xref: /openbmc/linux/drivers/iommu/amd/iommu.c (revision 2154aca21408752eaa3eeaf2ba6e942724ff2a4d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
4  * Author: Joerg Roedel <jroedel@suse.de>
5  *         Leo Duran <leo.duran@amd.com>
6  */
7 
8 #define pr_fmt(fmt)     "AMD-Vi: " fmt
9 #define dev_fmt(fmt)    pr_fmt(fmt)
10 
11 #include <linux/ratelimit.h>
12 #include <linux/pci.h>
13 #include <linux/acpi.h>
14 #include <linux/amba/bus.h>
15 #include <linux/platform_device.h>
16 #include <linux/pci-ats.h>
17 #include <linux/bitmap.h>
18 #include <linux/slab.h>
19 #include <linux/debugfs.h>
20 #include <linux/scatterlist.h>
21 #include <linux/dma-map-ops.h>
22 #include <linux/dma-direct.h>
23 #include <linux/dma-iommu.h>
24 #include <linux/iommu-helper.h>
25 #include <linux/delay.h>
26 #include <linux/amd-iommu.h>
27 #include <linux/notifier.h>
28 #include <linux/export.h>
29 #include <linux/irq.h>
30 #include <linux/msi.h>
31 #include <linux/irqdomain.h>
32 #include <linux/percpu.h>
33 #include <linux/io-pgtable.h>
34 #include <linux/cc_platform.h>
35 #include <asm/irq_remapping.h>
36 #include <asm/io_apic.h>
37 #include <asm/apic.h>
38 #include <asm/hw_irq.h>
39 #include <asm/proto.h>
40 #include <asm/iommu.h>
41 #include <asm/gart.h>
42 #include <asm/dma.h>
43 
44 #include "amd_iommu.h"
45 #include "../irq_remapping.h"
46 
47 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
48 
49 #define LOOP_TIMEOUT	100000
50 
51 /* IO virtual address start page frame number */
52 #define IOVA_START_PFN		(1)
53 #define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)
54 
55 /* Reserved IOVA ranges */
56 #define MSI_RANGE_START		(0xfee00000)
57 #define MSI_RANGE_END		(0xfeefffff)
58 #define HT_RANGE_START		(0xfd00000000ULL)
59 #define HT_RANGE_END		(0xffffffffffULL)
60 
61 #define DEFAULT_PGTABLE_LEVEL	PAGE_MODE_3_LEVEL
62 
63 static DEFINE_SPINLOCK(pd_bitmap_lock);
64 
65 LIST_HEAD(ioapic_map);
66 LIST_HEAD(hpet_map);
67 LIST_HEAD(acpihid_map);
68 
69 /*
70  * Domain for untranslated devices - only allocated
71  * if iommu=pt passed on kernel cmd line.
72  */
73 const struct iommu_ops amd_iommu_ops;
74 
75 static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
76 int amd_iommu_max_glx_val = -1;
77 
78 /*
79  * general struct to manage commands send to an IOMMU
80  */
81 struct iommu_cmd {
82 	u32 data[4];
83 };
84 
85 struct kmem_cache *amd_iommu_irq_cache;
86 
87 static void detach_device(struct device *dev);
88 
89 /****************************************************************************
90  *
91  * Helper functions
92  *
93  ****************************************************************************/
94 
95 static inline int get_acpihid_device_id(struct device *dev,
96 					struct acpihid_map_entry **entry)
97 {
98 	struct acpi_device *adev = ACPI_COMPANION(dev);
99 	struct acpihid_map_entry *p;
100 
101 	if (!adev)
102 		return -ENODEV;
103 
104 	list_for_each_entry(p, &acpihid_map, list) {
105 		if (acpi_dev_hid_uid_match(adev, p->hid,
106 					   p->uid[0] ? p->uid : NULL)) {
107 			if (entry)
108 				*entry = p;
109 			return p->devid;
110 		}
111 	}
112 	return -EINVAL;
113 }
114 
115 static inline int get_device_sbdf_id(struct device *dev)
116 {
117 	int sbdf;
118 
119 	if (dev_is_pci(dev))
120 		sbdf = get_pci_sbdf_id(to_pci_dev(dev));
121 	else
122 		sbdf = get_acpihid_device_id(dev, NULL);
123 
124 	return sbdf;
125 }
126 
127 struct dev_table_entry *get_dev_table(struct amd_iommu *iommu)
128 {
129 	struct dev_table_entry *dev_table;
130 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
131 
132 	BUG_ON(pci_seg == NULL);
133 	dev_table = pci_seg->dev_table;
134 	BUG_ON(dev_table == NULL);
135 
136 	return dev_table;
137 }
138 
139 static inline u16 get_device_segment(struct device *dev)
140 {
141 	u16 seg;
142 
143 	if (dev_is_pci(dev)) {
144 		struct pci_dev *pdev = to_pci_dev(dev);
145 
146 		seg = pci_domain_nr(pdev->bus);
147 	} else {
148 		u32 devid = get_acpihid_device_id(dev, NULL);
149 
150 		seg = PCI_SBDF_TO_SEGID(devid);
151 	}
152 
153 	return seg;
154 }
155 
156 /* Writes the specific IOMMU for a device into the PCI segment rlookup table */
157 void amd_iommu_set_rlookup_table(struct amd_iommu *iommu, u16 devid)
158 {
159 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
160 
161 	pci_seg->rlookup_table[devid] = iommu;
162 }
163 
164 static struct amd_iommu *__rlookup_amd_iommu(u16 seg, u16 devid)
165 {
166 	struct amd_iommu_pci_seg *pci_seg;
167 
168 	for_each_pci_segment(pci_seg) {
169 		if (pci_seg->id == seg)
170 			return pci_seg->rlookup_table[devid];
171 	}
172 	return NULL;
173 }
174 
175 static struct amd_iommu *rlookup_amd_iommu(struct device *dev)
176 {
177 	u16 seg = get_device_segment(dev);
178 	int devid = get_device_sbdf_id(dev);
179 
180 	if (devid < 0)
181 		return NULL;
182 	return __rlookup_amd_iommu(seg, PCI_SBDF_TO_DEVID(devid));
183 }
184 
185 static struct protection_domain *to_pdomain(struct iommu_domain *dom)
186 {
187 	return container_of(dom, struct protection_domain, domain);
188 }
189 
190 static struct iommu_dev_data *alloc_dev_data(struct amd_iommu *iommu, u16 devid)
191 {
192 	struct iommu_dev_data *dev_data;
193 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
194 
195 	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
196 	if (!dev_data)
197 		return NULL;
198 
199 	spin_lock_init(&dev_data->lock);
200 	dev_data->devid = devid;
201 	ratelimit_default_init(&dev_data->rs);
202 
203 	llist_add(&dev_data->dev_data_list, &pci_seg->dev_data_list);
204 	return dev_data;
205 }
206 
207 static struct iommu_dev_data *search_dev_data(struct amd_iommu *iommu, u16 devid)
208 {
209 	struct iommu_dev_data *dev_data;
210 	struct llist_node *node;
211 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
212 
213 	if (llist_empty(&pci_seg->dev_data_list))
214 		return NULL;
215 
216 	node = pci_seg->dev_data_list.first;
217 	llist_for_each_entry(dev_data, node, dev_data_list) {
218 		if (dev_data->devid == devid)
219 			return dev_data;
220 	}
221 
222 	return NULL;
223 }
224 
225 static int clone_alias(struct pci_dev *pdev, u16 alias, void *data)
226 {
227 	struct amd_iommu *iommu;
228 	struct dev_table_entry *dev_table;
229 	u16 devid = pci_dev_id(pdev);
230 
231 	if (devid == alias)
232 		return 0;
233 
234 	iommu = rlookup_amd_iommu(&pdev->dev);
235 	if (!iommu)
236 		return 0;
237 
238 	amd_iommu_set_rlookup_table(iommu, alias);
239 	dev_table = get_dev_table(iommu);
240 	memcpy(dev_table[alias].data,
241 	       dev_table[devid].data,
242 	       sizeof(dev_table[alias].data));
243 
244 	return 0;
245 }
246 
247 static void clone_aliases(struct amd_iommu *iommu, struct device *dev)
248 {
249 	struct pci_dev *pdev;
250 
251 	if (!dev_is_pci(dev))
252 		return;
253 	pdev = to_pci_dev(dev);
254 
255 	/*
256 	 * The IVRS alias stored in the alias table may not be
257 	 * part of the PCI DMA aliases if it's bus differs
258 	 * from the original device.
259 	 */
260 	clone_alias(pdev, iommu->pci_seg->alias_table[pci_dev_id(pdev)], NULL);
261 
262 	pci_for_each_dma_alias(pdev, clone_alias, NULL);
263 }
264 
265 static void setup_aliases(struct amd_iommu *iommu, struct device *dev)
266 {
267 	struct pci_dev *pdev = to_pci_dev(dev);
268 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
269 	u16 ivrs_alias;
270 
271 	/* For ACPI HID devices, there are no aliases */
272 	if (!dev_is_pci(dev))
273 		return;
274 
275 	/*
276 	 * Add the IVRS alias to the pci aliases if it is on the same
277 	 * bus. The IVRS table may know about a quirk that we don't.
278 	 */
279 	ivrs_alias = pci_seg->alias_table[pci_dev_id(pdev)];
280 	if (ivrs_alias != pci_dev_id(pdev) &&
281 	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number)
282 		pci_add_dma_alias(pdev, ivrs_alias & 0xff, 1);
283 
284 	clone_aliases(iommu, dev);
285 }
286 
287 static struct iommu_dev_data *find_dev_data(struct amd_iommu *iommu, u16 devid)
288 {
289 	struct iommu_dev_data *dev_data;
290 
291 	dev_data = search_dev_data(iommu, devid);
292 
293 	if (dev_data == NULL) {
294 		dev_data = alloc_dev_data(iommu, devid);
295 		if (!dev_data)
296 			return NULL;
297 
298 		if (translation_pre_enabled(iommu))
299 			dev_data->defer_attach = true;
300 	}
301 
302 	return dev_data;
303 }
304 
305 /*
306 * Find or create an IOMMU group for a acpihid device.
307 */
308 static struct iommu_group *acpihid_device_group(struct device *dev)
309 {
310 	struct acpihid_map_entry *p, *entry = NULL;
311 	int devid;
312 
313 	devid = get_acpihid_device_id(dev, &entry);
314 	if (devid < 0)
315 		return ERR_PTR(devid);
316 
317 	list_for_each_entry(p, &acpihid_map, list) {
318 		if ((devid == p->devid) && p->group)
319 			entry->group = p->group;
320 	}
321 
322 	if (!entry->group)
323 		entry->group = generic_device_group(dev);
324 	else
325 		iommu_group_ref_get(entry->group);
326 
327 	return entry->group;
328 }
329 
330 static bool pci_iommuv2_capable(struct pci_dev *pdev)
331 {
332 	static const int caps[] = {
333 		PCI_EXT_CAP_ID_PRI,
334 		PCI_EXT_CAP_ID_PASID,
335 	};
336 	int i, pos;
337 
338 	if (!pci_ats_supported(pdev))
339 		return false;
340 
341 	for (i = 0; i < 2; ++i) {
342 		pos = pci_find_ext_capability(pdev, caps[i]);
343 		if (pos == 0)
344 			return false;
345 	}
346 
347 	return true;
348 }
349 
350 /*
351  * This function checks if the driver got a valid device from the caller to
352  * avoid dereferencing invalid pointers.
353  */
354 static bool check_device(struct device *dev)
355 {
356 	struct amd_iommu_pci_seg *pci_seg;
357 	struct amd_iommu *iommu;
358 	int devid, sbdf;
359 
360 	if (!dev)
361 		return false;
362 
363 	sbdf = get_device_sbdf_id(dev);
364 	if (sbdf < 0)
365 		return false;
366 	devid = PCI_SBDF_TO_DEVID(sbdf);
367 
368 	iommu = rlookup_amd_iommu(dev);
369 	if (!iommu)
370 		return false;
371 
372 	/* Out of our scope? */
373 	pci_seg = iommu->pci_seg;
374 	if (devid > pci_seg->last_bdf)
375 		return false;
376 
377 	return true;
378 }
379 
380 static int iommu_init_device(struct amd_iommu *iommu, struct device *dev)
381 {
382 	struct iommu_dev_data *dev_data;
383 	int devid, sbdf;
384 
385 	if (dev_iommu_priv_get(dev))
386 		return 0;
387 
388 	sbdf = get_device_sbdf_id(dev);
389 	if (sbdf < 0)
390 		return sbdf;
391 
392 	devid = PCI_SBDF_TO_DEVID(sbdf);
393 	dev_data = find_dev_data(iommu, devid);
394 	if (!dev_data)
395 		return -ENOMEM;
396 
397 	dev_data->dev = dev;
398 	setup_aliases(iommu, dev);
399 
400 	/*
401 	 * By default we use passthrough mode for IOMMUv2 capable device.
402 	 * But if amd_iommu=force_isolation is set (e.g. to debug DMA to
403 	 * invalid address), we ignore the capability for the device so
404 	 * it'll be forced to go into translation mode.
405 	 */
406 	if ((iommu_default_passthrough() || !amd_iommu_force_isolation) &&
407 	    dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
408 		dev_data->iommu_v2 = iommu->is_iommu_v2;
409 	}
410 
411 	dev_iommu_priv_set(dev, dev_data);
412 
413 	return 0;
414 }
415 
416 static void iommu_ignore_device(struct amd_iommu *iommu, struct device *dev)
417 {
418 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
419 	struct dev_table_entry *dev_table = get_dev_table(iommu);
420 	int devid, sbdf;
421 
422 	sbdf = get_device_sbdf_id(dev);
423 	if (sbdf < 0)
424 		return;
425 
426 	devid = PCI_SBDF_TO_DEVID(sbdf);
427 	pci_seg->rlookup_table[devid] = NULL;
428 	memset(&dev_table[devid], 0, sizeof(struct dev_table_entry));
429 
430 	setup_aliases(iommu, dev);
431 }
432 
433 static void amd_iommu_uninit_device(struct device *dev)
434 {
435 	struct iommu_dev_data *dev_data;
436 
437 	dev_data = dev_iommu_priv_get(dev);
438 	if (!dev_data)
439 		return;
440 
441 	if (dev_data->domain)
442 		detach_device(dev);
443 
444 	dev_iommu_priv_set(dev, NULL);
445 
446 	/*
447 	 * We keep dev_data around for unplugged devices and reuse it when the
448 	 * device is re-plugged - not doing so would introduce a ton of races.
449 	 */
450 }
451 
452 /****************************************************************************
453  *
454  * Interrupt handling functions
455  *
456  ****************************************************************************/
457 
458 static void dump_dte_entry(struct amd_iommu *iommu, u16 devid)
459 {
460 	int i;
461 	struct dev_table_entry *dev_table = get_dev_table(iommu);
462 
463 	for (i = 0; i < 4; ++i)
464 		pr_err("DTE[%d]: %016llx\n", i, dev_table[devid].data[i]);
465 }
466 
467 static void dump_command(unsigned long phys_addr)
468 {
469 	struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
470 	int i;
471 
472 	for (i = 0; i < 4; ++i)
473 		pr_err("CMD[%d]: %08x\n", i, cmd->data[i]);
474 }
475 
476 static void amd_iommu_report_rmp_hw_error(struct amd_iommu *iommu, volatile u32 *event)
477 {
478 	struct iommu_dev_data *dev_data = NULL;
479 	int devid, vmg_tag, flags;
480 	struct pci_dev *pdev;
481 	u64 spa;
482 
483 	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
484 	vmg_tag = (event[1]) & 0xFFFF;
485 	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
486 	spa     = ((u64)event[3] << 32) | (event[2] & 0xFFFFFFF8);
487 
488 	pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
489 					   devid & 0xff);
490 	if (pdev)
491 		dev_data = dev_iommu_priv_get(&pdev->dev);
492 
493 	if (dev_data) {
494 		if (__ratelimit(&dev_data->rs)) {
495 			pci_err(pdev, "Event logged [RMP_HW_ERROR vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n",
496 				vmg_tag, spa, flags);
497 		}
498 	} else {
499 		pr_err_ratelimited("Event logged [RMP_HW_ERROR device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n",
500 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
501 			vmg_tag, spa, flags);
502 	}
503 
504 	if (pdev)
505 		pci_dev_put(pdev);
506 }
507 
508 static void amd_iommu_report_rmp_fault(struct amd_iommu *iommu, volatile u32 *event)
509 {
510 	struct iommu_dev_data *dev_data = NULL;
511 	int devid, flags_rmp, vmg_tag, flags;
512 	struct pci_dev *pdev;
513 	u64 gpa;
514 
515 	devid     = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
516 	flags_rmp = (event[0] >> EVENT_FLAGS_SHIFT) & 0xFF;
517 	vmg_tag   = (event[1]) & 0xFFFF;
518 	flags     = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
519 	gpa       = ((u64)event[3] << 32) | event[2];
520 
521 	pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
522 					   devid & 0xff);
523 	if (pdev)
524 		dev_data = dev_iommu_priv_get(&pdev->dev);
525 
526 	if (dev_data) {
527 		if (__ratelimit(&dev_data->rs)) {
528 			pci_err(pdev, "Event logged [RMP_PAGE_FAULT vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n",
529 				vmg_tag, gpa, flags_rmp, flags);
530 		}
531 	} else {
532 		pr_err_ratelimited("Event logged [RMP_PAGE_FAULT device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n",
533 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
534 			vmg_tag, gpa, flags_rmp, flags);
535 	}
536 
537 	if (pdev)
538 		pci_dev_put(pdev);
539 }
540 
541 #define IS_IOMMU_MEM_TRANSACTION(flags)		\
542 	(((flags) & EVENT_FLAG_I) == 0)
543 
544 #define IS_WRITE_REQUEST(flags)			\
545 	((flags) & EVENT_FLAG_RW)
546 
547 static void amd_iommu_report_page_fault(struct amd_iommu *iommu,
548 					u16 devid, u16 domain_id,
549 					u64 address, int flags)
550 {
551 	struct iommu_dev_data *dev_data = NULL;
552 	struct pci_dev *pdev;
553 
554 	pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
555 					   devid & 0xff);
556 	if (pdev)
557 		dev_data = dev_iommu_priv_get(&pdev->dev);
558 
559 	if (dev_data) {
560 		/*
561 		 * If this is a DMA fault (for which the I(nterrupt)
562 		 * bit will be unset), allow report_iommu_fault() to
563 		 * prevent logging it.
564 		 */
565 		if (IS_IOMMU_MEM_TRANSACTION(flags)) {
566 			if (!report_iommu_fault(&dev_data->domain->domain,
567 						&pdev->dev, address,
568 						IS_WRITE_REQUEST(flags) ?
569 							IOMMU_FAULT_WRITE :
570 							IOMMU_FAULT_READ))
571 				goto out;
572 		}
573 
574 		if (__ratelimit(&dev_data->rs)) {
575 			pci_err(pdev, "Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%llx flags=0x%04x]\n",
576 				domain_id, address, flags);
577 		}
578 	} else {
579 		pr_err_ratelimited("Event logged [IO_PAGE_FAULT device=%04x:%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n",
580 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
581 			domain_id, address, flags);
582 	}
583 
584 out:
585 	if (pdev)
586 		pci_dev_put(pdev);
587 }
588 
589 static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
590 {
591 	struct device *dev = iommu->iommu.dev;
592 	int type, devid, flags, tag;
593 	volatile u32 *event = __evt;
594 	int count = 0;
595 	u64 address;
596 	u32 pasid;
597 
598 retry:
599 	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
600 	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
601 	pasid   = (event[0] & EVENT_DOMID_MASK_HI) |
602 		  (event[1] & EVENT_DOMID_MASK_LO);
603 	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
604 	address = (u64)(((u64)event[3]) << 32) | event[2];
605 
606 	if (type == 0) {
607 		/* Did we hit the erratum? */
608 		if (++count == LOOP_TIMEOUT) {
609 			pr_err("No event written to event log\n");
610 			return;
611 		}
612 		udelay(1);
613 		goto retry;
614 	}
615 
616 	if (type == EVENT_TYPE_IO_FAULT) {
617 		amd_iommu_report_page_fault(iommu, devid, pasid, address, flags);
618 		return;
619 	}
620 
621 	switch (type) {
622 	case EVENT_TYPE_ILL_DEV:
623 		dev_err(dev, "Event logged [ILLEGAL_DEV_TABLE_ENTRY device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
624 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
625 			pasid, address, flags);
626 		dump_dte_entry(iommu, devid);
627 		break;
628 	case EVENT_TYPE_DEV_TAB_ERR:
629 		dev_err(dev, "Event logged [DEV_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x "
630 			"address=0x%llx flags=0x%04x]\n",
631 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
632 			address, flags);
633 		break;
634 	case EVENT_TYPE_PAGE_TAB_ERR:
635 		dev_err(dev, "Event logged [PAGE_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x pasid=0x%04x address=0x%llx flags=0x%04x]\n",
636 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
637 			pasid, address, flags);
638 		break;
639 	case EVENT_TYPE_ILL_CMD:
640 		dev_err(dev, "Event logged [ILLEGAL_COMMAND_ERROR address=0x%llx]\n", address);
641 		dump_command(address);
642 		break;
643 	case EVENT_TYPE_CMD_HARD_ERR:
644 		dev_err(dev, "Event logged [COMMAND_HARDWARE_ERROR address=0x%llx flags=0x%04x]\n",
645 			address, flags);
646 		break;
647 	case EVENT_TYPE_IOTLB_INV_TO:
648 		dev_err(dev, "Event logged [IOTLB_INV_TIMEOUT device=%04x:%02x:%02x.%x address=0x%llx]\n",
649 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
650 			address);
651 		break;
652 	case EVENT_TYPE_INV_DEV_REQ:
653 		dev_err(dev, "Event logged [INVALID_DEVICE_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
654 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
655 			pasid, address, flags);
656 		break;
657 	case EVENT_TYPE_RMP_FAULT:
658 		amd_iommu_report_rmp_fault(iommu, event);
659 		break;
660 	case EVENT_TYPE_RMP_HW_ERR:
661 		amd_iommu_report_rmp_hw_error(iommu, event);
662 		break;
663 	case EVENT_TYPE_INV_PPR_REQ:
664 		pasid = PPR_PASID(*((u64 *)__evt));
665 		tag = event[1] & 0x03FF;
666 		dev_err(dev, "Event logged [INVALID_PPR_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x tag=0x%03x]\n",
667 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
668 			pasid, address, flags, tag);
669 		break;
670 	default:
671 		dev_err(dev, "Event logged [UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
672 			event[0], event[1], event[2], event[3]);
673 	}
674 
675 	memset(__evt, 0, 4 * sizeof(u32));
676 }
677 
678 static void iommu_poll_events(struct amd_iommu *iommu)
679 {
680 	u32 head, tail;
681 
682 	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
683 	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
684 
685 	while (head != tail) {
686 		iommu_print_event(iommu, iommu->evt_buf + head);
687 		head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
688 	}
689 
690 	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
691 }
692 
693 static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
694 {
695 	struct amd_iommu_fault fault;
696 
697 	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
698 		pr_err_ratelimited("Unknown PPR request received\n");
699 		return;
700 	}
701 
702 	fault.address   = raw[1];
703 	fault.pasid     = PPR_PASID(raw[0]);
704 	fault.sbdf      = PCI_SEG_DEVID_TO_SBDF(iommu->pci_seg->id, PPR_DEVID(raw[0]));
705 	fault.tag       = PPR_TAG(raw[0]);
706 	fault.flags     = PPR_FLAGS(raw[0]);
707 
708 	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
709 }
710 
711 static void iommu_poll_ppr_log(struct amd_iommu *iommu)
712 {
713 	u32 head, tail;
714 
715 	if (iommu->ppr_log == NULL)
716 		return;
717 
718 	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
719 	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
720 
721 	while (head != tail) {
722 		volatile u64 *raw;
723 		u64 entry[2];
724 		int i;
725 
726 		raw = (u64 *)(iommu->ppr_log + head);
727 
728 		/*
729 		 * Hardware bug: Interrupt may arrive before the entry is
730 		 * written to memory. If this happens we need to wait for the
731 		 * entry to arrive.
732 		 */
733 		for (i = 0; i < LOOP_TIMEOUT; ++i) {
734 			if (PPR_REQ_TYPE(raw[0]) != 0)
735 				break;
736 			udelay(1);
737 		}
738 
739 		/* Avoid memcpy function-call overhead */
740 		entry[0] = raw[0];
741 		entry[1] = raw[1];
742 
743 		/*
744 		 * To detect the hardware bug we need to clear the entry
745 		 * back to zero.
746 		 */
747 		raw[0] = raw[1] = 0UL;
748 
749 		/* Update head pointer of hardware ring-buffer */
750 		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
751 		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
752 
753 		/* Handle PPR entry */
754 		iommu_handle_ppr_entry(iommu, entry);
755 
756 		/* Refresh ring-buffer information */
757 		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
758 		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
759 	}
760 }
761 
762 #ifdef CONFIG_IRQ_REMAP
763 static int (*iommu_ga_log_notifier)(u32);
764 
765 int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
766 {
767 	iommu_ga_log_notifier = notifier;
768 
769 	return 0;
770 }
771 EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);
772 
773 static void iommu_poll_ga_log(struct amd_iommu *iommu)
774 {
775 	u32 head, tail, cnt = 0;
776 
777 	if (iommu->ga_log == NULL)
778 		return;
779 
780 	head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
781 	tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);
782 
783 	while (head != tail) {
784 		volatile u64 *raw;
785 		u64 log_entry;
786 
787 		raw = (u64 *)(iommu->ga_log + head);
788 		cnt++;
789 
790 		/* Avoid memcpy function-call overhead */
791 		log_entry = *raw;
792 
793 		/* Update head pointer of hardware ring-buffer */
794 		head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
795 		writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
796 
797 		/* Handle GA entry */
798 		switch (GA_REQ_TYPE(log_entry)) {
799 		case GA_GUEST_NR:
800 			if (!iommu_ga_log_notifier)
801 				break;
802 
803 			pr_debug("%s: devid=%#x, ga_tag=%#x\n",
804 				 __func__, GA_DEVID(log_entry),
805 				 GA_TAG(log_entry));
806 
807 			if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
808 				pr_err("GA log notifier failed.\n");
809 			break;
810 		default:
811 			break;
812 		}
813 	}
814 }
815 
816 static void
817 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu)
818 {
819 	if (!irq_remapping_enabled || !dev_is_pci(dev) ||
820 	    pci_dev_has_special_msi_domain(to_pci_dev(dev)))
821 		return;
822 
823 	dev_set_msi_domain(dev, iommu->msi_domain);
824 }
825 
826 #else /* CONFIG_IRQ_REMAP */
827 static inline void
828 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu) { }
829 #endif /* !CONFIG_IRQ_REMAP */
830 
831 #define AMD_IOMMU_INT_MASK	\
832 	(MMIO_STATUS_EVT_OVERFLOW_INT_MASK | \
833 	 MMIO_STATUS_EVT_INT_MASK | \
834 	 MMIO_STATUS_PPR_INT_MASK | \
835 	 MMIO_STATUS_GALOG_INT_MASK)
836 
837 irqreturn_t amd_iommu_int_thread(int irq, void *data)
838 {
839 	struct amd_iommu *iommu = (struct amd_iommu *) data;
840 	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
841 
842 	while (status & AMD_IOMMU_INT_MASK) {
843 		/* Enable interrupt sources again */
844 		writel(AMD_IOMMU_INT_MASK,
845 			iommu->mmio_base + MMIO_STATUS_OFFSET);
846 
847 		if (status & MMIO_STATUS_EVT_INT_MASK) {
848 			pr_devel("Processing IOMMU Event Log\n");
849 			iommu_poll_events(iommu);
850 		}
851 
852 		if (status & MMIO_STATUS_PPR_INT_MASK) {
853 			pr_devel("Processing IOMMU PPR Log\n");
854 			iommu_poll_ppr_log(iommu);
855 		}
856 
857 #ifdef CONFIG_IRQ_REMAP
858 		if (status & MMIO_STATUS_GALOG_INT_MASK) {
859 			pr_devel("Processing IOMMU GA Log\n");
860 			iommu_poll_ga_log(iommu);
861 		}
862 #endif
863 
864 		if (status & MMIO_STATUS_EVT_OVERFLOW_INT_MASK) {
865 			pr_info_ratelimited("IOMMU event log overflow\n");
866 			amd_iommu_restart_event_logging(iommu);
867 		}
868 
869 		/*
870 		 * Hardware bug: ERBT1312
871 		 * When re-enabling interrupt (by writing 1
872 		 * to clear the bit), the hardware might also try to set
873 		 * the interrupt bit in the event status register.
874 		 * In this scenario, the bit will be set, and disable
875 		 * subsequent interrupts.
876 		 *
877 		 * Workaround: The IOMMU driver should read back the
878 		 * status register and check if the interrupt bits are cleared.
879 		 * If not, driver will need to go through the interrupt handler
880 		 * again and re-clear the bits
881 		 */
882 		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
883 	}
884 	return IRQ_HANDLED;
885 }
886 
887 irqreturn_t amd_iommu_int_handler(int irq, void *data)
888 {
889 	return IRQ_WAKE_THREAD;
890 }
891 
892 /****************************************************************************
893  *
894  * IOMMU command queuing functions
895  *
896  ****************************************************************************/
897 
898 static int wait_on_sem(struct amd_iommu *iommu, u64 data)
899 {
900 	int i = 0;
901 
902 	while (*iommu->cmd_sem != data && i < LOOP_TIMEOUT) {
903 		udelay(1);
904 		i += 1;
905 	}
906 
907 	if (i == LOOP_TIMEOUT) {
908 		pr_alert("Completion-Wait loop timed out\n");
909 		return -EIO;
910 	}
911 
912 	return 0;
913 }
914 
915 static void copy_cmd_to_buffer(struct amd_iommu *iommu,
916 			       struct iommu_cmd *cmd)
917 {
918 	u8 *target;
919 	u32 tail;
920 
921 	/* Copy command to buffer */
922 	tail = iommu->cmd_buf_tail;
923 	target = iommu->cmd_buf + tail;
924 	memcpy(target, cmd, sizeof(*cmd));
925 
926 	tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
927 	iommu->cmd_buf_tail = tail;
928 
929 	/* Tell the IOMMU about it */
930 	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
931 }
932 
933 static void build_completion_wait(struct iommu_cmd *cmd,
934 				  struct amd_iommu *iommu,
935 				  u64 data)
936 {
937 	u64 paddr = iommu_virt_to_phys((void *)iommu->cmd_sem);
938 
939 	memset(cmd, 0, sizeof(*cmd));
940 	cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
941 	cmd->data[1] = upper_32_bits(paddr);
942 	cmd->data[2] = lower_32_bits(data);
943 	cmd->data[3] = upper_32_bits(data);
944 	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
945 }
946 
947 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
948 {
949 	memset(cmd, 0, sizeof(*cmd));
950 	cmd->data[0] = devid;
951 	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
952 }
953 
954 /*
955  * Builds an invalidation address which is suitable for one page or multiple
956  * pages. Sets the size bit (S) as needed is more than one page is flushed.
957  */
958 static inline u64 build_inv_address(u64 address, size_t size)
959 {
960 	u64 pages, end, msb_diff;
961 
962 	pages = iommu_num_pages(address, size, PAGE_SIZE);
963 
964 	if (pages == 1)
965 		return address & PAGE_MASK;
966 
967 	end = address + size - 1;
968 
969 	/*
970 	 * msb_diff would hold the index of the most significant bit that
971 	 * flipped between the start and end.
972 	 */
973 	msb_diff = fls64(end ^ address) - 1;
974 
975 	/*
976 	 * Bits 63:52 are sign extended. If for some reason bit 51 is different
977 	 * between the start and the end, invalidate everything.
978 	 */
979 	if (unlikely(msb_diff > 51)) {
980 		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
981 	} else {
982 		/*
983 		 * The msb-bit must be clear on the address. Just set all the
984 		 * lower bits.
985 		 */
986 		address |= (1ull << msb_diff) - 1;
987 	}
988 
989 	/* Clear bits 11:0 */
990 	address &= PAGE_MASK;
991 
992 	/* Set the size bit - we flush more than one 4kb page */
993 	return address | CMD_INV_IOMMU_PAGES_SIZE_MASK;
994 }
995 
996 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
997 				  size_t size, u16 domid, int pde)
998 {
999 	u64 inv_address = build_inv_address(address, size);
1000 
1001 	memset(cmd, 0, sizeof(*cmd));
1002 	cmd->data[1] |= domid;
1003 	cmd->data[2]  = lower_32_bits(inv_address);
1004 	cmd->data[3]  = upper_32_bits(inv_address);
1005 	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
1006 	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
1007 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
1008 }
1009 
1010 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
1011 				  u64 address, size_t size)
1012 {
1013 	u64 inv_address = build_inv_address(address, size);
1014 
1015 	memset(cmd, 0, sizeof(*cmd));
1016 	cmd->data[0]  = devid;
1017 	cmd->data[0] |= (qdep & 0xff) << 24;
1018 	cmd->data[1]  = devid;
1019 	cmd->data[2]  = lower_32_bits(inv_address);
1020 	cmd->data[3]  = upper_32_bits(inv_address);
1021 	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
1022 }
1023 
1024 static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, u32 pasid,
1025 				  u64 address, bool size)
1026 {
1027 	memset(cmd, 0, sizeof(*cmd));
1028 
1029 	address &= ~(0xfffULL);
1030 
1031 	cmd->data[0]  = pasid;
1032 	cmd->data[1]  = domid;
1033 	cmd->data[2]  = lower_32_bits(address);
1034 	cmd->data[3]  = upper_32_bits(address);
1035 	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
1036 	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
1037 	if (size)
1038 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
1039 	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
1040 }
1041 
1042 static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, u32 pasid,
1043 				  int qdep, u64 address, bool size)
1044 {
1045 	memset(cmd, 0, sizeof(*cmd));
1046 
1047 	address &= ~(0xfffULL);
1048 
1049 	cmd->data[0]  = devid;
1050 	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
1051 	cmd->data[0] |= (qdep  & 0xff) << 24;
1052 	cmd->data[1]  = devid;
1053 	cmd->data[1] |= (pasid & 0xff) << 16;
1054 	cmd->data[2]  = lower_32_bits(address);
1055 	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
1056 	cmd->data[3]  = upper_32_bits(address);
1057 	if (size)
1058 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
1059 	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
1060 }
1061 
1062 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, u32 pasid,
1063 			       int status, int tag, bool gn)
1064 {
1065 	memset(cmd, 0, sizeof(*cmd));
1066 
1067 	cmd->data[0]  = devid;
1068 	if (gn) {
1069 		cmd->data[1]  = pasid;
1070 		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
1071 	}
1072 	cmd->data[3]  = tag & 0x1ff;
1073 	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
1074 
1075 	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
1076 }
1077 
1078 static void build_inv_all(struct iommu_cmd *cmd)
1079 {
1080 	memset(cmd, 0, sizeof(*cmd));
1081 	CMD_SET_TYPE(cmd, CMD_INV_ALL);
1082 }
1083 
1084 static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
1085 {
1086 	memset(cmd, 0, sizeof(*cmd));
1087 	cmd->data[0] = devid;
1088 	CMD_SET_TYPE(cmd, CMD_INV_IRT);
1089 }
1090 
1091 /*
1092  * Writes the command to the IOMMUs command buffer and informs the
1093  * hardware about the new command.
1094  */
1095 static int __iommu_queue_command_sync(struct amd_iommu *iommu,
1096 				      struct iommu_cmd *cmd,
1097 				      bool sync)
1098 {
1099 	unsigned int count = 0;
1100 	u32 left, next_tail;
1101 
1102 	next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1103 again:
1104 	left      = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1105 
1106 	if (left <= 0x20) {
1107 		/* Skip udelay() the first time around */
1108 		if (count++) {
1109 			if (count == LOOP_TIMEOUT) {
1110 				pr_err("Command buffer timeout\n");
1111 				return -EIO;
1112 			}
1113 
1114 			udelay(1);
1115 		}
1116 
1117 		/* Update head and recheck remaining space */
1118 		iommu->cmd_buf_head = readl(iommu->mmio_base +
1119 					    MMIO_CMD_HEAD_OFFSET);
1120 
1121 		goto again;
1122 	}
1123 
1124 	copy_cmd_to_buffer(iommu, cmd);
1125 
1126 	/* Do we need to make sure all commands are processed? */
1127 	iommu->need_sync = sync;
1128 
1129 	return 0;
1130 }
1131 
1132 static int iommu_queue_command_sync(struct amd_iommu *iommu,
1133 				    struct iommu_cmd *cmd,
1134 				    bool sync)
1135 {
1136 	unsigned long flags;
1137 	int ret;
1138 
1139 	raw_spin_lock_irqsave(&iommu->lock, flags);
1140 	ret = __iommu_queue_command_sync(iommu, cmd, sync);
1141 	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1142 
1143 	return ret;
1144 }
1145 
1146 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1147 {
1148 	return iommu_queue_command_sync(iommu, cmd, true);
1149 }
1150 
1151 /*
1152  * This function queues a completion wait command into the command
1153  * buffer of an IOMMU
1154  */
1155 static int iommu_completion_wait(struct amd_iommu *iommu)
1156 {
1157 	struct iommu_cmd cmd;
1158 	unsigned long flags;
1159 	int ret;
1160 	u64 data;
1161 
1162 	if (!iommu->need_sync)
1163 		return 0;
1164 
1165 	raw_spin_lock_irqsave(&iommu->lock, flags);
1166 
1167 	data = ++iommu->cmd_sem_val;
1168 	build_completion_wait(&cmd, iommu, data);
1169 
1170 	ret = __iommu_queue_command_sync(iommu, &cmd, false);
1171 	if (ret)
1172 		goto out_unlock;
1173 
1174 	ret = wait_on_sem(iommu, data);
1175 
1176 out_unlock:
1177 	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1178 
1179 	return ret;
1180 }
1181 
1182 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1183 {
1184 	struct iommu_cmd cmd;
1185 
1186 	build_inv_dte(&cmd, devid);
1187 
1188 	return iommu_queue_command(iommu, &cmd);
1189 }
1190 
1191 static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
1192 {
1193 	u32 devid;
1194 	u16 last_bdf = iommu->pci_seg->last_bdf;
1195 
1196 	for (devid = 0; devid <= last_bdf; ++devid)
1197 		iommu_flush_dte(iommu, devid);
1198 
1199 	iommu_completion_wait(iommu);
1200 }
1201 
1202 /*
1203  * This function uses heavy locking and may disable irqs for some time. But
1204  * this is no issue because it is only called during resume.
1205  */
1206 static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
1207 {
1208 	u32 dom_id;
1209 	u16 last_bdf = iommu->pci_seg->last_bdf;
1210 
1211 	for (dom_id = 0; dom_id <= last_bdf; ++dom_id) {
1212 		struct iommu_cmd cmd;
1213 		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1214 				      dom_id, 1);
1215 		iommu_queue_command(iommu, &cmd);
1216 	}
1217 
1218 	iommu_completion_wait(iommu);
1219 }
1220 
1221 static void amd_iommu_flush_tlb_domid(struct amd_iommu *iommu, u32 dom_id)
1222 {
1223 	struct iommu_cmd cmd;
1224 
1225 	build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1226 			      dom_id, 1);
1227 	iommu_queue_command(iommu, &cmd);
1228 
1229 	iommu_completion_wait(iommu);
1230 }
1231 
1232 static void amd_iommu_flush_all(struct amd_iommu *iommu)
1233 {
1234 	struct iommu_cmd cmd;
1235 
1236 	build_inv_all(&cmd);
1237 
1238 	iommu_queue_command(iommu, &cmd);
1239 	iommu_completion_wait(iommu);
1240 }
1241 
1242 static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1243 {
1244 	struct iommu_cmd cmd;
1245 
1246 	build_inv_irt(&cmd, devid);
1247 
1248 	iommu_queue_command(iommu, &cmd);
1249 }
1250 
1251 static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
1252 {
1253 	u32 devid;
1254 	u16 last_bdf = iommu->pci_seg->last_bdf;
1255 
1256 	for (devid = 0; devid <= last_bdf; devid++)
1257 		iommu_flush_irt(iommu, devid);
1258 
1259 	iommu_completion_wait(iommu);
1260 }
1261 
1262 void iommu_flush_all_caches(struct amd_iommu *iommu)
1263 {
1264 	if (iommu_feature(iommu, FEATURE_IA)) {
1265 		amd_iommu_flush_all(iommu);
1266 	} else {
1267 		amd_iommu_flush_dte_all(iommu);
1268 		amd_iommu_flush_irt_all(iommu);
1269 		amd_iommu_flush_tlb_all(iommu);
1270 	}
1271 }
1272 
1273 /*
1274  * Command send function for flushing on-device TLB
1275  */
1276 static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1277 			      u64 address, size_t size)
1278 {
1279 	struct amd_iommu *iommu;
1280 	struct iommu_cmd cmd;
1281 	int qdep;
1282 
1283 	qdep     = dev_data->ats.qdep;
1284 	iommu    = rlookup_amd_iommu(dev_data->dev);
1285 	if (!iommu)
1286 		return -EINVAL;
1287 
1288 	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1289 
1290 	return iommu_queue_command(iommu, &cmd);
1291 }
1292 
1293 static int device_flush_dte_alias(struct pci_dev *pdev, u16 alias, void *data)
1294 {
1295 	struct amd_iommu *iommu = data;
1296 
1297 	return iommu_flush_dte(iommu, alias);
1298 }
1299 
1300 /*
1301  * Command send function for invalidating a device table entry
1302  */
1303 static int device_flush_dte(struct iommu_dev_data *dev_data)
1304 {
1305 	struct amd_iommu *iommu;
1306 	struct pci_dev *pdev = NULL;
1307 	struct amd_iommu_pci_seg *pci_seg;
1308 	u16 alias;
1309 	int ret;
1310 
1311 	iommu = rlookup_amd_iommu(dev_data->dev);
1312 	if (!iommu)
1313 		return -EINVAL;
1314 
1315 	if (dev_is_pci(dev_data->dev))
1316 		pdev = to_pci_dev(dev_data->dev);
1317 
1318 	if (pdev)
1319 		ret = pci_for_each_dma_alias(pdev,
1320 					     device_flush_dte_alias, iommu);
1321 	else
1322 		ret = iommu_flush_dte(iommu, dev_data->devid);
1323 	if (ret)
1324 		return ret;
1325 
1326 	pci_seg = iommu->pci_seg;
1327 	alias = pci_seg->alias_table[dev_data->devid];
1328 	if (alias != dev_data->devid) {
1329 		ret = iommu_flush_dte(iommu, alias);
1330 		if (ret)
1331 			return ret;
1332 	}
1333 
1334 	if (dev_data->ats.enabled)
1335 		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1336 
1337 	return ret;
1338 }
1339 
1340 /*
1341  * TLB invalidation function which is called from the mapping functions.
1342  * It invalidates a single PTE if the range to flush is within a single
1343  * page. Otherwise it flushes the whole TLB of the IOMMU.
1344  */
1345 static void __domain_flush_pages(struct protection_domain *domain,
1346 				 u64 address, size_t size, int pde)
1347 {
1348 	struct iommu_dev_data *dev_data;
1349 	struct iommu_cmd cmd;
1350 	int ret = 0, i;
1351 
1352 	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1353 
1354 	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1355 		if (!domain->dev_iommu[i])
1356 			continue;
1357 
1358 		/*
1359 		 * Devices of this domain are behind this IOMMU
1360 		 * We need a TLB flush
1361 		 */
1362 		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1363 	}
1364 
1365 	list_for_each_entry(dev_data, &domain->dev_list, list) {
1366 
1367 		if (!dev_data->ats.enabled)
1368 			continue;
1369 
1370 		ret |= device_flush_iotlb(dev_data, address, size);
1371 	}
1372 
1373 	WARN_ON(ret);
1374 }
1375 
1376 static void domain_flush_pages(struct protection_domain *domain,
1377 			       u64 address, size_t size, int pde)
1378 {
1379 	if (likely(!amd_iommu_np_cache)) {
1380 		__domain_flush_pages(domain, address, size, pde);
1381 		return;
1382 	}
1383 
1384 	/*
1385 	 * When NpCache is on, we infer that we run in a VM and use a vIOMMU.
1386 	 * In such setups it is best to avoid flushes of ranges which are not
1387 	 * naturally aligned, since it would lead to flushes of unmodified
1388 	 * PTEs. Such flushes would require the hypervisor to do more work than
1389 	 * necessary. Therefore, perform repeated flushes of aligned ranges
1390 	 * until you cover the range. Each iteration flushes the smaller
1391 	 * between the natural alignment of the address that we flush and the
1392 	 * greatest naturally aligned region that fits in the range.
1393 	 */
1394 	while (size != 0) {
1395 		int addr_alignment = __ffs(address);
1396 		int size_alignment = __fls(size);
1397 		int min_alignment;
1398 		size_t flush_size;
1399 
1400 		/*
1401 		 * size is always non-zero, but address might be zero, causing
1402 		 * addr_alignment to be negative. As the casting of the
1403 		 * argument in __ffs(address) to long might trim the high bits
1404 		 * of the address on x86-32, cast to long when doing the check.
1405 		 */
1406 		if (likely((unsigned long)address != 0))
1407 			min_alignment = min(addr_alignment, size_alignment);
1408 		else
1409 			min_alignment = size_alignment;
1410 
1411 		flush_size = 1ul << min_alignment;
1412 
1413 		__domain_flush_pages(domain, address, flush_size, pde);
1414 		address += flush_size;
1415 		size -= flush_size;
1416 	}
1417 }
1418 
1419 /* Flush the whole IO/TLB for a given protection domain - including PDE */
1420 void amd_iommu_domain_flush_tlb_pde(struct protection_domain *domain)
1421 {
1422 	domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1423 }
1424 
1425 void amd_iommu_domain_flush_complete(struct protection_domain *domain)
1426 {
1427 	int i;
1428 
1429 	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1430 		if (domain && !domain->dev_iommu[i])
1431 			continue;
1432 
1433 		/*
1434 		 * Devices of this domain are behind this IOMMU
1435 		 * We need to wait for completion of all commands.
1436 		 */
1437 		iommu_completion_wait(amd_iommus[i]);
1438 	}
1439 }
1440 
1441 /* Flush the not present cache if it exists */
1442 static void domain_flush_np_cache(struct protection_domain *domain,
1443 		dma_addr_t iova, size_t size)
1444 {
1445 	if (unlikely(amd_iommu_np_cache)) {
1446 		unsigned long flags;
1447 
1448 		spin_lock_irqsave(&domain->lock, flags);
1449 		domain_flush_pages(domain, iova, size, 1);
1450 		amd_iommu_domain_flush_complete(domain);
1451 		spin_unlock_irqrestore(&domain->lock, flags);
1452 	}
1453 }
1454 
1455 
1456 /*
1457  * This function flushes the DTEs for all devices in domain
1458  */
1459 static void domain_flush_devices(struct protection_domain *domain)
1460 {
1461 	struct iommu_dev_data *dev_data;
1462 
1463 	list_for_each_entry(dev_data, &domain->dev_list, list)
1464 		device_flush_dte(dev_data);
1465 }
1466 
1467 /****************************************************************************
1468  *
1469  * The next functions belong to the domain allocation. A domain is
1470  * allocated for every IOMMU as the default domain. If device isolation
1471  * is enabled, every device get its own domain. The most important thing
1472  * about domains is the page table mapping the DMA address space they
1473  * contain.
1474  *
1475  ****************************************************************************/
1476 
1477 static u16 domain_id_alloc(void)
1478 {
1479 	int id;
1480 
1481 	spin_lock(&pd_bitmap_lock);
1482 	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1483 	BUG_ON(id == 0);
1484 	if (id > 0 && id < MAX_DOMAIN_ID)
1485 		__set_bit(id, amd_iommu_pd_alloc_bitmap);
1486 	else
1487 		id = 0;
1488 	spin_unlock(&pd_bitmap_lock);
1489 
1490 	return id;
1491 }
1492 
1493 static void domain_id_free(int id)
1494 {
1495 	spin_lock(&pd_bitmap_lock);
1496 	if (id > 0 && id < MAX_DOMAIN_ID)
1497 		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
1498 	spin_unlock(&pd_bitmap_lock);
1499 }
1500 
1501 static void free_gcr3_tbl_level1(u64 *tbl)
1502 {
1503 	u64 *ptr;
1504 	int i;
1505 
1506 	for (i = 0; i < 512; ++i) {
1507 		if (!(tbl[i] & GCR3_VALID))
1508 			continue;
1509 
1510 		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1511 
1512 		free_page((unsigned long)ptr);
1513 	}
1514 }
1515 
1516 static void free_gcr3_tbl_level2(u64 *tbl)
1517 {
1518 	u64 *ptr;
1519 	int i;
1520 
1521 	for (i = 0; i < 512; ++i) {
1522 		if (!(tbl[i] & GCR3_VALID))
1523 			continue;
1524 
1525 		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1526 
1527 		free_gcr3_tbl_level1(ptr);
1528 	}
1529 }
1530 
1531 static void free_gcr3_table(struct protection_domain *domain)
1532 {
1533 	if (domain->glx == 2)
1534 		free_gcr3_tbl_level2(domain->gcr3_tbl);
1535 	else if (domain->glx == 1)
1536 		free_gcr3_tbl_level1(domain->gcr3_tbl);
1537 	else
1538 		BUG_ON(domain->glx != 0);
1539 
1540 	free_page((unsigned long)domain->gcr3_tbl);
1541 }
1542 
1543 static void set_dte_entry(struct amd_iommu *iommu, u16 devid,
1544 			  struct protection_domain *domain, bool ats, bool ppr)
1545 {
1546 	u64 pte_root = 0;
1547 	u64 flags = 0;
1548 	u32 old_domid;
1549 	struct dev_table_entry *dev_table = get_dev_table(iommu);
1550 
1551 	if (domain->iop.mode != PAGE_MODE_NONE)
1552 		pte_root = iommu_virt_to_phys(domain->iop.root);
1553 
1554 	pte_root |= (domain->iop.mode & DEV_ENTRY_MODE_MASK)
1555 		    << DEV_ENTRY_MODE_SHIFT;
1556 
1557 	pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V;
1558 
1559 	/*
1560 	 * When SNP is enabled, Only set TV bit when IOMMU
1561 	 * page translation is in use.
1562 	 */
1563 	if (!amd_iommu_snp_en || (domain->id != 0))
1564 		pte_root |= DTE_FLAG_TV;
1565 
1566 	flags = dev_table[devid].data[1];
1567 
1568 	if (ats)
1569 		flags |= DTE_FLAG_IOTLB;
1570 
1571 	if (ppr) {
1572 		if (iommu_feature(iommu, FEATURE_EPHSUP))
1573 			pte_root |= 1ULL << DEV_ENTRY_PPR;
1574 	}
1575 
1576 	if (domain->flags & PD_IOMMUV2_MASK) {
1577 		u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl);
1578 		u64 glx  = domain->glx;
1579 		u64 tmp;
1580 
1581 		pte_root |= DTE_FLAG_GV;
1582 		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
1583 
1584 		/* First mask out possible old values for GCR3 table */
1585 		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
1586 		flags    &= ~tmp;
1587 
1588 		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
1589 		flags    &= ~tmp;
1590 
1591 		/* Encode GCR3 table into DTE */
1592 		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
1593 		pte_root |= tmp;
1594 
1595 		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
1596 		flags    |= tmp;
1597 
1598 		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
1599 		flags    |= tmp;
1600 	}
1601 
1602 	flags &= ~DEV_DOMID_MASK;
1603 	flags |= domain->id;
1604 
1605 	old_domid = dev_table[devid].data[1] & DEV_DOMID_MASK;
1606 	dev_table[devid].data[1]  = flags;
1607 	dev_table[devid].data[0]  = pte_root;
1608 
1609 	/*
1610 	 * A kdump kernel might be replacing a domain ID that was copied from
1611 	 * the previous kernel--if so, it needs to flush the translation cache
1612 	 * entries for the old domain ID that is being overwritten
1613 	 */
1614 	if (old_domid) {
1615 		amd_iommu_flush_tlb_domid(iommu, old_domid);
1616 	}
1617 }
1618 
1619 static void clear_dte_entry(struct amd_iommu *iommu, u16 devid)
1620 {
1621 	struct dev_table_entry *dev_table = get_dev_table(iommu);
1622 
1623 	/* remove entry from the device table seen by the hardware */
1624 	dev_table[devid].data[0]  = DTE_FLAG_V;
1625 
1626 	if (!amd_iommu_snp_en)
1627 		dev_table[devid].data[0] |= DTE_FLAG_TV;
1628 
1629 	dev_table[devid].data[1] &= DTE_FLAG_MASK;
1630 
1631 	amd_iommu_apply_erratum_63(iommu, devid);
1632 }
1633 
1634 static void do_attach(struct iommu_dev_data *dev_data,
1635 		      struct protection_domain *domain)
1636 {
1637 	struct amd_iommu *iommu;
1638 	bool ats;
1639 
1640 	iommu = rlookup_amd_iommu(dev_data->dev);
1641 	if (!iommu)
1642 		return;
1643 	ats   = dev_data->ats.enabled;
1644 
1645 	/* Update data structures */
1646 	dev_data->domain = domain;
1647 	list_add(&dev_data->list, &domain->dev_list);
1648 
1649 	/* Do reference counting */
1650 	domain->dev_iommu[iommu->index] += 1;
1651 	domain->dev_cnt                 += 1;
1652 
1653 	/* Update device table */
1654 	set_dte_entry(iommu, dev_data->devid, domain,
1655 		      ats, dev_data->iommu_v2);
1656 	clone_aliases(iommu, dev_data->dev);
1657 
1658 	device_flush_dte(dev_data);
1659 }
1660 
1661 static void do_detach(struct iommu_dev_data *dev_data)
1662 {
1663 	struct protection_domain *domain = dev_data->domain;
1664 	struct amd_iommu *iommu;
1665 
1666 	iommu = rlookup_amd_iommu(dev_data->dev);
1667 	if (!iommu)
1668 		return;
1669 
1670 	/* Update data structures */
1671 	dev_data->domain = NULL;
1672 	list_del(&dev_data->list);
1673 	clear_dte_entry(iommu, dev_data->devid);
1674 	clone_aliases(iommu, dev_data->dev);
1675 
1676 	/* Flush the DTE entry */
1677 	device_flush_dte(dev_data);
1678 
1679 	/* Flush IOTLB */
1680 	amd_iommu_domain_flush_tlb_pde(domain);
1681 
1682 	/* Wait for the flushes to finish */
1683 	amd_iommu_domain_flush_complete(domain);
1684 
1685 	/* decrease reference counters - needs to happen after the flushes */
1686 	domain->dev_iommu[iommu->index] -= 1;
1687 	domain->dev_cnt                 -= 1;
1688 }
1689 
1690 static void pdev_iommuv2_disable(struct pci_dev *pdev)
1691 {
1692 	pci_disable_ats(pdev);
1693 	pci_disable_pri(pdev);
1694 	pci_disable_pasid(pdev);
1695 }
1696 
1697 static int pdev_iommuv2_enable(struct pci_dev *pdev)
1698 {
1699 	int ret;
1700 
1701 	/* Only allow access to user-accessible pages */
1702 	ret = pci_enable_pasid(pdev, 0);
1703 	if (ret)
1704 		goto out_err;
1705 
1706 	/* First reset the PRI state of the device */
1707 	ret = pci_reset_pri(pdev);
1708 	if (ret)
1709 		goto out_err;
1710 
1711 	/* Enable PRI */
1712 	/* FIXME: Hardcode number of outstanding requests for now */
1713 	ret = pci_enable_pri(pdev, 32);
1714 	if (ret)
1715 		goto out_err;
1716 
1717 	ret = pci_enable_ats(pdev, PAGE_SHIFT);
1718 	if (ret)
1719 		goto out_err;
1720 
1721 	return 0;
1722 
1723 out_err:
1724 	pci_disable_pri(pdev);
1725 	pci_disable_pasid(pdev);
1726 
1727 	return ret;
1728 }
1729 
1730 /*
1731  * If a device is not yet associated with a domain, this function makes the
1732  * device visible in the domain
1733  */
1734 static int attach_device(struct device *dev,
1735 			 struct protection_domain *domain)
1736 {
1737 	struct iommu_dev_data *dev_data;
1738 	struct pci_dev *pdev;
1739 	unsigned long flags;
1740 	int ret;
1741 
1742 	spin_lock_irqsave(&domain->lock, flags);
1743 
1744 	dev_data = dev_iommu_priv_get(dev);
1745 
1746 	spin_lock(&dev_data->lock);
1747 
1748 	ret = -EBUSY;
1749 	if (dev_data->domain != NULL)
1750 		goto out;
1751 
1752 	if (!dev_is_pci(dev))
1753 		goto skip_ats_check;
1754 
1755 	pdev = to_pci_dev(dev);
1756 	if (domain->flags & PD_IOMMUV2_MASK) {
1757 		struct iommu_domain *def_domain = iommu_get_dma_domain(dev);
1758 
1759 		ret = -EINVAL;
1760 		if (def_domain->type != IOMMU_DOMAIN_IDENTITY)
1761 			goto out;
1762 
1763 		if (dev_data->iommu_v2) {
1764 			if (pdev_iommuv2_enable(pdev) != 0)
1765 				goto out;
1766 
1767 			dev_data->ats.enabled = true;
1768 			dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
1769 			dev_data->pri_tlp     = pci_prg_resp_pasid_required(pdev);
1770 		}
1771 	} else if (amd_iommu_iotlb_sup &&
1772 		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
1773 		dev_data->ats.enabled = true;
1774 		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
1775 	}
1776 
1777 skip_ats_check:
1778 	ret = 0;
1779 
1780 	do_attach(dev_data, domain);
1781 
1782 	/*
1783 	 * We might boot into a crash-kernel here. The crashed kernel
1784 	 * left the caches in the IOMMU dirty. So we have to flush
1785 	 * here to evict all dirty stuff.
1786 	 */
1787 	amd_iommu_domain_flush_tlb_pde(domain);
1788 
1789 	amd_iommu_domain_flush_complete(domain);
1790 
1791 out:
1792 	spin_unlock(&dev_data->lock);
1793 
1794 	spin_unlock_irqrestore(&domain->lock, flags);
1795 
1796 	return ret;
1797 }
1798 
1799 /*
1800  * Removes a device from a protection domain (with devtable_lock held)
1801  */
1802 static void detach_device(struct device *dev)
1803 {
1804 	struct protection_domain *domain;
1805 	struct iommu_dev_data *dev_data;
1806 	unsigned long flags;
1807 
1808 	dev_data = dev_iommu_priv_get(dev);
1809 	domain   = dev_data->domain;
1810 
1811 	spin_lock_irqsave(&domain->lock, flags);
1812 
1813 	spin_lock(&dev_data->lock);
1814 
1815 	/*
1816 	 * First check if the device is still attached. It might already
1817 	 * be detached from its domain because the generic
1818 	 * iommu_detach_group code detached it and we try again here in
1819 	 * our alias handling.
1820 	 */
1821 	if (WARN_ON(!dev_data->domain))
1822 		goto out;
1823 
1824 	do_detach(dev_data);
1825 
1826 	if (!dev_is_pci(dev))
1827 		goto out;
1828 
1829 	if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
1830 		pdev_iommuv2_disable(to_pci_dev(dev));
1831 	else if (dev_data->ats.enabled)
1832 		pci_disable_ats(to_pci_dev(dev));
1833 
1834 	dev_data->ats.enabled = false;
1835 
1836 out:
1837 	spin_unlock(&dev_data->lock);
1838 
1839 	spin_unlock_irqrestore(&domain->lock, flags);
1840 }
1841 
1842 static struct iommu_device *amd_iommu_probe_device(struct device *dev)
1843 {
1844 	struct iommu_device *iommu_dev;
1845 	struct amd_iommu *iommu;
1846 	int ret;
1847 
1848 	if (!check_device(dev))
1849 		return ERR_PTR(-ENODEV);
1850 
1851 	iommu = rlookup_amd_iommu(dev);
1852 	if (!iommu)
1853 		return ERR_PTR(-ENODEV);
1854 
1855 	if (dev_iommu_priv_get(dev))
1856 		return &iommu->iommu;
1857 
1858 	ret = iommu_init_device(iommu, dev);
1859 	if (ret) {
1860 		if (ret != -ENOTSUPP)
1861 			dev_err(dev, "Failed to initialize - trying to proceed anyway\n");
1862 		iommu_dev = ERR_PTR(ret);
1863 		iommu_ignore_device(iommu, dev);
1864 	} else {
1865 		amd_iommu_set_pci_msi_domain(dev, iommu);
1866 		iommu_dev = &iommu->iommu;
1867 	}
1868 
1869 	iommu_completion_wait(iommu);
1870 
1871 	return iommu_dev;
1872 }
1873 
1874 static void amd_iommu_probe_finalize(struct device *dev)
1875 {
1876 	/* Domains are initialized for this device - have a look what we ended up with */
1877 	set_dma_ops(dev, NULL);
1878 	iommu_setup_dma_ops(dev, 0, U64_MAX);
1879 }
1880 
1881 static void amd_iommu_release_device(struct device *dev)
1882 {
1883 	struct amd_iommu *iommu;
1884 
1885 	if (!check_device(dev))
1886 		return;
1887 
1888 	iommu = rlookup_amd_iommu(dev);
1889 	if (!iommu)
1890 		return;
1891 
1892 	amd_iommu_uninit_device(dev);
1893 	iommu_completion_wait(iommu);
1894 }
1895 
1896 static struct iommu_group *amd_iommu_device_group(struct device *dev)
1897 {
1898 	if (dev_is_pci(dev))
1899 		return pci_device_group(dev);
1900 
1901 	return acpihid_device_group(dev);
1902 }
1903 
1904 /*****************************************************************************
1905  *
1906  * The next functions belong to the dma_ops mapping/unmapping code.
1907  *
1908  *****************************************************************************/
1909 
1910 static void update_device_table(struct protection_domain *domain)
1911 {
1912 	struct iommu_dev_data *dev_data;
1913 
1914 	list_for_each_entry(dev_data, &domain->dev_list, list) {
1915 		struct amd_iommu *iommu = rlookup_amd_iommu(dev_data->dev);
1916 
1917 		if (!iommu)
1918 			continue;
1919 		set_dte_entry(iommu, dev_data->devid, domain,
1920 			      dev_data->ats.enabled, dev_data->iommu_v2);
1921 		clone_aliases(iommu, dev_data->dev);
1922 	}
1923 }
1924 
1925 void amd_iommu_update_and_flush_device_table(struct protection_domain *domain)
1926 {
1927 	update_device_table(domain);
1928 	domain_flush_devices(domain);
1929 }
1930 
1931 void amd_iommu_domain_update(struct protection_domain *domain)
1932 {
1933 	/* Update device table */
1934 	amd_iommu_update_and_flush_device_table(domain);
1935 
1936 	/* Flush domain TLB(s) and wait for completion */
1937 	amd_iommu_domain_flush_tlb_pde(domain);
1938 	amd_iommu_domain_flush_complete(domain);
1939 }
1940 
1941 int __init amd_iommu_init_api(void)
1942 {
1943 	int err;
1944 
1945 	err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
1946 	if (err)
1947 		return err;
1948 #ifdef CONFIG_ARM_AMBA
1949 	err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
1950 	if (err)
1951 		return err;
1952 #endif
1953 	err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
1954 	if (err)
1955 		return err;
1956 
1957 	return 0;
1958 }
1959 
1960 /*****************************************************************************
1961  *
1962  * The following functions belong to the exported interface of AMD IOMMU
1963  *
1964  * This interface allows access to lower level functions of the IOMMU
1965  * like protection domain handling and assignement of devices to domains
1966  * which is not possible with the dma_ops interface.
1967  *
1968  *****************************************************************************/
1969 
1970 static void cleanup_domain(struct protection_domain *domain)
1971 {
1972 	struct iommu_dev_data *entry;
1973 	unsigned long flags;
1974 
1975 	spin_lock_irqsave(&domain->lock, flags);
1976 
1977 	while (!list_empty(&domain->dev_list)) {
1978 		entry = list_first_entry(&domain->dev_list,
1979 					 struct iommu_dev_data, list);
1980 		BUG_ON(!entry->domain);
1981 		do_detach(entry);
1982 	}
1983 
1984 	spin_unlock_irqrestore(&domain->lock, flags);
1985 }
1986 
1987 static void protection_domain_free(struct protection_domain *domain)
1988 {
1989 	if (!domain)
1990 		return;
1991 
1992 	if (domain->id)
1993 		domain_id_free(domain->id);
1994 
1995 	if (domain->iop.pgtbl_cfg.tlb)
1996 		free_io_pgtable_ops(&domain->iop.iop.ops);
1997 
1998 	kfree(domain);
1999 }
2000 
2001 static int protection_domain_init_v1(struct protection_domain *domain, int mode)
2002 {
2003 	u64 *pt_root = NULL;
2004 
2005 	BUG_ON(mode < PAGE_MODE_NONE || mode > PAGE_MODE_6_LEVEL);
2006 
2007 	spin_lock_init(&domain->lock);
2008 	domain->id = domain_id_alloc();
2009 	if (!domain->id)
2010 		return -ENOMEM;
2011 	INIT_LIST_HEAD(&domain->dev_list);
2012 
2013 	if (mode != PAGE_MODE_NONE) {
2014 		pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2015 		if (!pt_root)
2016 			return -ENOMEM;
2017 	}
2018 
2019 	amd_iommu_domain_set_pgtable(domain, pt_root, mode);
2020 
2021 	return 0;
2022 }
2023 
2024 static struct protection_domain *protection_domain_alloc(unsigned int type)
2025 {
2026 	struct io_pgtable_ops *pgtbl_ops;
2027 	struct protection_domain *domain;
2028 	int pgtable = amd_iommu_pgtable;
2029 	int mode = DEFAULT_PGTABLE_LEVEL;
2030 	int ret;
2031 
2032 	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2033 	if (!domain)
2034 		return NULL;
2035 
2036 	/*
2037 	 * Force IOMMU v1 page table when iommu=pt and
2038 	 * when allocating domain for pass-through devices.
2039 	 */
2040 	if (type == IOMMU_DOMAIN_IDENTITY) {
2041 		pgtable = AMD_IOMMU_V1;
2042 		mode = PAGE_MODE_NONE;
2043 	} else if (type == IOMMU_DOMAIN_UNMANAGED) {
2044 		pgtable = AMD_IOMMU_V1;
2045 	}
2046 
2047 	switch (pgtable) {
2048 	case AMD_IOMMU_V1:
2049 		ret = protection_domain_init_v1(domain, mode);
2050 		break;
2051 	default:
2052 		ret = -EINVAL;
2053 	}
2054 
2055 	if (ret)
2056 		goto out_err;
2057 
2058 	pgtbl_ops = alloc_io_pgtable_ops(pgtable, &domain->iop.pgtbl_cfg, domain);
2059 	if (!pgtbl_ops)
2060 		goto out_err;
2061 
2062 	return domain;
2063 out_err:
2064 	kfree(domain);
2065 	return NULL;
2066 }
2067 
2068 static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2069 {
2070 	struct protection_domain *domain;
2071 
2072 	/*
2073 	 * Since DTE[Mode]=0 is prohibited on SNP-enabled system,
2074 	 * default to use IOMMU_DOMAIN_DMA[_FQ].
2075 	 */
2076 	if (amd_iommu_snp_en && (type == IOMMU_DOMAIN_IDENTITY))
2077 		return NULL;
2078 
2079 	domain = protection_domain_alloc(type);
2080 	if (!domain)
2081 		return NULL;
2082 
2083 	domain->domain.geometry.aperture_start = 0;
2084 	domain->domain.geometry.aperture_end   = ~0ULL;
2085 	domain->domain.geometry.force_aperture = true;
2086 
2087 	return &domain->domain;
2088 }
2089 
2090 static void amd_iommu_domain_free(struct iommu_domain *dom)
2091 {
2092 	struct protection_domain *domain;
2093 
2094 	domain = to_pdomain(dom);
2095 
2096 	if (domain->dev_cnt > 0)
2097 		cleanup_domain(domain);
2098 
2099 	BUG_ON(domain->dev_cnt != 0);
2100 
2101 	if (!dom)
2102 		return;
2103 
2104 	if (domain->flags & PD_IOMMUV2_MASK)
2105 		free_gcr3_table(domain);
2106 
2107 	protection_domain_free(domain);
2108 }
2109 
2110 static void amd_iommu_detach_device(struct iommu_domain *dom,
2111 				    struct device *dev)
2112 {
2113 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2114 	struct amd_iommu *iommu;
2115 
2116 	if (!check_device(dev))
2117 		return;
2118 
2119 	if (dev_data->domain != NULL)
2120 		detach_device(dev);
2121 
2122 	iommu = rlookup_amd_iommu(dev);
2123 	if (!iommu)
2124 		return;
2125 
2126 #ifdef CONFIG_IRQ_REMAP
2127 	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
2128 	    (dom->type == IOMMU_DOMAIN_UNMANAGED))
2129 		dev_data->use_vapic = 0;
2130 #endif
2131 
2132 	iommu_completion_wait(iommu);
2133 }
2134 
2135 static int amd_iommu_attach_device(struct iommu_domain *dom,
2136 				   struct device *dev)
2137 {
2138 	struct protection_domain *domain = to_pdomain(dom);
2139 	struct iommu_dev_data *dev_data;
2140 	struct amd_iommu *iommu;
2141 	int ret;
2142 
2143 	if (!check_device(dev))
2144 		return -EINVAL;
2145 
2146 	dev_data = dev_iommu_priv_get(dev);
2147 	dev_data->defer_attach = false;
2148 
2149 	iommu = rlookup_amd_iommu(dev);
2150 	if (!iommu)
2151 		return -EINVAL;
2152 
2153 	if (dev_data->domain)
2154 		detach_device(dev);
2155 
2156 	ret = attach_device(dev, domain);
2157 
2158 #ifdef CONFIG_IRQ_REMAP
2159 	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
2160 		if (dom->type == IOMMU_DOMAIN_UNMANAGED)
2161 			dev_data->use_vapic = 1;
2162 		else
2163 			dev_data->use_vapic = 0;
2164 	}
2165 #endif
2166 
2167 	iommu_completion_wait(iommu);
2168 
2169 	return ret;
2170 }
2171 
2172 static void amd_iommu_iotlb_sync_map(struct iommu_domain *dom,
2173 				     unsigned long iova, size_t size)
2174 {
2175 	struct protection_domain *domain = to_pdomain(dom);
2176 	struct io_pgtable_ops *ops = &domain->iop.iop.ops;
2177 
2178 	if (ops->map)
2179 		domain_flush_np_cache(domain, iova, size);
2180 }
2181 
2182 static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
2183 			 phys_addr_t paddr, size_t page_size, int iommu_prot,
2184 			 gfp_t gfp)
2185 {
2186 	struct protection_domain *domain = to_pdomain(dom);
2187 	struct io_pgtable_ops *ops = &domain->iop.iop.ops;
2188 	int prot = 0;
2189 	int ret = -EINVAL;
2190 
2191 	if ((amd_iommu_pgtable == AMD_IOMMU_V1) &&
2192 	    (domain->iop.mode == PAGE_MODE_NONE))
2193 		return -EINVAL;
2194 
2195 	if (iommu_prot & IOMMU_READ)
2196 		prot |= IOMMU_PROT_IR;
2197 	if (iommu_prot & IOMMU_WRITE)
2198 		prot |= IOMMU_PROT_IW;
2199 
2200 	if (ops->map)
2201 		ret = ops->map(ops, iova, paddr, page_size, prot, gfp);
2202 
2203 	return ret;
2204 }
2205 
2206 static void amd_iommu_iotlb_gather_add_page(struct iommu_domain *domain,
2207 					    struct iommu_iotlb_gather *gather,
2208 					    unsigned long iova, size_t size)
2209 {
2210 	/*
2211 	 * AMD's IOMMU can flush as many pages as necessary in a single flush.
2212 	 * Unless we run in a virtual machine, which can be inferred according
2213 	 * to whether "non-present cache" is on, it is probably best to prefer
2214 	 * (potentially) too extensive TLB flushing (i.e., more misses) over
2215 	 * mutliple TLB flushes (i.e., more flushes). For virtual machines the
2216 	 * hypervisor needs to synchronize the host IOMMU PTEs with those of
2217 	 * the guest, and the trade-off is different: unnecessary TLB flushes
2218 	 * should be avoided.
2219 	 */
2220 	if (amd_iommu_np_cache &&
2221 	    iommu_iotlb_gather_is_disjoint(gather, iova, size))
2222 		iommu_iotlb_sync(domain, gather);
2223 
2224 	iommu_iotlb_gather_add_range(gather, iova, size);
2225 }
2226 
2227 static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
2228 			      size_t page_size,
2229 			      struct iommu_iotlb_gather *gather)
2230 {
2231 	struct protection_domain *domain = to_pdomain(dom);
2232 	struct io_pgtable_ops *ops = &domain->iop.iop.ops;
2233 	size_t r;
2234 
2235 	if ((amd_iommu_pgtable == AMD_IOMMU_V1) &&
2236 	    (domain->iop.mode == PAGE_MODE_NONE))
2237 		return 0;
2238 
2239 	r = (ops->unmap) ? ops->unmap(ops, iova, page_size, gather) : 0;
2240 
2241 	amd_iommu_iotlb_gather_add_page(dom, gather, iova, page_size);
2242 
2243 	return r;
2244 }
2245 
2246 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2247 					  dma_addr_t iova)
2248 {
2249 	struct protection_domain *domain = to_pdomain(dom);
2250 	struct io_pgtable_ops *ops = &domain->iop.iop.ops;
2251 
2252 	return ops->iova_to_phys(ops, iova);
2253 }
2254 
2255 static bool amd_iommu_capable(enum iommu_cap cap)
2256 {
2257 	switch (cap) {
2258 	case IOMMU_CAP_CACHE_COHERENCY:
2259 		return true;
2260 	case IOMMU_CAP_INTR_REMAP:
2261 		return (irq_remapping_enabled == 1);
2262 	case IOMMU_CAP_NOEXEC:
2263 		return false;
2264 	case IOMMU_CAP_PRE_BOOT_PROTECTION:
2265 		return amdr_ivrs_remap_support;
2266 	default:
2267 		break;
2268 	}
2269 
2270 	return false;
2271 }
2272 
2273 static void amd_iommu_get_resv_regions(struct device *dev,
2274 				       struct list_head *head)
2275 {
2276 	struct iommu_resv_region *region;
2277 	struct unity_map_entry *entry;
2278 	struct amd_iommu *iommu;
2279 	struct amd_iommu_pci_seg *pci_seg;
2280 	int devid, sbdf;
2281 
2282 	sbdf = get_device_sbdf_id(dev);
2283 	if (sbdf < 0)
2284 		return;
2285 
2286 	devid = PCI_SBDF_TO_DEVID(sbdf);
2287 	iommu = rlookup_amd_iommu(dev);
2288 	if (!iommu)
2289 		return;
2290 	pci_seg = iommu->pci_seg;
2291 
2292 	list_for_each_entry(entry, &pci_seg->unity_map, list) {
2293 		int type, prot = 0;
2294 		size_t length;
2295 
2296 		if (devid < entry->devid_start || devid > entry->devid_end)
2297 			continue;
2298 
2299 		type   = IOMMU_RESV_DIRECT;
2300 		length = entry->address_end - entry->address_start;
2301 		if (entry->prot & IOMMU_PROT_IR)
2302 			prot |= IOMMU_READ;
2303 		if (entry->prot & IOMMU_PROT_IW)
2304 			prot |= IOMMU_WRITE;
2305 		if (entry->prot & IOMMU_UNITY_MAP_FLAG_EXCL_RANGE)
2306 			/* Exclusion range */
2307 			type = IOMMU_RESV_RESERVED;
2308 
2309 		region = iommu_alloc_resv_region(entry->address_start,
2310 						 length, prot, type);
2311 		if (!region) {
2312 			dev_err(dev, "Out of memory allocating dm-regions\n");
2313 			return;
2314 		}
2315 		list_add_tail(&region->list, head);
2316 	}
2317 
2318 	region = iommu_alloc_resv_region(MSI_RANGE_START,
2319 					 MSI_RANGE_END - MSI_RANGE_START + 1,
2320 					 0, IOMMU_RESV_MSI);
2321 	if (!region)
2322 		return;
2323 	list_add_tail(&region->list, head);
2324 
2325 	region = iommu_alloc_resv_region(HT_RANGE_START,
2326 					 HT_RANGE_END - HT_RANGE_START + 1,
2327 					 0, IOMMU_RESV_RESERVED);
2328 	if (!region)
2329 		return;
2330 	list_add_tail(&region->list, head);
2331 }
2332 
2333 bool amd_iommu_is_attach_deferred(struct device *dev)
2334 {
2335 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2336 
2337 	return dev_data->defer_attach;
2338 }
2339 EXPORT_SYMBOL_GPL(amd_iommu_is_attach_deferred);
2340 
2341 static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain)
2342 {
2343 	struct protection_domain *dom = to_pdomain(domain);
2344 	unsigned long flags;
2345 
2346 	spin_lock_irqsave(&dom->lock, flags);
2347 	amd_iommu_domain_flush_tlb_pde(dom);
2348 	amd_iommu_domain_flush_complete(dom);
2349 	spin_unlock_irqrestore(&dom->lock, flags);
2350 }
2351 
2352 static void amd_iommu_iotlb_sync(struct iommu_domain *domain,
2353 				 struct iommu_iotlb_gather *gather)
2354 {
2355 	struct protection_domain *dom = to_pdomain(domain);
2356 	unsigned long flags;
2357 
2358 	spin_lock_irqsave(&dom->lock, flags);
2359 	domain_flush_pages(dom, gather->start, gather->end - gather->start, 1);
2360 	amd_iommu_domain_flush_complete(dom);
2361 	spin_unlock_irqrestore(&dom->lock, flags);
2362 }
2363 
2364 static int amd_iommu_def_domain_type(struct device *dev)
2365 {
2366 	struct iommu_dev_data *dev_data;
2367 
2368 	dev_data = dev_iommu_priv_get(dev);
2369 	if (!dev_data)
2370 		return 0;
2371 
2372 	/*
2373 	 * Do not identity map IOMMUv2 capable devices when memory encryption is
2374 	 * active, because some of those devices (AMD GPUs) don't have the
2375 	 * encryption bit in their DMA-mask and require remapping.
2376 	 */
2377 	if (!cc_platform_has(CC_ATTR_MEM_ENCRYPT) && dev_data->iommu_v2)
2378 		return IOMMU_DOMAIN_IDENTITY;
2379 
2380 	return 0;
2381 }
2382 
2383 static bool amd_iommu_enforce_cache_coherency(struct iommu_domain *domain)
2384 {
2385 	/* IOMMU_PTE_FC is always set */
2386 	return true;
2387 }
2388 
2389 const struct iommu_ops amd_iommu_ops = {
2390 	.capable = amd_iommu_capable,
2391 	.domain_alloc = amd_iommu_domain_alloc,
2392 	.probe_device = amd_iommu_probe_device,
2393 	.release_device = amd_iommu_release_device,
2394 	.probe_finalize = amd_iommu_probe_finalize,
2395 	.device_group = amd_iommu_device_group,
2396 	.get_resv_regions = amd_iommu_get_resv_regions,
2397 	.is_attach_deferred = amd_iommu_is_attach_deferred,
2398 	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
2399 	.def_domain_type = amd_iommu_def_domain_type,
2400 	.default_domain_ops = &(const struct iommu_domain_ops) {
2401 		.attach_dev	= amd_iommu_attach_device,
2402 		.detach_dev	= amd_iommu_detach_device,
2403 		.map		= amd_iommu_map,
2404 		.unmap		= amd_iommu_unmap,
2405 		.iotlb_sync_map	= amd_iommu_iotlb_sync_map,
2406 		.iova_to_phys	= amd_iommu_iova_to_phys,
2407 		.flush_iotlb_all = amd_iommu_flush_iotlb_all,
2408 		.iotlb_sync	= amd_iommu_iotlb_sync,
2409 		.free		= amd_iommu_domain_free,
2410 		.enforce_cache_coherency = amd_iommu_enforce_cache_coherency,
2411 	}
2412 };
2413 
2414 /*****************************************************************************
2415  *
2416  * The next functions do a basic initialization of IOMMU for pass through
2417  * mode
2418  *
2419  * In passthrough mode the IOMMU is initialized and enabled but not used for
2420  * DMA-API translation.
2421  *
2422  *****************************************************************************/
2423 
2424 /* IOMMUv2 specific functions */
2425 int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
2426 {
2427 	return atomic_notifier_chain_register(&ppr_notifier, nb);
2428 }
2429 EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
2430 
2431 int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
2432 {
2433 	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
2434 }
2435 EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
2436 
2437 void amd_iommu_domain_direct_map(struct iommu_domain *dom)
2438 {
2439 	struct protection_domain *domain = to_pdomain(dom);
2440 	unsigned long flags;
2441 
2442 	spin_lock_irqsave(&domain->lock, flags);
2443 
2444 	if (domain->iop.pgtbl_cfg.tlb)
2445 		free_io_pgtable_ops(&domain->iop.iop.ops);
2446 
2447 	spin_unlock_irqrestore(&domain->lock, flags);
2448 }
2449 EXPORT_SYMBOL(amd_iommu_domain_direct_map);
2450 
2451 int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
2452 {
2453 	struct protection_domain *domain = to_pdomain(dom);
2454 	unsigned long flags;
2455 	int levels, ret;
2456 
2457 	/* Number of GCR3 table levels required */
2458 	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
2459 		levels += 1;
2460 
2461 	if (levels > amd_iommu_max_glx_val)
2462 		return -EINVAL;
2463 
2464 	spin_lock_irqsave(&domain->lock, flags);
2465 
2466 	/*
2467 	 * Save us all sanity checks whether devices already in the
2468 	 * domain support IOMMUv2. Just force that the domain has no
2469 	 * devices attached when it is switched into IOMMUv2 mode.
2470 	 */
2471 	ret = -EBUSY;
2472 	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
2473 		goto out;
2474 
2475 	ret = -ENOMEM;
2476 	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
2477 	if (domain->gcr3_tbl == NULL)
2478 		goto out;
2479 
2480 	domain->glx      = levels;
2481 	domain->flags   |= PD_IOMMUV2_MASK;
2482 
2483 	amd_iommu_domain_update(domain);
2484 
2485 	ret = 0;
2486 
2487 out:
2488 	spin_unlock_irqrestore(&domain->lock, flags);
2489 
2490 	return ret;
2491 }
2492 EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
2493 
2494 static int __flush_pasid(struct protection_domain *domain, u32 pasid,
2495 			 u64 address, bool size)
2496 {
2497 	struct iommu_dev_data *dev_data;
2498 	struct iommu_cmd cmd;
2499 	int i, ret;
2500 
2501 	if (!(domain->flags & PD_IOMMUV2_MASK))
2502 		return -EINVAL;
2503 
2504 	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
2505 
2506 	/*
2507 	 * IOMMU TLB needs to be flushed before Device TLB to
2508 	 * prevent device TLB refill from IOMMU TLB
2509 	 */
2510 	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
2511 		if (domain->dev_iommu[i] == 0)
2512 			continue;
2513 
2514 		ret = iommu_queue_command(amd_iommus[i], &cmd);
2515 		if (ret != 0)
2516 			goto out;
2517 	}
2518 
2519 	/* Wait until IOMMU TLB flushes are complete */
2520 	amd_iommu_domain_flush_complete(domain);
2521 
2522 	/* Now flush device TLBs */
2523 	list_for_each_entry(dev_data, &domain->dev_list, list) {
2524 		struct amd_iommu *iommu;
2525 		int qdep;
2526 
2527 		/*
2528 		   There might be non-IOMMUv2 capable devices in an IOMMUv2
2529 		 * domain.
2530 		 */
2531 		if (!dev_data->ats.enabled)
2532 			continue;
2533 
2534 		qdep  = dev_data->ats.qdep;
2535 		iommu = rlookup_amd_iommu(dev_data->dev);
2536 		if (!iommu)
2537 			continue;
2538 		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
2539 				      qdep, address, size);
2540 
2541 		ret = iommu_queue_command(iommu, &cmd);
2542 		if (ret != 0)
2543 			goto out;
2544 	}
2545 
2546 	/* Wait until all device TLBs are flushed */
2547 	amd_iommu_domain_flush_complete(domain);
2548 
2549 	ret = 0;
2550 
2551 out:
2552 
2553 	return ret;
2554 }
2555 
2556 static int __amd_iommu_flush_page(struct protection_domain *domain, u32 pasid,
2557 				  u64 address)
2558 {
2559 	return __flush_pasid(domain, pasid, address, false);
2560 }
2561 
2562 int amd_iommu_flush_page(struct iommu_domain *dom, u32 pasid,
2563 			 u64 address)
2564 {
2565 	struct protection_domain *domain = to_pdomain(dom);
2566 	unsigned long flags;
2567 	int ret;
2568 
2569 	spin_lock_irqsave(&domain->lock, flags);
2570 	ret = __amd_iommu_flush_page(domain, pasid, address);
2571 	spin_unlock_irqrestore(&domain->lock, flags);
2572 
2573 	return ret;
2574 }
2575 EXPORT_SYMBOL(amd_iommu_flush_page);
2576 
2577 static int __amd_iommu_flush_tlb(struct protection_domain *domain, u32 pasid)
2578 {
2579 	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
2580 			     true);
2581 }
2582 
2583 int amd_iommu_flush_tlb(struct iommu_domain *dom, u32 pasid)
2584 {
2585 	struct protection_domain *domain = to_pdomain(dom);
2586 	unsigned long flags;
2587 	int ret;
2588 
2589 	spin_lock_irqsave(&domain->lock, flags);
2590 	ret = __amd_iommu_flush_tlb(domain, pasid);
2591 	spin_unlock_irqrestore(&domain->lock, flags);
2592 
2593 	return ret;
2594 }
2595 EXPORT_SYMBOL(amd_iommu_flush_tlb);
2596 
2597 static u64 *__get_gcr3_pte(u64 *root, int level, u32 pasid, bool alloc)
2598 {
2599 	int index;
2600 	u64 *pte;
2601 
2602 	while (true) {
2603 
2604 		index = (pasid >> (9 * level)) & 0x1ff;
2605 		pte   = &root[index];
2606 
2607 		if (level == 0)
2608 			break;
2609 
2610 		if (!(*pte & GCR3_VALID)) {
2611 			if (!alloc)
2612 				return NULL;
2613 
2614 			root = (void *)get_zeroed_page(GFP_ATOMIC);
2615 			if (root == NULL)
2616 				return NULL;
2617 
2618 			*pte = iommu_virt_to_phys(root) | GCR3_VALID;
2619 		}
2620 
2621 		root = iommu_phys_to_virt(*pte & PAGE_MASK);
2622 
2623 		level -= 1;
2624 	}
2625 
2626 	return pte;
2627 }
2628 
2629 static int __set_gcr3(struct protection_domain *domain, u32 pasid,
2630 		      unsigned long cr3)
2631 {
2632 	u64 *pte;
2633 
2634 	if (domain->iop.mode != PAGE_MODE_NONE)
2635 		return -EINVAL;
2636 
2637 	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
2638 	if (pte == NULL)
2639 		return -ENOMEM;
2640 
2641 	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;
2642 
2643 	return __amd_iommu_flush_tlb(domain, pasid);
2644 }
2645 
2646 static int __clear_gcr3(struct protection_domain *domain, u32 pasid)
2647 {
2648 	u64 *pte;
2649 
2650 	if (domain->iop.mode != PAGE_MODE_NONE)
2651 		return -EINVAL;
2652 
2653 	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
2654 	if (pte == NULL)
2655 		return 0;
2656 
2657 	*pte = 0;
2658 
2659 	return __amd_iommu_flush_tlb(domain, pasid);
2660 }
2661 
2662 int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, u32 pasid,
2663 			      unsigned long cr3)
2664 {
2665 	struct protection_domain *domain = to_pdomain(dom);
2666 	unsigned long flags;
2667 	int ret;
2668 
2669 	spin_lock_irqsave(&domain->lock, flags);
2670 	ret = __set_gcr3(domain, pasid, cr3);
2671 	spin_unlock_irqrestore(&domain->lock, flags);
2672 
2673 	return ret;
2674 }
2675 EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
2676 
2677 int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, u32 pasid)
2678 {
2679 	struct protection_domain *domain = to_pdomain(dom);
2680 	unsigned long flags;
2681 	int ret;
2682 
2683 	spin_lock_irqsave(&domain->lock, flags);
2684 	ret = __clear_gcr3(domain, pasid);
2685 	spin_unlock_irqrestore(&domain->lock, flags);
2686 
2687 	return ret;
2688 }
2689 EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
2690 
2691 int amd_iommu_complete_ppr(struct pci_dev *pdev, u32 pasid,
2692 			   int status, int tag)
2693 {
2694 	struct iommu_dev_data *dev_data;
2695 	struct amd_iommu *iommu;
2696 	struct iommu_cmd cmd;
2697 
2698 	dev_data = dev_iommu_priv_get(&pdev->dev);
2699 	iommu    = rlookup_amd_iommu(&pdev->dev);
2700 	if (!iommu)
2701 		return -ENODEV;
2702 
2703 	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
2704 			   tag, dev_data->pri_tlp);
2705 
2706 	return iommu_queue_command(iommu, &cmd);
2707 }
2708 EXPORT_SYMBOL(amd_iommu_complete_ppr);
2709 
2710 int amd_iommu_device_info(struct pci_dev *pdev,
2711                           struct amd_iommu_device_info *info)
2712 {
2713 	int max_pasids;
2714 	int pos;
2715 
2716 	if (pdev == NULL || info == NULL)
2717 		return -EINVAL;
2718 
2719 	if (!amd_iommu_v2_supported())
2720 		return -EINVAL;
2721 
2722 	memset(info, 0, sizeof(*info));
2723 
2724 	if (pci_ats_supported(pdev))
2725 		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
2726 
2727 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2728 	if (pos)
2729 		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
2730 
2731 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
2732 	if (pos) {
2733 		int features;
2734 
2735 		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
2736 		max_pasids = min(max_pasids, (1 << 20));
2737 
2738 		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
2739 		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
2740 
2741 		features = pci_pasid_features(pdev);
2742 		if (features & PCI_PASID_CAP_EXEC)
2743 			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
2744 		if (features & PCI_PASID_CAP_PRIV)
2745 			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
2746 	}
2747 
2748 	return 0;
2749 }
2750 EXPORT_SYMBOL(amd_iommu_device_info);
2751 
2752 #ifdef CONFIG_IRQ_REMAP
2753 
2754 /*****************************************************************************
2755  *
2756  * Interrupt Remapping Implementation
2757  *
2758  *****************************************************************************/
2759 
2760 static struct irq_chip amd_ir_chip;
2761 static DEFINE_SPINLOCK(iommu_table_lock);
2762 
2763 static void set_dte_irq_entry(struct amd_iommu *iommu, u16 devid,
2764 			      struct irq_remap_table *table)
2765 {
2766 	u64 dte;
2767 	struct dev_table_entry *dev_table = get_dev_table(iommu);
2768 
2769 	dte	= dev_table[devid].data[2];
2770 	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
2771 	dte	|= iommu_virt_to_phys(table->table);
2772 	dte	|= DTE_IRQ_REMAP_INTCTL;
2773 	dte	|= DTE_INTTABLEN;
2774 	dte	|= DTE_IRQ_REMAP_ENABLE;
2775 
2776 	dev_table[devid].data[2] = dte;
2777 }
2778 
2779 static struct irq_remap_table *get_irq_table(struct amd_iommu *iommu, u16 devid)
2780 {
2781 	struct irq_remap_table *table;
2782 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
2783 
2784 	if (WARN_ONCE(!pci_seg->rlookup_table[devid],
2785 		      "%s: no iommu for devid %x:%x\n",
2786 		      __func__, pci_seg->id, devid))
2787 		return NULL;
2788 
2789 	table = pci_seg->irq_lookup_table[devid];
2790 	if (WARN_ONCE(!table, "%s: no table for devid %x:%x\n",
2791 		      __func__, pci_seg->id, devid))
2792 		return NULL;
2793 
2794 	return table;
2795 }
2796 
2797 static struct irq_remap_table *__alloc_irq_table(void)
2798 {
2799 	struct irq_remap_table *table;
2800 
2801 	table = kzalloc(sizeof(*table), GFP_KERNEL);
2802 	if (!table)
2803 		return NULL;
2804 
2805 	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL);
2806 	if (!table->table) {
2807 		kfree(table);
2808 		return NULL;
2809 	}
2810 	raw_spin_lock_init(&table->lock);
2811 
2812 	if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
2813 		memset(table->table, 0,
2814 		       MAX_IRQS_PER_TABLE * sizeof(u32));
2815 	else
2816 		memset(table->table, 0,
2817 		       (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
2818 	return table;
2819 }
2820 
2821 static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid,
2822 				  struct irq_remap_table *table)
2823 {
2824 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
2825 
2826 	pci_seg->irq_lookup_table[devid] = table;
2827 	set_dte_irq_entry(iommu, devid, table);
2828 	iommu_flush_dte(iommu, devid);
2829 }
2830 
2831 static int set_remap_table_entry_alias(struct pci_dev *pdev, u16 alias,
2832 				       void *data)
2833 {
2834 	struct irq_remap_table *table = data;
2835 	struct amd_iommu_pci_seg *pci_seg;
2836 	struct amd_iommu *iommu = rlookup_amd_iommu(&pdev->dev);
2837 
2838 	if (!iommu)
2839 		return -EINVAL;
2840 
2841 	pci_seg = iommu->pci_seg;
2842 	pci_seg->irq_lookup_table[alias] = table;
2843 	set_dte_irq_entry(iommu, alias, table);
2844 	iommu_flush_dte(pci_seg->rlookup_table[alias], alias);
2845 
2846 	return 0;
2847 }
2848 
2849 static struct irq_remap_table *alloc_irq_table(struct amd_iommu *iommu,
2850 					       u16 devid, struct pci_dev *pdev)
2851 {
2852 	struct irq_remap_table *table = NULL;
2853 	struct irq_remap_table *new_table = NULL;
2854 	struct amd_iommu_pci_seg *pci_seg;
2855 	unsigned long flags;
2856 	u16 alias;
2857 
2858 	spin_lock_irqsave(&iommu_table_lock, flags);
2859 
2860 	pci_seg = iommu->pci_seg;
2861 	table = pci_seg->irq_lookup_table[devid];
2862 	if (table)
2863 		goto out_unlock;
2864 
2865 	alias = pci_seg->alias_table[devid];
2866 	table = pci_seg->irq_lookup_table[alias];
2867 	if (table) {
2868 		set_remap_table_entry(iommu, devid, table);
2869 		goto out_wait;
2870 	}
2871 	spin_unlock_irqrestore(&iommu_table_lock, flags);
2872 
2873 	/* Nothing there yet, allocate new irq remapping table */
2874 	new_table = __alloc_irq_table();
2875 	if (!new_table)
2876 		return NULL;
2877 
2878 	spin_lock_irqsave(&iommu_table_lock, flags);
2879 
2880 	table = pci_seg->irq_lookup_table[devid];
2881 	if (table)
2882 		goto out_unlock;
2883 
2884 	table = pci_seg->irq_lookup_table[alias];
2885 	if (table) {
2886 		set_remap_table_entry(iommu, devid, table);
2887 		goto out_wait;
2888 	}
2889 
2890 	table = new_table;
2891 	new_table = NULL;
2892 
2893 	if (pdev)
2894 		pci_for_each_dma_alias(pdev, set_remap_table_entry_alias,
2895 				       table);
2896 	else
2897 		set_remap_table_entry(iommu, devid, table);
2898 
2899 	if (devid != alias)
2900 		set_remap_table_entry(iommu, alias, table);
2901 
2902 out_wait:
2903 	iommu_completion_wait(iommu);
2904 
2905 out_unlock:
2906 	spin_unlock_irqrestore(&iommu_table_lock, flags);
2907 
2908 	if (new_table) {
2909 		kmem_cache_free(amd_iommu_irq_cache, new_table->table);
2910 		kfree(new_table);
2911 	}
2912 	return table;
2913 }
2914 
2915 static int alloc_irq_index(struct amd_iommu *iommu, u16 devid, int count,
2916 			   bool align, struct pci_dev *pdev)
2917 {
2918 	struct irq_remap_table *table;
2919 	int index, c, alignment = 1;
2920 	unsigned long flags;
2921 
2922 	table = alloc_irq_table(iommu, devid, pdev);
2923 	if (!table)
2924 		return -ENODEV;
2925 
2926 	if (align)
2927 		alignment = roundup_pow_of_two(count);
2928 
2929 	raw_spin_lock_irqsave(&table->lock, flags);
2930 
2931 	/* Scan table for free entries */
2932 	for (index = ALIGN(table->min_index, alignment), c = 0;
2933 	     index < MAX_IRQS_PER_TABLE;) {
2934 		if (!iommu->irte_ops->is_allocated(table, index)) {
2935 			c += 1;
2936 		} else {
2937 			c     = 0;
2938 			index = ALIGN(index + 1, alignment);
2939 			continue;
2940 		}
2941 
2942 		if (c == count)	{
2943 			for (; c != 0; --c)
2944 				iommu->irte_ops->set_allocated(table, index - c + 1);
2945 
2946 			index -= count - 1;
2947 			goto out;
2948 		}
2949 
2950 		index++;
2951 	}
2952 
2953 	index = -ENOSPC;
2954 
2955 out:
2956 	raw_spin_unlock_irqrestore(&table->lock, flags);
2957 
2958 	return index;
2959 }
2960 
2961 static int modify_irte_ga(struct amd_iommu *iommu, u16 devid, int index,
2962 			  struct irte_ga *irte, struct amd_ir_data *data)
2963 {
2964 	bool ret;
2965 	struct irq_remap_table *table;
2966 	unsigned long flags;
2967 	struct irte_ga *entry;
2968 
2969 	table = get_irq_table(iommu, devid);
2970 	if (!table)
2971 		return -ENOMEM;
2972 
2973 	raw_spin_lock_irqsave(&table->lock, flags);
2974 
2975 	entry = (struct irte_ga *)table->table;
2976 	entry = &entry[index];
2977 
2978 	ret = cmpxchg_double(&entry->lo.val, &entry->hi.val,
2979 			     entry->lo.val, entry->hi.val,
2980 			     irte->lo.val, irte->hi.val);
2981 	/*
2982 	 * We use cmpxchg16 to atomically update the 128-bit IRTE,
2983 	 * and it cannot be updated by the hardware or other processors
2984 	 * behind us, so the return value of cmpxchg16 should be the
2985 	 * same as the old value.
2986 	 */
2987 	WARN_ON(!ret);
2988 
2989 	if (data)
2990 		data->ref = entry;
2991 
2992 	raw_spin_unlock_irqrestore(&table->lock, flags);
2993 
2994 	iommu_flush_irt(iommu, devid);
2995 	iommu_completion_wait(iommu);
2996 
2997 	return 0;
2998 }
2999 
3000 static int modify_irte(struct amd_iommu *iommu,
3001 		       u16 devid, int index, union irte *irte)
3002 {
3003 	struct irq_remap_table *table;
3004 	unsigned long flags;
3005 
3006 	table = get_irq_table(iommu, devid);
3007 	if (!table)
3008 		return -ENOMEM;
3009 
3010 	raw_spin_lock_irqsave(&table->lock, flags);
3011 	table->table[index] = irte->val;
3012 	raw_spin_unlock_irqrestore(&table->lock, flags);
3013 
3014 	iommu_flush_irt(iommu, devid);
3015 	iommu_completion_wait(iommu);
3016 
3017 	return 0;
3018 }
3019 
3020 static void free_irte(struct amd_iommu *iommu, u16 devid, int index)
3021 {
3022 	struct irq_remap_table *table;
3023 	unsigned long flags;
3024 
3025 	table = get_irq_table(iommu, devid);
3026 	if (!table)
3027 		return;
3028 
3029 	raw_spin_lock_irqsave(&table->lock, flags);
3030 	iommu->irte_ops->clear_allocated(table, index);
3031 	raw_spin_unlock_irqrestore(&table->lock, flags);
3032 
3033 	iommu_flush_irt(iommu, devid);
3034 	iommu_completion_wait(iommu);
3035 }
3036 
3037 static void irte_prepare(void *entry,
3038 			 u32 delivery_mode, bool dest_mode,
3039 			 u8 vector, u32 dest_apicid, int devid)
3040 {
3041 	union irte *irte = (union irte *) entry;
3042 
3043 	irte->val                = 0;
3044 	irte->fields.vector      = vector;
3045 	irte->fields.int_type    = delivery_mode;
3046 	irte->fields.destination = dest_apicid;
3047 	irte->fields.dm          = dest_mode;
3048 	irte->fields.valid       = 1;
3049 }
3050 
3051 static void irte_ga_prepare(void *entry,
3052 			    u32 delivery_mode, bool dest_mode,
3053 			    u8 vector, u32 dest_apicid, int devid)
3054 {
3055 	struct irte_ga *irte = (struct irte_ga *) entry;
3056 
3057 	irte->lo.val                      = 0;
3058 	irte->hi.val                      = 0;
3059 	irte->lo.fields_remap.int_type    = delivery_mode;
3060 	irte->lo.fields_remap.dm          = dest_mode;
3061 	irte->hi.fields.vector            = vector;
3062 	irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid);
3063 	irte->hi.fields.destination       = APICID_TO_IRTE_DEST_HI(dest_apicid);
3064 	irte->lo.fields_remap.valid       = 1;
3065 }
3066 
3067 static void irte_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3068 {
3069 	union irte *irte = (union irte *) entry;
3070 
3071 	irte->fields.valid = 1;
3072 	modify_irte(iommu, devid, index, irte);
3073 }
3074 
3075 static void irte_ga_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3076 {
3077 	struct irte_ga *irte = (struct irte_ga *) entry;
3078 
3079 	irte->lo.fields_remap.valid = 1;
3080 	modify_irte_ga(iommu, devid, index, irte, NULL);
3081 }
3082 
3083 static void irte_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3084 {
3085 	union irte *irte = (union irte *) entry;
3086 
3087 	irte->fields.valid = 0;
3088 	modify_irte(iommu, devid, index, irte);
3089 }
3090 
3091 static void irte_ga_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3092 {
3093 	struct irte_ga *irte = (struct irte_ga *) entry;
3094 
3095 	irte->lo.fields_remap.valid = 0;
3096 	modify_irte_ga(iommu, devid, index, irte, NULL);
3097 }
3098 
3099 static void irte_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index,
3100 			      u8 vector, u32 dest_apicid)
3101 {
3102 	union irte *irte = (union irte *) entry;
3103 
3104 	irte->fields.vector = vector;
3105 	irte->fields.destination = dest_apicid;
3106 	modify_irte(iommu, devid, index, irte);
3107 }
3108 
3109 static void irte_ga_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index,
3110 				 u8 vector, u32 dest_apicid)
3111 {
3112 	struct irte_ga *irte = (struct irte_ga *) entry;
3113 
3114 	if (!irte->lo.fields_remap.guest_mode) {
3115 		irte->hi.fields.vector = vector;
3116 		irte->lo.fields_remap.destination =
3117 					APICID_TO_IRTE_DEST_LO(dest_apicid);
3118 		irte->hi.fields.destination =
3119 					APICID_TO_IRTE_DEST_HI(dest_apicid);
3120 		modify_irte_ga(iommu, devid, index, irte, NULL);
3121 	}
3122 }
3123 
3124 #define IRTE_ALLOCATED (~1U)
3125 static void irte_set_allocated(struct irq_remap_table *table, int index)
3126 {
3127 	table->table[index] = IRTE_ALLOCATED;
3128 }
3129 
3130 static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
3131 {
3132 	struct irte_ga *ptr = (struct irte_ga *)table->table;
3133 	struct irte_ga *irte = &ptr[index];
3134 
3135 	memset(&irte->lo.val, 0, sizeof(u64));
3136 	memset(&irte->hi.val, 0, sizeof(u64));
3137 	irte->hi.fields.vector = 0xff;
3138 }
3139 
3140 static bool irte_is_allocated(struct irq_remap_table *table, int index)
3141 {
3142 	union irte *ptr = (union irte *)table->table;
3143 	union irte *irte = &ptr[index];
3144 
3145 	return irte->val != 0;
3146 }
3147 
3148 static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
3149 {
3150 	struct irte_ga *ptr = (struct irte_ga *)table->table;
3151 	struct irte_ga *irte = &ptr[index];
3152 
3153 	return irte->hi.fields.vector != 0;
3154 }
3155 
3156 static void irte_clear_allocated(struct irq_remap_table *table, int index)
3157 {
3158 	table->table[index] = 0;
3159 }
3160 
3161 static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
3162 {
3163 	struct irte_ga *ptr = (struct irte_ga *)table->table;
3164 	struct irte_ga *irte = &ptr[index];
3165 
3166 	memset(&irte->lo.val, 0, sizeof(u64));
3167 	memset(&irte->hi.val, 0, sizeof(u64));
3168 }
3169 
3170 static int get_devid(struct irq_alloc_info *info)
3171 {
3172 	switch (info->type) {
3173 	case X86_IRQ_ALLOC_TYPE_IOAPIC:
3174 		return get_ioapic_devid(info->devid);
3175 	case X86_IRQ_ALLOC_TYPE_HPET:
3176 		return get_hpet_devid(info->devid);
3177 	case X86_IRQ_ALLOC_TYPE_PCI_MSI:
3178 	case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
3179 		return get_device_sbdf_id(msi_desc_to_dev(info->desc));
3180 	default:
3181 		WARN_ON_ONCE(1);
3182 		return -1;
3183 	}
3184 }
3185 
3186 struct irq_remap_ops amd_iommu_irq_ops = {
3187 	.prepare		= amd_iommu_prepare,
3188 	.enable			= amd_iommu_enable,
3189 	.disable		= amd_iommu_disable,
3190 	.reenable		= amd_iommu_reenable,
3191 	.enable_faulting	= amd_iommu_enable_faulting,
3192 };
3193 
3194 static void fill_msi_msg(struct msi_msg *msg, u32 index)
3195 {
3196 	msg->data = index;
3197 	msg->address_lo = 0;
3198 	msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
3199 	msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
3200 }
3201 
3202 static void irq_remapping_prepare_irte(struct amd_ir_data *data,
3203 				       struct irq_cfg *irq_cfg,
3204 				       struct irq_alloc_info *info,
3205 				       int devid, int index, int sub_handle)
3206 {
3207 	struct irq_2_irte *irte_info = &data->irq_2_irte;
3208 	struct amd_iommu *iommu = data->iommu;
3209 
3210 	if (!iommu)
3211 		return;
3212 
3213 	data->irq_2_irte.devid = devid;
3214 	data->irq_2_irte.index = index + sub_handle;
3215 	iommu->irte_ops->prepare(data->entry, apic->delivery_mode,
3216 				 apic->dest_mode_logical, irq_cfg->vector,
3217 				 irq_cfg->dest_apicid, devid);
3218 
3219 	switch (info->type) {
3220 	case X86_IRQ_ALLOC_TYPE_IOAPIC:
3221 	case X86_IRQ_ALLOC_TYPE_HPET:
3222 	case X86_IRQ_ALLOC_TYPE_PCI_MSI:
3223 	case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
3224 		fill_msi_msg(&data->msi_entry, irte_info->index);
3225 		break;
3226 
3227 	default:
3228 		BUG_ON(1);
3229 		break;
3230 	}
3231 }
3232 
3233 struct amd_irte_ops irte_32_ops = {
3234 	.prepare = irte_prepare,
3235 	.activate = irte_activate,
3236 	.deactivate = irte_deactivate,
3237 	.set_affinity = irte_set_affinity,
3238 	.set_allocated = irte_set_allocated,
3239 	.is_allocated = irte_is_allocated,
3240 	.clear_allocated = irte_clear_allocated,
3241 };
3242 
3243 struct amd_irte_ops irte_128_ops = {
3244 	.prepare = irte_ga_prepare,
3245 	.activate = irte_ga_activate,
3246 	.deactivate = irte_ga_deactivate,
3247 	.set_affinity = irte_ga_set_affinity,
3248 	.set_allocated = irte_ga_set_allocated,
3249 	.is_allocated = irte_ga_is_allocated,
3250 	.clear_allocated = irte_ga_clear_allocated,
3251 };
3252 
3253 static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
3254 			       unsigned int nr_irqs, void *arg)
3255 {
3256 	struct irq_alloc_info *info = arg;
3257 	struct irq_data *irq_data;
3258 	struct amd_ir_data *data = NULL;
3259 	struct amd_iommu *iommu;
3260 	struct irq_cfg *cfg;
3261 	int i, ret, devid, seg, sbdf;
3262 	int index;
3263 
3264 	if (!info)
3265 		return -EINVAL;
3266 	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI &&
3267 	    info->type != X86_IRQ_ALLOC_TYPE_PCI_MSIX)
3268 		return -EINVAL;
3269 
3270 	/*
3271 	 * With IRQ remapping enabled, don't need contiguous CPU vectors
3272 	 * to support multiple MSI interrupts.
3273 	 */
3274 	if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI)
3275 		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
3276 
3277 	sbdf = get_devid(info);
3278 	if (sbdf < 0)
3279 		return -EINVAL;
3280 
3281 	seg = PCI_SBDF_TO_SEGID(sbdf);
3282 	devid = PCI_SBDF_TO_DEVID(sbdf);
3283 	iommu = __rlookup_amd_iommu(seg, devid);
3284 	if (!iommu)
3285 		return -EINVAL;
3286 
3287 	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
3288 	if (ret < 0)
3289 		return ret;
3290 
3291 	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
3292 		struct irq_remap_table *table;
3293 
3294 		table = alloc_irq_table(iommu, devid, NULL);
3295 		if (table) {
3296 			if (!table->min_index) {
3297 				/*
3298 				 * Keep the first 32 indexes free for IOAPIC
3299 				 * interrupts.
3300 				 */
3301 				table->min_index = 32;
3302 				for (i = 0; i < 32; ++i)
3303 					iommu->irte_ops->set_allocated(table, i);
3304 			}
3305 			WARN_ON(table->min_index != 32);
3306 			index = info->ioapic.pin;
3307 		} else {
3308 			index = -ENOMEM;
3309 		}
3310 	} else if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI ||
3311 		   info->type == X86_IRQ_ALLOC_TYPE_PCI_MSIX) {
3312 		bool align = (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI);
3313 
3314 		index = alloc_irq_index(iommu, devid, nr_irqs, align,
3315 					msi_desc_to_pci_dev(info->desc));
3316 	} else {
3317 		index = alloc_irq_index(iommu, devid, nr_irqs, false, NULL);
3318 	}
3319 
3320 	if (index < 0) {
3321 		pr_warn("Failed to allocate IRTE\n");
3322 		ret = index;
3323 		goto out_free_parent;
3324 	}
3325 
3326 	for (i = 0; i < nr_irqs; i++) {
3327 		irq_data = irq_domain_get_irq_data(domain, virq + i);
3328 		cfg = irq_data ? irqd_cfg(irq_data) : NULL;
3329 		if (!cfg) {
3330 			ret = -EINVAL;
3331 			goto out_free_data;
3332 		}
3333 
3334 		ret = -ENOMEM;
3335 		data = kzalloc(sizeof(*data), GFP_KERNEL);
3336 		if (!data)
3337 			goto out_free_data;
3338 
3339 		if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
3340 			data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
3341 		else
3342 			data->entry = kzalloc(sizeof(struct irte_ga),
3343 						     GFP_KERNEL);
3344 		if (!data->entry) {
3345 			kfree(data);
3346 			goto out_free_data;
3347 		}
3348 
3349 		data->iommu = iommu;
3350 		irq_data->hwirq = (devid << 16) + i;
3351 		irq_data->chip_data = data;
3352 		irq_data->chip = &amd_ir_chip;
3353 		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
3354 		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
3355 	}
3356 
3357 	return 0;
3358 
3359 out_free_data:
3360 	for (i--; i >= 0; i--) {
3361 		irq_data = irq_domain_get_irq_data(domain, virq + i);
3362 		if (irq_data)
3363 			kfree(irq_data->chip_data);
3364 	}
3365 	for (i = 0; i < nr_irqs; i++)
3366 		free_irte(iommu, devid, index + i);
3367 out_free_parent:
3368 	irq_domain_free_irqs_common(domain, virq, nr_irqs);
3369 	return ret;
3370 }
3371 
3372 static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
3373 			       unsigned int nr_irqs)
3374 {
3375 	struct irq_2_irte *irte_info;
3376 	struct irq_data *irq_data;
3377 	struct amd_ir_data *data;
3378 	int i;
3379 
3380 	for (i = 0; i < nr_irqs; i++) {
3381 		irq_data = irq_domain_get_irq_data(domain, virq  + i);
3382 		if (irq_data && irq_data->chip_data) {
3383 			data = irq_data->chip_data;
3384 			irte_info = &data->irq_2_irte;
3385 			free_irte(data->iommu, irte_info->devid, irte_info->index);
3386 			kfree(data->entry);
3387 			kfree(data);
3388 		}
3389 	}
3390 	irq_domain_free_irqs_common(domain, virq, nr_irqs);
3391 }
3392 
3393 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
3394 			       struct amd_ir_data *ir_data,
3395 			       struct irq_2_irte *irte_info,
3396 			       struct irq_cfg *cfg);
3397 
3398 static int irq_remapping_activate(struct irq_domain *domain,
3399 				  struct irq_data *irq_data, bool reserve)
3400 {
3401 	struct amd_ir_data *data = irq_data->chip_data;
3402 	struct irq_2_irte *irte_info = &data->irq_2_irte;
3403 	struct amd_iommu *iommu = data->iommu;
3404 	struct irq_cfg *cfg = irqd_cfg(irq_data);
3405 
3406 	if (!iommu)
3407 		return 0;
3408 
3409 	iommu->irte_ops->activate(iommu, data->entry, irte_info->devid,
3410 				  irte_info->index);
3411 	amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
3412 	return 0;
3413 }
3414 
3415 static void irq_remapping_deactivate(struct irq_domain *domain,
3416 				     struct irq_data *irq_data)
3417 {
3418 	struct amd_ir_data *data = irq_data->chip_data;
3419 	struct irq_2_irte *irte_info = &data->irq_2_irte;
3420 	struct amd_iommu *iommu = data->iommu;
3421 
3422 	if (iommu)
3423 		iommu->irte_ops->deactivate(iommu, data->entry, irte_info->devid,
3424 					    irte_info->index);
3425 }
3426 
3427 static int irq_remapping_select(struct irq_domain *d, struct irq_fwspec *fwspec,
3428 				enum irq_domain_bus_token bus_token)
3429 {
3430 	struct amd_iommu *iommu;
3431 	int devid = -1;
3432 
3433 	if (!amd_iommu_irq_remap)
3434 		return 0;
3435 
3436 	if (x86_fwspec_is_ioapic(fwspec))
3437 		devid = get_ioapic_devid(fwspec->param[0]);
3438 	else if (x86_fwspec_is_hpet(fwspec))
3439 		devid = get_hpet_devid(fwspec->param[0]);
3440 
3441 	if (devid < 0)
3442 		return 0;
3443 	iommu = __rlookup_amd_iommu((devid >> 16), (devid & 0xffff));
3444 
3445 	return iommu && iommu->ir_domain == d;
3446 }
3447 
3448 static const struct irq_domain_ops amd_ir_domain_ops = {
3449 	.select = irq_remapping_select,
3450 	.alloc = irq_remapping_alloc,
3451 	.free = irq_remapping_free,
3452 	.activate = irq_remapping_activate,
3453 	.deactivate = irq_remapping_deactivate,
3454 };
3455 
3456 int amd_iommu_activate_guest_mode(void *data)
3457 {
3458 	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3459 	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3460 	u64 valid;
3461 
3462 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
3463 	    !entry || entry->lo.fields_vapic.guest_mode)
3464 		return 0;
3465 
3466 	valid = entry->lo.fields_vapic.valid;
3467 
3468 	entry->lo.val = 0;
3469 	entry->hi.val = 0;
3470 
3471 	entry->lo.fields_vapic.valid       = valid;
3472 	entry->lo.fields_vapic.guest_mode  = 1;
3473 	entry->lo.fields_vapic.ga_log_intr = 1;
3474 	entry->hi.fields.ga_root_ptr       = ir_data->ga_root_ptr;
3475 	entry->hi.fields.vector            = ir_data->ga_vector;
3476 	entry->lo.fields_vapic.ga_tag      = ir_data->ga_tag;
3477 
3478 	return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
3479 			      ir_data->irq_2_irte.index, entry, ir_data);
3480 }
3481 EXPORT_SYMBOL(amd_iommu_activate_guest_mode);
3482 
3483 int amd_iommu_deactivate_guest_mode(void *data)
3484 {
3485 	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3486 	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3487 	struct irq_cfg *cfg = ir_data->cfg;
3488 	u64 valid;
3489 
3490 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
3491 	    !entry || !entry->lo.fields_vapic.guest_mode)
3492 		return 0;
3493 
3494 	valid = entry->lo.fields_remap.valid;
3495 
3496 	entry->lo.val = 0;
3497 	entry->hi.val = 0;
3498 
3499 	entry->lo.fields_remap.valid       = valid;
3500 	entry->lo.fields_remap.dm          = apic->dest_mode_logical;
3501 	entry->lo.fields_remap.int_type    = apic->delivery_mode;
3502 	entry->hi.fields.vector            = cfg->vector;
3503 	entry->lo.fields_remap.destination =
3504 				APICID_TO_IRTE_DEST_LO(cfg->dest_apicid);
3505 	entry->hi.fields.destination =
3506 				APICID_TO_IRTE_DEST_HI(cfg->dest_apicid);
3507 
3508 	return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
3509 			      ir_data->irq_2_irte.index, entry, ir_data);
3510 }
3511 EXPORT_SYMBOL(amd_iommu_deactivate_guest_mode);
3512 
3513 static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
3514 {
3515 	int ret;
3516 	struct amd_iommu_pi_data *pi_data = vcpu_info;
3517 	struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
3518 	struct amd_ir_data *ir_data = data->chip_data;
3519 	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
3520 	struct iommu_dev_data *dev_data;
3521 
3522 	if (ir_data->iommu == NULL)
3523 		return -EINVAL;
3524 
3525 	dev_data = search_dev_data(ir_data->iommu, irte_info->devid);
3526 
3527 	/* Note:
3528 	 * This device has never been set up for guest mode.
3529 	 * we should not modify the IRTE
3530 	 */
3531 	if (!dev_data || !dev_data->use_vapic)
3532 		return 0;
3533 
3534 	ir_data->cfg = irqd_cfg(data);
3535 	pi_data->ir_data = ir_data;
3536 
3537 	/* Note:
3538 	 * SVM tries to set up for VAPIC mode, but we are in
3539 	 * legacy mode. So, we force legacy mode instead.
3540 	 */
3541 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
3542 		pr_debug("%s: Fall back to using intr legacy remap\n",
3543 			 __func__);
3544 		pi_data->is_guest_mode = false;
3545 	}
3546 
3547 	pi_data->prev_ga_tag = ir_data->cached_ga_tag;
3548 	if (pi_data->is_guest_mode) {
3549 		ir_data->ga_root_ptr = (pi_data->base >> 12);
3550 		ir_data->ga_vector = vcpu_pi_info->vector;
3551 		ir_data->ga_tag = pi_data->ga_tag;
3552 		ret = amd_iommu_activate_guest_mode(ir_data);
3553 		if (!ret)
3554 			ir_data->cached_ga_tag = pi_data->ga_tag;
3555 	} else {
3556 		ret = amd_iommu_deactivate_guest_mode(ir_data);
3557 
3558 		/*
3559 		 * This communicates the ga_tag back to the caller
3560 		 * so that it can do all the necessary clean up.
3561 		 */
3562 		if (!ret)
3563 			ir_data->cached_ga_tag = 0;
3564 	}
3565 
3566 	return ret;
3567 }
3568 
3569 
3570 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
3571 			       struct amd_ir_data *ir_data,
3572 			       struct irq_2_irte *irte_info,
3573 			       struct irq_cfg *cfg)
3574 {
3575 
3576 	/*
3577 	 * Atomically updates the IRTE with the new destination, vector
3578 	 * and flushes the interrupt entry cache.
3579 	 */
3580 	iommu->irte_ops->set_affinity(iommu, ir_data->entry, irte_info->devid,
3581 				      irte_info->index, cfg->vector,
3582 				      cfg->dest_apicid);
3583 }
3584 
3585 static int amd_ir_set_affinity(struct irq_data *data,
3586 			       const struct cpumask *mask, bool force)
3587 {
3588 	struct amd_ir_data *ir_data = data->chip_data;
3589 	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
3590 	struct irq_cfg *cfg = irqd_cfg(data);
3591 	struct irq_data *parent = data->parent_data;
3592 	struct amd_iommu *iommu = ir_data->iommu;
3593 	int ret;
3594 
3595 	if (!iommu)
3596 		return -ENODEV;
3597 
3598 	ret = parent->chip->irq_set_affinity(parent, mask, force);
3599 	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
3600 		return ret;
3601 
3602 	amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
3603 	/*
3604 	 * After this point, all the interrupts will start arriving
3605 	 * at the new destination. So, time to cleanup the previous
3606 	 * vector allocation.
3607 	 */
3608 	send_cleanup_vector(cfg);
3609 
3610 	return IRQ_SET_MASK_OK_DONE;
3611 }
3612 
3613 static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
3614 {
3615 	struct amd_ir_data *ir_data = irq_data->chip_data;
3616 
3617 	*msg = ir_data->msi_entry;
3618 }
3619 
3620 static struct irq_chip amd_ir_chip = {
3621 	.name			= "AMD-IR",
3622 	.irq_ack		= apic_ack_irq,
3623 	.irq_set_affinity	= amd_ir_set_affinity,
3624 	.irq_set_vcpu_affinity	= amd_ir_set_vcpu_affinity,
3625 	.irq_compose_msi_msg	= ir_compose_msi_msg,
3626 };
3627 
3628 int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
3629 {
3630 	struct fwnode_handle *fn;
3631 
3632 	fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
3633 	if (!fn)
3634 		return -ENOMEM;
3635 	iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu);
3636 	if (!iommu->ir_domain) {
3637 		irq_domain_free_fwnode(fn);
3638 		return -ENOMEM;
3639 	}
3640 
3641 	iommu->ir_domain->parent = arch_get_ir_parent_domain();
3642 	iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain,
3643 							     "AMD-IR-MSI",
3644 							     iommu->index);
3645 	return 0;
3646 }
3647 
3648 int amd_iommu_update_ga(int cpu, bool is_run, void *data)
3649 {
3650 	unsigned long flags;
3651 	struct amd_iommu *iommu;
3652 	struct irq_remap_table *table;
3653 	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3654 	int devid = ir_data->irq_2_irte.devid;
3655 	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3656 	struct irte_ga *ref = (struct irte_ga *) ir_data->ref;
3657 
3658 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
3659 	    !ref || !entry || !entry->lo.fields_vapic.guest_mode)
3660 		return 0;
3661 
3662 	iommu = ir_data->iommu;
3663 	if (!iommu)
3664 		return -ENODEV;
3665 
3666 	table = get_irq_table(iommu, devid);
3667 	if (!table)
3668 		return -ENODEV;
3669 
3670 	raw_spin_lock_irqsave(&table->lock, flags);
3671 
3672 	if (ref->lo.fields_vapic.guest_mode) {
3673 		if (cpu >= 0) {
3674 			ref->lo.fields_vapic.destination =
3675 						APICID_TO_IRTE_DEST_LO(cpu);
3676 			ref->hi.fields.destination =
3677 						APICID_TO_IRTE_DEST_HI(cpu);
3678 		}
3679 		ref->lo.fields_vapic.is_run = is_run;
3680 		barrier();
3681 	}
3682 
3683 	raw_spin_unlock_irqrestore(&table->lock, flags);
3684 
3685 	iommu_flush_irt(iommu, devid);
3686 	iommu_completion_wait(iommu);
3687 	return 0;
3688 }
3689 EXPORT_SYMBOL(amd_iommu_update_ga);
3690 #endif
3691