****************************************************************************/ 2554 2555 static struct irq_chip amd_ir_chip; 2556 static DEFINE_SPINLOCK(iommu_table_lock); 2557 2558 static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table) 2559 { 2560 u64 dte; 2561 2562 dte = amd_iommu_dev_table[devid].data[2]; 2563 dte &= ~DTE_IRQ_PHYS_ADDR_MASK; 2564 dte |= iommu_virt_to_phys(table->table); 2565 dte |= DTE_IRQ_REMAP_INTCTL; 2566 dte |= DTE_INTTABLEN; 2567 dte |= DTE_IRQ_REMAP_ENABLE; 2568 2569 amd_iommu_dev_table[devid].data[2] = dte; 2570 } 2571 2572 static struct irq_remap_table *get_irq_table(u16 devid) 2573 { 2574 struct irq_remap_table *table; 2575 2576 if (WARN_ONCE(!amd_iommu_rlookup_table[devid], 2577 "%s: no iommu for devid %x\n", __func__, devid)) 2578 return NULL; 2579 2580 table = irq_lookup_table[devid]; 2581 if (WARN_ONCE(!table, "%s: no table for devid %x\n", __func__, devid)) 2582 return NULL; 2583 2584 return table; 2585 } 2586 2587 static struct irq_remap_table *__alloc_irq_table(void) 2588 { 2589 struct irq_remap_table *table; 2590 2591 table = kzalloc(sizeof(*table), GFP_KERNEL); 2592 if (!table) 2593 return NULL; 2594 2595 table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL); 2596 if (!table->table) { 2597 kfree(table); 2598 return NULL; 2599 } 2600 raw_spin_lock_init(&table->lock); 2601 2602 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir)) 2603 memset(table->table, 0, 2604 MAX_IRQS_PER_TABLE * sizeof(u32)); 2605 else 2606 memset(table->table, 0, 2607 (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2))); 2608 return table; 2609 } 2610 2611 static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid, 2612 struct irq_remap_table *table) 2613 { 2614 irq_lookup_table[devid] = table; 2615 set_dte_irq_entry(devid, table); 2616 iommu_flush_dte(iommu, devid); 2617 } 2618 2619 static int set_remap_table_entry_alias(struct pci_dev *pdev, u16 alias, 2620 void *data) 2621 { 2622 struct irq_remap_table *table = data; 2623 2624 irq_lookup_table[alias] = table; 2625 set_dte_irq_entry(alias, table); 2626 2627 iommu_flush_dte(amd_iommu_rlookup_table[alias], alias); 2628 2629 return 0; 2630 } 2631 2632 static struct irq_remap_table *alloc_irq_table(u16 devid, struct pci_dev *pdev) 2633 { 2634 struct irq_remap_table *table = NULL; 2635 struct irq_remap_table *new_table = NULL; 2636 struct amd_iommu *iommu; 2637 unsigned long flags; 2638 u16 alias; 2639 2640 spin_lock_irqsave(&iommu_table_lock, flags); 2641 2642 iommu = amd_iommu_rlookup_table[devid]; 2643 if (!iommu) 2644 goto out_unlock; 2645 2646 table = irq_lookup_table[devid]; 2647 if (table) 2648 goto out_unlock; 2649 2650 alias = amd_iommu_alias_table[devid]; 2651 table = irq_lookup_table[alias]; 2652 if (table) { 2653 set_remap_table_entry(iommu, devid, table); 2654 goto out_wait; 2655 } 2656 spin_unlock_irqrestore(&iommu_table_lock, flags); 2657 2658 /* Nothing there yet, allocate new irq remapping table */ 2659 new_table = __alloc_irq_table(); 2660 if (!new_table) 2661 return NULL; 2662 2663 spin_lock_irqsave(&iommu_table_lock, flags); 2664 2665 table = irq_lookup_table[devid]; 2666 if (table) 2667 goto out_unlock; 2668 2669 table = irq_lookup_table[alias]; 2670 if (table) { 2671 set_remap_table_entry(iommu, devid, table); 2672 goto out_wait; 2673 } 2674 2675 table = new_table; 2676 new_table = NULL; 2677 2678 if (pdev) 2679 pci_for_each_dma_alias(pdev, set_remap_table_entry_alias, 2680 table); 2681 else 2682 set_remap_table_entry(iommu, devid, table); 2683 2684 if (devid != alias) 2685 set_remap_table_entry(iommu, alias, table); 2686 2687 out_wait: 2688 iommu_completion_wait(iommu); 2689 2690 out_unlock: 2691 spin_unlock_irqrestore(&iommu_table_lock, flags); 2692 2693 if (new_table) { 2694 kmem_cache_free(amd_iommu_irq_cache, new_table->table); 2695 kfree(new_table); 2696 } 2697 return table; 2698 } 2699 2700 static int alloc_irq_index(u16 devid, int count, bool align, 2701 struct pci_dev *pdev) 2702 { 2703 struct irq_remap_table *table; 2704 int index, c, alignment = 1; 2705 unsigned long flags; 2706 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid]; 2707 2708 if (!iommu) 2709 return -ENODEV; 2710 2711 table = alloc_irq_table(devid, pdev); 2712 if (!table) 2713 return -ENODEV; 2714 2715 if (align) 2716 alignment = roundup_pow_of_two(count); 2717 2718 raw_spin_lock_irqsave(&table->lock, flags); 2719 2720 /* Scan table for free entries */ 2721 for (index = ALIGN(table->min_index, alignment), c = 0; 2722 index < MAX_IRQS_PER_TABLE;) { 2723 if (!iommu->irte_ops->is_allocated(table, index)) { 2724 c += 1; 2725 } else { 2726 c = 0; 2727 index = ALIGN(index + 1, alignment); 2728 continue; 2729 } 2730 2731 if (c == count) { 2732 for (; c != 0; --c) 2733 iommu->irte_ops->set_allocated(table, index - c + 1); 2734 2735 index -= count - 1; 2736 goto out; 2737 } 2738 2739 index++; 2740 } 2741 2742 index = -ENOSPC; 2743 2744 out: 2745 raw_spin_unlock_irqrestore(&table->lock, flags); 2746 2747 return index; 2748 } 2749 2750 static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte, 2751 struct amd_ir_data *data) 2752 { 2753 bool ret; 2754 struct irq_remap_table *table; 2755 struct amd_iommu *iommu; 2756 unsigned long flags; 2757 struct irte_ga *entry; 2758 2759 iommu = amd_iommu_rlookup_table[devid]; 2760 if (iommu == NULL) 2761 return -EINVAL; 2762 2763 table = get_irq_table(devid); 2764 if (!table) 2765 return -ENOMEM; 2766 2767 raw_spin_lock_irqsave(&table->lock, flags); 2768 2769 entry = (struct irte_ga *)table->table; 2770 entry = &entry[index]; 2771 2772 ret = cmpxchg_double(&entry->lo.val, &entry->hi.val, 2773 entry->lo.val, entry->hi.val, 2774 irte->lo.val, irte->hi.val); 2775 /* 2776 * We use cmpxchg16 to atomically update the 128-bit IRTE, 2777 * and it cannot be updated by the hardware or other processors 2778 * behind us, so the return value of cmpxchg16 should be the 2779 * same as the old value. 2780 */ 2781 WARN_ON(!ret); 2782 2783 if (data) 2784 data->ref = entry; 2785 2786 raw_spin_unlock_irqrestore(&table->lock, flags); 2787 2788 iommu_flush_irt(iommu, devid); 2789 iommu_completion_wait(iommu); 2790 2791 return 0; 2792 } 2793 2794 static int modify_irte(u16 devid, int index, union irte *irte) 2795 { 2796 struct irq_remap_table *table; 2797 struct amd_iommu *iommu; 2798 unsigned long flags; 2799 2800 iommu = amd_iommu_rlookup_table[devid]; 2801 if (iommu == NULL) 2802 return -EINVAL; 2803 2804 table = get_irq_table(devid); 2805 if (!table) 2806 return -ENOMEM; 2807 2808 raw_spin_lock_irqsave(&table->lock, flags); 2809 table->table[index] = irte->val; 2810 raw_spin_unlock_irqrestore(&table->lock, flags); 2811 2812 iommu_flush_irt(iommu, devid); 2813 iommu_completion_wait(iommu); 2814 2815 return 0; 2816 } 2817 2818 static void free_irte(u16 devid, int index) 2819 { 2820 struct irq_remap_table *table; 2821 struct amd_iommu *iommu; 2822 unsigned long flags; 2823 2824 iommu = amd_iommu_rlookup_table[devid]; 2825 if (iommu == NULL) 2826 return; 2827 2828 table = get_irq_table(devid); 2829 if (!table) 2830 return; 2831 2832 raw_spin_lock_irqsave(&table->lock, flags); 2833 iommu->irte_ops->clear_allocated(table, index); 2834 raw_spin_unlock_irqrestore(&table->lock, flags); 2835 2836 iommu_flush_irt(iommu, devid); 2837 iommu_completion_wait(iommu); 2838 } 2839 2840 static void irte_prepare(void *entry, 2841 u32 delivery_mode, bool dest_mode, 2842 u8 vector, u32 dest_apicid, int devid) 2843 { 2844 union irte *irte = (union irte *) entry; 2845 2846 irte->val = 0; 2847 irte->fields.vector = vector; 2848 irte->fields.int_type = delivery_mode; 2849 irte->fields.destination = dest_apicid; 2850 irte->fields.dm = dest_mode; 2851 irte->fields.valid = 1; 2852 } 2853 2854 static void irte_ga_prepare(void *entry, 2855 u32 delivery_mode, bool dest_mode, 2856 u8 vector, u32 dest_apicid, int devid) 2857 { 2858 struct irte_ga *irte = (struct irte_ga *) entry; 2859 2860 irte->lo.val = 0; 2861 irte->hi.val = 0; 2862 irte->lo.fields_remap.int_type = delivery_mode; 2863 irte->lo.fields_remap.dm = dest_mode; 2864 irte->hi.fields.vector = vector; 2865 irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid); 2866 irte->hi.fields.destination = APICID_TO_IRTE_DEST_HI(dest_apicid); 2867 irte->lo.fields_remap.valid = 1; 2868 } 2869 2870 static void irte_activate(void *entry, u16 devid, u16 index) 2871 { 2872 union irte *irte = (union irte *) entry; 2873 2874 irte->fields.valid = 1; 2875 modify_irte(devid, index, irte); 2876 } 2877 2878 static void irte_ga_activate(void *entry, u16 devid, u16 index) 2879 { 2880 struct irte_ga *irte = (struct irte_ga *) entry; 2881 2882 irte->lo.fields_remap.valid = 1; 2883 modify_irte_ga(devid, index, irte, NULL); 2884 } 2885 2886 static void irte_deactivate(void *entry, u16 devid, u16 index) 2887 { 2888 union irte *irte = (union irte *) entry; 2889 2890 irte->fields.valid = 0; 2891 modify_irte(devid, index, irte); 2892 } 2893 2894 static void irte_ga_deactivate(void *entry, u16 devid, u16 index) 2895 { 2896 struct irte_ga *irte = (struct irte_ga *) entry; 2897 2898 irte->lo.fields_remap.valid = 0; 2899 modify_irte_ga(devid, index, irte, NULL); 2900 } 2901 2902 static void irte_set_affinity(void *entry, u16 devid, u16 index, 2903 u8 vector, u32 dest_apicid) 2904 { 2905 union irte *irte = (union irte *) entry; 2906 2907 irte->fields.vector = vector; 2908 irte->fields.destination = dest_apicid; 2909 modify_irte(devid, index, irte); 2910 } 2911 2912 static void irte_ga_set_affinity(void *entry, u16 devid, u16 index, 2913 u8 vector, u32 dest_apicid) 2914 { 2915 struct irte_ga *irte = (struct irte_ga *) entry; 2916 2917 if (!irte->lo.fields_remap.guest_mode) { 2918 irte->hi.fields.vector = vector; 2919 irte->lo.fields_remap.destination = 2920 APICID_TO_IRTE_DEST_LO(dest_apicid); 2921 irte->hi.fields.destination = 2922 APICID_TO_IRTE_DEST_HI(dest_apicid); 2923 modify_irte_ga(devid, index, irte, NULL); 2924 } 2925 } 2926 2927 #define IRTE_ALLOCATED (~1U) 2928 static void irte_set_allocated(struct irq_remap_table *table, int index) 2929 { 2930 table->table[index] = IRTE_ALLOCATED; 2931 } 2932 2933 static void irte_ga_set_allocated(struct irq_remap_table *table, int index) 2934 { 2935 struct irte_ga *ptr = (struct irte_ga *)table->table; 2936 struct irte_ga *irte = &ptr[index]; 2937 2938 memset(&irte->lo.val, 0, sizeof(u64)); 2939 memset(&irte->hi.val, 0, sizeof(u64)); 2940 irte->hi.fields.vector = 0xff; 2941 } 2942 2943 static bool irte_is_allocated(struct irq_remap_table *table, int index) 2944 { 2945 union irte *ptr = (union irte *)table->table; 2946 union irte *irte = &ptr[index]; 2947 2948 return irte->val != 0; 2949 } 2950 2951 static bool irte_ga_is_allocated(struct irq_remap_table *table, int index) 2952 { 2953 struct irte_ga *ptr = (struct irte_ga *)table->table; 2954 struct irte_ga *irte = &ptr[index]; 2955 2956 return irte->hi.fields.vector != 0; 2957 } 2958 2959 static void irte_clear_allocated(struct irq_remap_table *table, int index) 2960 { 2961 table->table[index] = 0; 2962 } 2963 2964 static void irte_ga_clear_allocated(struct irq_remap_table *table, int index) 2965 { 2966 struct irte_ga *ptr = (struct irte_ga *)table->table; 2967 struct irte_ga *irte = &ptr[index]; 2968 2969 memset(&irte->lo.val, 0, sizeof(u64)); 2970 memset(&irte->hi.val, 0, sizeof(u64)); 2971 } 2972 2973 static int get_devid(struct irq_alloc_info *info) 2974 { 2975 switch (info->type) { 2976 case X86_IRQ_ALLOC_TYPE_IOAPIC: 2977 return get_ioapic_devid(info->devid); 2978 case X86_IRQ_ALLOC_TYPE_HPET: 2979 return get_hpet_devid(info->devid); 2980 case X86_IRQ_ALLOC_TYPE_PCI_MSI: 2981 case X86_IRQ_ALLOC_TYPE_PCI_MSIX: 2982 return get_device_id(msi_desc_to_dev(info->desc)); 2983 default: 2984 WARN_ON_ONCE(1); 2985 return -1; 2986 } 2987 } 2988 2989 struct irq_remap_ops amd_iommu_irq_ops = { 2990 .prepare = amd_iommu_prepare, 2991 .enable = amd_iommu_enable, 2992 .disable = amd_iommu_disable, 2993 .reenable = amd_iommu_reenable, 2994 .enable_faulting = amd_iommu_enable_faulting, 2995 }; 2996 2997 static void fill_msi_msg(struct msi_msg *msg, u32 index) 2998 { 2999 msg->data = index; 3000 msg->address_lo = 0; 3001 msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW; 3002 msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH; 3003 } 3004 3005 static void irq_remapping_prepare_irte(struct amd_ir_data *data, 3006 struct irq_cfg *irq_cfg, 3007 struct irq_alloc_info *info, 3008 int devid, int index, int sub_handle) 3009 { 3010 struct irq_2_irte *irte_info = &data->irq_2_irte; 3011 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid]; 3012 3013 if (!iommu) 3014 return; 3015 3016 data->irq_2_irte.devid = devid; 3017 data->irq_2_irte.index = index + sub_handle; 3018 iommu->irte_ops->prepare(data->entry, apic->delivery_mode, 3019 apic->dest_mode_logical, irq_cfg->vector, 3020 irq_cfg->dest_apicid, devid); 3021 3022 switch (info->type) { 3023 case X86_IRQ_ALLOC_TYPE_IOAPIC: 3024 case X86_IRQ_ALLOC_TYPE_HPET: 3025 case X86_IRQ_ALLOC_TYPE_PCI_MSI: 3026 case X86_IRQ_ALLOC_TYPE_PCI_MSIX: 3027 fill_msi_msg(&data->msi_entry, irte_info->index); 3028 break; 3029 3030 default: 3031 BUG_ON(1); 3032 break; 3033 } 3034 } 3035 3036 struct amd_irte_ops irte_32_ops = { 3037 .prepare = irte_prepare, 3038 .activate = irte_activate, 3039 .deactivate = irte_deactivate, 3040 .set_affinity = irte_set_affinity, 3041 .set_allocated = irte_set_allocated, 3042 .is_allocated = irte_is_allocated, 3043 .clear_allocated = irte_clear_allocated, 3044 }; 3045 3046 struct amd_irte_ops irte_128_ops = { 3047 .prepare = irte_ga_prepare, 3048 .activate = irte_ga_activate, 3049 .deactivate = irte_ga_deactivate, 3050 .set_affinity = irte_ga_set_affinity, 3051 .set_allocated = irte_ga_set_allocated, 3052 .is_allocated = irte_ga_is_allocated, 3053 .clear_allocated = irte_ga_clear_allocated, 3054 }; 3055 3056 static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq, 3057 unsigned int nr_irqs, void *arg) 3058 { 3059 struct irq_alloc_info *info = arg; 3060 struct irq_data *irq_data; 3061 struct amd_ir_data *data = NULL; 3062 struct irq_cfg *cfg; 3063 int i, ret, devid; 3064 int index; 3065 3066 if (!info) 3067 return -EINVAL; 3068 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI && 3069 info->type != X86_IRQ_ALLOC_TYPE_PCI_MSIX) 3070 return -EINVAL; 3071 3072 /* 3073 * With IRQ remapping enabled, don't need contiguous CPU vectors 3074 * to support multiple MSI interrupts. 3075 */ 3076 if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI) 3077 info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS; 3078 3079 devid = get_devid(info); 3080 if (devid < 0) 3081 return -EINVAL; 3082 3083 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg); 3084 if (ret < 0) 3085 return ret; 3086 3087 if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) { 3088 struct irq_remap_table *table; 3089 struct amd_iommu *iommu; 3090 3091 table = alloc_irq_table(devid, NULL); 3092 if (table) { 3093 if (!table->min_index) { 3094 /* 3095 * Keep the first 32 indexes free for IOAPIC 3096 * interrupts. 3097 */ 3098 table->min_index = 32; 3099 iommu = amd_iommu_rlookup_table[devid]; 3100 for (i = 0; i < 32; ++i) 3101 iommu->irte_ops->set_allocated(table, i); 3102 } 3103 WARN_ON(table->min_index != 32); 3104 index = info->ioapic.pin; 3105 } else { 3106 index = -ENOMEM; 3107 } 3108 } else if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI || 3109 info->type == X86_IRQ_ALLOC_TYPE_PCI_MSIX) { 3110 bool align = (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI); 3111 3112 index = alloc_irq_index(devid, nr_irqs, align, 3113 msi_desc_to_pci_dev(info->desc)); 3114 } else { 3115 index = alloc_irq_index(devid, nr_irqs, false, NULL); 3116 } 3117 3118 if (index < 0) { 3119 pr_warn("Failed to allocate IRTE\n"); 3120 ret = index; 3121 goto out_free_parent; 3122 } 3123 3124 for (i = 0; i < nr_irqs; i++) { 3125 irq_data = irq_domain_get_irq_data(domain, virq + i); 3126 cfg = irq_data ? irqd_cfg(irq_data) : NULL; 3127 if (!cfg) { 3128 ret = -EINVAL; 3129 goto out_free_data; 3130 } 3131 3132 ret = -ENOMEM; 3133 data = kzalloc(sizeof(*data), GFP_KERNEL); 3134 if (!data) 3135 goto out_free_data; 3136 3137 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir)) 3138 data->entry = kzalloc(sizeof(union irte), GFP_KERNEL); 3139 else 3140 data->entry = kzalloc(sizeof(struct irte_ga), 3141 GFP_KERNEL); 3142 if (!data->entry) { 3143 kfree(data); 3144 goto out_free_data; 3145 } 3146 3147 irq_data->hwirq = (devid << 16) + i; 3148 irq_data->chip_data = data; 3149 irq_data->chip = &amd_ir_chip; 3150 irq_remapping_prepare_irte(data, cfg, info, devid, index, i); 3151 irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT); 3152 } 3153 3154 return 0; 3155 3156 out_free_data: 3157 for (i--; i >= 0; i--) { 3158 irq_data = irq_domain_get_irq_data(domain, virq + i); 3159 if (irq_data) 3160 kfree(irq_data->chip_data); 3161 } 3162 for (i = 0; i < nr_irqs; i++) 3163 free_irte(devid, index + i); 3164 out_free_parent: 3165 irq_domain_free_irqs_common(domain, virq, nr_irqs); 3166 return ret; 3167 } 3168 3169 static void irq_remapping_free(struct irq_domain *domain, unsigned int virq, 3170 unsigned int nr_irqs) 3171 { 3172 struct irq_2_irte *irte_info; 3173 struct irq_data *irq_data; 3174 struct amd_ir_data *data; 3175 int i; 3176 3177 for (i = 0; i < nr_irqs; i++) { 3178 irq_data = irq_domain_get_irq_data(domain, virq + i); 3179 if (irq_data && irq_data->chip_data) { 3180 data = irq_data->chip_data; 3181 irte_info = &data->irq_2_irte; 3182 free_irte(irte_info->devid, irte_info->index); 3183 kfree(data->entry); 3184 kfree(data); 3185 } 3186 } 3187 irq_domain_free_irqs_common(domain, virq, nr_irqs); 3188 } 3189 3190 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu, 3191 struct amd_ir_data *ir_data, 3192 struct irq_2_irte *irte_info, 3193 struct irq_cfg *cfg); 3194 3195 static int irq_remapping_activate(struct irq_domain *domain, 3196 struct irq_data *irq_data, bool reserve) 3197 { 3198 struct amd_ir_data *data = irq_data->chip_data; 3199 struct irq_2_irte *irte_info = &data->irq_2_irte; 3200 struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid]; 3201 struct irq_cfg *cfg = irqd_cfg(irq_data); 3202 3203 if (!iommu) 3204 return 0; 3205 3206 iommu->irte_ops->activate(data->entry, irte_info->devid, 3207 irte_info->index); 3208 amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg); 3209 return 0; 3210 } 3211 3212 static void irq_remapping_deactivate(struct irq_domain *domain, 3213 struct irq_data *irq_data) 3214 { 3215 struct amd_ir_data *data = irq_data->chip_data; 3216 struct irq_2_irte *irte_info = &data->irq_2_irte; 3217 struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid]; 3218 3219 if (iommu) 3220 iommu->irte_ops->deactivate(data->entry, irte_info->devid, 3221 irte_info->index); 3222 } 3223 3224 static int irq_remapping_select(struct irq_domain *d, struct irq_fwspec *fwspec, 3225 enum irq_domain_bus_token bus_token) 3226 { 3227 struct amd_iommu *iommu; 3228 int devid = -1; 3229 3230 if (!amd_iommu_irq_remap) 3231 return 0; 3232 3233 if (x86_fwspec_is_ioapic(fwspec)) 3234 devid = get_ioapic_devid(fwspec->param[0]); 3235 else if (x86_fwspec_is_hpet(fwspec)) 3236 devid = get_hpet_devid(fwspec->param[0]); 3237 3238 if (devid < 0) 3239 return 0; 3240 3241 iommu = amd_iommu_rlookup_table[devid]; 3242 return iommu && iommu->ir_domain == d; 3243 } 3244 3245 static const struct irq_domain_ops amd_ir_domain_ops = { 3246 .select = irq_remapping_select, 3247 .alloc = irq_remapping_alloc, 3248 .free = irq_remapping_free, 3249 .activate = irq_remapping_activate, 3250 .deactivate = irq_remapping_deactivate, 3251 }; 3252 3253 int amd_iommu_activate_guest_mode(void *data) 3254 { 3255 struct amd_ir_data *ir_data = (struct amd_ir_data *)data; 3256 struct irte_ga *entry = (struct irte_ga *) ir_data->entry; 3257 u64 valid; 3258 3259 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) || 3260 !entry || entry->lo.fields_vapic.guest_mode) 3261 return 0; 3262 3263 valid = entry->lo.fields_vapic.valid; 3264 3265 entry->lo.val = 0; 3266 entry->hi.val = 0; 3267 3268 entry->lo.fields_vapic.valid = valid; 3269 entry->lo.fields_vapic.guest_mode = 1; 3270 entry->lo.fields_vapic.ga_log_intr = 1; 3271 entry->hi.fields.ga_root_ptr = ir_data->ga_root_ptr; 3272 entry->hi.fields.vector = ir_data->ga_vector; 3273 entry->lo.fields_vapic.ga_tag = ir_data->ga_tag; 3274 3275 return modify_irte_ga(ir_data->irq_2_irte.devid, 3276 ir_data->irq_2_irte.index, entry, ir_data); 3277 } 3278 EXPORT_SYMBOL(amd_iommu_activate_guest_mode); 3279 3280 int amd_iommu_deactivate_guest_mode(void *data) 3281 { 3282 struct amd_ir_data *ir_data = (struct amd_ir_data *)data; 3283 struct irte_ga *entry = (struct irte_ga *) ir_data->entry; 3284 struct irq_cfg *cfg = ir_data->cfg; 3285 u64 valid; 3286 3287 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) || 3288 !entry || !entry->lo.fields_vapic.guest_mode) 3289 return 0; 3290 3291 valid = entry->lo.fields_remap.valid; 3292 3293 entry->lo.val = 0; 3294 entry->hi.val = 0; 3295 3296 entry->lo.fields_remap.valid = valid; 3297 entry->lo.fields_remap.dm = apic->dest_mode_logical; 3298 entry->lo.fields_remap.int_type = apic->delivery_mode; 3299 entry->hi.fields.vector = cfg->vector; 3300 entry->lo.fields_remap.destination = 3301 APICID_TO_IRTE_DEST_LO(cfg->dest_apicid); 3302 entry->hi.fields.destination = 3303 APICID_TO_IRTE_DEST_HI(cfg->dest_apicid); 3304 3305 return modify_irte_ga(ir_data->irq_2_irte.devid, 3306 ir_data->irq_2_irte.index, entry, ir_data); 3307 } 3308 EXPORT_SYMBOL(amd_iommu_deactivate_guest_mode); 3309 3310 static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info) 3311 { 3312 int ret; 3313 struct amd_iommu *iommu; 3314 struct amd_iommu_pi_data *pi_data = vcpu_info; 3315 struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data; 3316 struct amd_ir_data *ir_data = data->chip_data; 3317 struct irq_2_irte *irte_info = &ir_data->irq_2_irte; 3318 struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid); 3319 3320 /* Note: 3321 * This device has never been set up for guest mode. 3322 * we should not modify the IRTE 3323 */ 3324 if (!dev_data || !dev_data->use_vapic) 3325 return 0; 3326 3327 ir_data->cfg = irqd_cfg(data); 3328 pi_data->ir_data = ir_data; 3329 3330 /* Note: 3331 * SVM tries to set up for VAPIC mode, but we are in 3332 * legacy mode. So, we force legacy mode instead. 3333 */ 3334 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) { 3335 pr_debug("%s: Fall back to using intr legacy remap\n", 3336 __func__); 3337 pi_data->is_guest_mode = false; 3338 } 3339 3340 iommu = amd_iommu_rlookup_table[irte_info->devid]; 3341 if (iommu == NULL) 3342 return -EINVAL; 3343 3344 pi_data->prev_ga_tag = ir_data->cached_ga_tag; 3345 if (pi_data->is_guest_mode) { 3346 ir_data->ga_root_ptr = (pi_data->base >> 12); 3347 ir_data->ga_vector = vcpu_pi_info->vector; 3348 ir_data->ga_tag = pi_data->ga_tag; 3349 ret = amd_iommu_activate_guest_mode(ir_data); 3350 if (!ret) 3351 ir_data->cached_ga_tag = pi_data->ga_tag; 3352 } else { 3353 ret = amd_iommu_deactivate_guest_mode(ir_data); 3354 3355 /* 3356 * This communicates the ga_tag back to the caller 3357 * so that it can do all the necessary clean up. 3358 */ 3359 if (!ret) 3360 ir_data->cached_ga_tag = 0; 3361 } 3362 3363 return ret; 3364 } 3365 3366 3367 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu, 3368 struct amd_ir_data *ir_data, 3369 struct irq_2_irte *irte_info, 3370 struct irq_cfg *cfg) 3371 { 3372 3373 /* 3374 * Atomically updates the IRTE with the new destination, vector 3375 * and flushes the interrupt entry cache. 3376 */ 3377 iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid, 3378 irte_info->index, cfg->vector, 3379 cfg->dest_apicid); 3380 } 3381 3382 static int amd_ir_set_affinity(struct irq_data *data, 3383 const struct cpumask *mask, bool force) 3384 { 3385 struct amd_ir_data *ir_data = data->chip_data; 3386 struct irq_2_irte *irte_info = &ir_data->irq_2_irte; 3387 struct irq_cfg *cfg = irqd_cfg(data); 3388 struct irq_data *parent = data->parent_data; 3389 struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid]; 3390 int ret; 3391 3392 if (!iommu) 3393 return -ENODEV; 3394 3395 ret = parent->chip->irq_set_affinity(parent, mask, force); 3396 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE) 3397 return ret; 3398 3399 amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg); 3400 /* 3401 * After this point, all the interrupts will start arriving 3402 * at the new destination. So, time to cleanup the previous 3403 * vector allocation. 3404 */ 3405 send_cleanup_vector(cfg); 3406 3407 return IRQ_SET_MASK_OK_DONE; 3408 } 3409 3410 static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg) 3411 { 3412 struct amd_ir_data *ir_data = irq_data->chip_data; 3413 3414 *msg = ir_data->msi_entry; 3415 } 3416 3417 static struct irq_chip amd_ir_chip = { 3418 .name = "AMD-IR", 3419 .irq_ack = apic_ack_irq, 3420 .irq_set_affinity = amd_ir_set_affinity, 3421 .irq_set_vcpu_affinity = amd_ir_set_vcpu_affinity, 3422 .irq_compose_msi_msg = ir_compose_msi_msg, 3423 }; 3424 3425 int amd_iommu_create_irq_domain(struct amd_iommu *iommu) 3426 { 3427 struct fwnode_handle *fn; 3428 3429 fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index); 3430 if (!fn) 3431 return -ENOMEM; 3432 iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu); 3433 if (!iommu->ir_domain) { 3434 irq_domain_free_fwnode(fn); 3435 return -ENOMEM; 3436 } 3437 3438 iommu->ir_domain->parent = arch_get_ir_parent_domain(); 3439 iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain, 3440 "AMD-IR-MSI", 3441 iommu->index); 3442 return 0; 3443 } 3444 3445 int amd_iommu_update_ga(int cpu, bool is_run, void *data) 3446 { 3447 unsigned long flags; 3448 struct amd_iommu *iommu; 3449 struct irq_remap_table *table; 3450 struct amd_ir_data *ir_data = (struct amd_ir_data *)data; 3451 int devid = ir_data->irq_2_irte.devid; 3452 struct irte_ga *entry = (struct irte_ga *) ir_data->entry; 3453 struct irte_ga *ref = (struct irte_ga *) ir_data->ref; 3454 3455 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) || 3456 !ref || !entry || !entry->lo.fields_vapic.guest_mode) 3457 return 0; 3458 3459 iommu = amd_iommu_rlookup_table[devid]; 3460 if (!iommu) 3461 return -ENODEV; 3462 3463 table = get_irq_table(devid); 3464 if (!table) 3465 return -ENODEV; 3466 3467 raw_spin_lock_irqsave(&table->lock, flags); 3468 3469 if (ref->lo.fields_vapic.guest_mode) { 3470 if (cpu >= 0) { 3471 ref->lo.fields_vapic.destination = 3472 APICID_TO_IRTE_DEST_LO(cpu); 3473 ref->hi.fields.destination = 3474 APICID_TO_IRTE_DEST_HI(cpu); 3475 } 3476 ref->lo.fields_vapic.is_run = is_run; 3477 barrier(); 3478 } 3479 3480 raw_spin_unlock_irqrestore(&table->lock, flags); 3481 3482 iommu_flush_irt(iommu, devid); 3483 iommu_completion_wait(iommu); 3484 return 0; 3485 } 3486 EXPORT_SYMBOL(amd_iommu_update_ga); 3487 #endif 3488